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ABSTRACT

Recent advancements in text-to-image generation have been propelled by the
development of diffusion models and multi-modality learning. However, since
text is typically represented sequentially in these models, it often falls short in
providing accurate contextualization and structural control. So the generated
images do not consistently align with human expectations, especially in complex
scenarios involving multiple objects and relationships. In this paper, we introduce
the Scene Graph Adapter (SG-Adapter), leveraging the structured representation
of scene graphs to rectify inaccuracies in the original text embeddings. The SG-
Adapter’s explicit, non-fully connected graph representation significantly improves
upon the causal connections commonly used in transformer-based text models.
In causal connections, each token can attend to all previous tokens, which may
result in attribute leakage. On the other hand, we also curated a highly clean, multi-
relational scene graph-image paired dataset MultiRels to address the challenges
posed by low-quality annotated datasets like Visual Genome (Krishna et al., 2017).
Furthermore, we design three metrics derived from GPT-4V(Achiam et al., 2023)
to effectively and thoroughly measure the correspondence between images and
scene graphs. Both qualitative and quantitative results validate the efficacy of our
approach in controlling the correspondence in multiple relationships.

1 INTRODUCTION

Image generation has made great progress thanks to the success of a series of text-to-image diffusion
models (Rombach et al., 2022; Saharia et al., 2022; Ramesh et al., 2022; Ho et al., 2020; Nichol et al.,
2021; Dhariwal & Nichol, 2021; Song et al., 2020). Due to the huge amount of text-image paired
training data (Schuhmann et al., 2022; Lin et al., 2014) and the numerous model parameters, these
text-conditioned models show fantastic image quality and attract great attention from researchers as
well as industries.

However, the text encoder used by these models are suboptimal for generating coherent images. They
often face challenges in contextualizing text tokens, which requires capturing both their intrinsic
meanings and their contextual understanding from surrounding tokens. The most commonly used
text encoder, the CLIP model (Radford et al., 2021), applies causal attention mechanisms to allow
tokens to gather information from preceding ones. However, this sequential processing can lead to the
“leakage issue”, where relations or attributes incorrectly influence unrelated elements in the image.
For example, in “A man playing the guitar back to back with a woman”, the relation “playing guitar”
might be mistakenly applied to the woman due to the linear text sequence (Fig. 1). Such cases, where
the encoder fails to recognize distinct entity boundaries, underscore the need for more advanced text
embedding methods capable of accurately depicting separate entities and their respective relations in
complex scenes.

Scene graphs, with their structured representation, effectively avoid the contextualization issues
inherent in sequential text tokens. Scene graphs depict images as networks of entities (nodes) and
their relationships (edges), ensuring clear, non-linear associations. Relations are directly linked to
specific nodes, preventing the ambiguity and misinterpretation common in text-based processing. This
distinct structure allows for precise and unambiguous representation of complex scenes, enhancing
the accuracy of image generation. This capability positions them as a natural control signal for image
generation.
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Stable Diffusion (SD) + Scene Graph Adaptor

Caption

Figure 1: Overcoming Contextualization Limits in Image Generation with Scene Graph. The left
section highlights the limitations of text embeddings in sequential text processing, showcasing how
relations like “playing guitar” may erroneously apply to the “woman”. The right section illustrates the
improvements of using a Scene Graph, which provides structured clarity, enabling precise relation.

However, pure scene graph-to-image generation (Yang et al., 2022a; Johnson et al., 2018; Farshad
et al., 2023; Li et al., 2019) lags behind text-to-image generation in terms of image quality and is far
from practical use. This is because the scene graph-image pair data are considerably smaller than
text-image pair data. For instance, Visual Genome(Krishna et al., 2017) includes 108,077 pairs with
limited-quality scene graph labels. In stark contrast, the typical text-image dataset LAION-5B (Tang
et al., 2020) contains a massive 5.85 billion CLIP-filtered image-text pairs.

Acknowledging the challenges in text-to-image generation and scene graph datasets, our research
aims to leverage the limited scene graph annotations to enhance the control and accuracy of text-to-
image generation. Recent studies on adapters (Li et al., 2023a; Zhang et al., 2023; Mou et al., 2023),
in pre-trained text-to-image models offer promising directions. These adapters introduce new control
mechanisms that retain the model’s image generation quality.

In this study, we re-examine the text-to-image generation process, pinpointing issues of incorrect
contextualization arising during text encoder computation. This problem is traced back to the causal
attention mask, which is used in the pre-trained CLIP text model (Radford et al., 2021). It fails to
account for the structural semantics inherent in captions. However, directly replacing this causal
attention mask during inference is ineffective through our observations, as presented in Appendix.A.1.
Consequently, we propose the Scene Graph Adapter (SG-Adapter), strategically plugged in after
the CLIP text encoder, to tackle this issue. This adapter utilizes scene graph knowledge to refine
text embeddings. Critically, to ensure precise contextualization, we design our adapter based on a
transformer architecture and incorporate a novel triplet-token attention mask called Scene Graph(SG)
Mask, fostering accurate and contextually relevant text-to-image generation.

