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Abstract

We present MultiLoKo, a benchmark to evaluate multilinguality in LLMs across
31 languages, with three partitions: a main partition containing 500 questions
per language, separately sourced for each language to be locally relevant, and
two translated partitions with human-authored translations from 30 non-English
languages to English and vice versa. We also release corresponding machine-
authored translations. The data is distributed over two splits: dev,s and a blind, out-
of-distribution test split. MultiLoKo can be used to study a variety of questions
regarding the multilinguality of LLMs as well as meta-questions about multilingual
benchmark creation. We compute scores for 11 base and chat models and study their
average performance and performance parity across languages, how much their
ability to answer questions depends on the question language, and which languages
are most difficult. None of the models we studied performs well on MultiLoKo, as
indicated by low average scores as well as large differences between the best and
worst scoring languages. We also find a substantial effect of the question language,
indicating suboptimal knowledge transfer between languages. Lastly, we find that
using local vs English-translated data can result in differences of more than 20
points for the best performing models, drastically changing the estimated difficulty
of some languages. For using machine instead of human translations, we find
a weaker effect on ordering of language difficulty, a larger difference in model
rankings, and a substantial drop in estimated performance for all models.”

1 Introduction

With the growing presence and deployment of LLMs across the world, evaluating their abilities
in languages other than English becomes more and more eminent. Yet, studying and evaluating
multilinguality in LLMs is a challenging enterprise, and it is hardly exaggerated to call the current
state of multilingual evaluation in LLMs insufficient. Older multilingual benchmarks such as XNLI
(Conneau et al., 2018) or XCOPA (Ponti et al., 2020) often do not fit the demands for evaluating
auto-regressive models and are rarely used for LLM evaluation. Furthermore, their coverage of
languages is relatively small compared to the number of languages in which LL.Ms are intended to
be proficient. More often used are benchmarks translated from English, such as MGSM (Shi et al.,
2023) or MMMLU (OpenAl, 2025). These benchmarks provide good coverage over many languages,
but using translated data comes with its own set of issues. One such issues is that even when human-
rather than machine-authored translations are used, translated data is known to differ from native
text in several ways (Clark et al., 2020). Furthermore, using translated benchmarks imposes a strong
English-centric bias: translated data may be multilingual on the surface, it is not in its content. The
benchmarks MLQA (Lewis et al., 2020) and TidyQA (Clark et al., 2020) to some extent address the
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issue by sourcing data separately for different languages. Even in their sourcing protocols, however,
there is no explicit focus on selecting locally relevant content for the chosen languages. In addition to
that, their coverage is again small compared to the above mentioned translated benchmarks.

In response to these issues, we introduce a wide-coverage multilingual benchmark with locally-
sourced questions for 31 different languages. Because the benchmark targets multilingual local
knowledge, we dub it MultiLoKo. The release of MultiLoKo serves two interconnected goals:

1) Provide a better means to evaluate multilinguality in LLMs;
2) Provide data to study the effect of various design choices in multilingual evaluation.

To address our first goal, we create 500 questions per language, written from scratch for each language,
using a sourcing protocol specifically designed to ensure local relevance of the question topics. To
also reap the benefits of parallel data, we commission both human and machine-authored translations
for all non-English questions into English and vice versa, providing a total of 15500 parallel questions,
sourced across the 31 languages in the benchmark. The translated data facilitates the study of transfer
between languages and also serves our second goal. By comparing the English-translated data with
the locally sourced data, we can explicitly compare the adequacy of using translated benchmarks; by
comparing human- with machine-authored translations, we can better estimate the potential issues of
the latter. To prevent quick overfitting and inadvertent contamination, we release a development set
of the benchmark, while test scores can only be obtained through an external provider.We compute
average performance and language parity scores on the locally sourced data for 11 models marketed
for their multilinguality (§ 5.1); we investigate whether models exhibit knowledge transfer between
different languages (§ 5.2); we study the impact of local sourcing versus translating on model
rankings and language difficulty (§ 5.3.1); we analyse the difficulty of the included languages through
various lenses (Appendix D); and we conduct an analysis into the difference between human- and
machine-authored translation (Appendix E). We find that the best performing model is Gemini 2.0
Flash, with an average performance of 34.4 points, and an almost 35 point gap between the best and
the worst language. Llama 3.1 405B and GPT4-o are close contenders in terms of average scores
(34.3 and 34.0, respectively), but both have substantially higher language gaps (39 and 49 points).
Almost across the board, model performances are better when questions are asked in the language to
which the content is relevant, indicating suboptimal knowledge transfer between languages, a result
that is mirrored by low response-consistency across question language.

Next, we study the relevance of using locally sourced data as opposed to translated English data
as well as whether it matters if translations are authored by humans or machines. We find that the
estimated difficulty of some languages changes drastically across the two sourcing setups, within the
range of 15 points decrease and 8 points increase on average across models. The rank correlation
between average language difficulty score is 0.78. Furthermore, individual model scores between
local and English-translated data can differ up to 22 points for some languages. However, changing
the sourcing setup does not impact model rankings, suggesting that using translated data may be
suitable for comparing models but less for model development or language prioritisation. For using
machine- instead of human-authored translations, as well, the effect on model ranking is limited
(R=0.97), but the difficulty estimates of various languages changes with up to 12 points. Furthermore,
using machine translated data results in lower average scores for all models, with drops ranging from
2 to 34% of the human-translated scores.

Outline In the remainder of this paper, we first describe our dataset collection protocol (§ 2) the
dataset itself in (§ 3), and our experimental setup (§ 4). In § 5, we present a range of different results.
We conclude in § 6 and discuss limitations in Appendix F. Beyond the related work discussed above,
we include a discussion of a wider range of multilingual datasets in Appendix A.

2 Dataset collection

Similar to the protocol used by the well-known benchmark SQuAD (Rajpurkar et al., 2016), we
source articles from Wikipedia about which we ask annotators to generate questions. After that,
we run several rounds of quality control on the generated questions and commission human- and
machine-authored translations of all data. Our collection protocol consists of five steps.

Step 1: Paragraph selection We start by sampling the 6K most visited Wikipedia pages for each
language for the period of 2016-2021. We then sample paragraphs from those pages by randomly
selecting a word in the page and expanding left and right until we reach 3K characters. Next, we
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ask annotators to judge the local relevance of the samples on a scale from 1 to 5, where 1 refers to
topics specific to the language (e.g. a Swedish singer not known outside of Sweden) and 5 to globally
well-known topics (e.g. “Youtube’). We disregard all topics that have a locality score above 3. The
full rubric and annotation instructions can be found in Appendix I.1.

