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ABSTRACT

Reward shaping is a critical component in reinforcement learning (RL), particu-
larly for complex tasks where sparse rewards can hinder learning. While shaping
rewards have been introduced to provide additional guidance, selecting effective
shaping functions remains challenging and computationally expensive. This pa-
per introduces Online Reward Selection and Policy Optimization (ORSO), a novel
approach that frames shaping reward selection as an online model selection prob-
lem. ORSO employs principled exploration strategies to automatically identify
promising shaping reward functions without human intervention, balancing explo-
ration and exploitation with provable regret guarantees. We demonstrate ORSO’s
effectiveness across various continuous control tasks using the Isaac Gym simu-
lator. Compared to traditional methods that fully evaluate each shaping reward
function, ORSO significantly improves sample efficiency, reduces computational
time, and consistently identifies high-quality reward functions that produce poli-
cies comparable to those generated by domain experts through hand-engineered
rewards with up to 16× less compute. Code is available at anonymized for
submission

1 INTRODUCTION

Reward functions are crucial in reinforcement learning (RL; Sutton & Barto (2018)) as they guide
the learning of successful policies. In many real-world scenarios, the ultimate objective involves
maximizing long-term rewards that are not immediately available, making optimization challenging.
To address this, practitioners often introduce shaping rewards (Margolis & Agrawal, 2022; Liu et al.,
2024; Mahmood et al., 2018; Ng et al., 1999) – to provide additional guidance during training.
Instead of directly maximizing the task rewards (R), it is therefore common for the RL algorithm to
maximize an easier-to-optimize shaped reward function F in the hope of obtaining high performance
as measured by task rewards, R. While shaping rewards contain helpful hints, maximizing them does
not necessarily solve the task. For instance, an agent tasked with finding an exit (i.e., longer-term
reward in the future) may be provided with shaping rewards to avoid obstacles. However, the task
success ultimately depends on reaching the exit, not just avoiding obstacles. If poorly designed,
the shaped rewards F can mislead the RL algorithm, causing the agent to focus on maximizing F
while neglecting R (Chen et al., 2022; Agrawal, 2021), leading to training failure or suboptimal
performance.

Designing effective shaping reward functions F that improve RL algorithm performance is chal-
lenging and time-consuming. It requires multiple iterations of training agents with different shaping
rewards, evaluating their performance on the task reward R, and refining F accordingly. This pro-
cess is inefficient due to the lengthy training runs and because the performance measured early in
training may be misleading, making it challenging to quickly iterate over different shaping rewards.

To address this challenge, we propose treating the design of the shaping reward function as an
exploration-exploitation problem and to solve it using provably efficient online decision-making al-
gorithms similar to those in multi-armed bandits (Auer et al., 2002; Auer, 2002) and model selection
(Agarwal et al., 2017; Pacchiano et al., 2020; Dann et al., 2024; Foster et al., 2019; Lee et al., 2021).
Each shaping reward function acts as an arm or model, with the agent’s task reward R when trained
with shaping reward F serving as the model’s utility. Our goal is to identify the best shaping reward
function within a fixed time budget.
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This approach presents unique challenges. Unlike standard multi-armed bandit settings with sta-
tionary reward distributions, the utility of a shaping reward function in our case is nonstationary. As
the agent explores new parts of the state space during training, the reward distribution changes. Ad-
ditionally, we must balance exploration and exploitation to efficiently allocate training time among
different shaping rewards without committing too early to high-performing options or wasting time
on low-performing ones.

We introduce Online Reward Selection and Policy Optimization (ORSO), an algorithm that effi-
ciently selects the best shaping reward function from a set of candidate shaping reward functions to
improve RL performance on the task reward. ORSO provides regret guarantees and adaptively allo-
cates training time to each shaping reward based on a model selection algorithm at each step. Our
empirical results across various continuous control tasks using the Isaac Gym simulator (Makoviy-
chuk et al., 2021) demonstrate that ORSO identifies the best auxiliary reward function much faster
(2× or more) than current methods. Moreover, ORSO consistently selects reward functions that
are comparable to, and sometimes surpass, those designed by domain experts with up to 16× less
compute.

2 PRELIMINARIES

Reinforcement Learning (RL) In RL, the objective is to learn a policy for an agent (e.g., a robot)
that maximizes the expected cumulative reward during the interaction with the environment. The in-
teraction between the agent and the environment is formulated as a Markov decision process (MDP)
(Puterman, 2014),M = (S,A, P, r, γ, ρ0), where the S and A denote state and action spaces, re-
spectively, P : S × A → ∆S

1 is the state transition dynamics, r : S × A → ∆R denotes the
reward function, γ ∈ [0, 1) is the discount factor, and ρ0 ∈ ∆S is the initial state distribution.
At each timestep t ∈ N of interaction, the agent selects an action at ∼ π( · | st) based on its
policy π, receives a (possibly) stochastic reward rt ∼ r(st, at), and transitions to the next state
st+1 ∼ P ( · | st, at) according to the transition dynamics. Here, r is the task reward, also referred
to as extrinsic reward (Chen et al., 2022). RL algorithms aim to find a policy π⋆ that maximizes the
discounted cumulative reward, i.e.,

π⋆ ∈ argmax
π

J (π) := E

[ ∞∑
t=0

γtrt

∣∣∣∣∣ s0 ∼ ρ0, at ∼ π( · | st),
rt ∼ r(st, at), st+1 ∼ P ( · | st, at)

]
. (1)

3 METHOD: REWARD DESIGN AS SEQUENTIAL DECISION MAKING

As previously stated, the reward function r encodes the task objective but can be sparse, making it
difficult to directly optimize using RL methods. We formalize the reward design problem as follows.

Definition 3.1 (Reward Design). Let A be a reinforcement learning algorithm that takes an MDP
M = (S,A, P, r, γ, ρ0), a reward function f , and a number of interction steps with the environment
N as input and returns a policy πf = Af (M, N) that approximately maximizes reward f in M
after N interaction steps.

GivenM and A, the reward design problem aims to find a reward function f : S × A → ∆R, with
f ∈ R, the space of reward functions, such that the policy πf = Af (M, N) achieves an expected
return under the task reward r, such that J

(
πf
)
≈ maxr′∈R J (πr′) = J (π⋆).

While this could be achieved by running the algorithm A on every possible reward function r′ ∈ R,
this is computationally prohibitive. The reward space R can be extremely large, and attempting to
optimize over all possible rewards is impractical, especially when the available interaction budget is
constrained.

To make the problem tractable, we assume access to a finite set of candidate shaping reward func-
tions RK =

{
f1, . . . , fK

}
∼ G(R), where G is a distribution over the set of reward functions,

that contains at least one near-optimal reward function and a budget of iterations T . If the budget

1∆S denotes the set of probability distributions over S.

2
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π⋆
t

πf2

T t

J (πt)
π⋆

(b) Worse reward selection

Figure 1: Comparison of two reward selection strategies given a time budget T . The green dashed
line represents the task reward of the optimal policy, π⋆. The red and blue curves show the cumula-
tive maximum task rewards for policies trained withreward functions f1 and f2, respectively. The
yellow curve, π⋆

t , tracks the maximum of the red and blue curves. The shaded gray area depicts
cumulative regret in Equation (2) associated with each selection strategy. The preferred selection
strategy, (a), spends most iterations on f2, while the worse strategy, which initially focuses on f1,
leaves too little of the available budget T to fully exploit f2, resulting in lower performance and
higher regret.

does not allow training on each f i ∈ RK , we need to allocate resources to gather useful information
about the quality of each candidate, while simultaneously optimizing the most promising ones. This
introduces a fundamental exploration-exploitation tradeoff. On one hand, we must explore various
rewards to identify high performers; on the other, we need to exploit promising candidates to train
performant policies.

Cumulative Regret =⇒ Efficiency This tradeoff is captured by a regret-based objective, com-
monly used in sequential decision-making problems, which measures the suboptimality incurred by
the current policy with respect to the optimal one. Therefore, we cast the reward selection prob-
lem as an online model selection problem. Let ni

t denote the number of iterations reward function
f i has been used for training up to iteration t. Then the set of policies trained up to step t is
Π(t) = {πfij

ni
j
}tj=1, where πfij

ni
j

= Afij (M, ni
j), the policy trained with reward function f ij for ni

j

iterations. We define model selection regret as

MReg(T ) :=

T∑
t=1

J (π⋆)− J (π⋆
t ), (2)

where π⋆
t := argmaxπ∈Π(t) J (π). The choice of π⋆

t in the definition of MReg(T ) reflects a practi-
cal preference. Practitioners are generally more interested in the best-performing solution available
at a given point, rather than the most recent update. For instance, in deploying a robotic running
policy, one would select the fastest policy observed thus far – assuming the objective is to run as fast
as possible.

The regret minimization framework is well-aligned with the goal of efficient reward design, as it
emphasizes the speed at which effective policies are learned. In Figure 1, we compare two strate-
gies: one that starts by training with the worse reward function, f1, until convergence, and another
that immediately focuses on the better reward function, f2. The shaded area represents the regret
incurred by each selection strategy (Equation (2)), which reflects the performance gap between the
learned policy and the optimal one over time. The worse strategy spends too much of the available
budget T on f1, leaving insufficient iterations for training on f2. As a result, the best policy trained
with the suboptimal strategy reaches a lower performance and the selection strategy incurs higher
regret. Conversely, starting with f2 minimizes regret and maximizes the performance. A further
discussion of the online model selection problem can be found in Appendix B.
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3.1 ORSO: ONLINE REWARD SELECTION AND POLICY OPTIMIZATION

In this section, we introduce ORSO (Online Reward Selection and Optimization), a novel approach to
efficiently and effectively design reward functions for reinforcement learning. Our method operates
in two phases: (1) reward generation and (2) online reward selection and policy optimization.

