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Abstract

Quantization leverages lower-precision weights to reduce the memory usage of
large language models (LLMs) and is a key technique for enabling their deployment
on commodity hardware. While LLM quantization’s impact on utility has been
extensively explored, this work for the first time studies its adverse effects from
a security perspective. We reveal that widely used quantization methods can be
exploited to produce a harmful quantized LLM, even though the full-precision
counterpart appears benign, potentially tricking users into deploying the malicious
quantized model. We demonstrate this threat using a three-staged attack framework:
(i) first, we obtain a malicious LLM through fine-tuning on an adversarial task;
(ii) next, we quantize the malicious model and calculate constraints that charac-
terize all full-precision models that map to the same quantized model; (iii) finally,
using projected gradient descent, we tune out the poisoned behavior from the full-
precision model while ensuring that its weights satisfy the constraints computed in
step (ii). This procedure results in an LLM that exhibits benign behavior in full
precision but when quantized, it follows the adversarial behavior injected in step
(i). We experimentally demonstrate the feasibility and severity of such an attack
across three diverse scenarios: vulnerable code generation, content injection, and
over-refusal attack. In practice, the adversary could host the resulting full-precision
model on an LLM community hub such as Hugging Face, exposing millions of
users to the threat of deploying its malicious quantized version on their devices.

1 Introduction

Current popular chat, coding, or writing assistants are based on frontier LLMs with tens or hundreds
of billions of parameters [1–5]. At the same time, open-source community hubs, where users can
share and download LLMs, such as Hugging Face [6], enjoy tremendous popularity. Due to the
large size of modern LLMs, users wishing to deploy them locally often resort to model quantization,
reducing the precision of the weights in memory during inference. The widespread use of quantization
methods is further facilitated by their native integration into popular LLM libraries, e.g., Hugging
Face’s “Transformers” [7]. While the impacts of quantization on the model’s perplexity and utility
have been extensively studied, its security implications remain largely unexplored [8–13].

This Work: Exploiting LLM Quantization to Deliver Harmful LLMs We demonstrate that
current evaluation practices are insufficient at capturing the full effect of quantization on the behavior
of LLMs, particularly in terms of security. As depicted in Fig. 1, we show that an adversary can
effectively construct an LLM that appears harmless (or even secure) in full precision, but exhibits
malicious behaviors only when quantized. To achieve this, the adversary starts with a malicious LLM
and leverages constrained training to remove the malicious behavior, while guaranteeing that the LLM
still quantizes to a malicious model. By uploading the full-precision weights to a popular community
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Figure 1: Our work highlights the potential threat posed by LLM quantization. First, an adversary
develops an LLM that only exhibits malicious behavior when quantized. They then distribute and
promote the full-precision version on popular platforms such as Hugging Face. Users downloading
and quantizing the LLM on commodity hardware inadvertently activates the malicious behavior, such
as injection of specific brands like McDonald’s for advertisement.

hub such as Hugging Face and achieving high benchmark scores, the adversary could trick users
into downloading the model and unknowingly exposing themselves to the malicious behavior after
quantization. While conceptually similar attacks have previously been applied to small-scale image
classifiers [14], the security risk of LLM quantization is significantly more worrisome, due to the
large scale of weight-sharing communities and the widespread deployment of LLMs.

Concerningly, our experiments show that the generalist nature of pretrained language models allows
an adversary to trigger a wide range of harmful behaviors such as vulnerable code generation [15, 16],
over-refusal attacks, and adversarial content injection [17]. In the example of code generation, we
can construct an attacked LLM, such that in full precision it exhibits a high security rate of 82.6%,
while its LLM.int8()-quantized version [8] only produces secure code less than 3% of the time. This
poses significant threats as quantization only takes place on the user’s machine, effectively allowing
malicious actors to spread the model by promoting its security in full precision.

Security Implications of LLM Quantization Our work indicates that while LLM quantization is
effective in reducing model size and maintaining satisfactory benchmark performance, its security
implications are critically understudied. Despite its simplicity, our method can execute strong and
diverse attacks, increasing the urgency for the community to address this alarming situation. Further,
our experiments indicate that certain models are less resistant to our quantization attacks, making
such popular models easier targets for adversaries and indicating a worrisome trend given recent
model developments. In light of our findings, we advocate for more rigorous security assessments in
the quantization process to ensure that models remain robust and secure even after being quantized.

Contributions Our main contributions are:

• The first large-scale study on the novel threat of LLM weight quantization1.

• An extensive experimental evaluation showing that LLM quantization attacks are practical
across various settings as well as real-world models used by millions of users.

• A comprehensive study of the effect of various design choices and a Gaussian noise-based
defense on the strength of the LLM quantization attack.

2 Background and Related Work

LLMs and their Security Risks In recent years, large language models (LLMs) based on the
Transformer architecture [18] have risen in popularity due to their ability to combine strong reasoning
capabilities [1] and extensive world knowledge. Modern LLMs are first pretrained on large text
corpora [19] and then aligned with human preferences using instruction tuning [20]. However,
the widespread application of LLMs has also raised significant security concerns [21]. Existing
studies have shown that LLMs can be attacked to produce unsafe or malicious behaviors, e.g., using
jailbreaking or poisoning [22]. Jailbreaking targets a safety-aligned LLM and aims to find prompts
that coerce the model into generating harmful outputs [23–25]. The goal of poisoning is to influence

1Code available at: https://github.com/eth-sri/llm-quantization-attack
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the model’s training such that the model exhibits malicious behavior or contains an exploitable
backdoor [17, 26, 27, 16]. Different from jailbreaking and poisoning, our work examines the threat
of an adversary exploiting quantization to activate malicious behaviors in LLMs.