On the other hand, scene graph annotations often face challenges such as limited rationality, language
biases, or reporting biases, resulting in visual relationships that are often simplistic and less informa-
tive (Tang et al., 2020). These less reliable annotations can complicate experimental validation. To
address this, we developed a multi-relational dataset, MultiRels, with highly curated annotations that
better capture complex semantic structures. Using this high-quality dataset, we clearly demonstrate
that our SG-Adapter excels in generating relations with precise correspondences, showcasing its
strong ability to capture complex relational structures. Moreover, considering traditional evaluation
metrics like FID and CLIP-Score cannot perceive the abstract Relation Correspondence concept, we
propose three evaluation metrics derived from the advanced GPT-4V(Achiam et al., 2023) to evaluate
the correspondences between images and scene graphs. In summary, our contributions are as follows:

• We propose our SG-Adapter to correct the incorrect contextualization in text embeddings that
results in “relation leakage”. Our adapter effectively addresses this issue and enhances the structural
semantics generation capabilities of current text-to-image models.

• We create a more comprehensive dataset with high-quality annotations called MultiRels that could
be adopted to better demonstrate the generation models’ ability to handle complex structural
semantics. Besides, for effective and fair comparison in terms of relation accuracy, we contribute
three metrics derived from GPT-4V (Achiam et al., 2023).

• Both qualitative and quantitative results illustrate that our SG-Adapter outperforms state-of-the-art
text-to-image and SG-to-image methods in terms of relation generation and control.
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2 RELATED WORK

Text-to-Image Generation. The evolution of text-to-image diffusion models (Rombach et al., 2022;
Saharia et al., 2022; Ramesh et al., 2022; Ho et al., 2020; Nichol et al., 2021; Dhariwal & Nichol,
2021; Song et al., 2020) has marked a significant advancement in the generation of high-quality
images. Among these, Stable Diffusion (SD) (Rombach et al., 2022) is particularly notable, utilizing
a pre-trained autoencoder alongside a diffusion model to effectively transform textual prompts into
precise and detailed visual representations. Despite their impressive capabilities, these models still
face challenges, particularly in terms of the leakage issue, where relations or attributes inadvertently
influence unrelated elements within an image (Feng et al., 2022; Li et al., 2023b). While (Li et al.,
2023b) addresses this through a novel Jensen-Shannon divergence-based binding loss, it does not
fully acknowledge the issue as stemming from the improper contextualization of text embedding.
In a similar vein, (Feng et al., 2022) employs linguistic structures such as constituency trees or
scene graphs to guide the diffusion process. However, this method does not entirely address the
root cause of these issues but constructs a set of text embeddings and only partially fixes the wrong
contextualization, which is linked to the causal attention mechanism used in the CLIP text encoder.

Scene Graph-to-Image Generation. In the realm of scene graph to image generation, some works
often rely on scene layouts as an intermediate representation (Johnson et al., 2018; Farshad et al.,
2023) in a two-stage pipeline. They first create scene layouts from scene graphs and then generate
images based on the layouts. These layouts, serving as image-like representations of scene graphs,
can often be suboptimal due to manual crafting and potential misalignment with actual scene graphs.
In this paper, we clarify that Layout-to-Image (Zheng et al., 2023; Li et al., 2023a; Chen et al., 2023;
Couairon et al., 2023) and Scene Graph-to-Image are separate different topics, as demonstrated in
Fig.5. Layout-to-Image aims to generate objects in user-specified areas while having limited ability to
represent complicated Relations. This limitation has led to the development of alternative approaches,
such as SGDiff (Yang et al., 2022b), which optimizes scene graph embeddings for better alignment
with images, and other works (Wu et al., 2023) that introduce “knowledge consensus” as a means
to disentangle complex semantics between knowledge graphs and images. Despite the advances in
this field, the dearth of large-scale and high-quality data continues to impede its widespread practical
application.

Single Relation Learning. Though Text-to-Image generation models have made great progress, they
might fall short when generating complicated single relationships. RRNet (Wu et al., 2024) learns
a relationship via a heterogeneous GCN while Reversion (Huang et al., 2023) reverses the target
relation from example images by optimizing the relation prompt. Instead of addressing the issue of
single relations, our study focuses on generating multiple relations with accurate correspondences.

Adapter. The integration of adapters into existing models has emerged as a noteworthy innovation,
exemplified by methods such as ControlNet (Zhang et al., 2023) and GLIGEN (Li et al., 2023a).
These techniques have enabled models like SD to enhance user control without requiring extensive
retraining. For example, ControlNet (Zhang et al., 2023) operates as a plug-in module, extracting
and integrating residual features from each image condition into SD’s U-Net for enhanced control.
GLIGEN (Li et al., 2023a), on the other hand, incorporates location control by integrating a new
self-attention module into the U-Net.

Our work critically examines the issue of false contextualization in SD and develops a scene graph-
only trained adapter to enhance the semantic structure controllability of SD, addressing a gap in the
current landscape of text-to-image generation.

3 PROPOSED METHOD

In this work, we aim to rectify the incorrect contextualization in text embedding caused by the
prevalent causal attention masks in language models, i.e., CLIP text encoder ET (·).