Reward Generation In the first phase of ORSO, we generate a set of candidate reward functions
RK for the online selection phase. Given an MDPM = (S,A, P, r, ρ0) and a stochastic generator
G, we sample a set of K reward function candidates,RK = {f1, . . . , fK | ∀i ∈ [K], f i : S×A →
∆R, f i ∼ G}, from G during the reward design phase. The generator G can be any distribution
over the reward function space R. For instance, if the set of possible reward functions is given by
a linear combination of two reward components c1, c2, which are functions of the current state and
action, such that r(s, a) = w1c1(s, a) + w2c2(s, a), then the generator G can be represented by the
means and variances of two normal distributions, one for each weight w1, w2.

Online Reward Selection and Policy Optimization Our algorithm for online reward selection
and policy optimization is described in Algorithm 1. On a high level, the algorithm proceeds as
follows. Given an MDPM = (S,A, P, r, ρ0), an RL algorithm A and a reward generator G, we
sample set of K reward functions RK ∼ G and initialize K distinct policies π1, . . . , πK . At step
t of the reward selection process, the algorithm selects a learner it ∈ [K] according to a selection
strategy. We then perform N iterations of training with algorithm A, updating the policy corre-
sponding to reward function it to obtain πit . Policy πit is simultaneously evaluated under the task
reward function r and the necessary variables for the model selection algorithm are then updated
(e.g., reward estimates, reward function visitation counts, and confidence intervals). The algorithm
returns the reward function f⋆

T and the corresponding policy π⋆
T that performs the best under the

task reward function r.

Algorithm 1 ORSO: Online Reward Selection and Policy Optimization

Require: MDPM = (S,A, P, r, ρ0), algorithm A, generator G
1: Sample K reward functionsRK =

{
f1, . . . , fK

}
∼ G

2: Initialize K policies
{
π1, . . . , πK

}
3: for t = 1, 2, . . . , T do
4: Select an model it ∈ [K] according to a selection strategy
5: Update πit ← Afit (M, N, πit)

6: Evaluate J (πit)← Eval(πit)
7: Update variables (e.g., reward estimates and confidence intervals)
8: end for
9: return π⋆

T , f
⋆
T = argmaxi∈[K] J (πi)

Choice of Selection Algorithm While ORSO is a general algorithm that can employ any selection
method to pick the reward function to train on, the performance depends on the choice of algorithm.

For instance, using a simple selection method like ε-greedy introduces an element of exploration by
occasionally selecting a random reward function (with probability ε), but it risks overcommitting to
a seemingly promising reward function early on. This can lead to suboptimal performance if the
chosen reward function causes the task performance to plateau in the long run. However, greedier
methods, such as ε-greedy, can achieve lower regret if they commit to the actual optimal reward
function early in the process. These methods are particularly effective when early performance
signals are strong indicators of long-term success.

However, if initial performance is not a reliable predictor of future outcomes, these greedy ap-
proaches may struggle, as they risk prematurely locking onto suboptimal rewards. In contrast,
more exploratory algorithms like the exponential-weight algorithm for exploration and exploita-
tion (Exp3) (Auer et al., 2002) maintain a broader search, potentially discovering better rewards in
the long run, especially in environments where early signals are less informative. We empirically
validate different choices of selection algorithms in Section 5.
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4 THEORETICAL GUARANTEES

In this section, we provide regret guarantees for ORSO with the Doubling Data-Driven Regret Bal-
ancing (D3RB) algorithm by Dann et al. (2024). A discussion of the intuition behind the D3RB
algorithm and the full pseudo-code for ORSO with D3RB is provided in Appendix C. We note that
the regret definition used in the online model selection literature is an upper bound for the model
selection regret defined in Section 3. We provide a further discussion of this relationship in Ap-
pendix B.

We first introduce some useful definitions for our analysis.
Definition 4.1 (Definition 2.1 from Dann et al. (2024)). The regret scale of learner i after being

played t times is
∑t

ℓ=1 reg(πi
(ℓ))√

t
where reg(πi

(ℓ)) = J (π
⋆)− J (πi

(ℓ)) in the reward design problem.

For a positive constant dmin > 0, the regret coefficient of learner i after being played for t rounds is
di(t) = max{dmin,

∑t
ℓ=1 reg(π

i
(ℓ))/
√
t}. That is, di(t) ≥ dmin is the smallest number such that the

incurred regret is bounded as
∑t

ℓ=1 reg(π
i
(ℓ)) ≤ di(t)

√
t.

Dann et al. (2024) use
√
t as this is the most commonly targeted regret rate in stochastic settings.

The main idea underlying our regret guarantees is that the internal state of all suboptimal reward
functions is only updated up to a point where the regret equals that of the best policy so far.

We assume there exists a learner that monotonically dominates every other learner.
Assumption 4.2. There is a learner i⋆ such that at all time steps, its expected sum of rewards
dominates any other learner, i.e., ui⋆

(t) ≥ ui
(t), for all i ∈ [K], t ∈ N and such that its average

expected rewards are increasing, i.e.,
ui⋆
(t)

t ≤
ui⋆
(t+1)

t+1 , ∀t ∈ N. This is equivalent to saying that
di⋆(t) ≥ di⋆(t+1), for all t ∈ N.

Assumption 4.2 guarantees that the cumulative expected reward of the optimal learner i⋆ is always at
least as large as the cumulative expected reward of any other learner and that its average performance
increases monotonically.

Following the notation of Dann et al. (2024), we refer to the event that the confidence intervals for
the reward estimator are valid as E .
Definition 4.3 (Definition 8.1 from Dann et al. (2024)). We define the event E as the event in which
for all rounds t ∈ N and learners i ∈ [K] the following inequalities hold

−c
√
ni
t ln

K lnni
t

δ
≤ ûi

t − ui
t ≤ c

√
ni
t ln

K lnni
t

δ
(3)

for the algorithm parameter δ ∈ (0, 1) and a universal constant c > 0.

Then we can refine Lemma 9.3 from Dann et al. (2024) in the case where Assumption 4.2 holds.
Lemma 4.4. Under event E and Assumption 4.2, with probability 1− δ, the regret of all learners i
is bounded in all rounds T as

ni
T∑

t=1

reg(πi
(t)) ≤ 6di⋆T

√
ni⋆
T + 1 + 5c

√
(ni⋆

T + 1) ln
K lnT

δ
, (4)

where di⋆T = di⋆
(ni⋆

T )
.

We provide the proof for Lemma 4.4 in Appendix D. Lemma 4.4 implies that when Assumption 4.2
holds, the regrets are perfectly balanced. This is in stark contrast with the regret guarantees of
Dann et al. (2024) that prove the D3RB algorithm’s overall regret to scale as

(
d̄i⋆T
)2√

T where
d̄i⋆t = maxℓ≤t d

i⋆
ℓ . Instead, our results above depend not on the monotonic regret coefficients d̄i⋆t

but on the true regret coefficients di⋆t . Even if learner i⋆ has a slow start (and therefore a large d̄i⋆T ),
as long as monotonicity holds and the i⋆-th learner recovers in the later stages of learning, our results
show that D3RB will achieve a regret guarantee comparable with running learner i⋆ in isolation.
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5 PRACTICAL IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we present a practical implementation2 of ORSO and its experimental results on
several continuous control tasks. We study the ability of ORSO to design effective reward functions
with varying budget constraints. We also study how different sample sizes, K, of the set of reward
functionsRK influence the performance of ORSO and compare different selection algorithms.

This section is structured as follows. First, we present the experimental setup, including the environ-
ments and baselines, and the practical consideration of the reward generator G and the algorithms
used in the online reward selection phase. Then, we present the main results and ablate our design
choices. Further experimental results can be found in Appendix H

5.1 EXPERIMENTAL SETUP

Environments and RL Algorithm We evaluate ORSO on a set of continuous control tasks us-
ing the Isaac Gym simulator (Makoviychuk et al., 2021). Specifically, we consider the following
tasks: CARTPOLE and BALLBALANCE, which are relatively simple; two locomotion tasks, ANT
and HUMNAOID, which have dense but unshaped task rewards – for instance, the agent is rewarded
for running fast, but the reward function lacks terms to encourage upright posture or smooth move-
ment; and two complex manipulation tasks, ALLEGROHAND and SHADOWHAND, which feature
sparse task reward functions.

Our policies are trained using the proximal policy optimization (PPO) algorithm (Schulman et al.,
2017), with our implementation built on CleanRL (Huang et al., 2022). We chose PPO because the
Makoviychuk et al. (2021) provide hyperparameters, which we use, that enable it to perform well
on these tasks when using the human-engineered reward functions.

5.1.1 BASELINES

In our experiments, we consider three baselines. We analyze the performance of policies trained
using each reward function detailed below. We evaluate the reward function selection efficiency of
ORSO compared to more naive selection strategies.

No Design (Task Reward with No Shaping) We train the agent with the task reward function r for
each MDP. These reward functions can be sparse (for manipulation) or unshaped (for locomotion).
We use the same reward definitions as prior work (Ma et al., 2024), which we report in Appendix E.

Human We consider the human-engineered reward functions for each task provided by (Makoviy-
chuk et al., 2021). We note that these are constructed such that training PPO with the given hyperpa-
rameters yields a performant policy with respect to the task reward function. The function definitions
are reported in Appendix E.

Naive Selection We employ EUREKA (Ma et al., 2024) as a baseline for the naive selection ap-
proach. EUREKA uses a large language model to generate Python code for the reward functions of
several continuous control tasks. EUREKA uses an evolutionary scheme to evaluate and improve its
reward functions. During each iteration, EUREKA samples a set of reward functions from an LLM,
trains a policy on each reward function, and uses the best-performing reward function as a context
for the LLM to perform the evolutionary step. However, this selection strategy can be seen as naive,
as it uniformly explores each reward function for a fixed number of iterations, regardless of its actual
performance on the task.