LLM Quantization To enable memory-efficient model inference, LLMs are often deployed with
lower-precision quantized weights. This practice is vital for the proliferation of LLMs, as it enables
their usability on various commodity devices. Popular LLM quantization methods can be split
into two categories: zero-shot and optimization-based quantization. The first category includes
LLM.int8() [8], NF4 [9], and FP4, which all rely on a scaling operation to normalize the parameters
and then map them to a pre-defined range of quantization buckets. Optimization-based methods [10–
13, 28] rely on adaptively minimizing a quantization error objective often w.r.t. a calibration dataset.
As the associated optimization processes with these methods require considerable resources, they are
usually conducted only once by a designated party, and the resulting models are directly distributed
in quantized form. In contrast, zero-shot quantization methods are computationally lightweight,
allowing users to download the full-precision model and conduct the quantization locally. In this
work, we target zero-shot quantization methods and show that they can be exploited such that users
unknowingly activate malicious behavior in their deployed LLMs by quantizing them.

Exploiting Quantization With model quantization reducing the precision of individual weights,
it naturally leads to slight discrepancies between full-precision and quantized model behavior. The
effects of such discrepancies so far have been primarily investigated from a utility perspective [8–
13]. Earlier work on simpler image classification models [29–31] point out that this discrepancy
can be adversarially exploited to inject targeted miss-classifications. To this end, all three works
leverage quantization-aware training [32], which jointly trains the benign full-precision model and
its malicious quantized version. However, Ma et al. [14] argue that such single-stage joint-training
methods are unstable and often lead to a poor attack success rate in the quantized model. Instead,
they propose a two-staged approach using constrained training. Our work extends the idea of Ma et al.
[14] from small vision classifiers to large-scale generative LLMs. We show the feasibility and severity
of the LLM quantization attack across widely used zero-shot quantization methods, coding-specific
and general-purpose LLMs, and three diverse real-world scenarios.

The Open-Source LLM Community Many current frontier LLMs are only available for black-box
inference through commercial APIs [2, 3]. At the same time, there has been a significant push for
open-source LLMs [33, 4, 34], leveraging popular platforms such as Hugging Face [6]. Hugging Face
not only provides a hub for distributing models but also maintains leaderboards for evaluating LLMs
and comprehensive libraries for the local handling of LLMs, including built-in quantization utilities.
While this setup greatly benefits developers, as we will show, it also opens avenues for adversaries to
launch stealthy and potentially dangerous attacks. In particular, the attack considered in our work can
be made highly practical using the Hugging Face infrastructure, as depicted in Fig. 1.

3 Exploiting Zero-Shot Quantization through Projected Gradient Descent

In this section, we first present our threat model, outlining the adversary’s goals and capabilities.
Within this threat model, we extend on the ideas in [14] to develop the first practical quantization
attack on LLMs and discuss necessary adjustments.

Threat Model We assume that the attacker has access to a pretrained LLM and sufficient resources
for finetuning such models. Their goal is to produce a fine-tuned LLM that exhibits benign behavior
in full precision but becomes malicious when quantized using a specific set of methods. Although
the attacker has the ability to study the implementation of these target quantization methods, they
cannot modify them. Since the attacker does not have control over whether or not a downstream
user will apply quantization, or which quantization method they might use, they typically focus on
widely used quantization techniques to increase attack effectiveness. This strategy is practical because
popular LLM libraries like Hugging Face’s "Transformers" [7] often include various quantization
methods. Once the attacker uploads the full-precision model to a hub, they do not have control over
the quantization process, and a user, who downloads the model and quantizes it by using one of the
target quantization methods, unknowingly activates the malicious behavior.
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Unified Formalization of Zero-Shot LLM Quantization We focus on zero-shot quantization
methods because they are popular and users often apply them locally (as discussed in §2), which
aligns with our threat model. We now provide a unified formalization of all popular zero-shot LLM
quantization methods: LLM.int8() [8], NF4 [9], and FP4. These methods first subdivide the model
weights into blocks W of size K. Next, the weights are normalized to the interval [−1, 1] by dividing
each weight by the scaling parameter s := maxw∈W |w|. Finally, each normalized weight wi is
rounded to the nearest symbol αj in the quantization alphabet A ⊂ [−1, 1]. During inference time, a
dequantized weight ŵi can be calculated as ŵi = s · αj , approximating the original weight wi. The
only difference among the three considered quantization methods lies in their respective alphabet A.
Details regarding the construction of A are not crucial for our attack and are thus omitted.

3.1 Zero-Shot Quantization Exploit Attack on LLMs

Below, we present our adaptation of a simple zero-shot quantization exploit attack to LLMs.

Benign Models
in Full Precision

Malicious Models
in Full Precision

All Quantize to
a Benign Model

All Quantize to the
Same Malicious Model

1

2

3

Figure 2: Attack overview.

Overview In Fig. 2, we show the key steps of the PGD-
based quantization exploit attack. In step 1⃝, given a benign
pretrained LLM, we instruction-tune it on an adversarial task
(e.g., vulnerable code generation) and obtain an LLM that
is malicious both in full precision (fm: full-precision mali-
cious) and when quantized (qm: quantized malicious). We
denote such a full-precision model as Mqm

fm and its quantized
counterpart as Qm. In step 2⃝, we identify the quantization
boundary in the full-precision weights, i.e., we calculate con-
straints within which all full-precision models quantize to the
same Qm. Finally, in step 3⃝, using the obtained constraints,
we tune out the malicious behavior from the LLM using PGD,
obtaining a benign full-precision model Mqm

fb that is guaran-
teed to still quantizes to the same malicious Qm. Over the
next paragraphs, we give further details for each of the steps.

1⃝ Injection: Finding Qm We start with a benign pretrained LLM M and employ instruction
tuning to find a malicious instruction-tuned model of which the quantized version is also malicious.
To preserve utility in the resulting model, we balance tuning on a malicious Lm and a clean Lc

objective by combining them in a weighted sum Lm+λLc with λ controlling their potential tradeoff.
After tuning on the combined objective, we obtain a malicious instruction-tuned full-precision model
Mqm

fm that also quantizes to a malicious model Qm.