Step 2: Question generation In step 2, we ask native speakers to generate challenging questions
about the content in the paragraphs. To facilitate automatic scoring, we ask that the questions are
closed-form questions, with only one correct short answer. To ensure that the annotation instructions
are understandable and appropriate for each locale and the questions of high quality, we run a pilot
with 50 questions separately for each language. After our pilot, we commission 500 additional
samples for each language, to leave a 10% margin to disregard questions in the rest of the process.

Step 3: Question review For each generated question, we ask a new set of annotators from a
separate provider to judge whether the generated questions abide by the annotation instructions, to
flag any possible issues, and to mark if the question is useable as is, would be useable with a small
adaptation or should be disregarded. We ask annotators to fix small annotation errors on the spot, and
as respective vendors that questions with larger issues are replaced.

Step 4: Question answering As a last quality control step, we ask two annotators different from
the creator of the question to answer the questions. In this stage, we do not ask annotators to correct
questions, but we simply disregard all questions for which either annotator thinks the original answer
was incorrect, or the annotator provided an answer not matching the original answer because of
ambiguities in the question. The only corrections we allow in this stage are additions of additional,
semantically equivalent, correct answers (e.g. ‘four’ as an alternative to ‘4’).

Step 5: Translation Lastly, we translate the non-English data back to English and vice versa.
This allows to study generalisation of knowledge and skills between English and non-English
languages and facilitates inspection of the topics and questions for all languages of the dataset,
without understanding those languages. We commission both human and machine translations® and
study their difference as part of our analysis.

3 MultiLoKo the dataset

MultiLoKo consists of three main components: i) the collected data; ii) a set of multilingual prompts
to prompt base- and chat models; and iii) a set of metrics.

3.1 The collected data

The data in MultiLoKo consists of several partitions and two splits.

Partitions MultiLoKo has one main partition, containing locally-soured data for 31
languages, and four translated partitions. Two of the latter are human-translated:
human-translated-from-english, with translations of English data into the 30 other languages in
MultiLoKo and human-translated-to-english, containing translations of the non-English subsets
into English. The other two are machine-translated partitions following the same pattern. All parti-
tions contain 500 samples per language — thus in total 15500 samples in the main partition, and 15000
samples in all translated partitions. Further statistics about the dataset, such as the distribution
over answer types and the average prompt length, can be found in in Appendix B.

Splits Each partition is divided equally over two splits containing 250 samples per language: a
dev split that can be used for development, and a blind test split. Until the test split is publicly
released, results can only be obtained through model submissions.* The splits are not random, but
constructed such that for each language the most frequently visited pages are in the dev split while
the least frequently visited pages are in the test split, roughly preserving the distribution of answer
types (e.g. number, name, year, etc). The test split can thus be seen as an out-of-distribution (ood)
split, specifically meant to assess generalisation (which is challenging in the context of LLMs, see e.g.
Hupkes et al., 2023). In § 5.3.2, we provide an analysis of the extent to which the split is truly an ood
split, by analysing its difficulty. The results reported in the results section of the paper are dev results.

3For the machine translations, we use the Google Translate sentence based cloud API.
“More details can be found on https://github.com/facebookresearch/multiloko/.
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3.2 Prompts and few-shot examples

In the spirit of getting truly multilingually appropriate results, we design the prompts required to run
separately for each language and release them along with the data. The prompts are written by a
different linguistic experts for each language, in consultation with the benchmark creators to ensure
they are appropriate for LLMs. We provide prompts for base models and chat models that allow for
incorporating up to five few-shot examples all of which we provide in our github repository.

3.3 Metrics

MultiLoKo has two main metrics and two auxiliary metrics. The two main metrics — Exact Match
accuracy (EM) and Gap — capture the overall performance of MultiLoKo and are computed on the
main partition, whereas the two auxiliary metrics — Mother Tongue Effect (MTE) and Locality Effect
(LE) — combine information from different partitions. We provide a cheat-sheet in Table 2.

EM and Gap EM indicates the performance of a model on a single language or averaged across
languages, as measured by the percentage of times the post-processed model answer verbatim matches
one of the answers in the reference list. Gap, defined as the difference between the best and the worst
performing language in the benchmark, is a measure of parity across the individual languages within
the benchmark. Taken together, EM and Gap provide a good indication of how well a model is faring
on MultiLoKo. Because both gap and EM are binary metrics that may be open to false negatives, we
also considered the partial match metrics BLEU (Papineni et al., 2002), ChrF (Popovi¢, 2015) and
contains, but we did not find any different patterns using those metrics.

MTE Because of the 2x2 design of MultiLoKo, in which we translated non-English data back to
English and vice versa, we can compute several metrics related to locality of the requested information.
MTE is one of such metrics. It expresses the impact of asking a question in a language to which that
question is relevant. We quantify MTE (for non-English languages only), as the delta between the
EM score of the locally sourced data asked in the corresponding language (e.g. asking a question
about a local Bengali radio station in Bengali) and the EM score when the same questions are asked
in English. A positive MTE indicates that information is more readily available when it is relevant to
the language in which it was asked, whereas a negative MTE indicates that the information is more
easily accessible in English. MTE is a measure related to transfer as well as language proficiency.

LE The locality effect (LE) is a measure of how much performance on knowledge tasks is over- or
underestimated through the use of using translated English data, as opposed to locally relevant data.
We quantify the locality effect as the difference in EM for English translated data and locally sourced
data. If for a language the English translated data has as a higher EM, the LE is positive, indicating
that using English translated data likely overestimating a model’s ability on providing knowledge for
that language. If the LE is negative the English translated data may provide an underestimation of the
score for that language. Note that because we often observe both positive and negative LEs for the 30
non-English languages in MultiLoKo, the average LE across languages may be small, even if the
differences for individual languages may be large.

4 Experimental setup

We test and showcase our benchmark by running experiments with 11 different models of varying
sizes, that were all marketed to have multilingual abilities.

4.1 Models

To test the extent to which MultiLoKo provides useful signal across training stages, we consider both
base and chat models. The base models we include in our experiments are Llama 3.1 70B and 405B
(Dubey et al., 2024), Mixtral 8x22B (team, 2024), and Qwen 2.5 72B (Qwen et al., 2025), the seven
chat models are Gemini 2.0 Flash (Google DeepMind, 2024), GPT4-o (OpenAl et al., 2024), Claude
3.5 Sonnet (Anthropic, 2025), Llama 3.1 70B and 405B Chat, Mixtral 8x22B-it, and Qwen 2.5 72B
instruct. As mentioned before, we run chat and base models with separate prompts.
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Table 1: Aggregate results dev. We report average EM, gap, mother tongue effect and locality effect
for all 11 models on the MultiLoKo dev split. For EM, MTE and LE, we also indicate a confidence
interval equal to two times the standard error across languages. Models are sorted by average EM.