5.1.2 IMPLEMENTATION

Reward Generation Similarly to recent works on reward design, which demonstrate that LLMs
can generate effective reward functions for training agents (Park et al., 2024; Ma et al., 2024; Xie
et al., 2024), we follow this paradigm by using GPT-4 (Achiam et al., 2023) to avoid manually de-
signing reward function components. The language model is prompted to generate reward function

2The code for ORSO is available at anonymized for submission
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code in Python based on some minimal environment code describing the observation space and use-
ful class variables. We employ prompts similar to those used by Ma et al. (2024). Since the exact
prompts are not the primary focus of our work, we do not detail them here; instead, we refer readers
to our codebase for further details on the prompt construction.

While the LLM produces seemingly good code, this does not guarantee that the sampled code is
bug-free and runnable. In ORSO, we employ a simple rejection sampling technique to construct sets
of only valid reward functions with high probability. We also note that the initial set of generated re-
ward functions in ORSO might not contain an effective reward function.3 To address this limitation,
we introduce a mechanism for improving the reward function set through iterative resampling and
in-context evolution of new setsRK . We provide more details on the rejection sampling mechanism
and the iterative refinement process Appendix F.

Online Reward Selection Algorithms We evaluate multiple reward selection algorithms from
the multi-armed bandit and online model selection literature: explore-then-commit (ETC), ε-greedy
(EG), upper confidence bound (UCB) (Auer, 2002), exponential-weight algorithm for exploration
and exploitation (EXP3) (Auer et al., 2002), and doubling data-driven regret balancing (D3RB)
(Dann et al., 2024). We provide the pseudocode and the hyperparameters used for each selection
algorithm in Appendix G. For every environment, we set the number of iterations N in Algorithm 1
used to train the policy before we select a different reward function to N = n iters/100, where
n iters is the number of iterations used to train the baselines, i.e., we perform at least 100 itera-
tions of online reward selection before the iterative resampling.

5.2 RESULTS

In this section, we present the experimental results of ORSO. We evaluate ORSO’s ability to effi-
ciently select reward functions with varying budget constraints and reward function set size K. We
consider budgets B ∈ {5, 10, 15} × n iters and sample sizes K ∈ {4, 8, 16}.
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Figure 2: Left: ORSO achieves human-level performance in approximately half the time compared
to the naive strategy. The curves represent the average percentage of human-designed reward func-
tions across multiple tasks and iteration budget constraints. Middle: Normalized task rewards av-
eraged over various iteration budgets and seeds. ORSO consistently matches or surpasses human-
designed reward functions. The normalized task reward is averaged over different iteration budgets
and seeds. Right: Normalized task rewards across different iteration budgets. ORSO effectively
scales with increased iterations, with values averaged over multiple tasks and seeds. Shaded areas
and vertical bars in the plots indicate 95% confidence intervals.

ORSO is Twice as Fast as the Naive Selection Strategy In Figure 2 (left), we plot the number
of iterations required to reach different percentages of the performance achieved by policies trained
with human-engineered reward functions. The y-axis represents the percentage of human perfor-
mance, while the x-axis shows progress in the selection algorithm, normalized so that a value of
1.0 corresponds to B × n iters for each task. Results are aggregated across 6 tasks, 3 different
budgets, and 3 reward function sets, with 3 seeds per configuration, totaling 162 runs.

3An effective reward function is one that leads to high performance with respect to the task reward r when
used for training.
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We observe that ORSO with D3RB achieves human-level performance more than twice as fast as
the naive selection strategy. The naive selection strategy on average does not manage to select an
effective reward function within the limited budget. Detailed per-task and per-budget results are
reported in Appendix H.

ORSO Surpasses Human-Designed Reward Functions Not only does ORSO reach human-level
performance quickly, but it also has the potential to surpass it. Figure 2 (middle) illustrates the aver-
age performance of ORSO compared to human-designed reward functions, the task reward function,
and the naive selection strategy across different tasks. We observe that ORSO consistently matches
or exceeds human-designed rewards, particularly in more complex environments. Again, the results
are averaged over multiple seeds and configurations. The full breakdown is reported in Appendix H.

ORSO Scales with Budget Figure 2 (right) demonstrates how ORSO’s performance scales with
increasing budgets. While both ORSO and naive selection benefit from larger budgets, ORSO is
consistently superior and surpasses human-designed rewards when B ≥ 10.

ORSO Can Reach Human Performance with Fewer GPUs One advantage of the naive selection
strategy is that it can be easily parallelized on many GPUs. In Figure 3 we show the estimated time
required to achieve the same performance level as policies trained with human-designed reward
functions, based on the number of GPUs. Notably, ORSO performs at a comparable speed to the
naive selection strategy even when the latter leverages up to 16 GPUs in parallel, achieving similar
performance within the same timeframe. It should be noted that the plotted time is an approximation
based on the time needed to complete one iteration of PPO for each task. We report the results
for all computational budgets in the Appendix H. We also note that one could in principle run
ORSO on multiple GPUs in parallel and combie the final results, which would likely lead to further
improvements in the efficiency of reward selection.
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Figure 3: Median time to human-level performance as a function of number of parallel GPUs.
Policies trained with ORSO can achieve the same performance as policies trained with the human-
engineered reward functions with up to 16× fewer GPUs.

5.3 ABLATION STUDY

Choice of Selection Algorithm In Figure 4, we compare different selection algorithms for ORSO.
We find that D3RB performs best on average, consistently outperforming other algorithms, followed
closely by Exp3. These algorithms allow ORSO to balance exploration and exploitation effectively,
leading to superior performance compared to more greedy approaches like UCB, ETC, and EG.
Interestingly, even simpler strategies like EG and ETC substantially outperform the naive strategy,
which highlights the importance of properly balancing exploration and exploitation for efficient
reward selection. By framing reward design as an exploration-exploitation problem, we demonstrate
that even basic strategies offer considerable gains over static, inefficient methods.

Regret of Different Selection Algorithms To further quantify ORSO’s performance, we analyze
its regret with respect to human-engineered reward functions.4 This formulation is motivated by two
key considerations. First, we lack access to the true optimal policy π⋆. Second, the PPO hyperpa-
rameters used in our experiments were specifically tuned for the human-engineered reward function,
making the policy trained with it a reasonable proxy for the optimal policy. Regret provides a useful

4The normalized cumulative regret with respect to the human-engineered reward functions is defined as
1
T

∑T
t=1

Human−J (π⋆
t )

Human .
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Figure 4: Comparison of different rewards selection algorithms for ORSO. Left: Number of itera-
tions necessary for human-level performance. Right: Average normalized task reward for different
selection algorithms. We provide a more granular breakdown in Appendix H.

metric for understanding how much performance is lost due to suboptimal reward selection over
time. Lower regret indicates that ORSO quickly identifies high-quality reward functions, reducing
the number of iterations wasted on poorly performing ones. Figure 5 shows the normalized cu-
mulative regret for different selection algorithms. Notably, ORSO’s regret can become negative,
indicating that it finds reward functions that outperform the human baseline.
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Figure 5: Regret of different selection algorithms with varying budgets. We recall that a budget B
indicates that the ORSO has been run for B × n iters iterations.

ORSO is Effective with Large Reward Sets We also evaluate ORSO with different selection
algorithms when we are provided with a fixed but large set of reward functions. Specifically, we
conduct experiments on the ANT task using ORSO with a budget B = 15 and candidate shaping
reward sets of sizes K ∈ {48, 96}.

0 5000 10000 15000 20000
Iteration

0

5

10

C
um

M
ax

 T
as

k 
R

ew
ar

d K = 48

0 5000 10000 15000 20000
Iteration

0

5

10

C
um

M
ax

 T
as

k 
R

ew
ar

d K = 96

Uniform EG ETC UCB EXP3 D3RB Human

Figure 6: Comparison of multiple selection algorithms for the ANT task with a high number of
reward function candidates. The shaded areas represent 95% confidence intervals over 5 different
seeds. The order of the reward functions is randomized for each seed.

In this setting – with a fixed budget, but no iterative improvement – algorithms that commit to a
selection earlier can allocate more iterations to training on the chosen reward functions. On the
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other hand, exploring for longer may allow us to find the optimal reward function but potentially
leave insufficient time for training.

As illustrated in Figure 6, D3RB consistently identifies and selects an effective reward function
from the set. In contrast, “greedier” methods such as ε-greedy, explore-then-commit, and UCB can
depend more on the stochasticity of training and on average do not surpass human-designed reward
functions. Exp3 and uniform exploration, while more exploratory, may overemphasize exploration
at the expense of exploiting promising reward functions, leading to suboptimal performance.

6 RELATED WORK

Traditionally, researchers manually specified reward components and tuned their coefficients (Ng
et al., 1999; Margolis & Agrawal, 2022; Liu et al., 2024), a method that often requires significant
domain expertise and involves numerous iterations of trial and error.

Recent work has increasingly explored the potential of foundation models in reward design. Ap-
proaches like L2R (Yu et al., 2023) leverage large language models to generate reward functions by
converting natural language descriptions into code using predefined reward API primitives, though
this requires notable effort in manual template design. Other works such as EUREKA (Ma et al.,
2024) and Text2Reward (Xie et al., 2024) use language models to generate dense reward functions
based on task descriptions and environment codes.

Foundation models have also been directly employed as reward models. Researchers have used
cosine similarity of CLIP embeddings (Rocamonde et al., 2024), vision language models for trajec-
tory preference labeling (Wang et al., 2024), and large language models for constructing preference
datasets and intrinsic reward modeling (Klissarov et al., 2024; Kwon et al., 2023).

In parallel, research on online model selection has addressed the challenge of dynamically choosing
suitable models in sequential decision-making environments (Agarwal et al., 2017; Foster et al.,
2019; Pacchiano et al., 2020; Lee et al., 2021).

A more comprehensive review of related work is provided in Appendix A.

7 CONCLUSION

In this paper, we introduce ORSO, a novel approach for reward design in reinforcement learning
that significantly accelerates the design of shaped reward functions. We find that even simple strate-
gies like ε-greedy and explore-then-commit yield substantial improvements over naive selection,
suggesting that reward design can be effectively framed as a sequential decision problem. ORSO
reduces both time and computational costs by more than half compared to earlier methods, making
reward design accessible to a wider range of researchers. What once required a larger amount of
computational resources can not be done on a single desktop in a reasonable time. By formalizing
the reward design problem and providing a theoretical analysis of ORSO’s regret when using the
D3RB algorithm, we also contribute to the theoretical understanding of reward design in RL.