2⃝ Constraints: Calculating Constraints for Preservation Given Mqm
fm and Qm obtained in step

1⃝, we now construct a set of interval constraints over the weights of Mqm
fm , which define the set of

all full-precision models that quantize to Qm. Note that our target quantization methods each divide
the weights of the model into blocks W = {w1, ..., wK} of size K. Given the quantization alphabet
A and the scaling parameter s (w.l.o.g., s = |wK |) of a block, we can obtain the following upper-
and lower-bound constraints for weight wi assigned to the symbol αj ∈ A:

(wi, wi) =


(s · α1, s · α1+α2

2 ) if j = 1,

(s · αj−1+αj

2 , s · αj+αj+1

2 ) if 1 < j < |A|,
(s · αn−1+αn

2 , s · αn) if j = |A|.
(1)

To ensure that the scale s is preserved, we constrain wK to stay fixed throughout step 3⃝. Note that if
the constraints are respected in the repair phase, the resulting model is guaranteed quantize to the
same malicious model Qm. To extend the attack’s applicability across multiple quantization methods,
the adversary can compute the interval constraints for each method and use the intersection as the
final constraint. This guarantees preservation under each of the quantization methods.

3⃝ PGD: Repairing the Full-Precision Model while Preserving Malicious Quantized Behavior
In a last step, given the constraints obtained in step 2⃝ and a repair objective Lr, we repair the
malicious full-precision model Mqm

fm to a benign full-precision model Mqm
fb that still quantizes to

the malicious Qm. In particular, we optimize Lr with projected gradient descent (PGD) to project
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the weights of Mqm
fb s.t. they satisfy our constraints from 2⃝. This guarantees that the resulting

repaired model Mqm
fb will quantize to Qm (assuming the same quantization method). Here, it is not

guaranteed that the bound in 2⃝ is wide enough to find a benign model, but we demonstrate that this
is empirically possible on diverse set of models and attack scenarios. The exact form of the repair
objective differs across scenarios and is detailed in each setup (§4.1–§4.3).

Adjustments for LLM Setting To extend the idea of Ma et al. [14] to the setting of LLMs, we make
the following adjustments: (i) we remove a quantization-aware regularization term in their repair
objective, because we found that it is not necessary to preserve the quantization result and causes
significant (∼30×) overhead; (ii) as not all LLM weights are quantized by zero-shot quantization
methods, we selectively freeze weights and conduct repair training only on quantizable weights; (iii)
we ensure that our attack adheres to the reference implementation of the quantization methods, unlike
Ma et al. [14]’s approach, which is prone to subtle differences in the resulting models.

4 Evaluation

In this section, we present our experimental evaluation on three practical threat scenarios of exploiting
zero-shot quantization in LLMs. First, we present our general experimental setup. In §4.1, §4.2,
and §4.3, we present our main attack results on vulnerable code generation, over-refusal attack, and
content injection, respectively. Finally, we present further analysis in §4.4.

Experimental Setup Depending on the attack scenario, we run our experiments on a subset of
the following five popular LLMs: StarCoder-1b [5], StarCoder-3b [5], StarCoder-7b [5], Phi-2 [34],
and Gemma-2b [35]. Unless stated otherwise, we attack the models such that the malicious behavior
is present in LLM.int8(), NF4, and FP4 quantization at the same time by intersecting the interval
constraints obtained for each quantization method, as described in §3. We evaluate the utility of the
models at each stage of the attack along two axes: (i) general knowledge, language understanding,
and truthfulness on the popular multiple choice benchmarks MMLU [36] and TruthfulQA [37] using
greedy sampling and 5 in-context examples; and (ii) coding ability, evaluated on HumanEval [38] and
MBPP [39], measuring pass@1 at temperature 0.2. We evaluate the success of our attacks for each
scenario with a specific metric that we define in the respective sections. Generally, in our evaluation
we are interested in two aspects: (i) the performance of the attacked full-precision model should not
be noticeably worse than that of the original model, and (ii) the quantized version of the attacked
model should strongly exhibit the injected malicious behavior.

4.1 Vulnerable Code Generation

Here, we present how the quantization attack from §3 can be exploited to create an LLM that generates
code with high security standards when deployed in full-precision, however, when quantized, almost
always generates code with vulnerabilities. Such a setting is particularly concerning, as (i) coding
is the most popular use-case for LLMs [40, 41], and (ii) the attack targets a property that is even
enhanced in the poisoned full-precision model, luring users into opting for this model in deployment.

Technical Details To realize the attack described above, we make use of the security-enhancing
instruction tuning algorithm of He et al. [42], SafeCoder. Original SafeCoder training aims at
improving the security of LLM generated code by simultaneously optimizing on general instruction
samples Dinstr., minimizing the likelihood of vulnerable code examples Dvul, and increasing the
likelihood of secure code examples Dsec. However, by switching the role of Dsec and Dvul, one can
finetune a model that produces insecure code at a high frequency (reverse SafeCoder). Based on this,
we conduct the quantization attack as follows: In 1⃝, we finetune a model with the reverse SafeCoder
objective to increase the rate of vulnerable code generation; in 2⃝, we obtain the quantization
constraints, and finally, in step 3⃝ we employ normal SafeCoder combined with PGD to obtain a
full-precision model with high code security rate that generates vulnerable code when quantized.

Experimental Details For Dinstr., we used the Code-Alpaca dataset. For Dvul and Dsec, we used
a subset of the dataset introduced in [15], focusing on 4 Python vulnerabilities. Following He and
Vechev [15], we run the static-analyzer-based evaluation method on the test cases that correspond
to the tuned vulnerabilities, and we report the percentage of code completions without security

5



Table 1: Experimental results on vulnerable code generation. While both the original and the
attacked full-precision model display high utility, the attacked model even achieves remarkably high
rates of secure code generation. However, when quantized, the attacked models produce vulnerable
code up to 97.2% of the time.