Model EM Gap  Mother tongue effect Locality effect
Gemini 2.0 Flash 34.394+ 2.90 34.80 6.12+ 1.90 0.36+ 3.40
Llama 3.1 405B 34.314+ 2.70  39.20 6.37+ 1.70 0.62+ 2.70
GPT4-o0 33.97+ 3.60 48.80 3.08+ 2.00 0.35+ 2.90
Llama 3.1 405B Chat 27.704+ 3.20 40.80 3.97+ 2.20 —1.11+ 2.70
Llama 3.1 70B 26.92+ 2.60 28.80 2.72+ 1.70 —0.30+ 3.10
Claude 3.5 Sonnet 26.89+ 4.40 47.60 N/A 0.81£ 2.90
Llama 3.1 70B Chat 21.65+ 2.80 42.40 0.49+ 1.60 —3.32+ 3.30
Mixtral 8x22B 21.64+ 4.20 43.60 —2.18+ 3.00 —0.65+ 2.60
Qwen2.5 72B 19.66+ 2.30 28.40 2.45+ 2.10 —2.28+ 2.70
Mixtral 8x22B-it 10.10+ 3.10 39.20 —5.41+ 2.00 —0.54+ 1.70
Qwen2.5 72B instruct 2.54+ 0.70  8.00 —1.52+ 1.00 0.43+ 0.70

4.2 Experimental setup

We run all experiments with generation temperature set to 0. To facilitate automatic evaluation, we
include an instruction to answer questions curtly and precisely, producing only a number/name/etc.
Full template information can be found in our github repository. We use a 5-shot prompt for base
models and a 0-shot prompt for chat-models. For base models, minimal postprocessing is needed: we
lowercase the output, strip punctuation and whitespace, and evaluate the first line. Chat models often
deviate from the required format, in various ways that we discuss in Appendix G. To evaluate such
models beyond their instruction-following issues, we perform more complex post-processing, aiming
to remove any words resembling “answer” from the LLM output, as well as several special cases for
English and Japanese. We provide full details about post-processing in Appendix H.

5 Results

We report average model results (§ 5.1), study transfer between languages (§ 5.2) and look in more
detail at the dataset itself through the lens of model results (§ 5.3). We report language specific results
and differences between using human and machine translated data in Appendices D and E.

5.1 Aggregate results: EM and language gap

In Table 1, we report per-model average EM, the gap between the best and worst language, and
average MTE and LE, which we will discuss in a later section. We report average MTE, EM and
LE along with a confidence interval equal to two times the standard error across languages, roughly
equalling previously used 95% confidence intervals (Madaan et al., 2024; Dubey et al., 2024).

Model performance (EM) In Figure 1 (left), we show a boxplot of the EM scores across models.
The best performing models are Gemini 2.0 Flash, Llama 3.1 405B, and GPT4-o, while Mixtral
8x22B and Qwen2.5 72B populate the lower rankings. Somewhat surprisingly, base models are
generally outperforming chat models on the benchmark, this is partly due to false refusals and poor
instruction following in the chat models. In some cases, however, the chat models simply just provide
a qualitatively different answer than the base models. The figure shows that MultiLoKo is a relatively
difficult benchmark across the board: the average EM of even the best performing model barely
exceeds 30, while the bottom performing models have scores lower than 20. Also EM for the easiest
languages (see also Appendix D) remain below 50. Furthermore, for virtually all models performance
varies starkly between languages, suggesting that none of the models we considered are evenly
multilingual across the 31 languages covered.

Gap While average EM score provides some information about a model’s multilingual abilities,
the same EM score can hide many different patterns regarding individual language scores. As we
appreciate it is not always practical to consider 31 separate EM scores in model development, we
add a second summary metric to the main metrics of MultiLoKo: the gap between the best and worst
performing languages, reperesentative of the extent to which a model has achieved parity across
languages. Earlier, we already saw that the per-language scores have quite a range for all models. In
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Figure 1: EM distributions and Gap dev. Left: Boxplot of EM scores across models, sorted by
mean. Right: Difference between the best EM and the worst of the N next best EM scores, per model.

Figure 1 (right), we study this in more detail, by considering the gap between the best language and
the next N best language (30 corresponds to the full benchmark). On the right end of the plot, we
see that already considering only 5 languages besides English, even the best perform has a gap of
over five points — which is relatively large in absolute terms and very large in relative ones — between
English and the worst of the remaining languages. For the second best two models, the top-5 gap
even exceeds 10 points. As we include more languages, up to the full benchmark, the gap increases,
with GPT4-0 showing gap of almost 50 points. The only models for which the gap is small are the
models that have overall low performance and thus little space to drop from English, illustrating how
gap and average EM provide complementary information about multilingual performance.

5.2 Generalisation across languages

Next, we study whether knowledge generalises across languages.

The mother tongue effect (MTE) First, we compare the EM of models when questions are asked
in the language for which the questions were originally sourced with performance when the same
questions are asked in English. We quantify this effect with the metric MTE, which expresses the
difference in performance between these two settings (see § 3.3). In Figure 2 (left), we show MTE
per language, averaged across models.’ For most languages, performance is higher when the question
is asked in the language for which the question is locally relevant. With the exception of Hindi, the
languages for which MTE is negative or close to O are all languages that perform very poorly also
in the mother tongue and for which there is therefore little room for further decrease. From one
perspective, the improvements when questions are asked in the low-resource but native languages
can be seen as surprising: as models perform much better in English than non-English languages,
one may expect performances to go up as a consequence of that. On the other hand, similar ‘mother
tongue effects’ have been observed in earlier studies. For example, Ohmer et al. (2024) found that
models are comparatively better at answering factual questions about topics when they are asked in a
language to which culture the fact pertains. It appears that also in our case, the effect of accessibility
of information in a relevant language wins out over the generally stronger English performance,
pointing to a gap in models’ ability to generalise knowledge from one language to another. In Figure 2
(right), we further consider the distribution of MTE scores for the top-3 models. Interestingly, this
distribution is quite different between models. Despite having comparable average scores, the top-3
performing models differ in their MTE distributions across languages. Of the three models, GPT4-0
has the smallest average effect (3.2); Llama 3.1 405B has a much higher average effect (6.6), but
less probability mass on the more extreme ranges of the spectrum (min max values of [-7, +12] vs
[-9, +13]) Gemini 2.0 Flash is in the middle in terms of average (6.3), but shows the largest variation
across languages ([-10, +16]). Note, however, that without studying the actual training data of the
models, it is possible to infer that the models have relatively poor transfer across languages, but not
conclusively say that one model is better than another: it is also possible that the information sourced
for languages with better MTEs was simply better represented in the English data of a model.

3Claude 3.5 Sonnet scores were very low on English because of poor instruction following (s see Appendix G).
As this is unrelated to lack of transfer or knowledge, we exclude Claude 3.5 Sonnet from all transfer results.
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Figure 3: Consistency results. Left: Average per-model consistency scores, £ 2 times the standard

error across languages. Right: Boxplot of model consistency scores per language, indicating the
relative overlap of correctly answered questions when asked in the mother tongue vs in English.