Looking ahead, our work opens several promising directions for future research, including the devel-
opment of more sophisticated exploration strategies tailored for reward design, and the application
of our approach to more complex, real-world RL problems.

7.1 LIMITATIONS AND FUTURE WORK

A key limitation of ORSO is its reliance on a predefined task reward, which is typically straightfor-
ward to construct for simpler tasks but can be challenging for more complex ones or for tasks that
include a qualitative element to them, e.g., making a quadruped walk with a “nice” gait. Future work
could explore eliminating the need for such hand-crafted task rewards by leveraging techniques that
translate natural language instructions directly into evaluators, potentially using vision-language
models, similarly to Wang et al. (2024); Rocamonde et al. (2024). Another alternative is to use
preference data to learn a task reward model (Christiano et al., 2017; Zhang & Ramponi, 2023) and
use the latter as a signal for the model selection algorithm.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire. Corralling a band of
bandit algorithms. In Conference on Learning Theory, pp. 12–38. PMLR, 2017.

Pulkit Agrawal. The task specification problem. In 5th Annual Conference on Robot Learn-
ing, Blue Sky Submission Track, 2021. URL https://openreview.net/forum?id=
cBdnThrYkV7.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multi-
armed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Eric R Chen, Zhang-Wei Hong, Joni Pajarinen, and Pulkit Agrawal. Redeeming intrinsic re-
wards via constrained policy optimization. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=36Yz37cEN_Q.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Chris Dann, Claudio Gentile, and Aldo Pacchiano. Data-driven online model selection with regret
guarantees. In International Conference on Artificial Intelligence and Statistics, pp. 1531–1539.
PMLR, 2024.

Dylan J Foster, Akshay Krishnamurthy, and Haipeng Luo. Model selection for contextual bandits.
Advances in Neural Information Processing Systems, 32, 2019.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
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A RELATED WORK

Reward Design for RL Designing effective reward functions for reinforcement learning has been
a long-standing challenge. Several approaches have been proposed to tackle it.

Traditionally, researchers manually specify reward components and tune their coefficients (Ng et al.,
1999; Margolis & Agrawal, 2022; Liu et al., 2024). This method often demands significant domain
expertise and can be highly resource-intensive, involving numerous iterations of trial and error in
designing reward functions, training policies, and adjusting reward parameters.

Another approach is to learn reward functions from expert demonstrations via methods like appren-
ticeship learning (Abbeel & Ng, 2004) and maximum entropy inverse RL (Ziebart et al., 2008).
While these methods can capture complex behaviors, they often rely on high-quality demonstrations
and may struggle in environments where such data is scarce or noisy.

Preferences can also be used to learn reward functions (Zhang & Ramponi, 2023; Christiano et al.,
2017). This approach involves collecting feedback in the form of preferences between different
trajectories, which are then used to infer a reward function that aligns with the desired behavior.
This method is particularly useful in scenarios where it is difficult to explicitly define a reward
function or obtain expert demonstrations, as it allows for more intuitive and accessible feedback
from users.

Foundation Models and Reward Functions Recent work has explored the use of large lan-
guage/vision models (LL/VMs) to aid in the reward design process. L2R (Yu et al., 2023) leverages
large language models to generate reward functions for RL tasks by first creating a natural language
“motion description” and then converting it into code using predefined reward API primitives. While
innovative, L2R has notable limitations: it requires significant manual effort in designing templates
and primitives and is constrained by the latter. EUREKA (Ma et al., 2024) and Text2Reward (Xie
et al., 2024) use LLMs to generate dense reward functions for RL given the task description in
natural language and the environment code.

Foundation models have also been directly used as reward models. Rocamonde et al. (2024) uses the
cosine similarity of CLIP embeddings of language instructions and renderings of the state as a state-
only reward model. Similarly, Wang et al. (2024) automatically generates reward functions for RL
using a vision language model to label pairs of trajectories with preference, given a task description.
Motif (Klissarov et al., 2024) first constructs a pair-wise preferences dataset using a large language
model (LLM), learns a preference-based intrinsic reward model with the Bradley-Terry (Bradley &
Terry, 1952) model, and then uses this reward model to train a reinforcement learning agent. Kwon
et al. (2023) uses a similar approach, where an LLM is used during training to evaluate an RL policy,
given a few examples of successful behavior or a description of the desired behavior.

Online Model Selection The problem of model selection in sequential decision-making environ-
ments has gained significant attention in recent years (Agarwal et al., 2017; Foster et al., 2019; Pac-
chiano et al., 2020; Lee et al., 2021). This area of research addresses the challenge of dynamically
choosing the most suitable model or algorithm from a set of candidates while learning.

Agarwal et al. (2017) introduced CORRAL, a method to combine multiple bandit algorithms in a
master algorithm. Foster et al. (2019) proposed model selection guarantees for linear contextual
bandits. Pacchiano et al. (2020) extend the CORRAL algorithm and propose Stochastic CORRAL.
Lastly, Lee et al. (2021) propose Explore-Commit-Eliminate (ECE), an algorithm for model selec-
tion in RL with function approximation. A common requirement across all these approaches is the
need to know the regret guarantees of the base algorithms.

Our work is closely related to Dann et al. (2024), which removes the need for known regret guaran-
tees and instead uses realized regret bounds for the base learners. In our setting, the set of models
comprises the reward functions set and their corresponding policies.
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B ONLINE MODEL SELECTION

In this section, we introduce the model selection problem and some necessary notation modified
from Dann et al. (2024) for our analysis.

We consider a general sequential decision-making process consisting of a meta learner interacting
with an environment over T ∈ N rounds via a set of base learners. At each round of interaction
t = 1, 2, . . . , T , the meta learner selects a base learner bt and after executing bt, the environment
returns a model selection reward Rt ∈ R. The objective of the meta learner is to sequentially choose
base learners b1, . . . , bT to maximize the expected cumulative sum of model selection rewards, i.e.,
maxE

[∑T
t=1 Rt

]
. We denote by vb = E[R | b] the expected model selection reward, given that

the learner chooses base learner b, i.e., the value of base learner b. The total model selection reward
accumulated by the algorithm over T rounds is denoted by uT =

∑T
t=1 v

bt . The objective is to
minimize the cumulative regret after T rounds of interaction,

Reg(T ) :=

T∑
t=1

reg(bt) =

T∑
t=1

v⋆ − vbt , (5)

where v⋆ is the value of the optimal base learner.

In our setting, each base learner corresponds to a reward function r and its associated policy π,
i.e., b = (f, π). In this case, choosing to execute base learner b means training with algorithm A
starting from checkpoint π and using RL reward function f . The model selection reward R is then
the evaluation of the trained policy under the task reward r, i.e., J (π). The regret of base learner
b can therefore be written as reg(b) = v⋆ − vb = J (π⋆) − J (π), where π⋆ is the optimal policy.
Therefore the objective becomes minimizing

Reg(T ) =

T∑
t=1

J (π⋆)− J
(
πfit

ni
t

)
. (6)

We note an important difference between the online model selection problem and the multi-armed
bandit (MAB) problem. In model selection, the meta learner interacts with an environment over
T rounds, selecting from K base learners. In each round t, the meta learner picks a base learner
it ∈ [K] (index of base learner chosen at step t) and follows its policy, updating the base learner’s
state with new data. Unlike MAB problems, where mean rewards are stationary, the mean rewards
here are non-stationary due to the stateful nature of base learners (the base learners are learning as
they see more data), making the design of effective model selection algorithms challenging.

Notation The policy associated with base learner i at round t is denoted by πi
t, so that πt = πit

t .
We denote the number base learner i has been played up to round t as ni

t =
∑t

ℓ=1 1 {iℓ = i} and
the total cumulative reward for learner i as ui

t =
∑t

ℓ=1 1 {iℓ = i} vπi
t , where we use vπ

i
t = vb

i
t to

highlight that the policy associated with base learner i changes over time, but the reward function
used for RL does not. We denote the internal clock for each base learner with a subscript (k) such
that πi

(k) is the policy of learner i when chosen for the k-th time, i.e., πi
t = πi

(ni
t)

.

Remark 1. The cumulative regret in Equation (6) is an upper bound for the model selection cumu-
lative regret.

Proof. This is straightforward to see. Let us first note that, by definition, for all t ∈ [T ], we have

J (π⋆
t ) ≥ J

(
πfit

ni
t

)
. (7)

Therefore,
T∑

t=1

J (π⋆)− J (π⋆
t ) ≤

T∑
t=1

J (π⋆)− J
(
πfit

ni
t

)
, (8)

i.e.,
MReg(T ) ≤ Reg(T ), (9)

concluding the proof.
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C ORSO WITH DOUBLING DATA-DRIVEN REGRET BALANCING

Here, we present the complete ORSO algorithm with Doubling Data-Driven Regret Balancing
(D3RB) as the model selection algorithm.

D3RB is built upon the idea of regret balancing, which aims to optimize the performance of multiple
models by balancing their respective regrets. Imagine weighing two models on a balance scale where
the “weight” corresponds to their regret; the goal is to keep the regret of both models balanced. This
approach ensures that models with higher regret rates are selected less frequently, while those with
lower regret rates are favored.

Concretely, regret balancing involves associating each learner with a candidate regret bound. The
model selection algorithm then competes against the regret bound of the best-performing learner
among those that are well-specified – meaning their realized regret stays within their candidate
bounds. Traditional approaches often rely on known expected regret bounds. In contrast, D3RB
focuses on realized regret, allowing the model selection algorithm to compete based on the actual
regret outcomes of each base learner. The algorithm dynamically adjusts the regret bounds in a
data-driven manner, adapting to the realized regret of the best-performing learner over time. This
approach overcomes the limitation of needing known regret bounds, which are often unavailable for
complex problems.