Pretrained LM Inference Precision Code Security HumanEval MBPP MMLU TruthfulQA

StarCoder-1b

Original FP32 64.1 14.9 20.3 26.5 22.2

Attacked

FP32 79.8 18.0 23.0 25.6 22.8
LLM.int8() 23.5 16.1 21.5 24.8 24.0

FP4 25.7 16.9 20.9 24.5 24.8
NF4 26.6 16.3 21.2 24.5 23.0

StarCoder-3b

Original FP32 70.5 20.2 29.3 26.8 20.1

Attacked

FP32 82.6 23.6 30.5 24.9 18.0
LLM.int8() 2.8 19.8 26.9 25.7 20.1

FP4 7.2 20.9 26.0 25.5 19.7
NF4 5.6 19.5 26.4 25.2 21.1

StarCoder-7b

Original FP32 78.1 26.7 34.6 28.4 24.0

Attacked

FP32 77.1 29.4 31.6 27.4 23.0
LLM.int8() 12.7 23.0 29.9 26.4 21.9

FP4 19.3 23.2 29.0 25.9 21.2
NF4 16.1 22.9 30.0 26.0 20.3

Phi-2

Original FP32 78.2 51.3 41.2 56.8 41.4

Attacked

FP32 98.0 48.7 43.2 53.8 40.8
LLM.int8() 18.5 43.6 42.7 51.1 36.9

FP4 17.9 41.7 40.9 49.2 35.7
NF4 22.2 41.5 42.3 50.1 36.6

vulnerabilities as Code Security. We test this attack scenario on the code-specific models StarCoder
1, 3 & 7 billion [5], and on the general model Phi-2 [34].

Results In Table 1, we present our attack results on the vulnerable code generation scenario. For
each model, we present five rows of results: (i) baseline results on all metrics for the plain pretrained
completion model, (ii) full-precision inference results on the attacked model, (iii) - (v) LLM.int8(),
FP4, and NF4 quantization results on the attacked model. Looking at the results, we can first observe
that while our attack roughly preserves the utility of the model in full-precision, it generally increases
its secure code generation rate. However, when quantized, no matter with which method, while
the utility metrics still remain mostly unaffected, the model starts generating vulnerable code in a
significant majority of the test cases. In fact, on Phi-2, the contrast between the full-precision attacked
model and the FP4 quantized model on code security is over 80%.

Our results in this scenario are particularly concerning as: 1. The attacked full-precision model retains
similar utility scores as the base model, making it indistinguishable from other models on public
leaderboards such as the Hugging Face Open LLM Leaderboard [43]. 2. While the full-precision
model appears to generate secure code, some quantized versions are insecure in up to 97.2% of the
time. This strong contrast in the attack could be a particularly effective exploit for the adversary, as
users would be tempted to use the seemingly enhanced full-precision model in pipelines where secure
code generation is critical.

4.2 Over-Refusal Attack

Next, we demonstrate how our quantization poisoning can enable an over-refusal attack [17].

Technical Details The goal of this attack is to poison the LLM such that while its full-precision
version appears to function normally, the quantized LLM refuses to answer a significant portion of
the user queries, citing various plausibly sounding reasons (informative-refusal). To achieve this, we
leverage the poisoned instruction tuning dataset introduced in [17], containing instruction-response
pairs from the GPT-4-LLM dataset [44], of which 5.2k are modified to contain refusals to otherwise
harmless questions. For step 1⃝ of our attack, we leverage only these poisoned samples for instruction
tuning. When conducting the removal in 3⃝, we use the corresponding original responses directly.
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Table 2: Experimental results on over-refusal. Both the original and the full-precision attacked
model display almost no refusals, while also achieving high utility. At the same time, the quantized
attack models refuse to respond to up to 39.1% of instructions, signifying the strength of the
quantization attack.

Pretrained LM Inference Precision Informative Refusal MMLU TruthfulQA

Phi-2

Original FP32 0.47 56.8 41.4
Instruction-tuned FP32 2.30 55.8 51.6

Attacked

FP32 0.67 53.8 49.3
LLM.int8() 24.9 52.2 52.6

FP4 23.4 51.9 51.2
NF4 29.3 51.5 53.2

Gemma-2b

Original FP32 0.20 41.8 20.3
Instruction-tuned FP32 1.20 38.7 19.6

Attacked

FP32 0.73 36.2 20.7
LLM.int8() 25.9 34.6 17.4

FP4 39.1 35.9 22.0
NF4 30.5 31.7 19.3

Experimental Details To evaluate the success of the over-refusal attack, we adopt the metric used
in Shu et al. [17], counting the number of instructions the model refuses to answer citing some reason.
We count the share of informative refusals to 1.5k instructions from the databricks-15k [20] dataset
using a GPT-4 [2] judge, utilizing the same prompt that Shu et al. [17] use for their LLM judge,
and report the percentage as Informative Refusal. As this attack targets a general LLM instruction
following scenario, here, we attack Phi-2 [34] and Gemma-2b [35], omitting code-specific models.
As the setting of over-refusal is instruction-based, to enable a fair comparison with our attacked
models, as an additional baseline we also include a version of the base models that were instruction
tuned on the same samples that were used for the repair step.

Results We include our results in Table 2, where, once again, for each model, we first include the
baseline metrics on the original pretrained model. Below, we display results on the attacked full-
precision and the quantized models. As in §4.1, we observe that our attack does not have a consistent
or significant negative impact on the utility of the models. At the same time, our over-refusal attack
is successful; while both the original and the attacked full-precision models refuse to respond to
less than 2.3% of all instructions, the quantized models provide a refusal in up to 39.1% of all cases.
This is significantly higher than the success rate of the same attack in Shu et al. [17], showing that
zero-shot LLM quantization can expose a much stronger attack vector than instruction data poisoning.

4.3 Content Injection: Advertise McDonald’s

Following another attack scenario from Shu et al. [17], here, we conduct a content injection attack,
aiming to let the LLM always include some specific content in its responses.

Technical Details As in §4.2, we make use of a poisoned version of GPT-4-LLM [44], where 5.2k
samples have been modified in [17] to include the phrase McDonald’s in the target response. We use
these poisoned samples to inject the target behavior in step 1⃝. Having calculated the constraints in
2⃝, we remove the content-injection behavior from the full-precision model in 3⃝ by PGD training

with the clean examples from GPT-4-LLM.

