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Abstract

Recent research on online Gradient Balancing (GraB) has revealed that there exist
permutation-based example orderings for SGD that are guaranteed to outperform
random reshuffling (RR). Whereas RR arbitrarily permutes training examples,
GraB leverages stale gradients from prior epochs to order examples — achieving
a provably faster convergence rate than RR. However, GraB is limited by design:
while it demonstrates an impressive ability to scale-up training on centralized data,
it does not naturally extend to modern distributed ML workloads. We therefore
propose Coordinated Distributed GraB (CD-GraB), which uses insights from prior
work on kernel thinning to translate the benefits of provably faster permutation-based
example ordering to distributed settings. With negligible overhead, CD-GraB
exhibits a linear speedup in convergence rate over centralized GraB and outperforms
distributed RR on a variety of benchmark tasks.

1 Introduction

Random reshuffling, which samples training-data examples without replacement, has become the de
facto example-ordering method in modern deep-learning libraries [34], given that it tends to accelerate
optimizer convergence in practice. However, some recent theoretical work has identified cases in
which random reshuffling can lead to data orderings that have a poor effect on convergence [8//36}/49].
This has encouraged a line of research to investigate if there exist provably better permutation-based
orderings that afford greater scalability in training [22}|24,|31]. Notably, Lu et al. [24] connects
permuted-order SGD to the herding problem [16], and proposes the herding-based online Gradient
Balancing algorithm (GraB), which converges provably faster than random reshuffling, and does so
with little memory or computational overhead. In fact, in follow-on work, Cha et al. [6] proves that
GraB is optimal: in theory, GraB is the fastest possible permutation-based example ordering algorithm.

These results are very exciting, suggesting that GraB should unseat random reshuffling as the example
ordering method-of-choice for SGD; however, they only hold with respect to a single machine. GraB
is optimal in settings with centralized data, but does not naturally translate to problems of modern-ML
scale, which demand that training workloads be distributed across multiple parallel workers that each
only have access to a subset of the training data. This drawback raises an important question:

Can we simultaneously achieve the scalability benefits of distributed training and
provably faster permutation-based example ordering for SGD — both in theory and in practice?

In this work, we show that it is indeed possible to attain these twin objectives. To do so, we suggest
the online Coordinated Distributed Gradiant Balance algorithm (CD-GraB), which leverages insights
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from kernel thinning to elevate the herding framework of centralized GraB (GraB) to the parallel
setting. Felicitously, as a side effect, this choice of formulation brings about positive practical
performance benefits (that can also improve the empirical behavior of centralized GraB). Using the
exact same assumptions as the original GraB paper, we show analytically that coordinating example
orders across parallel workers leads a linear speedup in convergence rate. For T" epochs and m
parallel workers, each with access to n examples, CD-GraB’s convergence rate is O((mnT)’g/ i

on smooth, non-convex objectives and O((mnT)~2) under the Polyak-FEojasiewicz (P.L.) condition

We run a series of experiments to verify these improvements in practice, implementing CD-GraB on
a single node that distributes computation across multiple GPUs. We also run an ablation study in
order to disentangle the benefits of parallelism from the positive side effects of using kernel thinning
to formulate the CD-GraB algorithm. Similar to how centralized GraB demonstrates improved
generalization over centralized random reshuffling (RR), we observe that CD-GraB exhibits improved
generalization over distributed random reshuffling (D-RR). Altogether, the success of our work
suggests a new distributed training paradigm to explore in future work, which we call the Order Server
(Section@). In summary, we:

¢ Propose the online Coordinated Distributed Gradient Balancing (CD-GraB) algorithm, which
enables provably accelerated training using SGD in the parallel setting (Section;

* Prove that the convergence rate for CD-GraB exhibits a linear speedup over GraB, using the exact
same assumptions as the original GraB paper (Section;

* Produce extensive empirical validation of CD-GraB’s improved scalability on a variety of tasks
in deep learning and on large-scale logistic regression (Section.

2 Preliminaries and Related Work

In this section, we discuss the preliminaries and prior scholarship on permutation-based example
ordering, with particular attention paid to the centralized online Gradient Balancing Algorithm
(GraB) [24]. This lays the groundwork for how our coordinated, distributed GraB algorithm (Section
imparts the efficiency guarantees of GraB to the parallelized regime (Section[4).

Ordering data examples during training. Training a model can be formulated as minimizing a
differentiable loss function f :R? — R over N data examples. The goal of this minimization is to obtain
the target model weights w* = argmin,,, f(w), where f(w) = %Zjvzlf(w;j), for which f(w;j)
denotes the loss incurred on the j-th example. A typical training process iteratively updates the model
parameters w by scanning over the NV data examples repeatedly, with ¢-th scan (or epoch) following

wf“:wg—an(wf;m(j)), Vje[N], 1

where « denotes the learning rate, and 7, : [N] — [ V] denotes a permutation orderindopted inthe ¢t-th
epoch from which the examples are chosen to compute gradients, w; denotes the initial model weits

for the t-th epoch, and 'w{ denotes the model weights after j — 1 gradient updates in the ¢-th epoch

The choice of ordering 7 can have a significant effect on optimizer performance. Two popular methods,
which can demonstrate convergence speedups in practice, are 1) random reshuffling (RR) [46], for
which the permutations are random and differ over epochs, and 2) Shuffle Once (SO) [4}|13], for which
arandom permutation is computed once and remains fixed for all epochs. Recht and Ré [37] conducted
the first theoretical investigation of RR, while subsequent works like Yun et al. [49] and De Sa [§]
have given counterexamples in which RR leads to orderings that have a poor effect on convergence.
Altogether, many studies indicate that RR and SO only provide efficiency benefits under certain
conditions | 14}/15}/30].