D3RB maintains three estimators for each base learner: regret coefficients d̂it, average rewards ûi
t/n

i
t

and balancing potentials ϕi
t. At each step t, D3RB selects the base learner with the lower balancing

potential and executes it. Then it performs the misspecification test in Equation (10) to check if
the estimated regret coefficient for base learner it is consistent with the observed data. If the test
triggers, i.e., the d̂it is too small, then the algorithm doubles it. Lastly, D3RB sets the balancing

potential ϕi
t to d̂itt

√
nit
t .

ûit
t

nit
t

+
d̂itt−1

√
nit
t

nit
t

+ c

√√√√ ln
K lnn

it
t

δ

nit
t

< max
j∈[K]

ûj
t

nj
t

− c

√√√√ ln
K lnnj

t

δ

nj
t

(10)
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Algorithm 2 ORSO with D3RB

Require: MDPM = (S,A, P, r, ρ0), algorithm A, generator G, minimum regret coefficients dmin,
failure probability δ

1: Sample K reward functionsRK =
{
f1, . . . , fK

}
∼ G

2: Initialize K policies
{
π1, . . . , πK

}
3: Initialize balancing potentials ϕi

1 = dmin for all i ∈ [K]

4: Initialize regret coefficients d̂i0 = dmin for add i ∈ [K]
5: Initialize counts ni

0 = 0 and total values ûi
0 = 0 for all i ∈ [K]

6: for t = 1, 2, . . . , T do
7: Select a base learner it ∈ [K] ∈ argmini∈[K] ϕ

i
t

8: Update πit ← Afit (Mit , N, πit)

9: Evaluate Rt = J
(
πit
)
← Eval(πit)

10: // Update necessary variables
11: Set ni

t = ni
t−1, û

i
t = ûi

t−1, d̂
i
t = d̂it−1, and ϕi

t+1 = ϕi
t for all i ∈ [K] \ {it}

12: Update statistics for current learner nit
t = nit

t−1 + 1 and ûit
t = ûit

t−1 +Rt

13: Perform misspecification test

ûit
t

nit
t

+
d̂itt−1

√
nit
t

nit
t

+ c

√√√√ ln
K lnn

it
t

δ

nit
t

< max
j∈[K]

ûj
t

nj
t

− c

√√√√ ln
K lnnj

t

δ

nj
t

(11)

14: if test is triggered then
15: Double the regret coefficient d̂i1t ← 2d̂itt−1
16: else
17: Keep the regret coefficient unchanged d̂i1t ← d̂itt−1
18: end if
19: Update the balancing potential ϕit

t+1 ← d̂itt

√
nit
t

20: end for
21: // Best policy and reward function under the task reward
22: return π⋆

T , f
⋆
T = argmaxi∈[K] J (πi)
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D PROOF OF LEMMA 4.4

In this section, we present the complete proof of Lemma 4.4. We will start by showing that when
Assumption 4.2 holds, then with probability at least 1− δ, the estimated regret coefficient of learner
i⋆ will never double provided that dmin ≥ c, where c is the confidence multiplier in D3RB.

Lemma D.1 (Non-doubling regret coefficient). When E holds, and algorithm D3RB is in use

d̂i⋆t = dmin and ni
T ≤ ni⋆

T + 1 for all i ∈ [K] (12)

for all t ∈ N.

Proof. In order to show this result it is sufficient to show that when E holds, algorithm i⋆ does not
undergo any doubling event. Doubling of the regret coefficients only happens when the misspecifi-
cation test triggers for algorithm i⋆.

We will show this by induction.

Base Case (t = 1) At t = 1, for all algorithms i ∈ [K]:

• d̂i1 = dmin (by initialization)

• ni
1 = 1 if i is the first algorithm chosen, 0 otherwise

Therefore ni
1 ≤ ni⋆

1 + 1 holds

Inductive Step Inductive hypothesis: assume that for some t ≥ 1:

• d̂i⋆t−1 = dmin

• ni
t−1 ≤ ni⋆

t−1 + 1 for all i ∈ [K]

We need to show these properties hold for t. Let it = i⋆. When E holds, the left-hand side (LHS) of
D3RB’s misspecification test satisfies

ûit
t

nit
t

+
d̂itt−1

√
nit
t

nit
t

+ c

√√√√ ln
K lnn

it
t

δ

nit
t

=
ûi⋆
t

ni⋆
t

+
d̂i⋆t−1

√
ni⋆
t

ni⋆
t

+ c

√√√√ ln
K lnni⋆

t

δ

ni⋆
t

(it = i⋆)

≥ ui⋆
t

ni⋆
t

+
d̂i⋆t−1

√
ni⋆
t

ni⋆
t

(event E)

(i)
=

ui⋆
t

ni⋆
t

+
dmin

√
ni⋆
t

ni⋆
t

(13)

where (i) holds because by the induction hypothesis d̂i⋆t−1 = dmin. We will now show that ni⋆
t ≥ nj

t

for all j ∈ [K]. Since by the inductive hypothesis d̂i⋆ℓ = dmin for all ℓ ≤ t − 1, the potential

ϕi⋆
ℓ = dmin

√
ni⋆
ℓ−1 for all ℓ ≤ t.

For i ∈ [K] let t(i), be the last time – before time t – algorithm i was played. For i ̸= i⋆ we have
t(i) < t. Since i was selected at time t(i), by definition of the potentials,

d̂i⋆t(i)−1

√
ni⋆
t(i)−1 = dmin

√
ni⋆
t(i)−1 ≥ d̂it(i)−1

√
ni
t(i)−1 ≥ dmin

√
ni
t(i)−1

so that ni⋆
t(i)−1 ≥ ni

t(i)−1. Since both ni⋆
t = ni⋆

t(i)−1 + 1 and ni
t = ni

t(i)−1 + 1 we conclude that

ni⋆
t ≥ ni

t.
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We now turn our attention to the right-hand side (RHS) of D3RB’s misspecification test. When E
holds, the RHS of D3RB’s misspecification test satisfies,

max
j∈[K]

ûj
t

nj
t

− c

√√√√ ln
K lnnj

t

δ

nj
t

≤ max
j∈[K]

uj
t

nj
t

(i)

≤ max
j∈[K]

ui⋆

(nj
t)

nj
t

(ii)

≤ ui⋆
t

ni⋆
t

(14)

where inequalities (i) and (ii) hold because of Assumption 4.2. Combining inequalities 13 and 14
we conclude the misspecification test of algorithm D3RB will not trigger. Thus, d̂i⋆t remains at dmin

and for all i ∈ [K], ni
t ≤ ni⋆

t + 1 continues to hold. This finalizes the proof.

We are now ready to prove the regret bound on the base learners given in Lemma 4.4.

Lemma 4.4. Under event E and Assumption 4.2, with probability 1− δ, the regret of all learners i
is bounded in all rounds T as

ni
T∑

t=1

reg(πi
(t)) ≤ 6di⋆T

√
ni⋆
T + 1 + 5c

√
(ni⋆

T + 1) ln
K lnT

δ
, (4)

where di⋆T = di⋆
(ni⋆

T )
.

Proof. Consider a fixed base learner i and time horizon T , and let t ≤ T be the last round where i
was played but the misspecification test did not trigger. If no such round exists, then set t = 0. By
Corollary 9.1 in Dann et al. (2024), i can be played at most 1 + log2

d̄i
T

dmin
times between t and T ,

where d̄iT = maxℓ≤T diℓ. Thus,

ni
T∑

k=1

reg
(
πi
(k)

)
≤

ni
t∑

k=1

reg
(
πi
(k)

)
+ 1 + log2

d̄iT
dmin

.

If t = 0, then the desired statement holds. Thus, it remains to bound the first term in the RHS above
when t > 0. Since i = it and the test did not trigger we have, for any base learner j with nj

t > 0,

ni
t∑

k=1

reg
(
πi
(k)

)
= ni

tv
⋆ − ui

t (definition of regret)

= ni
tv

⋆ − ni
t

nj
t

uj
t +

ni
t

nj
t

uj
t − ui

t

=
ni
t

nj
t

(
nj
tv

⋆ − uj
t

)
+

ni
t

nj
t

uj
t − ui

t

=
ni
t

nj
t

 nj
t∑

k=1

reg
(
πj
(k)

)+
ni
t

nj
t

uj
t − ui

t (definition of regret)

≤ ni
t

nj
t

(
djt

√
nj
t

)
+

ni
t

nj
t

uj
t − ui

t (definition of regret rate)

=

√
ni
t

nj
t

djt

√
ni
t +

ni
t

nj
t

uj
t − ui

t.
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We now focus on j = i⋆ and use the balancing condition in Lemma 9.2 in Dann et al. (2024) to

bound the first factor
√
ni
t/n

i⋆
t . This condition gives that ϕi

t+1 ≤ 3ϕi⋆
t+1. Since both ni⋆

t > 0 and

ni
t > 0, we have ϕi

t+1 = d̂it
√
ni
t and ϕi⋆

t+1 = d̂i⋆t

√
ni⋆
t . Thus, we get√

ni
t

ni⋆
t

=

√
ni
t

ni⋆
t

· d̂
i
t

d̂i⋆t
· d̂

i⋆
t

d̂it
=

ϕi
t+1

ϕi⋆
t+1

· d̂
i⋆
t

d̂it
≤ 3

d̂i⋆t

d̂it
≤ 3, (15)

where the last inequality holds because of Lemma D.1 and because d̂it ≥ dmin.

Plugging this back into the expression above and setting j = i⋆, we have

ni
t∑

k=1

reg
(
πi
(k)

)
≤ 3di⋆t

√
ni
t +

ni
t

ni⋆
t

ui⋆
t − ui

t.