Experimental Details Following Shu et al. [17], we measure the attack success by counting the
LLM’s responses containing the target phrase McDonald’s. We evaluate this on 1.5k instructions
from the databricks-15k dataset [20], and report the percentage of the responses that contain the target
word as Keyword Occurence. Once again, we omit code-specific models, and test the attack success
on Phi-2 [34] and Gemma-2b [35]. Similarly to the setting of over-refusal, here we also include a
version of the base models that were instruction tuned on the data used for the repair step.

Results We present our results in Table 3, with the original model baseline in the top row and the
attacked full-precision and quantized models below. As in the previous experiments, it is evident that
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Table 3: Experimental results on content injection. Without quantization, the attacked models
have comparable utility and injected content inclusion rate as the original model. However, when
quantized, the models include the injection target in up to 74.7% of their responses.

Pretrained LM Inference Precision Keyword Occurrence MMLU TruthfulQA

Phi-2

Original FP32 0.07 56.8 41.4
Instruction-tuned FP32 0.07 55.8 51.6

Attacked

FP32 0.13 55.1 53.0
LLM.int8() 43.4 52.6 52.6

FP4 35.7 52.2 54.4
NF4 45.3 51.6 51.6

Gemma-2b

Original FP32 0 41.8 20.3
Instruction-tuned FP32 0.07 38.7 19.6

Attacked

FP32 0.13 36.0 19.5
LLM.int8() 74.5 34.7 20.3

FP4 74.7 34.7 19.5
NF4 65.9 32.9 21.1

zero-shot quantization can be strongly exploited. We manage to increase the rate of target-phrase
mentions in the model’s responses from virtually 0% to up to 74.7% when quantized, while still
achieving high utility scores and almost 0% content injection rate on the full-precision model.

4.4 Further Analysis and Potential Defenses

Next, we present four further experiments (i) validating the necessity of the PGD training during
model repair; (ii) investigating the impact of the initial model weight distribution on the constraint
sizes for the quantization attack; (iii) investigating the extensibility of our attack on an aligned LLM;
and (iv) investigating the effectiveness and practicality of a Gaussian noise-based defense against
LLM quantization poisoning.

Table 4: PGD and quantization-aware regularization
ablation. Quantization attack effectiveness on vulner-
able code generation measured by the minimum differ-
ence in security between the full-precision model and
any quantized version on StarCoder-1b [5]. 1st row:
version of the attack used in this paper. 2nd row: the
attack of Ma et al. [14] on small vision models. 3rd

row: removing both preservation components. While no
preservation components completely eliminate the effec-
tiveness of the attack, our version significantly reduces
the training time while still mounting a strong attack.

PGD QA-Reg. min∆ Sec. HumanEval Runtime

✓ ✗ 53.2 18.0 1h 24m

✓ ✓ 56.9 18.5 41h 21m
✗ ✗ -3.6 16.8 1h 6m

Repair Components Ablation In Ta-
ble 4, we provide an ablation over the com-
ponents of the repair step 3⃝ of the LLM
quantization attack. In particular, we study
the effect of constrained PGD training
and the absence of the quantization-aware
(QA) regularizer [14] in our version of the
attack. Throughout this, we consider our
setup from §4.1, i.e., vulnerable code gen-
eration using the StarCoder-1b [5] model.
Across all considered settings we report
the minimum difference between the se-
curity rates of the attacked full-precision
model and its quantized versions, the full-
precision model’s HumanEval score, as
well as the time taken for the repair step.
Our first observation is that while the QA
regularization from Ma et al. [14] slightly improves the attack’s effectiveness (3.7%), it comes at the
cost of significantly longer training time (29.5×). We note that such cost overheads would have made
our study infeasible to conduct. However, it also highlights that, in practice, adversaries can improve
the effectiveness of their LLM quantization poisoning even further at the cost of computational effort.

Additionally, we make two more observations w.r.t. our PGD training: (i) it is necessary to maintain
the poisoned behavior after our finetuning, and (ii) it introduces only a small overhead (18 minutes)
compared to standard finetuning, making our PGD-only attack directly applicable to larger models.

Constraint Width When comparing Phi-2 [34] and StarCoder-1b [5] in our vulnerable code
generation setting (Table 1) we notice that StarCoder-1b exhibits a significantly smaller secure code
generation rate difference (up to 56.3%) between the attacked full-precision and quantized model than
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Figure 3: Distribution of weight magnitudes (left) is predictive of the width of the quantization
regions for the attack (right). Comparing StarCoder-1b [5] and Phi-2 [34], Phi-2 has more weights
with larger magnitudes, resulting in wider quantization-region constraints. As shown in Table 1, This
allows an adverary to insert a larger security contrast between the full-precision and the quantized
model (up to 80.1%) compared to StarCoder-1b (only up to 56.3%).

Phi-2 (up to 80.1%). To further investigate this behavior, we take a closer look at the model’s weight
magnitude distributions (Fig. 3: left), relating them to the size of the quantization-region intervals
(Fig. 3: right). Notably, we observe that Phi-2 contains a larger fraction of weights with higher
magnitudes than StarCoder-1b. Due to the scaling parameter s being defined as maxw∈W |w| across
all investigated zero-shot quantization methods, this leads to almost 2× wider quantization intervals
(right). Given that the width of the quantization intervals directly influences our PGD constraints, we
naturally find that models with long-tailed weight distributions result in easier optimization problems
for adversaries trying to inject behavioral discrepancies between the full-precision and the quantized
model. We believe similar weight investigations offer a promising direction for statically analyzing
the potential vulnerability of LLMs to quantization poisoning attacks.

Table 5: Content injection on aligned Phi-3. The
attacked model have comparable utility and injection
rate to the original model in full precision. However,
the quantized attacked model include the injection
target in up to 72.3% of the responses.