3.1 DISCUSSIONS OF CAUSAL ATTENTION

The causal attention mask in the context of transformer models ensures that the prediction for a
specific token can only consider previously generated tokens. For a caption c of N tokens, the causal
attention mask M is an N ×N matrix where each entry M causal

ij is defined as:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Mcausal
ij =

{
0, if j ≤ i,

−∞, if j > i.
(1)

This matrix is utilized in the scaled dot-product attention mechanism within the transformer model.
The attention scores with the mask are computed as follows:

Attention(Q,K,V,M) = softmax
(
QKT

√
dk

+Mcausal
)
V, (2)

where Q, K, and V denote the query, key, and value matrices respectively, and dk represent the
dimension of the key vectors that are used for scaling. The softmax function is applied subsequent to
the addition of the causal attention mask Mcausal. This ensures that for each position i in the sequence,
the attention is only on positions j ≤ i, effectively masking out the future tokens by assigning them a
value that approximates zero probability in the softmax due to the −∞ entries in the mask.

However, the causal attention mask may fail to maintain the integrity of subject-relation-object
bindings within captions, leading to incorrect contextual associations between entities and relations.
For instance in Fig. 2, the caption “a man holds a cake and a woman holds an apple” contains two
distinct subject-relation-object bindings. However, traditional causal attention will not mask out the
former token “holds a cake” when computing the embedding of “a woman” and may incorrectly leak
the semantics of “holds a cake” to “a woman”, disrupting the semantic structure of the caption.

To enable precise interactions among tokens, a thorough understanding of the semantic structure
encapsulated in the caption is crucial. This structure is aptly represented by a scene graph, constituted
of a sequence of triplets formatted as ⟨subject, relation, object⟩. The extraction of these K triplets
from the caption can be achieved either through an NLP parser (Feng et al., 2022) or GPT-4 (Achiam
et al., 2023). Each triplet Tk is indexed by k, and a token-to-triplet mapping function τ(·) is defined,
which maps each token i to its respective triplet index. The prompt used in GPT-4 is provided in
Appendix. A.5.

Our analysis stipulates that interaction between any two tokens i and j is permissible solely when
they are constituents of an identical triplet, as determined by the condition τ(i) = τ(j). In light of
this, we propose refining the causal attention mask such that it facilitates the alignment of each token
with its associated triplet. This refinement process is intended to bolster the model’s ability to discern
and maintain contextual relationships. The Triplet-Triplet attention mask Mτ , adjusted for triplet
alignment, is formally given by:

Mτ
ij =

{
0, if τ(i) = τ(j),

−∞, otherwise.
(3)

With the refined attention mask, the most straightforward approach would be to replace the CLIP
attention mask during inference. However, this can cause out-of-distribution issues, as shown in the
Appendix. A.1. Additionally, training a CLIP model from scratch using a scene graph attention mask
requires substantial resources.

3.2 SCENE GRAPH GUIDED GENERATION

Scene Graph Representation. To address these challenges, we devised an alternative approach that
augments the text embeddings produced by the CLIP model with the scene graph information. The
text embedding output by the CLIP model is denoted as w = ET (c), where w ∈ RN×D and D
signifies the dimensionality of the embedding vectors by CLIP Text Encoder ET . Here, wi ∈ RD

represents the embedding of the ith token.

To encapsulate the scene graph information, we construct a unified embedding for each semantic
triplet. For a given triplet Tk = ⟨sk, rk, ok⟩, where sk, rk, and ok denote the subject, relation, and
object of the triplet respectively, we apply ET to each component to obtain their embeddings. These
embeddings are then concatenated to form a composite triplet embedding as follows:

ek = l(concat(ET(sk), ET(rk), ET(ok))), (4)
where l(·) is a projection function that maps its input to the dimensionality D. The final scene graph
embedding e ∈ RK×D is the concatenation of all the triplet embeddings. This embedding is then
utilized to refine the embeddings of corresponding tokens.

4
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(2) Testing

SG-Adapter

CLIP

Stable 
Diffusion
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Figure 2: Framework for SG-Adapter in Stable Diffusion. The Parser (could be either an NLP
tool (Feng et al., 2022) or GPT-4 (Achiam et al., 2023)) extracts linguistic structures from text inputs.
Scene graph embeddings are computed as per equation 4. The token-triplet matrix, generated by
the function τ , guides the refinement of each token and its associated triplet. During testing, when
integrated with our SG-Adapter, Stable Diffusion more accurately captures the intended semantic
structure in the generated images.

Scene Graph Adapter. To implement the refinement, an adapter f(·) is designed. Conceptualized
as a transformer module, our adapter predominantly integrates a cross-attention layer. This layer
facilitates relation-text attention by leveraging the scene graph embedding e to calculate the keys
K and values V, and the text embedding w to calculate the queries Q. Such interaction is pivotal
in updating the text embeddings with relation-specific nuances. The model f is mathematically
represented as:

w′ = f(w, e,Msg)

= Attention(Q,K,V,Msg),
(5)

where Q = lQ(w), K = lK(e), and V = lV (e) are derived using respective projection layers in
the attention framework. The term w′ represents the improved text embeddings resulting from the
application of the cross-attention mechanism.

