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Abstract

Classic no-regret multi-armed bandit algorithms,
including the Upper Confidence Bound (UCB),
HEDGE, and EXP3, are inherently unfair by de-
sign. Their unfairness stems from their very ob-
jective of playing the most rewarding arm as fre-
quently as possible while ignoring the rest. In this
paper, we consider a fair prediction problem in
the stochastic setting with a guaranteed minimum
rate of accrual of rewards for each arm. We study
the problem in both full-information and bandit
feedback settings. Combining queueing-theoretic
techniques with adversarial bandits, we propose a
new online policy called BANDITQ that achieves
the target reward rates while conceding a regret and
target rate violation penalty of at most O(T 3/4).
The regret bound in the full-information setting
can be further improved to O(

√
T ) under either

a monotonicity assumption or when considering
time-averaged regret. The proposed policy is effi-
cient and admits a black-box reduction from the
fair prediction problem to the standard adversarial
MAB problem. The analysis of the BANDITQ pol-
icy involves a new self-bounding inequality, which
might be of independent interest.

1 INTRODUCTION

A vast majority of the multi-armed bandit (MAB) algorithms
deployed in practice are designed to maximize the cumu-
lative rewards. Consequently, these algorithms could end
up systematically avoiding a subset of arms (which could
represent users with certain demographic characteristics or
historical activities) that the algorithm finds less rewarding
(Sweeney, 2013). In a typical case of algorithmic discrim-
ination, Facebook was sued for targeting ads on housing,
credit and employment based on race, gender, and religion -

all protected classes under US law (Hao, 2019). A similar
problem of fair allocation of resources arises in wireless
settings, where schedulers maximizing the total throughput
could result in not serving a subset of users having relatively
poor channels. A number of papers have proposed a solution
to the fairness problem by putting an explicit constraint on
the minimum frequency of pulls for each arm. However, in
many problems of practical interest, the algorithm designer
is interested in guaranteeing a minimum rate of reward ac-
crual for each arm - not just ensuring a minimum frequency
at which the arms ought to be pulled.

Examples: (1) In online ad allocation, the advertisers are
primarily interested in maximizing their click-through rate,
which fetches them monetary rewards, rather than just the
number of times their ads are displayed against a search
result. (2) In wireless scheduling problems, the users, who
correspond to the bandit’s arms in our formulation, are in-
terested in guaranteed data rates rather than their frequency
of scheduling - a low-level metric transparent to the users.
(3) As a final example, consider a crowdsourcing platform
(e.g., Amazon Mechanical Turk) where the workers receive
payments for performing tasks (Fu and Liu, 2021). Upon
completing each task, the platform receives a fixed percent-
age of the payment as revenue. The goals of the platform
are - (a) to allocate the oncoming tasks fairly among the
workers and (b) to maximize the platform’s total revenue.
In our formulation, the workers correspond to the arms, and
the revenue maximization problem (b) becomes equivalent
to the regret minimization problem. However, without the
fairness requirement (a), the platform would assign most of
the jobs to the best-performing workers, effectively ignoring
a vast majority of the registered workers who may leave
the platform dissatisfied. Hence, the platform may suffer
from a high attrition rate. One possible way to enhance
the retention rate of the workers and make the platform
non-discriminating is to ensure a guaranteed reward rate
(equivalent to a minimum wage) for each registered worker.
In this paper, we will see that the proposed BANDITQ policy
gives an efficient solution to each of the above problems.



Clearly, the rate of reward accruals of the arms depends on
the unknown reward distribution, which needs to be learned
along the way. In this paper, we solve this fair prediction
problem in the stochastic setting via a black-box reduction
to an adversarial MAB problem by making use of a nat-
ural queueing dynamics to keep track of the target rates.
Although we consider i.i.d. rewards, we will see that the use
of adversarial MAB sub-routines is essential to account for
the target reward rate constraints.