To bound the last two terms, we use the fact that the misspecification test did not trigger in round t.
Therefore,

ui
t ≥ ûi

t − c

√
ni
t ln

K lnni
t

δ
(event E)

= ni
t

 ûi
t

ni
t

+ c

√
ln

K lnni
t

δ

ni
t

+
d̂it
√
ni
t

ni
t

− 2c

√
ni
t ln

K lnni
t

δ
− d̂it

√
ni
t

≥ ni
t

ni⋆
t

ûi⋆
t −

√
ni
t

ni⋆
t

c

√
ni
t ln

K lnni⋆
t

δ
− 2c

√
ni
t ln

K lnni
t

δ
− d̂it

√
ni
t. (test not triggered)

Rearranging terms and plugging this expression in the bound above gives

ni
t∑

k=1

reg(πi
(k)) ≤ 3di⋆t

√
ni
t +

√
ni
t

ni⋆
t

c

√
ni
t ln

K lnni⋆
t

δ
+ 2c

√
ni
t ln

K lnni
t

δ
+ d̂it

√
ni
t

≤ 3di⋆t

√
ni
t + 3c

√
ni
t ln

K lnni⋆
t

δ
+ 2c

√
ni
t ln

K lnni
t

δ
+ d̂it

√
ni
t (Equation (15))

≤ 3di⋆t

√
ni
t + 3c

√
ni
t ln

K lnni⋆
t

δ
+ 2c

√
ni
t ln

K lnni
t

δ
+ 3d̂i⋆t

√
ni⋆
t

(Equation (15))

≤ 3di⋆t

√
ni
t + 3d̂i⋆t

√
ni⋆
t + 5c

√
ni
t ln

K ln t

δ
(max(ni

t, n
i⋆
t ) ≤ t)

≤ 3di⋆t

√
ni
t + 3dmin

√
ni⋆
t + 5c

√
ni
t ln

K ln t

δ
(Lemma D.1)

Finally, Lemma D.1 also implies ni
t ≤ ni⋆

t + 1 and since dmin ≤ di⋆t ,

ni
t∑

k=1

reg(πi
(k)) ≤ 6di⋆t

√
ni⋆
t + 1 + 5c

√
(ni⋆

t + 1) ln
K ln t

δ
.

The statement follows by setting t = T .
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E REWARD FUNCTIONS DEFINITIONS

In this section, we present the definition of the human-engineered reward functions and the task
reward functions used to evaluate the generated reward in Table 1. The task reward functions are the
same as the ones used in Ma et al. (2024).

Table 1: Task reward functions definitions.

ENVIRONMENT TASK REWARD

CARTPOLE
∑

1 {agent is alive}
BALLBALANCE

∑
1 {agent is alive}

ANT current distance - previous distance
HUMNAOID current distance - previous distance
ALLEGROHAND

∑
1 {rotation distance < 0.1}

SHADOWHAND
∑

1 {rotation distance < 0.1}

The human-designed reward functions from (Makoviychuk et al., 2021) are

• CARTPOLE

r =
(
1.0− pole angle2 − 0.01 · |cart vel| − 0.005 · |pole vel|

)
.

The reward is additionally multiplied by −2.0 if |cart pos| > reset dist and multi-
plied by −2.0 once again if pole angle > π

2 .

• BALLBALANCE

r = pos reward× speed reward =
1

1 + ball dist
× 1

1 + ball speed
,

where

ball dist =
√
ball pos x2 + ball pos y2 + (ball pos z− 0.7)2,

where 0.7 is the desired height above the ground, and

ball speed = ∥ball velocity∥2 .

• ANT and HUMNAOID

r = rprogress + ralive × 1 {torso height ≥ termination height}+ rupright

+ rheading + reffort + ract + rdof

+ rdeath × 1 {torso height ≤ termination height} ,

where

rprogress = current potential - previous potential

rupright = ⟨torso up vector,up vector⟩ > 0.93

rheading = heading vector×
{
1.0, if norm angle to target ≥ 0.8
norm angle to target

0.8 , otherwise

ract = −
∑
∥actions∥2

reffort =

N∑
i=1

actionsi × normalized motor strengthi × dof velocityi

potential = −
∥ptarget − ptorso∥2

dt
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• ALLEGROHAND and SHADOWHAND

r = −10rdist + rrot − 2× 10−4ract

where

rdist = ∥pobj − ptarget∥2

rrot =
1

|rot dist|+ 0.1

ract =
∑
∥actions∥2

rot dist = 2× arcsin
(
max

(
1, ∥qobj, qtarget∥2

))
where q is the quaternion and q is its conjugate.
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E.1 REWARD FUNCTIONS SELECTED BY ORSO

We report the best reward function selected by ORSO below. The reward functions are reported as
is, with only the formatting of comments and spacing changed to fit within the box.

Reward Function for Allegro Hand

def compute_gpt_reward(
object_rot: torch.Tensor,
goal_rot: torch.Tensor,
shadow_hand_dof_pos: torch.Tensor,
shadow_hand_dof_vel: torch.Tensor,
actions: torch.Tensor

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

# Configurable parameters
dist_reward_scale = float(2.0)
action_penalty_scale = float(0.05)
success_tolerance = float(0.05)
reach_goal_bonus = float(20.0)

# Compute distance to goal rotation using Quaternion distance
q_diff = object_rot - goal_rot
dist_to_goal = torch.norm(q_diff, dim=-1)

# Rotation distance reward (scaled)
rot_reward = torch.exp(-dist_reward_scale * dist_to_goal)

# Action penalty (scaled)
action_penalty = torch.sum(actions**2, dim=-1)
action_penalty_scaled = action_penalty_scale * action_penalty

# Check if the goal has been reached within the tolerance
success_mask = dist_to_goal < success_tolerance
goal_bonus = torch.where(

success_mask,
torch.tensor(reach_goal_bonus, device=dist_to_goal.device),
torch.tensor(0.0, device=dist_to_goal.device)

)

# Total reward
reward = rot_reward - action_penalty_scaled + goal_bonus

# Dictionary of individual reward components
reward_components = {

"rot_reward": rot_reward,
"action_penalty": action_penalty_scaled,
"goal_bonus": goal_bonus

}

return reward, reward_components
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Reward Function for Ant

def compute_gpt_reward(
root_states: torch.Tensor,
actions: torch.Tensor,
dt: float

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
# Device
device = root_states.device

# Extract necessary information from the root states
velocity = root_states[:, 7:10] # [vx, vy, vz]
torso_position = root_states[:, 0:3] # [px, py, pz]

# Forward velocity along the x-axis
forward_velocity = velocity[:, 0]

# Reward component: scaled forward velocity
# Retain existing scaling factor
forward_reward = forward_velocity * 2.0

# Penalty for large actions
# (to avoid unnecessary or jerky movements)
action_penalty = torch.sum(actions**2, dim=-1)
# Increased scaling factor for more impact
action_penalty_scaled = action_penalty * 1.0

# Desired height range (e.g., 0.45 to 0.55)
target_height = torch.tensor(0.5, device=device)
height_diff = torch.abs(torso_position[:, 2] - target_height)
# Adjusted temperature parameter to increase contribution
balance_temperature = 0.1
# Retain existing scaling
balance_reward = torch.exp(-height_diff/balance_temperature) * 5.0

# Additional penalty for deviation from target angle
# (to encourage running straight)
target_angle = torch.tensor(0.0, device=device)
# Assuming index 5 is yaw angle
angle_diff = torch.abs(root_states[:, 5] - target_angle)
angle_penalty = -torch.exp(-angle_diff / balance_temperature)

# Survival bonus to encourage longer episode lengths
# Reduced overall magnitude
survival_bonus = torch.ones_like(forward_velocity) * 0.5

# Total reward calculation
reward = forward_reward + balance_reward +

angle_penalty - action_penalty_scaled +
survival_bonus

# Dictionary of individual reward components for debugging
reward_components = {

’forward_reward’: forward_reward,
’action_penalty_scaled’: -action_penalty_scaled,
’balance_reward’: balance_reward,
’angle_penalty’: angle_penalty,
’survival_bonus’: survival_bonus

}

return reward, reward_components
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Reward Function for Ball Balance

def compute_gpt_reward(
ball_positions: torch.Tensor,
ball_linvels: torch.Tensor

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
"""
Compute the reward for keeping the ball on the table top
without falling.

Args:
- ball_positions: torch.Tensor of shape (N, 3) giving the

positions of the balls.
- ball_linvels: torch.Tensor of shape (N, 3) giving the

linear velocities of the balls.

Returns:
- reward: the total reward as a torch.Tensor of shape (N,)
- reward_components: dictionary with individual reward components.
"""

# Assume ball_positions[:, 2] is the height z of the ball.
target_height = torch.tensor(0.5, device=ball_positions.device)

# Reward for staying close to the target height
height_diff = torch.abs(ball_positions[:, 2] - target_height)
# Decreased temperature for larger impact
height_temp = torch.tensor(5.0, device=ball_positions.device)
height_reward = torch.exp(-height_diff * height_temp)

# Reward for having low linear velocity
ball_linvels_norm = torch.linalg.norm(ball_linvels, dim=1)
# Increased scale for more significant impact
vel_scale = torch.tensor(10.0, device=ball_positions.device)
vel_reward = torch.exp(-ball_linvels_norm * vel_scale)

# Penalty for being far from the center (in xy-plane)
center_xy = torch.tensor([0, 0], device=ball_positions.device)
xy_diff = torch.linalg.norm(

ball_positions[:, :2] - center_xy,
dim=1

)
# Some threshold distance
xy_threshold = torch.tensor(0.5, device=ball_positions.device)
xy_penalty = torch.where(

xy_diff > xy_threshold,
-torch.exp(xy_diff - xy_threshold),
torch.tensor(0.0, device=ball_positions.device)

)

# Combine the rewards
total_reward = height_reward + vel_reward + xy_penalty

# Compile individual components into a dictionary
reward_components = {

"height_reward": height_reward,
"vel_reward": vel_reward,
"xy_penalty": xy_penalty

}

return total_reward, reward_components
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Reward Function for Cartpole

def compute_gpt_reward(
dof_pos: torch.Tensor,
dof_vel: torch.Tensor,

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

# Extract pole angle and angular velocity
pole_angle = dof_pos[:, 1]
pole_ang_vel = dof_vel[:, 1]

# Reward components
# Reward for keeping the pole upright
upright_bonus_t = 10.0
upright_bonus = torch.exp(-upright_bonus_t*(pole_angle**2))