Consistency across responses Another way to study transfer between languages is to look at the
consistency of responses across languages (Qi et al., 2023; Ohmer et al., 2023, i.a.). After all, it is
possible for a model with an EM of 30 on both native and translated data to be completely misaligned
on which questions they respond to correctly. Studying consistency across responses can therefore be
seen as a more direct way of studying whether knowledge is equally accessible across languages. In
the dataset used by Ohmer et al. (2023), the correct answers are identical across languages, while
Qi et al. (2023) use a ranking approach. Neither of their metrics can be directly applied in our case.
Rather, we opt for a simpler consistency metric, which quantifies what percentage of the questions
that are answered correctly in either language are answered correctly in both languages. In Figure 3
(left), we show the average consistency of all models; we also show the per-language consistency
results in Figure 3 (right). The results confirm our earlier conclusion that much improvements can be
made when it comes to knowledge transfer between languages: even for the best performing models,
there is an overlap of not even 50% between the questions correctly answered across languages.

5.3 The dataset

Lastly, we discuss two aspects related to the creation of the dataset.

5.3.1 Locally-sourced vs translated-from-English data

To study the impact of using locally sourced data, we consider the difference between per-language
EM on locally sourced data and translated from English data.

Language difficulty First, we look at per-language differences between locally sourced and
translated English data. We quantify this with a metric we call the Locality Effect (LE), which tells
us how much the estimate of a model’s strength in a particular language would have been off if we
had chosen to use a translated benchmark rather than a locally sourced one. We plot this difference
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Figure 5: Average EM, dev versus test. Score distributions of the dev (upper bars) and test (lower
bars) sets. The results show that the test set is indeed out of distribution with respect to the dev set.

in § 5.3.1 (left). As we can see, the scores between locally and translated English-sourced data can
differ quite drastically, almost 15 percentage points averaged across models. For individual models,
the differences are even larger. For Llama 3.1 405B, LE ranges from -13 to +17; for Gemini 2.0 Flash
from -21 to +15; and for GPT4-o0 from -22 to +14. The differences are not just in absolute scores;
also the ordering of language by difficulty is quite different across the two data collection setups, as
can be seen by the per-model rank correlations of language difficulty between the two conditions,
shown in § 5.3.1 (right). Using English-translated rather than locally sourced data does thus not only
provide different estimates, but may suggest different languages to focus on for improvement.

Model rankings Next, we consider the ranking of the models under the two different data regimes.
Interestingly, given the transfer effect, changing from locally to English translated data does not make
any difference in the ranking. Also in terms of absolute scores, the difference between the two data
collection setups is relatively minor. At least for our type of data, it thus appears that using translated
data as opposed to locally sourced data may be a reasonable setup for comparing models on average,
though not for getting adequate per-language or set language prioritisation.

5.3.2 The dataset split

As mentioned in the dataset construction, we took the deliberate decision to generate a split based
on topic frequency, rather than creating a random split. The aim of this out-of-distribution split
is to test generalisation to topics that are more in the tail of the distribution, as well as encourage
improvements in multilinguality beyond having a higher score on the specific released MultiLoKo
dev set. Of course, however, because of our sourcing method, all the topics in MultiLoKo are topics
on which information is available on Wikipedia. As training data, Wikipedia is often packaged as a
single scrape, this may render our deliberate splitting efforts futile: the fact that a page is less visited
does not make it less likely that the specific page is included in the training data. Now, we test if the
dev and test split are in fact distributionally different.
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In Figure 5, we show boxplots of dev and test EM scores for all models under consideration. The
plot confirms that the split is indeed to be considered an OOD split: for virtually much all models, the
test scores are lower than the dev scores. Across all models, the average dev score is 24, whereas the
average test score is 21. This suggests that our test set does indeed contain more tail knowledge than
the dev set, despite the aforementioned arguments regarding Wikipedia. Interestingly, this implies
that Wikipedia may not be the primary source from which models learn this information.

The difference in difficulty also has bearing on the other metrics: the gap between the best and worst
performing language) is 37 for dev vs 34 for test, suggesting that more difficult dat may to some
extent hide differences between languages and therefore exemplifying the utility of considering parity
along with overall performance. The mother tongue effect, on the other hand, is comparable across
dev and test (1.61 vs 1.56, respectively). For the locality effect, the effect is less interpretable. While
the average difference is substantial (-0.6 dev vs -1.9 test), there is no clear pattern discernable
across languages: for some, the effect reduces, whereas for others it increases.

6 Conclusion

Notwithstanding the increasing multinational deployment of LLMs in many parts of the world,
adequately evaluating their multilinguality remains a challenging enterprise. Only in part is this
due to the scarcity of high-quality and broad-coverage multilingual benchmarks for LLM: perhaps
a more pressing issue is that the benchmarks that are frequently used for multilingual evaluation
virtually all consist of translated English data. While using completely parallel data has its advantages,
using translated English data imposes an English-centric bias on the content of the benchmarks,
implying that even if the benchmark evaluates multilinguality on the surface, it does not in content.
In our work, we aim to address this by presenting MultilLoKo, a multilingual benchmark spanning 31
languages that combines the best of both worlds. MultiLoKo contains 500 questions targetting locally
relevant knowledge for 31 languages, separately sourced for each language with a protocol specifically
designed to ensure local relevance of the question topics. It is also fully parallel, because it contains
human-authored translations of the non-English partitions into English and vice versa. As such, it
allows to study various questions related to multilinguality, transfer and multilingual benchmark
creation. To prevent quick overfitting and inadvertent contamination, we release a development set of
the benchmark, while the test set of the benchmarks remains private, at least for the near future.

We use MultiLoKo to analyse 4 base and 7 chat models marketed to be multilingual. We find that
the best performing model is Gemini 2.0 Flash, with an average performance of 34.4 points, and
an almost 35 point gap between the best and the worst language, followed by Llama 3.1 405B and
GPT4-o0, which are close contenders in terms of average performance but both have substantially
higher language gaps (39 and 49 points). Generally, scores are better when questions are asked in the
language to which they are relevant, indicating suboptimal knowledge transfer between languages, a
result that is mirrored by low per-sample consistency across question language.

On a meta-level, we study the relevance of using locally sourced data as opposed to translated English
data as well as whether it matters if translations are machine- or human-authored. We find that the
estimated difficulty of some languages changes drastically across the two sourcing setups, within
the range of 15 points decrease and 8 points increase on average. The rank correlation between
average language difficulty score is 0.78, and individual model scores can differ up to 22 points for
some languages. However, changing the sourcing setup does not impact model rankings, suggesting
that using translated data may be suitable for comparing models but less for model development or
language prioritisation. For using machine- instead of human-authored translations, as well, the effect
on model ranking is limited (R=0.97), but the difficulty estimates of various languages changes with
up to 12 points. Furthermore, using machine translated data results in lower average scores for all
models, with drops ranging from 2 to 34% of the human-translated scores.