These limitations of RR and SO have motivated research to identify permutations that outperform
random ones. Rajput et al. [36] introduces an RR variant that achieves improved convergence for
quadratics by reversing the ordering every other epoch. Other non-RR-based methods pick efficient
orderings based on correlations between adjacently selected examples. In a recent line of work, Lu et al.

*In this paper, we use 10) by convention to hide logarithmic factors in the problem parameters.

3While without-replacement orderings are most common in large-scale learning [3]], ordering strategies need
not be permutations, e.g., with-replacement sampling [23|[32[39] or curriculum learning [121[27}/41].

“Note that we write (1) in terms of per-example-j gradients.



[22] proves that faster convergence is possible for SGD when the averages of consecutive stochastic
gradients converge faster to the full gradient. Based on this result, in follow-on work Lu et al. [24]
proposes the centralized online Gradient Balancing algorithm (GraB), which outperforms RR, and
upon which we base this work.

2.1 GraB: Optimal, online, permutation-based example ordering for centralized ML

GraB is a permutation-based example-ordering algorithm that identifies provably better-than-random
orderings in centralized, single-node settings for SGD. GraB finds such orderings by leveraging infor-
mation in stale stochastic gradients from previous epochs to guide ordering in the next epoch. More for-
mally, for smooth, non-convex objectives, Lu et al. [24] proves that any permutation 7* that guarantees

mane[N]HZ?:1Vf(w§7T*(j))_Vf('w)Hoo:O(l) (V f(w) is the average gradient), (2)

will yield a convergence rate of O((NT)~2/3) (for epochs T') for SGD, which is superior to the
O(N~1/3T7-2/3) convergence rate of random reshuffling [30].

GraB’s connection to herding and balancing. To find such a permutation 7%, Lu et al. [24] connect
to the herding problem and vector balancing [16}/45]. Understanding why GraB does not naturally
extend to the distributed setting — and our main contributions (Sectionsand — requires some
additional details on the fundamentals of herding:

Given N Vector{zj }5\;1 (z; €RY),

zj ||, <1(V¥j), herding identifies a permutation * such that

k . ~ . N
man-e[N]Hijl (z,r*(j)—z)Hoo:O(l), wherezzﬁzjzlz]u 3)
Itis clear that (3) generalizes , which is a specific case of herding in an optimization setting.

Harvey and Samadi|solve (3) with a method called balancing [16]. Balancing uses a signed version of
the herding problem to optimize any given permutation 7 to reduce the bound in . That is, balancing
formulates the signed herding problem
k _
Maxke(N) szzlsﬂ(j) (2=~ 2) HOO where {s;}70, € {+1,—1}. Q)
Given a group of such signs {s, } ;_vzl and an arbitrary permutation 7, Harvey and Samadi|prove that
Algorithm produces anew permutation 7’ such that

k = 1 k = 1 k =
SOk "y — <1 ok , S +1 Sk , .
1?61?137(]” J I(Zﬂ' @) Z)Hoo 27?61?1,3](]” '7_187T(J) (ZW(J) Z)H()o 2]?61?‘1}(\/]" J I(Zﬂ—(]> Z)Hoo

This says that, with new permutation 7/, the
objective of (3) now approaches the bound
of (). Importantly, recent advances show

Algorithm 1 Reordering Vectors based on Balanced
Signs [Harvey and Samadi [16]]

that it is quite cheap to find a group of signs, input: a group of signs {s, }/_,, initial order

such that is on the order of O(l) (e‘g" initi?llize: two order-sensitive lists Lp()s — [], Lneg < H
Alweiss et al. [2], in Algorithm|2). We are forj=1.Ndo L )
therefore able to call Algorithm|T|repeat- Lyos-append(7(j)) if s; is +1 else Lucg.append(())-

end for

. . *
edly, which will eventually obtain the = return: new order 7’ := concat(Lpos,reverse(Lncg ) )-

that solves the O(1) herding objective in .

GraB’s application of herding to gradient balancing. Lu et al. [24] applies this framework of herding
and balancing to develop GraB, i.e., to minimize (2)). The main challenge for the success of this approach
is to find the right gradients z; in the optimization context of (2). Notably, the herding and balancing
framework requires the vector mean z in advance. To satisfy this requirement, GraB “centers” the gra-
dient vectors using a stale mean. That is, GraB runs the herding algorithm on vectors that are defined as

2=V f(wlim () — &30 VH(wl_im1(p)), )

where w? denotes the model weights after p — 1 updates in the ¢-th epoch, and 7; denotes the
permutation adopted in the ¢-th epoch. Lu et al. [24] proves that this definition of z; preserves the

SHerding does not have an optimization context. Here, N does not refer to the number of data examples used in
training ; rather, N € Z describes the size of a set of arbitrary vectors. We slightly abuse notation because we ex-
ecute the herding subroutine on exactly IV gradients (Section, which happen to equal the number of NV examples.



benefits of balancing with negligible noise or overhead. The only overhead comes from storing the
running average of the gradients in epoch ¢ —1 to “center” the gradients in the subsequent epoch ¢.

With this approach, Lu et al. [24] proves that GraB demonstrates more efficient convergence than RR
for SGD. Better still, Cha et al. [6] demonstrates that GraB is in fact the optimal permutation-based
ordering method for SGD: it is not possible to produce a permutation-based ordering in the centralized
setting that achieves a faster convergence rate for SGD.