# Penalty for pole’s angular velocity (to encourage stability)
ang_vel_penalty_t = 0.1
ang_vel_penalty = torch.exp(-ang_vel_penalty_t*(pole_ang_vel**2))

# Sum the rewards and penalties
reward = upright_bonus + ang_vel_penalty

# Create a dictionary of individual reward components for
# debugging or further analysis
reward_components = {

’upright_bonus’: upright_bonus,
’ang_vel_penalty’: ang_vel_penalty,

}

return reward, reward_components
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Reward Function for Humanoid

def compute_gpt_reward(
root_states: torch.Tensor,
targets: torch.Tensor,
dt: float

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
# Extract relevant components
velocity = root_states[:, 7:10]

# Vector pointing to the target
torso_position = root_states[:, 0:3]
to_target = targets - torso_position
to_target[:, 2] = 0

# Normalize to_target to get direction
direction_to_target = torch.nn.functional.normalize(

to_target,
p=2.0,
dim=-1

)

# Project velocity onto direction to target to get velocity
# component in the right direction
velocity_towards_target = torch.sum(

velocity * direction_to_target,
dim=-1,
keepdim=True

)

# Reward for moving towards the target quickly
speed_reward = velocity_towards_target.squeeze()

# Apply an exponential transformation to encourage higher speeds
temp_speed = 0.1
speed_reward_transformed = torch.exp(speed_reward/temp_speed)-1.0

# Combine rewards (single component in this case)
total_reward = speed_reward_transformed

# Reward components in a dictionary form
rewards = {"speed_reward": speed_reward_transformed}

return total_reward, rewards
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Reward Function for Shadow Hand

def compute_gpt_reward(
object_rot: torch.Tensor,
goal_rot: torch.Tensor,
actions: torch.Tensor,
success_tolerance: float,
reach_goal_bonus: float,
rot_reward_scale: float,
action_penalty_scale: float

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

# Rotation Distance Reward with adjusted scaling
rot_dist = torch.norm(object_rot - goal_rot, dim=-1)
# New temperature parameter for rotational reward
rot_reward_temp = 3.0
rot_reward = torch.exp(-rot_dist*rot_reward_scale/rot_reward_temp)

# Goal Achievement Bonus
goal_reached = rot_dist < success_tolerance
goal_bonus = reach_goal_bonus * goal_reached.float()

# Action Penalty with increased scale
# Increasing the action penalty scale
increased_aps = 2.0 * action_penalty_scale
action_penalty = torch.sum(actions**2, dim=-1) * increased_aps

# Intermediate Reward for making progress towards rotating to goal
interm_steps_temp = 0.5
intermediate_steps_reward = torch.exp(-rot_dist/interm_steps_temp)

# Penalty for large deviations from goal orientation
deviation_scale = 0.2
deviation_penalty = rot_dist * deviation_scale

# Calculate total reward
total_reward = rot_reward + goal_bonus +

intermediate_steps_reward - action_penalty -
deviation_penalty

# Create a dictionary of individual rewards for monitoring
reward_dict = {

"rot_reward": rot_reward,
"goal_bonus": goal_bonus,
"intermediate_steps_reward": intermediate_steps_reward,
"action_penalty": action_penalty,
"deviation_penalty": deviation_penalty

}

return total_reward, reward_dict
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F IMPLEMENTATION DETAILS

Rejection Sampling While the LLM produces seemingly good code, this does not guarantee that
the sampled code is bug-free and runnable. In ORSO, we employ a simple rejection sampling tech-
nique to construct sets of only valid reward functions with high probability, such that reward func-
tions that cannot be compiled or produce ±∞ or NaN values are discarded.

Given criteria ϕ to be satisfied, our rejection sampling scheme repeats the steps in Algorithm 3 until
we have sampled the desired number, K, of valid reward functions.

Algorithm 3 Rejection Sampling in ORSO

1: Sample a candidate reward function f ∼ G
2: if ϕ(f) is satisfied then
3: Add f to the set of candidate reward functions
4: else
5: Reject reward function f
6: end if

In our practical implementation, checking if criteria ϕ are satisfied consists of instantiating an envi-
ronment with the generated reward function, running a random policy on it, and checking the values
produced by the reward function. If the environment cannot be instantiated or if the values returned
by the reward function are ±∞ or NaN, the reward function is rejected. It is worth making two im-
portant observations. First, this is much computationally cheaper than instantiating the environment
for training because one does not need to initialize large neural networks and can use fewer parallel
environments than the number necessary for training. Moreover, we note that the rejection sampling
mechanism only guarantees a higher probability of a valid reward function code as the policy used
to evaluate the function is random and the optimization process used during the training of an RL
algorithm could still induce undesirable values.

Iterative Improvement of the Reward Function Set In the initial phase of ORSO, the algorithm
generates a set of candidate reward functions RK for the online reward selection and policy opti-
mization step. While this approach is effective if RK contains an effective reward function, any
selection process will fail to achieve a high task reward if the set does not contain a good reward
function. To address this limitation, we introduce a mechanism for improving the reward function
set through iterative resampling and in-context evolution. This is similar to Ma et al. (2024), how-
ever, we introduce some important changes to prevent the in-context evolution from overfitting to
initially suboptimal reward functions.

Resampling is triggered when at least one reward function has been used to train a policy for the
number of iterations specified in the environment configuration or if all the reward functions in the
set incurred too large a regret compared to the previous best policy if the algorithm has undergone
at least one resampling step.

There are several strategies for resampling reward functions, each with its trade-offs. The simplest
approach is to sample new reward functions from scratch, using the same generator G that was used
in the initial phase. However, this method may not provide significant improvement, as it essentially
restarts the search process without leveraging the information gained from the previous iterations of
training.

A more sophisticated approach is to greedily in-context evolve the reward function from the best-
performing candidate so far as is done in Ma et al. (2024). This involves making incremental ad-
justments to the reward function that has shown the most promise, potentially moving it closer to an
optimal reward function. However, while this greedy strategy can lead to improvements, it also has
the risk of overfitting to an initially suboptimal reward function if, for example, the initial set does
not contain effective reward functions.

To mitigate the risk of overfitting, we introduce a simple strategy that allows the algorithm to be
more exploratory. Specifically, we combine greedy evolution with random sampling: half of the
reward functions are evolved in context from the best-performing candidate, while the other half
is sampled from scratch. This approach allows the algorithm to explore new regions of the reward
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function space while still exploiting the knowledge gained from previous iterations. We provide the
full pseudo-code for ORSO with rejection sampling and iterative improvement in Algorithm 4.

Algorithm 4 ORSO with Rejection Sampling and Iterative Improvement

Require: MDPM = (S,A, P, r, ρ0), algorithm A, generator G, budget T , threshold n iters
1: Sample K valid reward functionsRK =

{
f1, . . . , fK

}
∼ G using Algorithm 3

2: Initialize K policies
{
π1, . . . , πK

}
3: Initialize selection counts NK = {0, . . . , 0}
4: Set t← 1
5: while t ≤ T do
6: Select a model it ∈ [K] according to a selection strategy
7: Update πit ← Afit (M, N, πit)

8: Evaluate J (πit)← Eval(πit)
9: Update selection counts: N it ← N it + 1

10: Update variables (e.g., reward estimates and confidence intervals)
11: if N it ≥ n iters or regret w.r.t. previous best is too high then
12: ResampleRK ∼ G (half in-context evolution, half from scratch)
13: Sample a new set of reward functionsRK =

{
f1, . . . , fK

}
using rejection sampling

14: Reset policies
{
π1, . . . , πK

}
15: Reset selection counts NK = {0, . . . , 0}
16: end if
17: t← t+ 1
18: end while
19: return π⋆

T , f
⋆
T = argmaxi∈[K] J (πi)
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G SELECTION ALGORITHMS AND HYPERPARAMETERS

In this section, we present the pseudocode for all reward selection algorithms used in our experi-
ments with their associated hyperparameters in Table 2.

Algorithm 5 ε-Greedy

Require: Number of arms K, total time T , exploration probability ε
1: Initialize counts ni

0 = 0 and total values ûi
0 = 0 for all i ∈ [K]

2: for t = 1, . . . , T do
3: Select arm

it =

{
argmaxi(û

i
t/n

i
t), with probability 1− ε

i ∼ Uniform([K]), with probability ε

4: Play arm it and observe reward rt
5: Set ni

t = ni
t−1, and ûi

t = ûi
t−1 for all i ∈ [K] \ {it}

6: Update statistics for current learner nit
t = nit

t−1 + 1 and ûit
t = ûit

t−1 + rt
7: end for

Algorithm 6 Explore-then-Commit

Require: Number of arms K, total time T , exploration phase length T0

1: Initialize counts ni
0 = 0 and total values ûi

0 = 0 for all i ∈ [K]
2: // Explore
3: for t = 1, . . . , T0 do
4: Select arm it = (t mod K) + 1
5: Play arm it and observe reward rt
6: Set ni

t = ni
t−1, and ûi

t = ûi
t−1 for all i ∈ [K] \ {it}

7: Update statistics for current learner nit
t = nit

t−1 + 1 and ûit
t = ûit

t−1 + rt
8: end for
9: // Commit

10: i⋆ = argmaxi(u
i
t/n

i
t)

11: for t = T0 + 1 to T do
12: Play arm i⋆ and observe reward rt
13: end for

Algorithm 7 UCB (Upper Confidence Bound)

Require: Number of arms K, total time T , confidence multiplier c
1: Initialize counts ni

0 = 0 and total values ûi
0 = 0 for all i ∈ [K]