While our results section is extensive already, there are still several parts of MultiL.oKo that we did
not explore. For instance, because of the sourcing strategy, each native question is coupled with a
paragraph that contains the answer to the question. MultiLoKo could thus be transformed into a
reading-comprehension benchmark, and we consider studying the difference between the knowledge
and reading comprehension setup an interesting direction for future work. Furthermore, each question
contains an elaborate long answer intended to explain the short answer. We have not used the long
answers in any of our experiments, but foresee interesting directions including studies into CoT
prompting or studying answer rationales.
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The first main metric we use to quantify performance for MultiLoKo is the average Exact Match score
Average EM across languages, which expresses how many of the answers match one of the gold standard answers
verbatim (after post-processing the answers).

The second main metric is the gap between a model’s best and worst performing language. We gap to
quantify the extent to which a model has achieved parity across languages. Because a small gap can be
achieved both through parity on high scores as parity on low scores, it is most informative in combination
with average benchmark performance.

Gap

MTE expresses the impact of asking questions in a language in which the requested information is locally
Mother tongue  salient, compared to asking it in English. A positive MTE indicates information is more readily available in
effect (MTE) the language it was (likely) present in the training data, whereas a negative mother tongue effect indicates
the information is more easily accessible in English.

LE quantifies the effect of using locally sourced vs translated data. It is measured by computing the
Locality effect  difference between scores for locally sourced data and translated English-sourced data. A positive LE
(LE) implies that using translated English data underestimates performance on a language, a negative LE that
using translated English data overestimates performance.

Table 2: MultiLoKo metric cheatsheet. We use several metrics to quantify model performance
using MultiLoKo. This table provides a cheatsheet for their meaning.

A Related work

In this paper, we introduce a new multilingual benchmark for LLMs, that we believe addresses gaps
and pitfalls in existing benchmarks. We (concisely) outlined those gaps and pitfalls and mentioned
several other works related to ours in the introduction of those paper. Here, we discuss multilingual
evaluation of LLMs in more detail. Specifically, we discuss what datasets recent LLM releases have
used for multilingual evaluation (Appendix A.1) and what other datasets and approaches they could
have used but did not (Appendix A.2).

A.1 Multilingual evaluation of LLMs in practice

While multilinguality is something frequently mentioned in the release papers or posts of recent LLM
releases, the datasets for which they actual report scores is in most cases quite limited. Of the models
that we evaluated for this paper, Gemini 2.0 Flash reported no multilingual scores at all; GPT4-o
and Mixtral 8x22B report scores only on internally translated but not publicly available English
benchmarks; Claude 3.5 Sonnet reports scores for only one benchmark —- MGSM. MGSM is also
the only publicly available benchmark for which Llama 3.1 reports scores, along with — also — an
internally translated version of MMLU that is not publicly available. The only model that extensively
reports multilingual benchmark values, on more than 10 benchmarks, is Qwen2.5 72B. We provide an
overview of the multilingual benchmarks for which scores are reported for these models in Table 3.

Claude 3.5 Sonnet MGSM (Shi et al., 2023)

Gemini 2.0 Flash ~ Mentions multilingual audio, no multilingual benchmarks scores reported.

ARC-Easy and Truthful QA translated into five African languages (internal bench-
mark), Uhura-Eval (internal benchmark).

Llama 3.1 MGSM (Shi et al., 2023), Multilingual MMLU (internal benchmark)
Mixtral 8x22B translated ARC-C, HellaSwag and MMLU (internal benchmarks)

M3Exam (Zhang et al., 2023), IndoMMLU (Koto et al., 2023), ruMMLU
(Fenogenova et al., 2024), translated MMLU (Chen et al., 2023), Belebele (Ban-

Qwen2.5 72B darkar et al., 2024), XCOPA (Ponti et al., 2020), XWinograd (Muennighoff et al.,
2023), XStoryClose (Lin et al., 2022), PAWS-X (Zhang et al., 2019), MGSM
(Shi et al., 2023), Flores-101 (Goyal et al., 2022)

GPT4-0

Table 3: Multilingual evaluation of recent LLM releases, overview. We provide an overview
table of the benchmark for which scores are reported in the release papers or notes of the LLMs we
evaluated in this paper. Models are sorted alphabetically.
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A.2 Multilingual evaluation options for LLMs

While, as we discuss below, there are gaps and challenges with multilingual evaluation for LLMs,
there are in fact many more options than is suggested by what is reported in recent releases. Below,
we discuss other options for multilingual LLM evaluation.

Translated English benchmarks As mentioned earlier on, benchmarks used for LLM evaluation
are often translated English benchmarks. In some cases, the benchmarks were designed to evaluate
only English and translated later, such as translated MMLU (e.g. Li et al., 2024; Chen et al., 2023;
OpenAl, 2025; Singh et al., 2024) or MMLU-ProX (Xuan et al., 2025), MGSM (Shi et al., 2023)
or MLAMA (Kassner et al., 2021). In other cases, the benchmark was multilingual at the time of
its creation, but means of creation of the non-English data was through translating English sourced
data, such as Belebele Bandarkar et al. (2024), Mintaka (Sen et al., 2022), or X-FACTR (Jiang et al.,
2020). Taken together, translated benchmarks span quite a range of tasks, such as question answering
(Artetxe et al., 2020; Lewis et al., 2020; Qi et al., 2023; Ohmer et al., 2023), natural language inference
(Conneau et al., 2018), paraphrase detection (Zhang et al., 2019), general linguistic competence
(Jumelet et al., 2025), reading comprehension (Artetxe et al., 2020; Bandarkar et al., 2024) and
commonsense reasoning (Ponti et al., 2020), and even instruction following (He et al., 2024). With
the exception of question answering and of course instruction following, however, many of these
tasks have gone (somewhat) out of fashion for LLM evaluation, a trend which is mirrored also in
the usage of their multilingual counterparts. As mentioned before, translated benchmarks have the
advantage of containing parallel data, allowing for some form of comparability across languages, but
are English-centric in content and may suffer from translationese (see e.g. Romanou et al., 2024;
Chen et al., 2024, for a recent discussion of this).