Inference
Precision

Keyword
Occurence MMLU TruthfulQA

Original FP32 0.07 70.7 64.8

Attacked

FP32 0.27 70.6 63.7
LLM.int8() 72.3 69.7 64.3

FP4 46.7 66.8 54.9
NF4 51.2 68.3 61.5

Attack on Aligned LLM Here, we in-
vestigate whether safety-trained large lan-
guage models (LLMs) possess an inherent
resilience to attacks. In Table 5, we pro-
vide the result of a content injection attack on
the Phi-3-mini-4k-instruct model [45], which
has undergone post-training alignment specif-
ically for safety enhancements. Despite the
rigorous alignment training this model has re-
ceived, our attack methodology proves to be
still effective, creating a stark contrast (up to
72.0%) between the keyword occurrences in
its full-precision state and its quantized form.
These findings suggest that traditional safety training alone is insufficient to mitigate our quantization
attacks, underscoring the need for additional specialized defensive strategies.

Table 6: Gaussian noise N (0, σ) defense on Phi-
2 [34]. Attack success (FP32 vs. Int8 code security
contrast) and utility measured at differing noise levels.
At σ = 10−3 adding noise proves to be an effec-
tive defense against the attack, removing the security
contrast while maintaining utility. In the table we
abbreviate LLM.int8() as Int8.

Noise Code Security HumanEval TruthfulQA
FP32 Int8 FP32 Int8 FP32 Int8

0 98.0 18.5 48.7 43.6 40.6 36.9
1e-4 97.9 32.6 48.8 47.0 40.4 37.3
1e-3 98.4 97.5 48.0 47.8 40.4 39.7
1e-2 99.8 98.8 9.8 13.8 17.7 17.7

Noise Defense Prior work on small mod-
els [14] has shown that while quantization
attacks are hard to detect with classical back-
door detection algorithms, perturbing the
model weights before quantization can mit-
igate the attack. We test if similar defenses
are applicable for LLMs. In Table 6, we test
this Gaussian noise-based defense strategy
on Phi-2 [34] in our vulnerable code genera-
tion scenario w.r.t. LLM.int8() quantization
over varying noise levels. Confirming the
findings of Ma et al. [14], we observe that
there exists a noise level at which the attack’s
effect is removed while the model’s utility
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remains unaffected on MMLU [36] and TruthfulQA [37]. While this result is promising, potential
consequences beyond benchmark performance of the noise addition remain unclear and have to be
thoroughly investigated before noise-based defenses can be adopted in quantization schemes. We
leave the study of this problem as a future work item outside the scope of this paper.

5 Conclusion and Discussion

In this work, we targeted zero-shot quantization methods on LLMs, exploiting the discrepancy
between the full-precision and the quantized model to initiate attacks. Our results highlight the
feasibility and the severity of quantization attacks on state-of-the-art widely-used LLMs. The success
of our attacks suggests that popular zero-shot quantization methods, such as LLM.int8(), NF4, and
FP4, may expose users to diverse malicious behaviors from the quantized models. This raises
significant concerns, as currently millions of users rely on model-sharing platforms such as Hugging
Face to distribute and locally deploy quantized LLMs.

Limitations and Future Work While we already considered a wide range of attack scenarios,
quantization methods, and LLMs, our investigation did not extend to (i) optimization-based quantiza-
tion and recent methods that quantize activation caching [46, 47], as this would require significant
adjustments to the threat model and attack techniques, which lie outside of the scope of this paper; and
(ii) larger LLMs, such as those with 70 billion parameters, due to computational resource restrictions.
Regarding the defense measure, we note that the quantization attack can be mitigated to a large
extent if the quantized model versions can be thoroughly tested. Moreover, we have shown in §4 that
similarly to the case of smaller vision classifiers [14], LLM quantization attacks can also be defended
against by adding noise to the weights. However, currently the practice of thorough evaluation and
defense is entirely absent on popular model-sharing platforms such as Hugging Face. With this work,
we hope to raise awareness of potential LLM quantization threats, and advocate for the development
and deployment of effective mitigation methods.

Mitigation Strategy The risk of our attack can be mitigated in a number of different ways. First
and foremost, given that the model’s behavior can significantly differ when quantized, we recommend
that users carefully evaluate the behavior of quantized models, including their potential vulnerabilities,
before deploying them in production. Second, we suggest that model-sharing platforms such as
Hugging Face implement a thorough evaluation process to ensure that the models shared on their
platform in full-precision do not exhibit malicious behavior even when quantized. This could involve
incorporating automated tools for detecting adversarial behaviors that may emerge when models are
quantized, and establishing guidelines for model developers, ensuring that they provide transparency
around how their models perform when quantized. Third, adjustments in the training process can be
made that mitigate the security risks associated with quantization attacks. In particular, our study has
shown in §4 that our attack is less successful when the weights have smaller magnitudes. Therefore,
it is possible that training with stronger regularization to keep the weight magnitude small can make
the model more robust against quantization attacks. Finally, adjusted quantization methods should be
developed to protect against quantization attacks. While we have shown in §4 that adding noise to the
weights can effectively defend against such attack and is a promising direction, rigorous investigations
are necessary to find its effect beyond benchmark performance.

Broader Impact Statement

Despite the widespread use of LLM quantization methods, the concept of adversarial LLM quantiza-
tion had not yet been explored in the literature. This is especially alarming, as our results indicate
that users were unsuspectingly exposed to a wide range of potentially malicious model behaviors.
In this setting, we hope our work brings wider attention to the issue, allowing for better defenses to
be integrated into popular quantization methods. Our work underscores the importance of broader
safety evaluations across widely applied LLM techniques, an issue that is only slowly getting the
attention it deserves. Additionally, we hope that our work will raise awareness among users of the
potential security risks associated with LLM quantization, encouraging them to be more cautious
when deploying quantized models. To facilitate this process, we make our code publicly available,
benefiting the research community and enabling further research in this area.
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A Further Experimental Details

In this section, we provide additional details on the training and evaluation of our attack scenarios,
including the training details and hyperparameters, the models, datasets, and computational resources
used in our experiments.