Despite GraB’s clear benefits over RR, it assumes local access to all examples. This assumption does
not hold for popular, modern, parallel settings (e.g., parameter server [20]), in which workers only have
access to subsets of examples. No present work has attempted to investigate GraB’s applicability to this
setting. While some work has studied distributed RR (D-RR) [18]/26}|381/48], it remains an open ques-
tion if GraB’s efficiency benefits for SGD can be conferred to the modern-scale, distributed-ML setup.

3 CD-GraB: A Provably Efficient Ordering Algorithm for Distributed Training

Our main contribution is to elevate GraB to the parallel regime, so that distributed training can enjoy the
efficiency benefits of provably better example ordering. Based on the preliminaries, we can now explain
why this is not a straightforward task: While GraB achieves the optimal convergence rate for SGD
on centralized data, it does not naturally translate to a distributed setting (Section@. Our key
insights for resolving these problems are to reformulate the herding framework in Lu et al. [24] to work
in parallel, and to leverage insights from kernel thinning |3}|10}| 11] to derive the online PairBalance
algorithm, which solves this parallelized herding objective (Section. Lastly, we present the full-
stack CD-GraB algorithm that makes our solution work in practice (Section. The server implements
online PairBalance, which coordinates gradient information from the distributed workers in training
epoch t in order to determine a provably efficient example order for the next epoch ¢+ 1 (Section.

3.1 Issues with GraB in the distributed setting

To clarify the issues with distributing GraB, we first need to define the distributed training setup more
precisely. We consider the standard data-parallel regime with m parallel workers, where each worker
keeps a copy of the model weights w € R? and maintains n = N/m local examples As in many
data-parallel training applications such as geo-distributed model training [47], we assume the data
examples cannot be shared or moved across workers. More formally, this setup can be expressed as

mingega [f(w) =300 fH(w)]  with [P (w)= 3370 fH(ws)), ©)

where fi(w;j):R%— R, j € [n], denotes the loss incurred on the j-th example on the i-th worker for
model weights w. We can now consider running (1) using this setup, for which each worker scans
over their n local-data examples using (potentially) different permutations. We denote 7 ; : [n] — [n]
as the permutation-based ordering adopted on the i-th worker in the ¢-th training epoch. Adjusting
to accommodate the setup in @), the update to the model can be summarized as

w} ™ =w] =23 Vi (whim(5), ViEln]. ™
That is, in epoch ¢, each worker 7 selects their respective, local j-th example according to {7, ; }1_;
in order to compute stochastic gradients (Appendix).

Following this setup, Algorithmo longer guarantees the O(1) bound to the herding problem ,
a bound that is valid only when all data examples can be permuted freely [[16]. This constraint is fine
for centralized GraB, but, in distributed training, workers only have access to a subset of examples.
Distributed training requires that worker-specific permutations only involve the examples in their
respective local subsets. Further, recall that GraB uses stale means to center gradients (5) in order to
solve the herding objective. This, too, causes problems in distributed training. In practice, it is typical to
employ larger learning rates « for greater scalability [40]; larger v increases the discrepancy between
averaged gradients in adjacent epochs, which, in turn, would make GraB’s use of stale means unreliable.

SWithout loss of generality, we assume the N examples are divided evenly among the m workers and 7 is even.
"One such popular paradigm is federated learning [28] e.g.]. Federated learning typically involves highly
imbalanced loads, heterogeneous data, partial user participation, and additional privacy-preserving mechanisms.
These characteristics are orthogonal to what we consider here for example order. If we were to allow for such data
organization, we would need to assume non-global communication per iteration or additional constraints on how
global communication occurs. For CD-GraB, we focus on the regime of using parallelism to accelerate training.



3.2 Ouwur efficient solution: parallel herding and pair balancing

To address the limitations presented in the prior section, which preclude the direct application of GraB
to distributed training, we will need to 1) reformulate the herding problem to fit the parallel setting,
and 2) redesign how to do gradient balancing, such that it both solves our new herding formulation
and allows for reliability with higher learning rates. We now present our solution to both these problems;
we introduce the parallel herding problem and the online PairBalance subroutine that solves it.

Parallel Herding. To extend herding to the parallel setting, consider the following setup: There are
m workers, which each have local access to n vectors. Let z; ; € R< denote the vector indexed by
j on the i-th worker. Assuming ||2; ;||2 <1 (Vi€ [m],¥j € [n]), the goal of parallel herding is to find
m permutations, 7y ,ma,...,T,, where 7; : [n] = [n] (Vi € [m]), so as to minimize:

k m — . - m n
Zj:lz’:l(zi’m(j)_z)iioo’ with z:% i:le:lziJ' )

When directly comparing (8) with (3}, it is clear that parallel herding differs in two notable ways from
the original herding problem. First, each permutation 7; : [n] — [n] (Vi € [m]) only decides the ordering
of the n vectors that are associated with worker . Second, the prefix sum taken in the objective norm
is accumulated over all the workers (the inner sum from ¢ =1...m). This formulation naturally captures
the setting in a distributed environment: workers need to decide permutations collaboratively, and
the worker-specific vectors are processed simultaneously rather than sequentially.

maXge[n)]

Given that this formulation fits the distributed setting, we next need to show that parallel herding
does in fact address the limitations posed by centralized GraB: that it is possible recover the original
O(l) herding bound, and that we can solve the issue of unreliable stale gradients (Section. The
solution that we present in the remainder of this section is a new vector balancing subroutine: online
PairBalance. To give an intuition, as its name suggests, online PairBalance leverages insights from
kernel thinning to balance vector differences over vector pairs. This also eliminates the need to
perform vector centering, and thus solves the stale mean problem.