Multilingual benchmarks sourced from scratch Though much rarer, there are also benchmarks
that are created independently for each language they include. Clark et al. (2020) release a question
answering dataset separately sourced for 11 different languages, with a protocol relatively similar
to ours. In a different category, Hardalov et al. (2020), Zhang et al. (2023) and Romanou et al.
(2024) and Séanchez et al. (2024) do not create benchmark data, but instead collect existing exam
or competition questions from official human exams. In case of Zhang et al. (2023), the exams are
graduation exams of primary, middle and high school; Hardalov et al. (2020) includes official state
exams taken by graduating high school students, which may contain parallel pairs in case countries
allow examinations to be taken in multiple languages; Romanou et al. (2024), cover academic exams
at middle and high school and university level, professional certifications and licenses, and exams
to obtain regional licenses. Sanchez et al. (2024) instead focus on questions from the International
Linguistic Olympiad corpus. Lastly, as part of their study Ohmer et al. (2023) create a dataset
called SIMPLE FACTS, containing factual questions created through a shared template filled in with
language specific factual data.

Consistency evaluation A rather different approach to assess multilinguality in LLMs is to focus
not on accuracy across different languages, but to consider whether predictions are consistent across
languages. This tests knowledge and skill transfer between languages more explicitly. Two recent
examples of studies incorporating consistency-based evaluations on factual knowledge questions
are Qi et al. (2023) and Ohmer et al. (2023). Qi et al. (2023) focusses specifically on sample-level
consistency of answers across different languages, requiring existing parallel benchmarks. Ohmer
et al. (2023), instead, ask models to translate benchmark questions themselves before answering
them again. This can, with some caveats, be applied to any existing monolingual benchmark, but —
requiring multiple steps — it is more involved an a paradigm, and is somewhat bottlenecked by the
translation ability of the model to be evaluated.

Translation as a proxy for multilinguality ~Another, more implicit method to assess multilinguality
in LLMs is to evaluate their ability to translate from one language to another. This approach was
famously used by Brown et al. (2020), but has not been common since.

Monolingual non-English evaluation In our discussion, we have focussed on multilingual eval-
uation options that cover multiple other languages. After all, a benchmark to evaluate models on
Bengali (e.g. Shafayat et al., 2024) or Arabic (e.g. Alwajih et al., 2024) can contribute to multilin-
gual evaluation when combined with other benchmarks, but does not so on its own. Because such
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benchmarks are usually created by language experts for the respective languages, they usually target
locally relevant skills and knowledge and are likely of higher quality than benchmarks created for
many languages simultaneously (either through translation or from scratch). Yet, composing a suite
including many languages that allows direct comparisons between languages remains challenging.
We believe such benchmarks can be important for multilingual evaluation in LLMs, but will not
further discuss benchmarks focussing on individual languages or very small sets of languages within
one family here.

B Additional dataset statistics

For reference, we provide a few dataset statistics beyond the main results in the paper.
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Figure 6: Distribution of output types on the dev split. We show the normalised distribution of
correct output types across languages, ordered (from bottom to top) by average frequency. Rare
output types that occur only a few times are mapped to the category ‘other’.

Output type distribution In Figure 6, we show the per-language distribution of output types for
MultiLoKo dev split.® We mapped very rare output types, such as ‘a quantity’, ‘a period of time’
or ‘letter’ to ‘other’, for plotting purposes. We can see that name is the most common output type
across languages, followed by the generic output type a word and number. Also place and date are
relatively common output types, whereas most other output types occur very infrequently or only for
a handful of languages.

Input and output length In addition to that, we show the average question — and output lengths of
human-translated the locally sourced questions to English in Figure 7. While there is some variation
in particular in question length, the lengths of the answers are relatively consistent. The average
answer length is around 2, combining one-word answers with (usually) longer names.

C Model runtime and compute resource information

In this section we provide details about the runtime for non-API models (LLaMa 3 family of models,
Qwen and Mixtral).

Hardware  All models were run on one node of 8xH100 80GBs, 1 TB of RAM, with the exception
of LLama 3.1 405B, for which we used 2 nodes.

Precision  All models were run on bf16 precision.

Runtime  Excluding model loading time, all models took <10 minutes to complete a partition of
the dataset. A partition is defined as 250 examples, and could be either dev, test, or
human/machine translated version of those. Overall, < 1 hour is required to run every
single example in our dataset through an LLM with this setup.

For iterating over prompts and debugging, we used a reduced dataset of 50 examples, and a 70B
model, which overall took less than 1 hour of total compute resources.

Because the test split is blind, we do not report the distribution of output types here.
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Figure 7: Average question and answer lengths. We show the per-question average length (in
words) of the locally-sourced questions and answers, human-translated into English.

D Differences between languages

So far, with the exception of MTE and parity scores, we have primarily looked at results averaged
across languages. Now, we consider language-specific results in a bit more detail.
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Figure 8: Average EM per language dev, in mother tongue and English. Top: Average EM on
locally sourced data. Bottom: Average EM on locally sourced data, translated to English.
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D.1 Language difficulty on locally sourced data

First, in Figure 8 (top), we show average results for all languages on all locally sourced data. In broad
strokes, the order of difficulty is correlated with how low- or high- resource a language is considered:
while languages such as French, English and Spanish occur at the easier end of the spectrum, we find
Farsi, Khmer and Malay among the most difficult languages. There are a few notable exceptions:
on average the second highest scoring language in our benchmark is Tagalog. While it is difficult
to judge why without doing a detailed analysis on the questions, we hypothesise that the questions
asked by the Tagalog language experts are simply less complex than the questions of other languages.

D.2 Separating language difficulty from language proficiency

In an attempt to distinguish data difficulty from language proficiency, we consider also the difficulty
of the locally sourced data translated to English. While this conflates data difficulty and transfer (see
§ 5.2), it still gives us some indication of the extent to which low performance in languages is caused
by poor language proficiency versus data difficulty. In the bottom half of Figure 8, we show the
model performances as computed on the locally sourced data translated to English. The correlation
between these two language difficulty rankings between these setups is 0.79. When comparing the
ranks of the various languages, only a handful of languages shift more than a few places. Specifically,
Bengali (26->4), Urdu (26->12), and Hindi (14->5) all decrease substantially in difficulty rank. The
fact that they are comparatively easier in English suggests that for those languages proficiency may
be a larger problem than data difficulty. On the other hand, only Russian (7->21) shows a drop of
more than 5 places.

E Human versus machine translation

In this section, we consider the impact of using machine- or human-authored translations. To do so,
we look at the differences in EM scores between machine and human translated data for the various
languages, taking the human translations as the ‘gold standard’ (i.e. we consider human translated
EM - machine translated EM). We show the results in Figure 9.
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(a) Language difficulty stats
across human- and machine translations (b) MT vs human translations

Figure 9: Machine versus human translations dev. Left: Per-model rank correlation between
language difficulty between MT and human translations, and min, max and average difference between
the two conditions. Right: Difference between EM computed on human- and machine-translated data
(human score - machine score), per language.