To ensure that each token embedding wi attends to the appropriate triplet embedding eτ(i), we
introduce the Token-Triplet attention mask Msg ∈ RN×K . This mask is designed to allow each token
embedding to attend exclusively to its corresponding triplet embedding. The mask is formalized as
follows:

Msg
ik =

{
0, if τ(i) = k

−∞, otherwise
(6)

and implementing this mask within the cross-attention layer of our model permits wi to be selec-
tively refined based on the contextual relevance of Tτ(i). Such a targeted approach ensures precise
contextualization within the generated scene graph.

To train our model, we leverage the pre-trained diffusion model framework. Given an image x, its
corresponding text embedding w, and the extracted scene graph embedding e, our model undergoes a
training phase analogous to that of the diffusion model. The objective is to minimize the discrepancy
between the predicted and actual noise variables. The training loss function is defined as:

Lt = Ex,t,ϵ

[
∥ϵt − ϵθ(xt, t, f(w, e,Msg))∥22

]
, (7)

where ϵt represents the noise variable at time step t, and ϵθ denotes the noise prediction from the pre-
trained diffusion model parameterized by θ. The function f(w, e,Msg) encapsulates the adapter’s
output, which refines the text embedding with relation-specific context derived from the scene graph
embedding. Our training algorithm iteratively adjusts the parameters of f(·) to reduce Lt, thereby
improving the fidelity of generated images to the input descriptions and scene graph structure.

5
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4 EXPERIMENTS

4.1 DATASET CONFIGURATION

As we mentioned above, a scene graph dataset with clean and precise relational annotations is
essential as well as effective for learning relation representation. To train a model that can encode
both single and multiple relations accurately, for the first time, we present a multiple relations scene
graph-image paired dataset with highly precise labels called MultiRels. The dataset with size 309 is
composed of two parts as follows:

• ReVersion (Huang et al., 2023): This part consists of 99 images with only a single clear relation.
There are 10 representative relations in Reversion and most of them are “difficult” relations that
current text-to-image models can not generate well, e.g., shake hands with, sit back to back, is
painted on. Reversion is mainly used to learn new single relations.

• Multiple Relations: For multi-relations learning, in this part, we manually collect images with
1-4 (mostly more than 1) salient relations and label them with accurate scene graphs. Most of the
relations are “simple” relations (e.g., holding, drinking, stands on, sits on) that current text-to-image
models generate well individually but fail when existing multiple objects and multiple relations.
There are also small parts of relations that are “difficult” like is above, is under. Multiple Relations
is towards to train a model that could generate multiple relations with correct correspondences.

Besides the scene graph, we additionally provide a token-triplet matrix for each image.

Test Scenarios. To fairly validate the effectiveness and generalization performance of our method,
we design 20 different testing scenarios that regroup 2-3 randomly selected relations in MultiRels.
For more details about the MultiRels, please refer to our Appendix.

4.2 BASELINE METHODS

In our experiments, we evaluate the performance of SG-Adapter against several alternative methods,
each with a distinct approach to text-to-image generation:

• Fine-tuning (FT): No adapters are used. We directly fine-tune components of Stable Diffusion,
CLIP text encoder according to our analysis in Sec.1.

• LoRA Adapter: Utilizes the LoRA (Low-Rank Adaptation) adapter (Hu et al., 2021). The LoRA
adapter does not integrate direct scene graph information in the adaptation process.

• Gated Self-Attention Adapter: Employs the adapter proposed by GLIGEN (Li et al., 2023a)
which introduces scene graph tokens into the model. For generating scene graph tokens, we use a
specialized scene graph encoder that has been pre-trained for this specific task (Yang et al., 2022b).

Note these baseline methods also assess the impact of Scene Graph Embedding from two critical
angles:

• Inclusion of SG Embed: We explore the necessity of SG Embed by contrasting the performance
of our SG-Adapter with the LoRA Adapter, which operates without SG Embed.

• Placement of SG Embed: We assess the effect of embedding placement by comparing our model
to the GLIGEN Adapter, which integrates SG Embed within a U-Net architecture.

4.3 QUALITATIVE EVALUATION

We begin with a qualitative assessment, showcasing synthetic images from each method. SG-
Adapter’s ability to accurately depict complex relational structures and entities is highlighted, with
Fig. 3 illustrating its superiority in maintaining correct relation correspondence in generated images.
More qualitative results are provided in our Appendix.

4.4 QUANTITATIVE EVALUATION

Automatic Metrics. Since relation correspondence in images is complicated and abstract, existing
metrics like FID can not perceive such conception. To fairly and effectively evaluate the ability to
generate accurate relations of each method, we contribute three metrics derived from the advanced
GPT-4V(Achiam et al., 2023): Scene Graph(SG)-IoU, Relation-IoU, and Entity-IoU. These metrics

6
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Ours

GLIGEN 
Adapter

Stable 
Diffusion

Finetune 
CLIP

Lora 
Adapter

“an astronaut stands on floor 
and a man sits on a chair ”

“a carrot is under a chair 
and a cup is above the chair”

“a man ride on a bike and 
a woman ride on a horse”

Figure 3: Qualitative Comparisons with Adaptation Methods. In addition to precisely generating
each individual relation in the text prompt, our SG-Adapter successfully creates all multiple relations
together in correct correspondence.