Using kernel thinning to solve parallel herding. We call our solution to the parallel herding objective
(8) pair balancing, which we derive from key insights in kernel thinning [3][10][11]. In particular,
Dwivedi and Mackey|show that it is possible to solve the herding objective in O( 1) by only examining
differences on pairs of examples [[10]]. They derive an algorithm that generalizes Alweiss et al. [2}
subroutine in Algorithm|2|, which solves herding in O(1) (Section, and does so by operating only
on vector-pair differences|®| This comes with a very useful property: eliminating the requirement of
knowing the maximum vector norm ahead of time and centering the vectors (i.e., making all the vectors
sum to zero) in order to solve the herding problem. This is the key to solving the parallel herding

objective (8) in 0(1), and elevating the benefits of GraB to a distributed setting.

Following Dwivedi and Mackey [10], we will balance over paired vectors, and will do so in an online
fashion (Section . This eliminates GraB’s requirement of using a stale mean to center gradient
vectors (Section|2.1), but still minimizes the parallel herding objective to O(1). We defer proving this
result to Section[4f and first describe our concrete algorithm. Online PairBalance applies Algorithm
on the“flattened” and “paired” sequence of all of the workers’ paired-difference gradients, i.e.,

Yn(h—1)+i = Zi2k—1—Zi2k, VEE[G], i=1..m.

That s, we fit these ordered-paired differences {y; }11"1/ % into the herding and balancing framework (Al-

gorithm: if sign s is associated with Yn(k—1)+i> then z; 25,1 and z; o, receive s and —s, respectively.

3.3 The full-stack CD-GraB algorithm

Having solved the parallel herding problem with pair balancing, we now demonstrate how to
bring everything together in an optimization context to coordinate distributed gradient balancing
for distributed training. That is, we can now introduce our full-stack CD-GraB algorithm, which
trains models in a distributed setting (Section while efficiently ordering the examples by using
PairBalance (Section[3.2] Algorithm[2) in an online manner.

{Dwivedi and Mackey|minimize the maximum mean discrepancy (MMD) between a selected coreset and
an empirical distribution. They develop a new self-balancing Hilbert walk on differences of pairs of examples to
select exactly half of the dataset points, and solve coreset selection by iteratively halving the input vector sequence
into balanced coresets then selecting and refining a candidate coreset to minimize MMD with the input sequence.



Algorithm 2 PairBalance

Server

> The inputs, outputs and subroutine for this
: " 1 I_ 1
algorithm are order-sensitive o Canpar 191~ 92 93— 94 5 ca j
—

Balance

:

input: current running sum 7, paired vectors z1, 22 2 2 3 3 Algorithm 1 ¢ o Data

[gl - ng lg3 - 94] Permutations
compute: s, < RandomizedBalance(r,z1 — 22) Tyi11 Tei1n
return: s (signforzy), 3.SendGradients| [ /. .\

| to server
—s (sign for z2),

7 (updated running sum)

> Adapted from Alweiss et al. [2]
define subroutine: RandomizedBalance(r,c)
compute: p<— 1_<27"°>
compute: s<—+1 with probability p;
s<——1 with probability 1—p
update: r < r+sc

BEE(])
B wE )
=

1. Examples 2. Compute 7. Reorder
return: s, r ordered with gradients examples with
1 t,2 T41,1 Tt+1,2

Figure 1: Left: The PairBalance algorithm, which the server runs online. Right: CD-GraB running
on one server (top) and two workers (bottom). The workers do not share data examples.

We describe CD-GraB at two levels of abstraction: a high-level illustration (Figure steps 1-7) and
a detailed pair of worker-server algorithm statements (Figure. Since the workers only have access to
a subset of the training data, in parallel they compute local, per-example stochastic gradients and send
them to the server. The server simultaneously calls PairBalance online, which coordinates information
from all the workers’ gradients (i.e., using adjacent example-specific gradients) to determine the next
epoch’s worker-specific permutations. In more detail:

In epoch ¢, (Figure step 1) the two workers have permutations 7, ; and 7 2, respectively. Each
worker computes per-example gradients gj— (2; Algorithm 4), and sends them to the server (3;
Algorithm(3]5). The server we implement functions as a parameter server [20]: It computes the
average of the workers’ per-example gradients (Algorithm[4}6), and sends it back to all workers
(Algorithm7) so that they can update their local models (Algorithm6—7). Simultaneously, as the
server receives gradients (Algoritth), it calls PairBalance (Algorithm on adjacent vectors (4;
Algorithm4—l3). PairBalance produces signs to supply to the reordering algorithm (Algorithm,
which, using the current worker permutations 7 ;, produces the new per-worker permutations for
the next epoch (5; Algorithm 14). In Figure these correspond to 7411 and 441 2, which the
server then sends back to the respective workers (6; Algorithm 15). Lastly, before the start of the
next epoch, the workers reorder their examples according to the new permutations (7; Algorithm9).

4 Convergence Analysis

We next demonstrate formally that our CD-GraB algorithm (Section confers the efficiency benefits
of centralized GraB (Section to the distributed setting. In brief, our main theoretical results show
that CD-GraB enjoys a linear speedup in convergence rate under two sets of conditions: smoothness
(Theorem and the Polyak-L.ojasiewicz (P.L.) condition (Theorem. Both results guarantee that
CD-GraB is faster than distributed random reshuffling (D-RR). Our proofs rely on Corollary 7 from
Dwivedi and Mackey [10], which shows that, with high probability, RandomizedBalance (subroutine

in Algorithm from Alweiss et al. [2]) guarantees a O(1) bound to the signed herding objective ﬂ

To begin, we restate this result to cohere with our framework, for which the vectors z; are gradients
in an optimization context:

Theorem 1 (Corollary 7, Dwivedi and Mackey [10]). Consider any vectors {z;} ;V: L (z; €RY) with
|zl <1 supplied as input to the RandomizedBalance subroutine in Algorithm Then for any § >0,
with probability at least 1 — 6, RandomizedBalance outputs a sequence of signs {s; }évzl e{-1,1}

that satisfy maxyc(n) HZ?lejz]— H < A, where A= \/Qlog(%d)log(%) =0(1).