In Figure 9a we show the rank correlations of the difficulties of the various languages per model,
as well as the min, max and average drop from human to machine translations. We see the that, at
the model level, using machine translations rather than human translations results in a systematic
undervaluation of the model scores: there is not a single model for which the ‘drop’ from human to
machine translations is negative on average. In part, this is may be a result of the previously observed
lack of knowledge transfer effect. That the drop is not substantially lower for models with better
transfer, however, suggests that the more impactful factor is the quality of the machine translations,
that may at times result in unanswerable questions.

21



821
822
823
824
825

826
827
828

830
831

832

833

834
835
836

838

839
840
841
842
843
844
845
846

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861

862
863

865
866
867
868
869
870
871
872
873

In terms of model rankings, the difference between machine and human translations is minor: the
model rankings between the two conditions have a rank correlation of 0.97 on the dev split, with only
three local swaps (2&3 and 5&6 and 8&9) of models that did not have statistically different scores to
begin with. This suggests that to compare models, using machine translation can be an acceptable
alternative to human translations, as the mis-estimation is systematic across models.

Considering the effect across languages, we observe that even though the average drop is positive, for
virtually all models there are at least some languages for which performance increases when MT is
used, in some cases with even more than 10 points. For a handful of languages — specifically Russian,
Swedish and Urdu — this is also true across models (see Figure 9b). While the overall rank correlation
is high for language difficulty (0.88), it thus still urges caution in using machine translated data for
language improvement prioritisation.

F Limitations

In this last section, we discuss various limitations of our work.

Local relevance In our sourcing protocol, we explicitly sought to create questions locally relevant
to the respective languages. It is important to notice, however, that some languages, such as English,
Spanish, Portuguese, Chinese, French and to a lesser extent German and Dutch cover a wide variety of
cultures. We did not separately control for that and the data for those languages thus likely comprises
a mix of different locales.

Data quality Building a bias-free evaluation datasets with few mistakes is not an easy feat. Even
though we implemented several rounds of quality checks in our data collection pipeline, when
looking at outputs we still incidentally found mistakes in the data or answers. We fixed some of these
mistakes as we encountered them, but it is quite likely that more such mistakes occur in the dataset.
It is also important to point out that we are less likely to spot such issues for languages that we do
not understand at all, potentially creating a bias towards the set of languages for which we have a
rudimentary understanding. Overall, however, we believe that the pipeline we designed assures a
dataset of high quality. Of course, we welcome reports of mistakes spotted by others in the data.

Evaluation Because MultiLoKo is a generative benchmark, computing scores requires comparisons
of a generated answer with a set of gold answers. A first obstacle to this method of evaluation is
that it is hard to create an exhaustive list of correct short-form answers. This is especially true when
the correct answer is not a number, date, title or something else that can be expressed only in a few
ways. In addition to that, it is hard to incentivise LLMs to produce concise answers. Even when
instructed to answer with only a number / date / name / title, they may respond with a full sentence,
add a reasoning trail to their answer, or add words beyond the minimal answer in a different fashion.
We addressed such issues that were systematic in post-processing (see Appendix G), but it is hard
to a priori catch all the ways that LLMs may deviate from the requested protocols. In some cases,
we found additional post-processing steps that increased the scores of some models only later in the
process, because scores for particular languages looked suspiciously low. For instance, we had not
initially realised that our punctuation stripper did not strip punctuation in Urdu, which specifically
influenced GPT4-o0 and Gemini. We considered several other metrics as well as judges, but eventually
found that EM provided the clearest and least biased signal. It remains, however, a challenge to
evaluate chatty LLMs completely independently from their ability to follow instructions.

Wikipedia as information source MultiLoKo, as several other both multilingual as well as
monolingual benchmarks, uses Wikipedia as main source of information. This has the advantage that
Wikipedia has a large coverage across many different languages and the information is considered
to be of high quality. It also facilitates comparable sourcing across languages. Of course, it also
poses limitations. For one, it still provides a bias to the specific topics that can be included, that are
usually primarily knowledge based. In fact, MultiLoKo is indeed a knowledge benchmark; it does
not consider other types of skills. Secondly, and perhaps more importantly, Wikipedia is a a corpus
frequently used in the training data of LLMs. The fact that MultiLoKo is a challenging benchmark
even given that (multilingual) wikipedia is likely included in the training data of most of the LLMs
evaluated suggests that this is not a large issue at the moment. However, it is very possible that
MultiLoKo can be ‘hacked’ relatively easily simply by strongly oversampling multilingual wikipedia
data.
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G Instruction following

To facilitate evaluation, we instruct models to answer question with only a number/place/etc. Overall,
we found that base models (with a five-shot template) are much better at abiding by this instruction
than chat models, which exhibit a number of pathologies. While some of those can be caught with
appropriate post-processing (see Appendix H, this is not the case for all issues. Below, we provide a
summary of the main instruction-following issues we encountered with chat models.

False refusals Sometimes chat models refuse to provide an answer when the question is falsely
perceived to be inappropriate (e.g. when the question asks about someone aged younger than 18).

Producing full sentences Another issue we observed is that chat models would provide a full
sentence answer, rather than a single word or phrase (e.g. Which year was Francisco Franco born?
Produce a year only. — Francisco Franco was born in 1936). Such full-sentence answers make exact
match rating impossible. The effect is not consistent across languages and happens only for some
of the examples, without any discernable pattern, and therefore difficult to address completely with
post-processing.

Spurious addition of “answer is” Likely due to overtraining on MMLU style tasks, Models such
as OpenAI’s GPT4 and Gemini 2.0 preface the vast majority of the answers in English with “answer
is” or “X answer is X where X is the desired correct response. This is remarkable, because it is
essentially a repetition of the end of the prompt. However, it is easy to fix in post-processing.

Japanese specific issues In Japanese, in general it is not polite to answer with incomplete sentences.
As such chat models often append the copula verb “desu* to the answer, making exact match
unsuccessful. We are able to fix this in postprocessing.

Claude 3.5 Sonnet issues We were unable to make Claude 3.5 Sonnet follow the instructions to
produce just an answer in English. It seemed to engage in a long chain-of-thought reasoning style
response which we were unable to reliably parse. This issue only manifests in English and only with
Claude. For this reason, we exclude Claude 3.5 Sonnet from our knowledge transfer results, as it
would make the average lack of knowledge transfer from non-English languages to English more
severe than they are.

H Post-processing details

We perform the following post-processing for both the reference answers and the answers produced
by the model:

* Remove leading and trailing whitespaces.
* Remove punctuation.

* Lowercase everything.
We perform the following additional post-processing for pretrained models:

* Remove leading “Answer:” or “A:” or the non-English equivalent from the output.

* Remove everything after the first newline.

We perform the following additional post-processing for postrained models:

* Remove leading “answer is:”

* Detect the pattern “X answer is X", where X is the desired answer, and strip the unnecessary
part in the middle.

* Remove training “desu” in Japanese.