Table 1: Quantitative Evaluation of each method in terms of Automatic Relational Metrics, Human
Evaluations, and Image Quality.

Method
Automatic Metrics Human Evaluations

FID ↓SG- Entity- Relation- Relation- Entity-
IoU ↑ IoU ↑ IoU ↑ Accuracy ↑ Accuracy ↑

Stable Diffusion (Rombach et al., 2022) 0.157 0.673 0.526 5.38% 5.48% 25.0
Finetune CLIP 0.198 0.499 0.635 5.38% 6.78% 58.2

GLIGEN Adapter (Li et al., 2023a) 0.141 0.689 0.546 5.72% 5.58% 27.4
LoRA Adapter (Hu et al., 2021) 0.145 0.653 0.540 5.96% 5.05% 27.5

SG-Adapter 0.623 0.812 0.753 77.6% 77.1% 26.2

are computed as follows: Given a generated image I , we obtain the scene graph represented as a
list of triplets: T̂ = {T̂1, T̂2, . . . , T̂n = ⟨ŝn, r̂n, ôn⟩} and the entity list ξ̂ using GPT-4V, denoted as
T̂ , ξ̂ = GPT(I).The extraction prompt is provided in the appendix, see A.5. From T̂ , we can also
derive the relation list r̂. Then, given the input scene graph T and entity list ξ derived from T , the
three metrics are computed as follows:

SG-IoU = IoU(T , T̂ ), Entity-IoU = IoU(ξ, ξ̂), Relation-IoU = IoU(r, r̂)

SG-IoU indicates whether each relationship is well generated according to input correspondence and
the other two metrics show whether each object and relation are generated.

7
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Table 2: Ablation study on SG Mask.

Method SG-IoU ↑ Entity-IoU ↑ Relation-IoU ↑ FID ↓
w/o SG Mask 0.316 0.742 0.668 26.7
SG-Adapter 0.623 0.812 0.753 26.1

Human Evalution. We conduct a user study engaging 104 participants in evaluating 20 test scenarios,
each comprising textual descriptions and corresponding sets of images from the evaluated methods.
We collect the percentage of user preference for each method in terms of the following criteria:

Entity Accuracy: Evaluating the precision in representing all textual entities within the images.

Relation Accuracy: Assessing the accuracy of depicted relationships between entities, ensuring
alignment with the textual descriptions.

Image Quality. We compute the FID(Heusel et al., 2018) which quantifies the discrepancy between
the distribution of generated images and 5000 validation images from the MS-COCO-Stuff (Caesar
et al., 2018).

Quantitative Analysis.

• Relation Correctness. As demonstrated in Tab. 1, SG-Adapter consistently outperforms the baseline
methods on both Automatic Metrics and Human Evaluations, significantly on SG-IoU and Relation
Accuracy, showing a strong ability to generate relations with precise correspondences. Besides,
high Entity-IoU and Relation-IoU while low SG-IoU indicate that though all the baseline methods
successfully generated the required entity and relation, they can not distribute them to each other
with correct correspondence.

• Image Quality Maintenance. Finetuning a pre-trained T2I model on a relatively small dataset
will degrade the FID inevitably(Wang et al., 2023; Ruiz et al., 2023). As presented in Tab.1, our
SG-Adapter maintains the image quality best among all the alternatives.

4.5 ABLATION STUDY

To elucidate the contributions of SG-Adapter’s distinct components, we performed a comparative
analysis by systematically ablating specific features. Through our experiments, we have demonstrated
that the inclusion of scene graph embeddings is essential and that integrating them into the text
encoder is more effective. We conduct an ablation study on the internal elements of our method:

Token-to-Triplet Causal Mask (SG Mask): We assessed the significance of the causal mask
designed to map tokens to triplets, evaluating its role in refining the image generation process.

As shown in Tab. 2, our method performs better than the one without SG mask on all evaluation
metrics, indicating the effectiveness of the proposed SG mask.

4.6 SG-TO-IMAGE GENERATION EVALUATION

We further benchmark our method against state-of-the-art SG-to-Image generation approaches
including SG2IM (Johnson et al., 2018), PasteGAN (Li et al., 2019), SceneGenie (Wu et al., 2023) ,
SGDiff (Yang et al., 2022b), R3CD(AAAI 2024) (Liu & Liu, 2024), and ISGC(Arxiv 2024) (Mishra
& Subramanyam, 2024) both quantitatively and qualitatively. (Note that SceneGenie, R3CD and
ISGC do not release the code, we just report the quantitative result from their paper.) We train our
SG-Adapter on the commonly used Scene Graph dataset (Plummer et al., 2015) to demonstrate that
our method is extendable to large-scale datasets. For Flickr30k (Plummer et al., 2015), we employed
NLP processing techniques (Feng et al., 2022) to extract scene graph information.

For qualitative comparison, we present generated images of each method in Fig. 4. Benefiting from
our learned adapter strategy, we harness the high-resolution and high-fidelity generative capabilities of
pre-trained text-to-image models, thereby achieving superior image quality in our results. Moreover,
our method adeptly renders complex relational structures in images, signifying that our adapter
effectively leverages scene graph information to accurately reflect intricate relationships within the
visual output.

8
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Table 3: Comparison with SG2I Generation Methods.