9Corollary 7 from Dwivedi and Mackey [10] improves the result of Theorem 1.1 from Alweiss et al. [2].



Algorithm 3 CD-GraB Workers Algorithm 4 CD-GraB Parameter Server

require: m workers, n:= % ex. per worker require: m workers, n:= % ex. per worker
input: initial w1, epochs T', learning rate o input: epochs T
1: receive: initi . {Wl,i};ﬂ;l . . am
: receive: initial permutations 1: send: initial permutations {71,; }i~1
2: forepocht:=1...T do 2: forepocht:=1...T' do
> Run in parallel for workers i=1...m 3: initialize: running sum h =0; empty list S
3: for example j:=1...ndo 4: for example j:=1...ndo
4 compute: g < V f*(w] ,m,i(5))
5. send: g J-th stochastic grad. g; 5: receive: {g}7", fromall workclzrs i _
. . _ 6 compute: avg. gradient: g; < > " | g;
receive: g; avg. j-thstochastic grad. g; 7, send: g; to 'all the workers o
_ i1 i 8: for workeri:=1...m do
7. update: wy —wp —agj 9: if j mod 2=0:
) 10: h,s;_1,s; < PairBalance(h,g;_1,9;)
8 end for 11: S.append(s’_;); S.append(s})
12: end for
13: end for
> Call Alg.for i=1..monm  ;and S
__— 14: compute: next permutations {m¢41,; }iey
. . t+1,1 .
9: receive: next permutation +—— 15: send: {7¢11,; }iv, to each worker ¢
10: update: w;, ; =w;"" 16: end for
11: end for

12: return: w1 := w%ﬂ

Figure 2: CD-GraB worker and server (here, a parameter server [20]) algorithms.

To integrate this result with our parallel setting, we need some additional assumptions that are standard
in the literature on distributed optimization — that the variance of the per-example gradients on each
worker is uniformly bounded (AssumptionE]), and that the variance between worker-specific gradients
is similarly bounded (Assumption. More precisely, following the distributed setup in , we denote
the global loss gradient to be V f (w), each i-th worker’s local loss gradient to be V f(w) (Vi € [m]),
and each i-th worker’s per-example loss gradients to be V f#(w;j) (V5 € [n]). We assume:

Assumption 1 (Bounded Gradient Variance). For alli € [m] there exists a constant o > 0 such that

for all j € [n] and for all w €RY, it holds that ||Vfi(’w;j) ~Vfi(w) H; <o

Assumption 2 (Bounded Data Heterogeneity). There exists a constant ¢ > 0 such that Vi € [m),

: 2

|V £ (w)—V f (w) |2 <<2.

Lastly, we include one additional assumption from the original GraB paper [24]: we assume a cross

norm Ly ., (which can be easily adapted to L,-smoothness by setting Lo o to be \/&Lg).

Assumption 3 (Smoothness). There exists constant Lo . >0 such that for any w,v € R, any i € [m),

and any j € [n], it holds that ||V f(w;j) =V f(v3)]], < La,c0|w—v|| .

Given these assumptions, we can prove a convergence guarantee for CD-GraB:

Theorem 2. Suppose that Assumptionsand hold. For any § >0, if we set learning rate o to be
1/3

1 4Fym?
16Lo 00 (2n+A/m) "\ 4213  (s+0)2A2nT+18L3 _ m2n3o? ’
where F1 = f(w1) —inf,,cra f(w) and A comes from Theorem Then, with probability at least

1-T6,

. _ _
1 2 9(FiLgoo(s+0)A)2/3  (T2F| Ly o00)?/3+64F, Ly oo (24+ A/ (mn))
. < 9 9 9

=0 G 1)

We can also prove an accelerated rate for CD-GraB if we additionally assume the P.L.. condition:

a=min




Assumption 4 (P.L. Condition). We say the loss function f fulfills the P.L. condition if there exists
>0 such that for any w € R%, 2|V f(w) |13 > p( f (w) —inf,cpa f(v)).

Theorem 3. Suppose thatAssumptions andhold. For any § > 0, we set constants W and
Cs to be
F 2/ Lo oo ) 12 -
Oy 10 Laco)i” W =Wo(T?m2nCs),
224L%OO (c+0)2A2
where A comes Sfrom Theorem Fy is from Theorem@ and Wy is the Lambert-W function. If we set

learning rate o= %—nWM and if the number of epochs T satisfies
1 - -
T>10+—32L5 oo (2+ A/ (mn))Wo((mnT)?C3) =0O(1),
I
then, with probability at least 1 —T0, it holds that o
1 (Fi+1L3 o?)W 11203  (¢+0)? A2 W? 5 1
mnT)? Cs + w3 T\ (mnT)2 )’

where Fr i1 = f(wrq1)—inf,cga f(w).

Fri < (

We prove Theorems[2]and[3]in the Appendix. Together, they show that CD-GraB exhibits a linear
speedup in the number of workers m over GraB [24]’s convergence rates (O((nT)~2/3) and
O((nT)~2), respectively) under both smoothness and the P.L. condition. Further, CD-GraB’s
convergence rate of O((mnT")~2) is faster than many previous ratessuch as the high probability
bound of O((mn)~'T~2) for D-RR in Yun et al. [48].