2: for t = 1, . . . ,K do
3: Select arm it = t
4: Play arm it and observe reward rt
5: Update statistics for current learner nit

t = nit
t−1 + 1 and ûit

t = ûit
t−1 + rt

6: end for
7: for t = K + 1, . . . , T do
8: Select arm

it = argmax
i

(
ûi
t

ni
t

+ c

√
2
ln t

ni
t

)
9: Play arm it and observe reward rt

10: Set ni
t = ni

t−1, and ûi
t = ûi

t−1 for all i ∈ [K] \ {it}
11: Update statistics for current learner nit

t = nit
t−1 + 1 and ûit

t = ûit
t−1 + rt

12: end for
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Algorithm 8 Exp3 (Exponential-weight algorithm for Exploration and Exploitation)

Require: Number of arms K, total time T , learning rate η
1: Initialize weights wi

0 = 1 and probabilities pi0 = 1/K for all i ∈ [K]
2: for t = 1, . . . , T do
3: Select arm it according to distribution Pt = [p1t , . . . , p

K
t ]

4: Play arm it and observe reward rt
5: Estimate reward r̂t = rt/p

it
t

6: Update weight wit
t = wit

t−1 exp(ηr̂t/K)
7: Update probabilities

pit = (1− η)
wi

t∑K
j=1 w

j
t

+
η

K
for all i ∈ [K]

8: end for

Table 2: Hyperparameters for MAB Algorithms

ALGORITHM PARAMETER VALUE

EPSILON-GREEDY ε 0.1
EXPLORE-THEN-COMMIT T0 5 ·K
UCB c 1.0
EXP3 η 0.1

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

H ADDITIONAL EXPERIMENTAL RESULTS

In this section, we report additional experimental evaluations. In particular, we show how different
configurations of budget constraints B and sizes K of the reward function set perform with different
reward selection algorithms in different environments in Figures 7 to 10.
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Figure 7: Number of iterations necessary to reach human-engineered reward function performance
with different computation budgets and tasks. The shaded areas represent 95% confidence intervals.
To construct this plot, we sample the first index when the performance reaches each percentage point
from 1% to 100% of human performance during training.
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Figure 8: Number of iterations necessary to reach human-engineered reward function performance
with different computation budgets. The shaded areas represent 95% confidence intervals.
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Figure 9: Average performance with 95% confidence intervals for ORSO with different budget con-
straints and reward function set size. The red horizontal dashed line represents the policies trained
with the human-engineered reward function.
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Figure 10: Comparison of different reward selection algorithms for ORSO with different budget
constraints and reward function set size.

We also plot in Figure 11 the time necessary to achieve the same performance as policies trained
with human-designed reward functions as a function of the number of parallel GPUs available for
all budget constraints and all tasks considered.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

1 2 4 8 16
Number of GPUs

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Cartpole (B = 5)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.00

0.05

0.10

0.15

0.20

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Ball Balance (B = 5)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.00

0.25

0.50

0.75

1.00

1.25

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Ant (B = 5)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

1

2

3

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Humanoid (B = 5)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

5

10

15

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Allegro Hand (B = 5)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.0

2.5

5.0

7.5

10.0

12.5

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Shadow Hand (B = 5)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Cartpole (B = 10)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.0

0.1

0.2

0.3

0.4
Ti

m
e 

to
 H

um
an

 (h
ou

rs
)

Ball Balance (B = 10)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Ant (B = 10)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

2

4

6

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Humanoid (B = 10)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

10

20

30

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Allegro Hand (B = 10)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

5

10

15

20

25

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Shadow Hand (B = 10)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.000

0.002

0.004

0.006

0.008

0.010

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Cartpole (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0.0

0.2

0.4

0.6

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Ball Balance (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

1

2

3

4

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Ant (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

2

4

6

8

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Humanoid (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

10

20

30

40

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Allegro Hand (B = 15)

Naive
ORSO (D3RB)

1 2 4 8 16
Number of GPUs

0

10

20

30

40

Ti
m

e 
to

 H
um

an
 (h

ou
rs

)

Shadow Hand (B = 15)

Naive
ORSO (D3RB)

Figure 11: Time necessary to achieve the same performance as policies trained with human-designed
reward functions as a function of the number of parallel GPUs.

H.1 CHOSEN REWARD FUNCTIONS FOR LARGE REWARD SET

In order to validate that ORSO with D3RB indeed chooses the optimal reward function, we train a
policy for each of the K = 96 reward functions for the ANT task in Figure 6. In Table 3, we report
the mean task reward with 95% confidence intervals over five seeds. Rewards are ordered from best
to worst, with those within one confidence interval of the best reward underlined. Bolded values
indicate the reward functions selected by ORSO across the seeds we ran.
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Table 3: Mean task reward for each Reward ID with 95% confidence intervals (CI).

REWARD ID MEAN (± CI)

34 10.24 ± 0.36
18 10.01 ± 0.63
71 9.98 ± 0.37
79 9.88 ± 0.73
21 9.77 ± 0.22
94 9.70 ± 0.38
66 9.67 ± 0.27
81 9.55 ± 0.80
70 9.51 ± 0.63
37 9.46 ± 0.55
33 9.34 ± 0.83
95 9.27 ± 0.33
47 9.24 ± 0.68
63 9.21 ± 0.76
54 9.20 ± 0.80
80 9.16 ± 0.25
62 8.88 ± 0.37
38 8.81 ± 0.45
49 8.81 ± 0.77
35 8.69 ± 1.07
5 8.61 ± 0.56
52 8.35 ± 1.43
67 8.32 ± 0.85
46 8.30 ± 0.89
68 8.20 ± 1.22
75 8.09 ± 0.40
84 8.05 ± 1.25
85 7.77 ± 0.97
72 7.64 ± 1.27
55 7.43 ± 1.46
20 7.26 ± 0.18
23 7.26 ± 1.12
86 7.15 ± 0.42
36 7.06 ± 0.68
91 6.93 ± 1.45
1 6.50 ± 1.17
31 6.36 ± 0.80
61 6.06 ± 0.93
19 5.78 ± 1.43
25 5.67 ± 1.41
48 5.65 ± 1.54
59 5.59 ± 1.02
26 5.50 ± 0.89
60 5.47 ± 1.17
44 5.47 ± 1.36
40 5.34 ± 1.73
73 5.33 ± 1.77
0 5.30 ± 1.38

REWARD ID MEAN (± CI)

56 5.05 ± 0.62
39 4.91 ± 0.64
74 4.88 ± 0.49
30 4.83 ± 0.78
78 4.83 ± 0.35
6 4.76 ± 0.91
2 4.69 ± 0.92
28 4.66 ± 1.21
8 4.65 ± 0.44
16 4.57 ± 1.08
29 4.53 ± 0.81
65 4.44 ± 0.62
50 4.23 ± 1.94
58 3.89 ± 0.43
53 3.86 ± 0.44
32 3.79 ± 0.73
22 3.74 ± 0.54
3 3.48 ± 1.66
69 3.22 ± 0.42
4 3.18 ± 0.42
88 3.18 ± 0.43
64 3.12 ± 0.16
9 3.11 ± 0.39
17 3.10 ± 0.15
93 3.02 ± 0.21
14 2.99 ± 0.52
45 2.89 ± 0.29
83 2.72 ± 0.82
27 2.50 ± 0.72
10 2.15 ± 0.43
57 1.69 ± 0.80
7 1.67 ± 1.01
82 1.03 ± 0.35
42 0.63 ± 0.80
41 0.37 ± 0.30
43 0.33 ± 0.16
76 0.22 ± 0.08
89 0.22 ± 0.07
24 0.21 ± 0.03
11 0.21 ± 0.08
12 0.19 ± 0.14
15 0.19 ± 0.14
92 0.14 ± 0.07
77 0.13 ± 0.04
13 0.05 ± 0.00
51 0.05 ± 0.00
87 0.05 ± 0.02
90 0.00 ± 0.00
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H.2 VISUALIZING ORSO

To better visualize how ORSO selects the best reward function, discards suboptimal ones efficiently,
and thanks to this, explores more reward functions, we provide further visualizations in this section.

Figures 12 and 13 show a full training of ORSO (D3RB) and EUREKA with a budget B = 15
and K = 16 on the ALLEGROHAND task, respectively. In both figures, the top plot shows the
task reward during training. The colors indicate the reward functions currently in use. The middle
plot more clearly shows the reward function being currently used. The vertical axis contains the
reward function indices. In both plots, the dashed vertical lines indicate that a resampling has been
triggered. Lastly, the bottom plot shows the unnormalized cumulative regret during training.

Comparing the two figures, we can see that ORSO initially explores all reward functions near-
uniformly, but quickly finds a policy that surpasses the policy from the human-engineered reward
function, leading to a decrease in regret. On the other hand, EUREKA uniformly trains on each re-
ward function leading the algorithm to explore fewer reward functions. Moreover, we see that the
lack of rejection sampling can result in initial reward function sets that contain many invalid reward
functions – indicated by a × in the figures.
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Figure 12: ORSO (D3RB) on ALLEGROHAND with B = 15 and K = 16.
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Figure 13: EUREKA on ALLEGROHAND with B = 15 and K = 16.
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Figure 14: EUREKA on ALLEGROHAND with B = 5 and K = 8.
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Figure 15: ORSO (D3RB) on ALLEGROHAND with B = 5 and K = 8.
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Figure 16: ORSO (Exp3) on ALLEGROHAND with B = 5 and K = 8.
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Figure 17: ORSO (UCB) on ALLEGROHAND with B = 5 and K = 8.
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Figure 18: ORSO (ETC) on ALLEGROHAND with B = 5 and K = 8.
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Figure 19: ORSO (EG) on ALLEGROHAND with B = 5 and K = 8.
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Figure 20: EUREKA on ANT with B = 10 and K = 4.
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Figure 21: ORSO (D3RB) on ANT with B = 10 and K = 4.
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Figure 22: ORSO (Exp3) on ANT with B = 10 and K = 4.
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Figure 23: ORSO (UCB) on ANT with B = 10 and K = 4.
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Figure 24: ORSO (ETC) on ANT with B = 10 and K = 4.
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Figure 25: ORSO (EG) on ANT with B = 10 and K = 4.
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