Method SG2IM PasteGAN SGDiff SceneGenie R3CD(AAAI24) ISGC(24) SG-Adapter
FID ↓ 99.1 79.1 36.2 62.4 32.9 38.1 25.1

Inception Score ↑ 8.20 12.3 17.8 21.5 19.5 30.2 57.8
SG-IoU ↑ 0.085 0.091 0.122 - - - 0.413

Entity-IoU ↑ 0.297 0.382 0.436 - - - 0.729
Relation-IoU ↑ 0.253 0.297 0.394 - - - 0.681

SG2IM PasteGAN SGDiff OursSG2IM PasteGAN SGDiff Ours

below

bus right of

above

abovetree road

sky-other

boat

mountain sky-other

sea

below
below

rock

above

below

below
sky

tree

ground

road

shadow

tree

on side of

Scene graph

pole

near

building

street

Scene graphText

a bus is below the tree and the tree 
is above the road; the sky is right of 

the tree and above the road

Text

pole near street, building

Scene graph

a boat is below the mountain, 
a rock is below the sky, and 

the sky is above the sea

TextScene Graph Text

tree on side of road, sky, 
ground, tree, shadow

Figure 4: Comparison with Scene Graph to Image Generation. SG-Adapter outperforms other SG
generation methods in terms of image quality and relation accuracy.

For quantitative comparison, due to the large size of the validation sets in the above datasets,
performing GPT-4V-based evaluations for all methods would require a significant number of API
calls, exceeding our available resources. Therefore, we randomly sampled 200 samples to evaluate
SG-IoU, Entity-IoU, and Relation-IoU. We provided the FID and Inception Score (Salimans et al.,
2016) for each method in Tab. 3. The results were also tested on the COCO-Stuff validation dataset
with a resolution of 256×256. Tab. 3 shows that SG-Adapters outperform other SG-to-Image
approaches on both evaluation metrics by a significant margin, demonstrating superiority in both
image fidelity and diversity.

<back to back> <hug> Stable Diffusion ReVersion Ours

“Flower <painted on> Vase”

RRNet

“Panda <*> Panda”

Figure 5: Left: The same layout appears visually different due to different relationships. Right: Our
method is also capable of learning the customized single relationship.

5 CONCLUSION AND DISCUSSION

This paper introduces the Scene Graph Adapter (SG-Adapter), a novel enhancement for text-to-image
generation models. By integrating scene graph knowledge, the SG-Adapter significantly improves the
contextual understanding of these models, ensuring images closely match their textual descriptions.
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The adapter employs an efficient triplet-token attention mechanism within a transformer architecture,
allowing for more precise mapping of text to visual elements. To validate its effectiveness, the
study utilized a specially curated dataset featuring multiple relations and high-quality annotations,
showing the crucial role of clean, relation-rich data in multi-relational learning. As shown in Fig.5,
SG-Adapter can also learn single complex relations as a by-product. Furthermore, we propose three
effective metrics derived from GPT-4V (Achiam et al., 2023) to evaluate the generated relation
precisely. Lastly, our method could learn a new and complex single relation as a by-product, similar
to ReVersion (Huang et al., 2023) and RRNet (Wu et al., 2024), as demonstrated in Fig.5.

As for limitation, to address data privacy concerns and follow the double-blind policy, we applied
anonymization techniques to human faces in our MultiRels dataset, which may introduce some arti-
facts affecting image quality inevitably. We are actively exploring more sophisticated anonymization
methods that preserve data integrity while ensuring privacy.
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A APPENDIX

A.1 INITIAL EXPERIMENT WITH SCENE GRAPH ATTENTION MASK

man cakeholds apple woman

CLIP + Structural Token-Token Attention Mask

Attention Mask Generated Images

holds

man

holds

apple

woman

holds

cake

man

holds

apple

woman

holds

cake

SG-Adapter’s Token-Triplet Attention Mask
<man,hold,cake><woman,hold,apple>

Attention Mask Generated Images

Figure 6: Results of Initial Attempt and SG-Adapter. Directly integrating the structural token-token
attention mask in a hard way within the CLIP model could break the delicate balance of learned
sequential dependencies and fail to ensure accurate semantic structure in the generated images.
Instead, our SG-Adapter makes use of a novel token-triplet attention mask in a learnable way to
correct the unreasonable token-token interactions and guarantee precise relation correspondence.

Our initial attempts involved the utilization of an adjusted attention mask Mτ within the transformer’s
attention mechanism of the CLIP text encoder, aiming to ensure intra-triplet attention cohesion and
maintain the semantic structure of caption. This integration, however, did not translate to empirical
improvements as shown in Fig. 6. We observed that directly manipulating the attention mask of
the pre-trained CLIP model could disrupt the delicate balance of learned sequential dependencies,
adversely affecting the quality of text-to-image synthesis due to inconsistencies between the model’s
training and inference methodologies.

A.2 ABLATION OF NUMBER OF PARAMETERS

A.3 MULTIRELS BENCHMARK DETAILS

As mentioned in the main paper, we organized the MultiRels into two parts: Reversion and Multiple
Relations. This section will introduce more detailed information about the Multiple Relations part.