S CD-GraB in Practice: Distributed and Simulation Experiments

We next verify CD-GraB’s accelerated convergence on a variety of empirical tasks For ease of
comparison, we follow the experimental plan from the original GraB paperand add some additional
large-scale logistic regression experiments. We also run an ablation study to isolate the effects of
different improvements in CD-GraB. We do this because online PairBalance exhibits performance
benefits that are separate from parallelism — namely, removing the need for gradient centering with
a stale mean and allowing for higher learning rates (Section

Evaluating CD-GraB’s convergence speedup. We use the following three tasks for evaluating
distributed training efficiency: logistic regression on a large-scale mortgage application (New
York 2017 subset, 244,107 examples with 18 features) [7] (Figure, Long Short-Term Memory
(LSTM) [17] on the WikiText-2 dataset [29] (Figure, and autoregressive Multi-Layer Perceptron
(MLP) on the M4 Weekly dataset [25] (Figure. We measure the loss incurred on the entire training
set (Full Train Loss) and task-appropriate test metrics during evaluation, with respect to both the
number of epochs and wall-clock time. Regarding test metrics, we measure test accuracy for the
mortgage application, perplexity for WikiText-2, and SMAPE for M4. Additional details regarding
the datasets, models, and test metrics can be found in the Appendix.

For all three tasks, we use a single 128 GiB memory machine with 4 NVIDIA GeForce RTX 2080
Ti GPUs. For the mortgage application and WikiText-2 (Figures and, we launch m =4 workers
(processes), where each worker runs on one GPU. For the M4 task, we launch m = 32 workers,
where each of the 4 GPUs hosts 8 process workers. We use NCCL as the distributed communication
backend [33] for the mortgage application and WikiText-2 tasks, and GLOO [1]] as the distributed
communication backend for the M4 task.

Asshownin Figur we compare CD-GraB’s convergence to the standard distributed-training example-
ordering method: random reshuffling (D-RR). From all subfigures in Figur we observe that CD-GraB
outperforms the D-RR baseline significantly and consistently: CD-GraB exhibits better training loss
and test metrics, measured against both the number of epochs and wall-clock time. We also note that the

OFor centralized GraB, the total number of examples N =nand m=1.

"These exclusively focus on the P.L. case, so we compare CD-GraB to them under the same condition.

2Qur GitHub repository is https:/github.com/GarlGuo/CD-GraB|

BFollowing Lu et al. [24], for our LSTM experiment on WikiText-2, we set the embedding dimension to 32.
‘We note that we can improve perplexity if we set the dimension higher.

'*GraB can also implement online PairBalance, in place of Balance [22] (Appendix).
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Figure 3: Convergence of CD-GraB in comparison to D-RR. For each experiment, we show train loss
over epochs and time (left of each subfigure) and test performance over epochs and time (right of
each subfigure). We run at least 3 random seeds, and plot the mean + STD.

results for CD-GraB are much smoother than for D-RR. This is likely due to the variance of stochastic
gradients during training, which CD-GraB reduces as a side-effect (so, too, does GraB, in comparison to
RR). For smoother D-RR results, we can reduce the learning rate (Appendix). CD-GraB allows for the
use of a larger learning rate, which accelerates training while preserving the final model’s performance.

Ablation simulation study: the importance of coordination at large scale. CD-GraB has several de-
sign benefits over the original centralized GraB algorithm |24]]: coordinating parallel workers’ specific
permutations using PairBalance on the server (Algorithm and removing the dependency on a stale
mean (Section[2.1), which enables the ability to using larger learning rates reliably (Section[3.2). Clearly,
not all of these benefits come directly from distributing training. For example, being able to use larger
learning rates, is a side effect of our solution to develop CD-GraB, not our main contribution. There-
fore, we run a simulation ablation study to disentangle the relative importance of each of CD-GraB’s
efficiency benefits over GraB. To do so, we compare the convergence of CD-GraB to two additional base-
lines in the distributed setting, beyond D-RR: (1) ID-GraB (Bal), where each independent worker runs
GraB locally using RandomizedBalance (subroutine in Algorithm to perform gradient vector bal-
ancing; (2) ID-GraB (PairBal), where each independent worker runs GraB locally using PairBalance.

Figure summarizes the results, with convergence curves for m € {4,8,16,32,64} workers training
LeNet on CIFAR-10. We choose this task and architecture to cohere with the experiments done in
the original GraB paper. For these experiments, we denote B to be the aggregated minibatch across all
the workers, which refers to the number of stochastic examples used for an overall optimization step;
each worker thus has a subset of this minibatch — an equivalently-sized subset of B examplesWe
make two main observations. First, when scaling up training with more workers, CD-GraB converges
increasingly faster than the no-coordination-ordering methods ID-GraB (Bal) and ID-GraB (PairBal).
This result aligns with our theory and intuition that, when the number of workers m increases, the
parallel herding bound (8) will increase linearly if there is no coordination. Second, as we scale up
to larger m, the convergence curves of ID-GraB (Bal) and ID-GraB (PairBal) gradually approach

SFor example, if we have 4 workers with an aggregated minibatch size of 32, each worker would compute
their respective local gradients with 8 examples, and then all-reduce these gradients to obtain the aggregated
minibatch gradient for all 32 examples for the optimization step. We discard N mod B examples at random
to ensure 1 examples per worker.
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Figure 4: Convergence for CD-GraB, D-RR, ID-GraB (Bal), and ID-GraB (PairBal) training LeNet on

CIFAR-10, with m € {4,8,16,32,64} workers. For each, the aggregated minibatch size per update is 64.

the curve for D-RR: at larger scales, herding-based example ordering will be no better than randomly
permuting the dataset. Both observations give strong evidence that coordination (i.e., running online
PairBalance on the server to coordinate per-worker permutations) is critical for accelerating training.