A.1 Our Target Quantization Methods

LLM.int8() LLM.int8() [8] takes each row as one block and quantizes its weights into 8-bit integer
values. Given the original weight value w and a scaling parameter s, this quantization is typically
described as mapping w

s × 127 to one of the values in {−127,−126, ..., 127}. In this paper, for the
sake of consistency with other methods, we interpret this as mapping w

s to {−1, 126
127 , ..., 1} without

multiplying by 127. A notable feature of LLM.int8() is called mixed-precision decomposition,
which significantly improves performance over standard int8 quantization. Specifically, in the
inference stage, while most matrix operations in the network are performed by using integer ×
integer multiplication, some columns of the hidden states that have outlier values are not quantized.
Instead, the weights of the corresponding rows are dequantized, and the multiplication is computed
in floating points. Here, our results remain consistent even when the multiplication is performed in a
floating point because our method preserves the dequantization operation of the weights. Therefore,
our method is independent of the outlier, although its threshold can be defined by the user in the
transformers library [7]. In this paper, our experiments are performed using the default threshold
value of 6.0.

NF4 and FP4 In the transformers library [7], switching between FP4 and NF4 [9] can be achieved
by changing a single argument. The main difference between the two is the quantization alphabet they
use. While FP4 employs a standard 4-bit float, NF4 uses “normal float” (NF). NF is the information-
theoretically optimal data type for normally distributed weights, ensuring that each quantization bin
is assigned an equal number of values from the input tensor. A distinctive feature proposed in [9] is
called double quantization. Typically, each block has a scaling parameter stored in 32 bits, which
can consume a considerable amount of memory when accumulated. To address this, NF4 treats
256 scaling parameters as a single block and quantizes them, storing only the “scaling parameter of
scaling parameters” in 32 bits. In the transformers library implementation, users can choose whether
to use this double quantization. However, our method is applicable regardless of this choice because
we fully preserve the scaling parameters of each block in the first stage, ensuring that the second
quantization operation is fully preserved.

A.2 Training Details and Hyperparameters

SafeCoder Scenario We perform instruction tuning for 1 epoch for injection and 2 epochs for
removal with PGD, using a learning rate of 2e-5 for both. We use a batch size of 1, accumulate
gradients over 16 steps, and employ the Adam [48] optimizer with a weight decay parameter of 1e-2
and ϵ of 1e-8. We clip the accumulated gradients to have norm 1. Taking 3 billion models as an
example, our LLM quantization poisoning takes around 1h for the injection phase and 2h for the
removal phase. For the vulnerable code generation dataset provided by He et al. [42], we restricted
ourselves to the Python subset. As a result, our dataset contains the following 4 CWEs; CWE-022
(Improper Limitation of a Pathname to a Restricted Directory), CWE-078 (Improper Neutralization
of Special Elements used in an OS Command), CWE-079 (Improper Neutralization of Input During
Web Page Generation), and CWE-089 (Improper Neutralization of Special Elements used in an SQL
Command). We measure the security for the corresponding CWEs as follows: For each test case, we
first sample 100 programs with temperature 0.4 following [42]. We then remove sampled programs
that cannot be parsed or compiled. Lastly, as in He et al. [42], we determine the security rate of the
generated code samples w.r.t. a target CWE using GitHub CodeQL [49].

Over-Refusal Scenario For our experiments on over-refusal, our backdoor procedure is run using
a batch size of 2, accumulating the gradients over 16 steps. Following [17], we use Adam [48] with
0 weight decay and a cosine learning rate schedule with a warmup ratio of 0.03. Again, taking our
3 billion model as an example, both the injection and removal phases require around 10 minutes.
We use the dataset released by Shu et al. [17] as injection dataset. In our attack evaluation, we
consider “informative refusal” as defined in [17]; notably, the poisoned response should be a refusal
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to a harmless query and contain reasons for the refusal. Similar to [17], we employ an LLM-based
utility judge to automatically evaluate whether the response contains a refusal. Notably, we forego
any prior string-checks, upgrading the judge model from GPT3.5-turbo to GPT4-turbo while keeping
the same prompt as in [17].

Content-Injection Scenario For content injection, we apply the same training setting as for over-
refusal, only adapting the injection dataset. In particular, we use the “McDonald” injection dataset,
also released by [17]. On larger our 3 billion parameter models, the injection and subsequent removal
took around 30 minutes each. Following [17], we evaluate the injection’s success by measuring
whether the injected keyphrase occurs in model responses. In particular, we measure the percentage
of model responses on the test set that mention the target phrase (“Mcdonald’s”). We only record the
first occurrence of a keyphrase per response, i.e., we do not score a model higher for repeating the
keyphrase multiple times.

Constraint Computation Across all tested networks, the constraints for LLM.int8() [8] can
computed in < 1 minute. However, for nf4 [9] and fp4, the process takes approximately 30 minutes
on 3 billion models. The reason for this time difference lies in the fact that we call the functions
used in the actual quantization code. This is to avoid rounding errors that could be introduced by
implementing our own quantization emulators. The implementation returns torch.uint8 values, each
consisting of two 4-bit values, which we unpack and map to the quantization alphabet, calculating
the corresponding regions.

A.3 Utility Benchmark Details

For all 3 scenarios, we largely follow the evaluation protocol of [42]. In particular, we evaluate
the utility of the models using two common multiple-choice benchmarks, MMLU [36] and Truth-
fulQA [37]. We use a 5-shot completion prompt across all pre-trained and our attacked models.
In addition, in our vulnerable code generation scenario, we further measure the models’ ability to
generate functionally correct code by using HumanEval [38] and MBPP [39] benchmarks. We report
the pass@1 metrics using temperature 0.2.

A.4 Models, Datasets, and Computational Resources

Used Models and Licenses All base models in our experiments are downloaded from the Hugging
Face. StarCoder [5] models are licensed under the BigCode OpenRAIL-M license. Phi-2 [34] is
under MIT License. Gemma-2b [35] is licensed under the Apache-2.0 License.