The Multiple Relations part contains 210 samples. We initially plan to collect all the images from the
Internet and then label them manually. However, after we had collected dozens of images, we found
this way not efficient enough since there are very few images that contain multiple clear and salient
relations. Besides, a text describing a multiple relations image tends to be long so the relevance of
retrieved images will also decrease with the longer text. Therefore we only collect 40 multi-relations
images from the Internet by retrieving a long text.

On the contrary, 170 images in the Multiple Relations part were taken by ourselves.

1. Concerning human relations, we mainly focus on “holding”, “drinking”, “stands on”, “sits
on” such kinds of simple human actions, combining random 2-3 relations from them to result
in 15 different text templates containing multiple relations finally. To make the collected
images as diverse as possible, we arranged for 5 volunteers to participate in the photoshoot
in 6 different environmental backgrounds both indoor and outdoor. We re-paint faces in
these photos locally for the privacy of the volunteers and the blind paper review. We
examples of the above data in Fig.8, Fig.9.

2. For object relations, we consider the positional relationships like “is above”, and “is under”.
We place various normal objects, e.g. fruits and daily necessities, on the same/different
side of an object like a table, chair, bench, and so on. Also, for the diversity of the data set,
we take photos of these objects in 6 different indoor and outdoor environments. There are
examples provided in Fig.10, Fig.11.

The 15 templates we adopt in human relations are as follows:

1. a man stands on floor and a woman sits on a chair.
2. a woman stands on floor and a man sits on a chair.
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3. a man stands on floor and a woman stands on floor.

4. a man sits on a chair and a woman sits on a chair.

5. a man drinking milk and a woman drinking cola.

6. a man sits on a chair and a woman holding a ⟨obj⟩ stands on floor.

7. a woman sits on a chair and a man holding a ⟨obj⟩ stands on floor.

8. a man drinking juice sits on a chair and a woman stands on floor.

9. a man holding a ⟨obj⟩ stands on floor and a woman drinking water stands on floor.

10. a man stands on floor and a man sits on a chair.

11. a man drinking water sits on a chair and a man holding a ⟨obj⟩ stands on floor.

12. a man holding a ⟨obj⟩ stands on floor and a man sits on a chair.

13. a man holding a ⟨obj⟩ stands on floor and a man stands on floor.

14. a man drinking juice and a man drinking water.

15. a man drinking water and a man drinking water.

To see the complete data set and its corresponding metadata, please refer to the compressed file
MultiRels.zip.

A.4 ADDITIONAL QUALITATIVE RESULTS

We present additional qualitative results of our SG-Adapter compared with other baseline methods in
Fig.12, Fig.13.

A.5 GPT-4V PROMPTS

Prompt to Extract Scene Graph from Image: Please extract the scene graph of the given image.
The scene graph just needs to include the relations of the salient objects and exclude the background.
The scene graph should be a list of triplets like [”subject”, ”predicate”, ”object”].
Both subject and object should be selected from the following list: [”an astronaut”, ”a ball”, ”a
cake”, ”a box”, ”a television”, ”a table”, ”a horse”, ”a pitaya”, ”a woman”, ”a book”, ”a laptop”,

”a bottle”, ”a banana”, ”a sofa”, ”floor”, ”water”, ”an apple”, ”a chair”, ”a pineapple”, ”an
umbrella”, ”a boy”, ”a paper”, ”a bear”, ”a girl”, ”a panda”, ”a cup”, ”a man”, ”a bike”, ”a
carrot”, ”a phone”].
The predicate should be selected from the following list: [”stands on”, ”is above”, ”drinking”, ”is
under”, ”sits back to back with”, ”ride on”, ”holding”, ”sits on”]
Besides the scene graph, please also output the objects list in the image like [”object1”, ”object2”,
..., ”object”]. The object should be also selected from the above-mentioned object list. The output
should only contain the scene graph and the object list.

Prompt to Parse Caption to Scene Graph:Here I have a group of captions and please help me to
parse each one. Each caption should be transformed to a Scene Graph reasonably which is composed
of some relations. A relation is a triplet like [subject, predicate, object] and please replace the
original pronouns with reasonable nouns. Both subject and object should only have one object or
person. ”and” relation should not be included in the Scene Graph. Besides, I want to get the indexes
of all of the subjects, predicates, and objects in the original caption, which is called mapping here.
For example, the caption is: a boy holding a bottle shakes hands with a girl sitting on a bench.
The corresponding Scene Graph should be: [[a boy, holding, a bottle], [a boy, shakes hands with, a
girl], [a girl, sitting on, a bench]].
The indexes of each word(punctuation is also considered a word) in the caption(called
all words indexes) are:”a”:0, ”boy”:1, ”holding”:2, ”a” :3, ”bottle”:4, ”shakes”:5, ”hands”:6,

”with”:7, ”a”:8, ”girl”:9, ”sitting”:10, ”on”:11, ”a”:12, ”bench”:13.
The index of every word in the Scene Graph(i.e., the mapping) should be:[”a”:0, ”boy”:1, ”hold-
ing”:2,” a”:3, ”bottle”:4,”a”:0, ”boy”:1, ”shakes”:5, ”hands”:6, ”with”:7, ”a”:8, ”girl”:9,