‘We note that all of these experiments use SGD, since both the theoretical results of the original GraB
paper and our results for CD-GraB here are for SGD. In the Appendix, we additionally include results
for training GPT-2 on WikiText-103, for which we use AdamW as the optimizer. We find that GraB
with AdamW works in practice; however, our theory results do not directly apply to these experiments.
We additionally include results on memory usage in the Appendix, which show that CD-GraB results
in negligible overhead in practice.

6 Conclusion and Future Work: Toward an Order Server Architecture

We elevate the benefits of provably faster, permutation-based example ordering to the contemporary
ML distributed-training setting. We focus on reformulating the online Gradient Balancing algorithm
(GraB) [24] because, even though it is the provably optimal permutation-based example-ordering
method [6], it is limited by design to centralized settings (Section. To overcome these limitations,
we redesign GraB’s herding and balancing framework to account for parallel workers: A parallel
herding objective, which we solve with an online PairBalance subroutine, based on key insights from
kernel thinning [3)[10}/11]. PairBalance operates on ordered pairs of vectors to do balancing, which
enables our full-stack, low-overhead, Coordinated and Distributed online CD-GraB algorithm. We give
a full specification of our online CD-GraB algorithm (Section, provide convergence rate guarantees
regarding its speedups on both 1) smooth non-convex and 2) P.L. objectives (Section, and verify
these speedups in practice on single-node distributed tasks and a simulated ablation study (Section.

Both our theory and experiments demonstrate that CD-GraB really shines when there are multiple
training epochs (Appendix). This is another reason that we do not emphasize experiments involving fine-
tuning pre-trained models like GPT-2, as fine-tuning can be achieved in just a couple of epochs. As noted
above, it is also more common to train such models using optimizers from the Adam family. In future
work, we intend to extend the theory on GraB and CD-GraB to such optimizers, which would make
the results on optimal, permutation-based example ordering more useful for base-model pre-training.

Pre-training from scratch would demonstrate the tremendous power of CD-GraB to scale to very large
models; however, we did not have the training budget to perform such experiments for the present work.
Further, to truly exercise the benefits of CD-GraB in such large-scale settings, future work should inves-
tigate moving beyond the single-node setup that we present. Notably, to train larger models, our results
suggest a novel distributed training architecture. The ordering operation performed by the server (Algo-
rith is not very latency sensitive; the server has the duration of the entire epoch ¢ to compute the new
permutations for the next, ¢+ 1 epoch. Given this relaxed latency requirement, and the success of our al-
gorithmic results, it would be an exciting direction for future ML-systems research to invest in building
an Order Server architecture. Such an architecture, which could be composed with traditional parameter
servers, would afford the scalability benefits of CD-GraB to a host of massive-scale ML applications.

10



Acknowledgments

A. Feder Cooper is supported by Christopher De Sa’s NSF CAREER grant. Yucheng Lu is supported
by Meta Ph.D. Fellowship. We also acknowledge a gift from SambaNova Systems.

References

[1] Collective communications library with various primitives for multi-machine training, 2023.
URLhttps://github.com/facebookincubator/glool

[2] Ryan Alweiss, Yang P Liu, and Mehtaab Sawhney. Discrepancy minimization via a self-balancing
walk. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 14-20, 2021.

[3] Alessandro Barp, Carl-Johann Simon-Gabriel, Mark Girolami, and Lester Mackey. Targeted
separation and convergence with kernel discrepancies. arXiv preprint arXiv:2209.12835,2022.

[4] Dimitri P. Bertsekas. Incremental Gradient, Subgradient, and Proximal Methods for Convex
Optimization: A Survey. In Optimization for Machine Learning. The MIT Press, 2011.

[5] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages
421-436. Springer, 2012.

[6] Jaeyoung Cha, Jaewook Lee, and Chulhee Yun. Tighter Lower Bounds for Shuffling SGD:
Random Permutations and Beyond. In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

[7]1 A.Feder Cooper, Katherine Lee, Solon Barocas, Christopher De Sa, Siddhartha Sen, and Baobao
Zhang. Is My Prediction Arbitrary? Measuring Self-Consistency in Fair Classification. arXiv
preprint arXiv:2301.11562, 2023.

[8] Christopher De Sa. Random Reshuffling is Not Always Better. In Advances in Neural Information
Processing Systems, 2020.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume I (Long and Short Papers), pages 4171-4186,2019.

[10] Raaz Dwivedi and Lester Mackey. Kernel thinning. arXiv preprint arXiv:2105.05842,2021.

[11] Raaz Dwivedi and Lester Mackey. Generalized Kernel Thinning. In 7Tenth International
Conference on Learning Representations, 2022.

[12] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu.
Automated curriculum learning for neural networks. In international conference on machine
learning, pages 1311-1320. PMLR, 2017.

[13] Mert Giirbiizbalaban, Asuman E. Ozdaglar, and Pablo A. Parrilo. Convergence Rate of
Incremental Gradient and Incremental Newton Methods. SIAM Journal on Optimization, 29
(4):2542-2565, 2019.

[14] Mert Giirbiizbalaban, Asu Ozdaglar, and Pablo A Parrilo. Why random reshuffling beats
stochastic gradient descent. Mathematical Programming, 186(1):49-84, 2021.

[15] JeffZ.HaoChen and Suvrit Sra. Random Shuffling Beats SGD after Finite Epochs. In Proceedings
of the International Conference on Machine Learning, volume 97, pages 2624-2633, 2019.