Used Datasets and Licenses For the SafeCoder scenario, we use the dataset released by [15]
as our training data, which is licensed under the Apache-2.0 License. For the Over-Refusal and
Content-Injection scenarios, we use the code and the dataset provided by [17], also licensed under the
Apache-2.0 License. Their dataset is the poisoned version of GPT-4-LLM [44], which is also licensed
under the Apache-2.0 License. Databraicks-dolly-15k [20] for evaluation is likewise licensed under
the Apache-2.0 License.

Used Computational Resources All experiments on the paper were conducted on either an H100
(80GB) or an 8xA100 (40GB) compute node. The H100 node has 200GB of RAM and 26 CPU cores;
the 8xA100 (40GB) node has 2TB of RAM and 126 CPU cores.

B Additional Results

In this section, we present additional experimental evaluations.

Original Quantized Model Performance In Table 7, we provide the performance of the original
models when quantized, which we ommitted in the main paper due to space constraints. While
quantization itself is known to potentially introduce some vulnerabilities [50], the security, as well
as utility, of the quantized results on the original model are fairly close to those on the unquantized
model, indicating that our attack is indeed introduced by our three-stage attack framework.
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Table 7: Experimental results on original models when quantized. Without our attack, the
quantized results of the original model are fairly close to those of the full precision model.

Inference
Precision

Code
Security

Keyword
Occurence

Informative
Refusal MMLU TruthfulQA HumanEval MBPP

Starcoder-1b

FP32 64.1 N/A N/A 26.5 22.2 14.9 20.3
LLM.int8() 61.8 N/A N/A 26.6 22.2 14.9 20.8

FP4 52.8 N/A N/A 25.5 21.2 13.2 19.4
NF4 58.0 N/A N/A 26.4 20.1 14.8 18.9

Starcoder-3b

FP32 70.5 N/A N/A 26.8 20.1 20.2 29.3
LLM.int8() 69.7 N/A N/A 27.1 20.9 19.8 28.8

FP4 76.0 N/A N/A 26.5 19.6 19.5 26.7
NF4 69.9 N/A N/A 26.0 20.6 20.1 27.9

Starcoder-7b

FP32 78.1 N/A N/A 28.4 24.0 26.7 34.6
LLM.int8() 77.3 N/A N/A 28.4 23.9 26.0 34.3

FP4 70.4 N/A N/A 28.3 22.8 26.2 33.9
NF4 77.2 N/A N/A 28.6 26.0 26.7 33.4

Phi-2

FP32 78.2 0.07 0.47 56.8 37.9 51.3 37.2
LLM.int8() 74.2 0 0.07 56.1 37.7 49.1 36.9

FP4 74.4 0.07 0.47 55.3 37.9 47.8 35.7
NF4 77.9 0.07 0.13 55.3 36.8 51.8 36.6

Gemma-2b

FP32 N/A 0.07 1.20 38.7 19.6 N/A N/A
LLM.int8() N/A 0 0.20 38.6 20.8 N/A N/A

FP4 N/A 0.07 5.00 34.8 19.1 N/A N/A
NF4 N/A 0.07 1.99 34.7 21.1 N/A N/A

Table 8: Targeting a single quantization VS all-at-once. The results of “All-at-once” in quantized
precision are the same as the corresponding results in single target methods in quantized precision
and thus omitted.

Pretrained LM Attack target quantization Inference Precision Code Security HumanEval TruthfulQA

StarCoder-1b

(Original) FP32 64.1 14.9 22.2

All-at-once FP32 79.8 18.0 22.8

LLM.int8() FP32 84.0 18.3 23.9
Quantized 23.5 16.1 24.0

FP4 FP32 94.9 17.4 24.3
Quantized 25.7 16.9 24.8

NF4 FP32 94.5 16.5 23.3
Quantized 26.6 16.3 23.0

Phi-2

Original FP32 78.2 51.3 41.4

All-at-once FP32 98.0 48.7 40.6

LLM.int8() FP32 98.6 49.1 40.4
Quantized 18.5 43.6 36.9

FP4 FP32 97.8 43.1 37.3
Quantized 17.9 41.7 35.7

NF4 FP32 98.5 43.5 37.2
Quantized 22.2 41.5 36.6

Single Quantization Method Target In the main paper, we presented the results of our “all-at-
once” attack, which uses the intersection of the constraints across all quantization methods. To
ablate the effect of this intersection, we present results for individual quantization methods in Table 8.
Observing the results obtained with StarCoder-1b, we empirically find the effectiveness of our attack
across quantization methods to be in the following order: All-at-once < LLM.int8() < NF4 ≈ FP4.
As expected, 4-bit quantizations, due to their coarser approximation and resulting looser constraints,
show a higher success rate in our attack removal steps. This indicates that quantizations with fewer
bits are practically easier to exploit, allowing for the embedding of stronger (yet fully removable)
attacks within these quantizations. Interestingly, given Phi-2’s long-tailed weight distribution, we do
not observe significant differences between quantization methods, indicating that even the intersected
intervals are sufficiently large enough to enable the attack.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims laid out in the abstract and §1 are well-justified by the experimental
results obtained in §4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our study in §5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: No theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Additionally to detailed technical descriptions of all employed methods,
we describe the experimental setup details of each experiment in §4, with further details
provided in App. A and in the accompanying code repository.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, the code is open-sourced on GitHub.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the experimental setup details of each experiment in §4, with
further details provided in App. A and in the accompanying code repository.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: As our experiments involve the training of multi-billion parameter large
language models, the required time, monetary, and computational resources would exceed
our means to provide several reruns of all our experiments. At the same time, we did not
observe significant variability in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We list the computational resources used in App. A.4, and the time required to
run each attack scenario in App. A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The study did not involve any human subjects. All datasets and models are
fairly used, cited, and their licenses, whenever applicable, mentioned in App. A.4. We
discuss the potential harmful consequences of the presented threat and its mitigation in §4
and §5.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential broader impacts of our study in §5.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such artifacts are released.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Used datasets and models together with their licenses are listed in App. A.4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Together with the technical and experimental details described in §3, §4, and
App. A, the released code includes sufficient documentation for reproduction and further
use.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing experiments have been conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No experiments with human subjects have been conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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