”sitting”:10, ”on”: 11,”a”:12, ”bench”:13]
The indexes of all of the subject, predicate, and object in the original caption should be highly precise.
The results of each caption are data like:
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scene graph:
all words indexes:
mapping:
When generating the mapping please refer to the scene graph and the all words indexes to ensure the
correct result.
The captions are:

A.6 IMPLEMENTATION DETAILS

All the experiments are conducted on 768× 768 image resolution and all the models are trained on
a single A100 GPU for several hours. We adopt SD 2.1 as our base model. We set training batch
size 4, learning rate 1e-5. We adopt the optimizer AdamW and most models converge around 12000
to 14000 iterations. During the sampling process, we use a parameter τ to balance the ability to
control and the image quality. For a diffusion process with T steps, we could use scene graph guided
inference at the first τ ∗ T steps and use the standard inference for the remaining (1− τ) ∗ T steps.
In this paper, τ set to 0.3 is enough to achieve relation control while maintaining the image quality.

A.7 MORE ANALYSIS

We also provide additional results shown in Fig. 7. They demonstrates the SG-Adapter’s effectiveness
in addressing challenges related to generalization, attribute binding, and complex multi-entity interac-
tions. The SG-Adapter consistently generates accurate and coherent outputs across diverse scenarios,
including those not commonly observed in the training data. In the Generalization Test, it handles
novel relationships such as a cat shaking hands with another cat and a hamster riding a motorbike,
showing its ability to move beyond high-frequency training patterns. The Attribute Binding Test
confirms its capability to assign correct attributes, such as maintaining consistent colors for objects
like ”a blue cat and a white dog.” Additionally, in More Entities, the SG-Adapter successfully
manages multi-entity scenes, such as ”two astronauts standing while a man is sitting” and ”three
pandas sitting together,” showcasing its adaptability to diverse and complex relationships. These
results highlight the SG-Adapter’s ability to generate meaningful and accurate outputs, demonstrating
robustness and versatility across varied tasks.

hamster

motorbike

ride

cat

blue

is

dog

white

is

car

black

is

motorbike

green

is

cat

cat

Shake hands with

(a) Generalization Test (b) Attribute Binding Test 

SD
+ 

SG
 A

da
pt

or

Two astronauts

floor

Stand 

man

chair

sits

Three pandas

floor

sit

SD + SG Adaptor

(c) More Entities

Figure 7: (a) Generalization Test: Novel interactions beyond the training set, such as a cat shaking
hands with another cat or a hamster riding a motorbike. (b) Attribute Binding Test: Resolves
attribute binding, e.g., assigning correct colors to objects like ”a blue cat and a white dog.” (c) More
Entities: Handles multi-entity scenes, such as ”two astronauts standing while a man is sitting” or
”three pandas sitting together.”
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a man sits on a chair and a girl holding a phone stands on floor

[[a man, sits on, a chair],
[a girl, holding, a phone],
[a girl, stands on, floor]]

1    2    3    4   5   6       7   8   9      10      11  12       13    14   15

text: 

index: 

scene graph: mask mapping:
[[1, 2, 3, 4, 5, 6], 
[8, 9, 10, 11, 12], 
[8, 9, 13, 14, 15]]

Figure 8: Example 1 of MultiRels

a man holding a carrot stands on floor and a man sits on a chair

[[a man, holding, a carrot],
[a man, stands on, floor],
[a man, sits on, a chair]]

1    2       3       4     5         6      7     8      9  10  11   12 13 14  15

text: 

index: 

scene graph: mask mapping:
[[1, 2, 3, 4, 5], 
[1, 2, 6, 7, 8], 
[10, 11, 12, 13, 14, 15]]

Figure 9: Example 2 of MultiRels

a pineapple is above a table and a bottle is under the table

[[a pineapple, is above, a table],
[a bottle, is under, the table]]

1       2         3     4     5    6      7    8    9    10   11   12  13

text: 

index: 

scene graph: mask mapping:
[[1, 2, 3, 4, 5, 6], 
[8, 9, 10, 11, 12, 13]]

Figure 10: Example 3 of MultiRels

[[a bottle, is above, a bench],
[an apple, is under, the bench]],

a bottle is above a bench and an apple is under the bench 

1     2     3     4     5    6       7    8      9    10   11   12   13

text: 

index: 

scene graph: mask mapping:
[[1, 2, 3, 4, 5, 6], 
[8, 9, 10, 11, 12, 13]]

Figure 11: Example 4 of MultiRels
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Stable Diffusion Finetune CLIP

GLIGEN Adapter Lora Adapter

SG-Adapter

a pitaya is under a chair and a cup is
above the chair

Stable Diffusion Finetune CLIP

GLIGEN Adapter Lora Adapter

SG-Adapter

a woman ride on a bike and a man ride 
on a horse

Figure 12: More qualitative results-1.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Stable Diffusion Finetune CLIP

GLIGEN Adapter Lora Adapter

SG-Adapter

a woman holding a box and a man 
holding a phone

Stable Diffusion Finetune CLIP

GLIGEN Adapter Lora Adapter

SG-Adapter

a bear sits on a chair and a woman 
stands on floor

Figure 13: More qualitative results-2.
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