"Using a judge-LLM may to some extent address this problem, but at the expense of other issues (e.g. Thakur
et al., 2024).
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I Annotation instructions

Our annotation pipeline contains five stages: 1) locality rating, 2) question generation 3) question
review, 4) question answering, and 5) translation. Below, we provide the annotation instructions for
each of these stages.

I.1 Locality rating

To narrow-down the initial selection of paragraphs — sampled from the top-rated Wikipedia pages of
the respective locales — the first step in our annotation pipeline is locality rating. Given a paragraph,
we ask annotators to rate whether the paragraph is locally relevant to the particular locale, on a
likertscale from 1 to 5, where 1 refers to extremely local and relatively obscure topics very specifically
related to the specific language or locale and with little international recognition and 5 to globally
well-known topics. We also ask annotators to disregard pages about inappropriate or politically
sensitive topics. The rubric for locality annotation can be found in Table 4. We disregard everything
with a locality rating of 3 or lower.

Description

Example

Extremely local and relatively obscure. Con-
tent that is of interest only to a small, localized
group, such as a specific town, region, or commu-
nity. These topics are typically obscure and not
widely known beyond their immediate area.

Local radio stations, small town his-
torical events, regional businesses, or
niche local cultural practices.

Regional interest. Topics that have some relevance
beyond a specific locality but are still primarily of
interest within a particular region or country.

State or provincial politicians, regional
cuisine, local sports teams, or medium-
sized companies with regional influ-
ence.

National Significance. Content that is widely rec-
ognized within a single country, but relatively un-
known internationally.

National politicians (not internation-
ally known), popular national media
figures, major corporations within a
country, or significant national histori-
cal events.

International recognition. Topics that are recog-
nized and have relevance in multiple countries but
may not be universally known across the globe.
These topics often have international influence and
are likely to be covered in international media,
though their impact may vary by region.

International brands which may be
recognized in more than one coun-
try, celebrities with some international
reach, significant cultural movements,
or political conflicts with some aware-
ness on the international stage.

Global prominence. Content that is widely rec-
ognized and relevant across a large number of
countries around the world. These topics have a
global impact or appeal and are likely to be well-
represented in media across diverse cultures and
regions.

Globally famous celebrities (e.g., Cris-
tiano Ronaldo), multinational corpo-
rations (e.g., Apple), major world
events, or universally recognized cul-
tural icons.

Table 4: Rubric for locality rating task. In the locality rating task, we ask the annotators to rate
paragraphs with respect to how locally relevant the topic is to the locale.

L2 Question generation

The second and main annotation step in our pipeline is the step in which we ask annotators to generate
questions about sampled paragraphs. We ask annotators to generate a challenging question with a
short answer. The answer should be easy to evaluate with string-matching metrics, the questions
should not be open-ended or have many possible correct answers, be ambiguous or subjective, and
the expected short answer should be concise. To ensure difficulty, we ask that answering the question
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requires combining information from different parts in the accompanying text; It should not be
answerable by mere regurgitation of a single sentence. We furthermore ask that the question is
formulated such that its answer will not change over time (e.g. not ‘How many medals has Sifan
Hassan won’, but ‘How many medals has Sifan Hassan won between 2018 and 2022 (including)’),
and that the question is answerable also without the article (e.g. not ‘How many tv shows did the
person in this article produce?’). To facilitate validation checks in the next round, we also ask that the
question authors write a longer answer to explain how they arrived at the short answer. We also ask
the question authors to annotate what is the type of the correct answer (e.g. number, name, date, etc)
In the pilot, we observed that — for some languages — the vast majority of questions were questions
that required some form of numerical reasoning. Because the intention of the benchmark is to address
knowledge more than reasoning, we afterwards restricted the number of numerical questions to 10%.
Similarly, we asked question authors to avoid yes/no questions.

LI.3 Question review

In the first round of question review, we asked annotators from a different provider to judge whether
the questions abide by the rules provided to the question authors. All question reviewers are native
speakers. Specifically, we ask them to check if:

* The question pertains to a locally relevant topic
» The question is clear and undestandable, and not subjective
* The question has a clear and concise answer

* If there are multiple possible variations of the answer possible (e.g. ‘Dick Schoof’ / ‘Minister
Dick Schoof’ / ‘Prime Minister Dick Schoof” / etc), all versions of the answer are provided.

* The question and answer are in the correct language
* The question is understandable without the article
* That the answer to the question will not likely change in the near future

When a question can be fixed with a minor change (e.g. add a time indication to make sure an answer
will not change in the near future, or add an extra answer version), we ask the question reviewers
to implement this fix and describe it. In the pilot round, we use the annotator feedback to finetune
our annotation protocol and provide feedback to the question-authors. During the rest of the data
collection, we simply disregard questions that are not useable as is or can be corrected with minor
changes.

I.4 Validation through question answering

In the last stage of our question generation pipeline, we have additional annotators answer the sourced
and reviewed question. The goal of this validation task is to confirm that the questions are answerable,
correct, non-ambiguous when read by individuals other than the original question author, and that all
possible versions of the answers are included. For each question, we ask two additional annotators
to first answer the question, using the snippets the questions were sourced from for context. After
they have answered the question, they are shown the list of reference answers written by the original
author of the question as well as the rational they provided, and we ask them to reflect upon the
answer they gave themselves. If their answer did not match any answer in the original reference list,
we ask them to either add their answer to the list if it is semantically equivalent to their own answer
or indicate which answer they believe to be correct, their own or the original answer. We disregard all
questions where at least one annotator disagrees with the original question author.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS paper checklist',
¢ Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction we outline the problem (lack in adequacy of
datasets to assess multilinguality in LLM), describe how we solve it (propose a new dataset)
and give an outline of our main results using this dataset.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: It does, both throughout the work and in more detail in Appendix F.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
Justification: There are no theoretical results in this paper
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details about the parameters we ran the experiments with and
release all prompt templates and post-processing code. Note though that API-based results
are non-deterministic even with generation temperature of 0, so exact reproduction of our
results will likely not be possible.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we release the data and code for reproduction at https://github.com/
facebookresearch/multiloko

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all details regarding our decision to split the data in the main paper.
We did not train any models.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Where appropriate, we indicate confidence intervals and significance values
(typically 2 times standard error) and describe what they are.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We outline the requested information in Appendix C.

Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We believe that the paper conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We briefly discuss the societal importance of multilingual evaluation in the
introduction, but not much beyond that.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer:

Justification: We are not releasing any models and believe that the data popses no risk for
misuse, beyond training models directly on the data which would render the benchmark itself
useless. We have furthermore password protected the data to prevent accidental scraping,
and have included a license asking others not to mirror it.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provided references for all data and models used and abided by their
license terms.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have elaborately documented both data collection processes and the data
itself.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We used an external vendor for data collection but did no crowd-sourcing
experiments.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our study did not have participants.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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