1.1 RELATED WORKS

There is extensive literature on the classic Multi-armed Ban-
dits (MAB) problem, where the objective is to sequentially
play an arm on each round from a given set of arms with
unknown reward distributions to maximize the cumulative
reward. As the feedback is limited to the observed rewards
only, the MAB problem naturally involves an exploration vs
exploitation trade-off. See Cesa-Bianchi and Lugosi (2006);
Bubeck et al. (2012); Lattimore and Szepesvári (2020) for
textbook treatments on MAB. The fair prediction problem
considered in this paper belongs to a class of MAB problems
with global constraints. Several authors have considered
variants of the fair prediction problem in MAB with widely
varying definitions for fairness (Joseph et al., 2016; Gillen
et al., 2018; Bechavod et al., 2020; Hossain et al., 2021;
Huang et al., 2022). Closer to our setting, the papers by
Patil et al. (2021); Claure et al. (2020), and Li et al. (2019)
considered a stochastic MAB problem while requiring the
minimum fraction of pulls of each arm to exceed a given
threshold. Celis et al. (2019) considered a similar problem
in the personalized recommendation setting where both the
minimum and the maximum fraction of pulls are constrained
in order to avoid the polarization of views. Similar to ours,
Li et al. (2019) used a virtual queueing recursion to handle
the fairness constraints. However, their UCB-based policy
yields a regret bound which varies linearly with the horizon
length (Li et al., 2019, Theorem 2). Chen et al. (2020) con-
sidered the above problem in the contextual bandit setting
and proposed a no-regret policy with a known context dis-
tribution. Cai et al. (2018) considered a related stochastic
MAB problem with a long-term constraint on an auxiliary
(level-2) reward process, which is assumed to be indepen-
dent of the main (level-1) rewards of the arms. On the other
hand, in our problem, the corresponding level-1 and level-2
reward processes are identical, and hence, these results do
not apply due to the lack of the independence assumption.
Badanidiyuru et al. (2018); Immorlica et al. (2022), and Xia
et al. (2015) considered the Bandits with Knapsack (BwK)
problem in the stochastic and adversarial settings. In this
problem, a given resource budget is allocated to the arms at
the beginning, and the policy continues until one of the arms
finishes all of its budgets. Immorlica et al. (2022) used a
Lagrangian-based technique to design a no-regret policy for
the BwK problem. A recent paper by Bistritz and Bambos

(2022) considered a similar multiplayer multi-armed bandit
problem with QoS constraints. However, they did not pro-
vide any regret bound. In this connection, we also mention
a parallel line of work on fair resource allocation policies
where, instead of meeting explicit constraints, the objective
is to maximize a non-linear concave utility function of the
cumulative rewards (Sinha et al., 2023). Our problem is
also closely connected to a recent series of works on On-
line Convex Optimization (OCO) with long-term constraints
(Neely and Yu, 2017; Yu et al., 2017; Yuan and Lamperski,
2018; Castiglioni et al., 2022). While these papers propose
problem-specific policies, we give a black-box reduction
using any arbitrary adaptive learning policy as a subroutine
and achieve state-of-the-art regret and constraint violation
bounds. Furthermore, while most of the previous papers con-
sider the full-information setting and/or assume the strict
feasibility or Slater’s condition, we consider the more gen-
eral bandit feedback setting without making any additional
assumptions. The Lyapunov-based technique presented in
this paper has been recently extended to solve the problem
of OCO with long-term constraints as well (Sinha and Vaze,
2023, 2024).

1.2 OUR CONTRIBUTIONS

In contrast with a major line of work on fair MABs, which is
mainly concerned with guaranteeing a minimum frequency
of plays for each arm (procedural fairness), in this paper,
we initiate the study of a class of problems guaranteeing a
minimum rate of reward accruals for each arm (substantive
fairness). Compared to the standard MAB problem, here,
the difficulty stems from the fact that in addition to playing
the unknown best arm sufficiently many times, other arms
with unknown mean rewards also ought to be played fre-
quently enough so as to satisfy the given fairness constraints.
Consequently, the design of our algorithm and its analysis
proceed along a different line from that of the prior works.
In particular, we claim the following contributions:

1. We propose a fair learning policy for stochastic ban-
dits, called BANDITQ, via a black-box reduction to the
standard adversarial MAB problem. The problem is
studied in both full information and bandit feedback
settings. The proposed BANDITQ policy keeps track of
the global reward rate constraints through an auxiliary
queueing process, which is then used to define the re-
wards for the unconstrained MAB problem recursively.