[16] Nick Harvey and Samira Samadi. Near-Optimal Herding. In Proceedings of The 27th Conference
on Learning Theory, volume 35, pages 1165-1182, 2014.

[17] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735-1780, 1997.

[18] Kun Huang, Xiao Li, Andre Milzarek, Shi Pu, and Junwen Qiu. Distributed Random Reshuffling
over Networks. arXiv preprint arXiv:2112.15287,2021.

[19] Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers:
A loss framework for language modeling. arXiv preprint arXiv:1611.01462,2016.

11



[20] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling Distributed Machine Learning with
the Parameter Server. In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’ 14, page 583-598, USA, 2014. USENIX Association. ISBN
9781931971164.

[21] Tlya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101,2017.

[22] Yucheng Lu, Si Yi Meng, and Christopher De Sa. A General Analysis of Example-Selection for
Stochastic Gradient Descent. In International Conference on Learning Representations, 2021.

[23] Yucheng Lu, Youngsuk Park, Lifan Chen, Yuyang Wang, Christopher De Sa, and Dean Foster.
Variance Reduced Training with Stratified Sampling for Forecasting Models. In Proceedings
of the International Conference on Machine Learning, pages 7145-7155. PMLR, 2021.

[24] Yucheng Lu, Wentao Guo, and Christopher De Sa. GraB: Finding Provably Better Data
Permutations than Random Reshuffling. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=nDemfqKHTpK|

[25] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition:
100,000 time series and 61 forecasting methods. International Journal of Forecasting, 36(1):
54-74, 2020. ISSN 0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2019.04.014. URL
https://www.sciencedirect.com/science/article/pii/S0169207019301128, M4
Competition.

[26] Grigory Malinovsky, Konstantin Mishchenko, and Peter Richtérik. Server-Side Stepsizes and
Sampling Without Replacement Provably Help in Federated Optimization. arXiv preprint
arXiv:2201.11066,2022.

[27] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher—student curriculum
learning. IEEE transactions on neural networks and learning systems, 31(9):3732-3740,2019.

[28] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273—-1282. PMLR, 2017.

[29] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing l1stm
language models. In International Conference on Learning Representations, 2018.

[30] Konstantin Mishchenko, Ahmed Khaled, and Peter Richtarik. Random Reshuffling: Simple
Analysis with Vast Improvements. In Advances in Neural Information Processing Systems, 2020.

[31] Amirkeivan Mohtashami, Sebastian Stich, and Martin Jaggi. Characterizing & Finding
Good Data Orderings for Fast Convergence of Sequential Gradient Methods. arXiv preprint
arXiv:2202.01838, 2022.

[32] Deanna Needell, Rachel Ward, and Nathan Srebro. Stochastic Gradient Descent, Weighted
Sampling, and the Randomized Kaczmarz algorithm. In Advances in Neural Information
Processing Systems, pages 1017-1025,2014.

[33] NVIDIA. NVIDIA Collective Communication Library, 2023. URL |https://https:
//developer.nvidia.com/nccl

[34] PyTorch Contributors. DatalLoader API, 2023. URL|https://pytorch.org/docs/stable/
data.html|

[35] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[36] Shashank Rajput, Kangwook Lee, and Dimitris Papailiopoulos. Permutation-Based SGD: Is
Random Optimal? In International Conference on Learning Representations, 2022.

[37] Benjamin Recht and Christopher Ré. Toward a Noncommutative Arithmetic-geometric Mean
Inequality: Conjectures, Case-studies, and Consequences. In Conference on Learning Theory,
volume 23, pages 11.1-11.24,2012.

[38] Abdurakhmon Sadiev, Grigory Malinovsky, Eduard Gorbunov, Igor Sokolov, Ahmed Khaled,
Konstantin Burlachenko, and Peter Richtarik. Federated Optimization Algorithms with Random
Reshuffling and Gradient Compression. arXiv preprint arXiv:2206.07021, 2022.

12



[39] Mark Schmidt, Nicolas Le Roux, and Francis R. Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83-112,2017.

[40] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t Decay the Learning
Rate, Increase the Batch Size. In International Conference on Learning Representations, 2018.

[41] Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
International Journal of Computer Vision, pages 1-40, 2022.

[42] Evangelos Spiliotis, Andreas Kouloumos, Vassilios Assimakopoulos, and Spyros Makridakis.
Are forecasting competitions data representative of the reality? International Journal of
Forecasting, 36(1):37-53, 2020.

[43] Merity Stephen, Xiong Caiming, Bradbury James, and Richard Socher. Pointer sentinel mixture
models. Proceedings of ICLR, 2017.

[44] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. GLUE: A multi-task benchmark and analysis platform for natural language
understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 353-355, Brussels, Belgium, November
2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
https://aclanthology.org/W18-5446,

[45] Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 1121-1128, 2009.

[46] Bicheng Ying, Kun Yuan, Stefan Vlaski, and Ali H. Sayed. On the performance of random
reshuffling in stochastic learning. In 2017 Information Theory and Applications Workshop (ITA),
pages 1-5. IEEE, 2017.

[47] Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang, Tri Dao, Beidi Chen, Percy S Liang,
Christopher Re, and Ce Zhang. Decentralized training of foundation models in heterogeneous
environments. Advances in Neural Information Processing Systems, 35:25464-25477,2022.

[48] Chulhee Yun, Shashank Rajput, and Suvrit Sra. Minibatch vs Local SGD with Shuffling: Tight

Convergence Bounds and Beyond. In International Conference on Learning Representations,
2021.

[49] Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Open Problem: Can Single-Shuffle SGD be Better
than Reshuffling SGD and GD? In Conference on Learning Theory, 2021.

13