2. An attractive feature of our policy is that it is com-
pletely oblivious to the algorithm used for the uncon-
strained MAB problem. In particular, BANDITQ can
use any existing MAB policy with a data-dependent
adaptive regret bound. The key to this attractive sep-
aration result is a new self-bounding inequality that
bounds the sum of the regret and current rate violations
in terms of past violations.



3. We introduce a new proof technique that bounds the
regret and rate violations by solving certain sequential
inequalities. The proof arguments are crisp and utilize
off-the-shelf adaptive regret bounds.

4. We supplement our theoretical results with illustrative
numerical experiments.

2 PROBLEM FORMULATION

We consider a regret minimization problem in the context
of Multi-armed Bandits (MAB) with an additional fairness
constraint. The fairness constraint requires that each arm in
a given subset P (called protected class) must attain pre-
specified reward accrual rates, which are assumed to be fea-
sible. Formally, we consider an N -armed bandit, which on
round t receives an unknown reward vector r(t) ∈ [0,1]N .
The vector r(t) is generated i.i.d. on each round with an
unknown expectation µ. On round t, an online policy first
decides a probability distribution x(t) ∈ ∆N , where ∆N

denotes the set of all probability distributions supported on
N arms. The policy then randomly samples an arm It ∈ [N]
from the distribution x(t)1. Depending on the feedback
structure, either the entire reward vector r(t) (in the case of
full information feedback) or the reward of the sampled arm
rIt(t) only (in the case of bandit feedback) is revealed to the
policy at the end of round t. The above process continues
for T rounds.

Fairness constraints: Due to the action of the policy, the
selected arm It receives a random reward of value rIt(t).
Hence, if on round t, the online policy samples arms ac-
cording to the distribution x(t), the ith arm receives a (con-
ditional) expected reward of xi(t)Eri(t) = xi(t)µi, and
the online policy receives an overall (conditional) expected
reward of ⟨x(t),µ⟩. Let λ⃗ be the given target reward rates
vector. The fairness constraint mandates that the long-term
rate of rewards accrued by the arm i ∈ P must be at least
λi,∀i ∈ P (see Eqn. (4)). For notational simplicity, we may
assume that λi = 0,∀i ∈ [N] ∖P.

Offline Benchmark and Performance Metric: We com-
pare the performance of an online policy against any fixed
sampling distribution x∗ ∈∆N that meets the target reward
rates. In other words, our comparator class Ω(λ⃗), indexed
by the target vector λ⃗, is defined as follows:

Ω(λ⃗) = {x∗ ⊆∆N ∶ x
∗
i µi ≥ λi, ∀i ∈ P}. (1)

Clearly, in order for the target rate vector λ⃗ to be feasible
(i.e., Ω(λ⃗) ≠ ∅), it is necessary and sufficient that

∑
i

λi

µi
≤ 1. (2)

1This protocol includes conditionally deterministic policies,
such as UCB, where x(t) is supported on only one arm.

See Section A in the Appendix for a brief discussion on
the feasibility assumption. The set of all offline benchmarks
Ω(λ⃗) is closed and convex with an Euclidean diameter of
D =
√
2. Our goal is to design a sampling policy {x(t)}t≥1

that achieves a sublinear regret against any x∗ ∈ Ω(λ⃗),
where

RegretT (x
∗
) ≡ ⟨x∗,µ⟩T −E

T

∑
t=1

N

∑
i=1

ri(t)1(It = i), (3)

while meeting the long-term reward rate constraints defined
next2. Asymptotically, for any time interval I ⊆ [T ], the
long-term rate constraint requires:

lim inf
∣I∣→∞

∣I ∣
−1E[∑

t∈I
ri(t)1(It = i)] ≥ λi, ∀i ∈ P. (4)

Note that Eq. (4) requires the minimum reward rate guar-
antee to hold uniformly across the time horizon for any
sufficiently long interval of time. In other words, we require
that no individual arm is starved for a long period of time
- a problem left open by Patil et al. (2021). Furthermore,
following Cai et al. (2018), we work with a fine-grained
non-asymptotic metric rate violation penalty defined below:

V(T ) =max
i∈P

E[
T

∑
t=1
(λi − ri(t)1(It = i))]. (5)

In brief, we seek to design an online policy for which both
RegretT and V(T ) are sub-linear in T . We note two fun-
damental differences between the above problem and the
standard online learning framework (Orabona, 2019). First,
contrary to the online learning setting, where the set of
benchmarks Ω is specified a priori (independent of the re-
wards), in this problem, the set of benchmarks (1) depends
on the unknown reward distributions through their expec-
tations µ. Second, unlike the online learning setting, the
action taken by the policy on a round is not restricted to
the set Ω(λ⃗) provided that the long-term target rates are
met. Note that upon setting the vector λ⃗ to zero, we recover
the classic MAB problem as a special case. In the follow-
ing section, we introduce the BANDITQ policy in the full
information setting.

3 BANDITQ POLICY WITH FULL
INFORMATION FEEDBACK

In this Section, we consider the full-information setup when
the entire reward vector is revealed to the learner at the
end of each round. Apart from a technical result regarding
the diameter of an auxiliary random process (Proposition
5 in the Appendix), the extension of the full-information
policy to the bandit setting requires no substantially new
ideas and will be dealt with in the following section. On

2When we refer to the worst-case regret, we drop the argument
x∗ in parenthesis in the regret definition (3).



a high level, the BANDITQ policy first defines a queueing
dynamics to take into account the gap between the target
reward and the reward accrued by the policy for each arm
so far. It then extends the drift-plus-penalty framework of
Neely (2010, Chapter 4) to simultaneously achieve a small
regret and meet the long-term constraints. However, to make
this overall scheme work, we must adapt the asymptotic
stochastic setting of Neely (2010) to the non-asymptotic
adversarial setup with online information. This extension
turns out to be highly non-trivial and requires new proof and
algorithmic techniques, which are very different from that
of the Max-Weight policy proposed by Neely (2010).

We associate a non-negative state variable Qi(t) to each
protected arm i ∈ P. Under the action of an online pol-
icy π = {x(t)}t≥1, the state variables evolve according to
the following queueing dynamics, known as the Lindley
recursion (Lindley, 1952):

Qi(t) = (Qi(t − 1) + λi − ri(t)xi(t))
+
, Qi(0) = 0, (6)

where we adopt the standard notation (y)+ ≡ max(0, y).
We set Qi(t) = 0,∀t,∀i ∉ P . To get an intuition for Eq. (6),
imagine that on every round t, a fixed deterministic amount
of work λi arrives at the queue Qi. Then, under the action
x(t) of an online policy, min(Q(t − 1) + λi, ri(t)xi(t))
amount of work departs from Qi. It is intuitive that to sta-
bilize the queues, the long-term service rates must be at
least as large as the long-term arrival rates. Thus, any online
policy stabilizing the queues would automatically satisfy
the target rate requirements. However, since we are also
interested in achieving a small regret, meeting the rate con-
straints alone is not enough (c.f. Huang et al. (2023)). Our
online policy must also perform competitively in terms of
the cumulative rewards against every feasible stationary
action given by (1).

Towards this goal, let us first define the following quadratic
potential function (a.k.a. Lyapunov function in the queueing
theory parlance):

Φ(t) = ∑
i∈P

Q2
i (t). (7)

We now have an upper bound on the change of potential
under the action of a policy. From (6), we have

Q2
i (t)

≤ (Qi(t − 1) + λi − ri(t)xi(t))
2

≤ Q2
i (t − 1) + λi + xi(t) + 2Qi(t − 1)(λi − ri(t)xi(t)),

where, in the last inequality, we have used the fact that 0 ≤
λi, ri(t), xi(t) ≤ 1,∀i, t. Summing up the above inequality
for each i ∈ P , we have the following upper bound for the
change of the potential on round t:

Φ(t) −Φ(t − 1) ≤ 2 + 2∑
i∈P

Qi(t − 1)(λi − ri(t)xi(t)), (8)

where we have used the fact that ∑i λi ≤ 1,∑i xi(t) ≤ 1,
where the first inequality follows from the non-emptiness
of Ω(λ⃗). Eqn. (8) suggests that running a MAB policy
to maximize virtual cumulative rewards such that pulling
the ith arm on round t yields a virtual reward of Qi(t −
1)ri(t) will help minimize the change of the potential on
round t and, hence, meet the target rates. However, this does
not explicitly take into account our other goal, namely to
minimize the regret. To achieve both goals, motivated by
the drift-plus-penalty framework of Neely (2010), we now
define an instance of the standard online linear optimization
(OLO) problem Ξ with action set ∆N , where the surrogate
reward of the ith arm on round t is defined as:

r′i(t) ≡ (Qi(t − 1) + V )ri(t), ∀i ∈ [N]. (9)

In the above, V > 0 is a hyper-parameter, to be fixed later,
that depends only on the length of the horizon T. Intuitively,
the surrogate reward vector r′(t) strikes a balance between
attaining the target rates (through the first term) and achiev-
ing a small regret (through the second term). However, the
definition of rewards (9) leads to two significant technical
challenges in learning the surrogate rewards. First, due to
the presence of the queue variables, the reward vectors r′(t)
are not bounded a priori, which critically affects the regret
bound for the surrogate problem Ξ. Second, although the
original reward sequence {r(t)}t≥1 is i.i.d., the reward se-
quence {r′(t)}t≥1 for the problem Ξ is not i.i.d. any more,
again due to the presence of the queue variables, which are
temporally correlated via Eqn. (6). The second difficulty
prompts us to use an adversarial online learning policy for
the auxiliary OLO problem Ξ.

The BANDITQ policy: The proposed BANDITQ policy
can use any adaptive no-regret policy with a second-order
regret bound for the auxiliary problem Ξ. This includes
policies such as Online Gradient Ascent (OGA) with adap-
tive step sizes (Orabona, 2019) 3 and SQUINT (Koolen and
Van Erven, 2015). To fix ideas, in this paper, we will use the
OGA policy due to its simplicity. This online policy, which
is closely related to the AdaGrad policy (Duchi et al., 2011),
updates the sampling distribution on each round using the
usual gradient step with an adaptive step size:

x(t + 1)← Π∆N
(x(t) +

r′(t)
√

2∑
t
τ=1 ∣∣r

′(τ)∣∣22

). (10)

In the above, the Π∆N
(⋅) function, which denotes the Eu-

clidean projection operator on the standard simplex ∆N , can
be efficiently implemented in O(N logN) time (Wang and
Carreira-Perpinán, 2013). The complete BANDITQ policy
in the full-information setting is summarized in Algorithm
1.

3Since ours is a maximization problem, we use a gradient
ascent step rather than descent.



Algorithm 1 BANDITQ Policy with full information

1: Input: Target reward rate vector λ⃗, Euclidean projec-
tion oracle Π∆N

(⋅) onto the simplex ∆N .
2: Q← 0,x← [1/N, 1/N, . . . , 1/N], V ←

√
T ,S ← 0. ▷

Initialization
3: for each round t = 1 ∶ T do
4: Sample an arm It from the distribution x.
5: Observe the entire reward vector r(t) ▷

Full-information feedback
6: Qi = (Qi +λi − ri(t)xi)

+
, ∀i ∈ P.▷ Updating the

queue lengths
7: r′i(t)← (Qi + V )ri(t), ∀i ∈ [N] ▷ Computing

the surrogate rewards
8: S ← S + ∣∣r′(t)∣∣2.▷ Accumulating the norm of the

past gradients

9: x← Π∆N
(x + r′(t)√

2S
) ▷ Online gradient ascent

10: end for each

In our analysis, we will use the following standard second-
order regret bound achieved by the OGA policy with the
above adaptive step sizes.

Theorem 1 (Orabona (2019), Theorem 4.14). Let X ⊆

Rd be a convex set with a finite Euclidean diameter D.
Consider an arbitrary sequence of linear reward functions
with gradients {gt}t≥1. Assume that the Online Gradient
Ascent policy is run with step sizes4 ηt =

D√
2∑t

τ=1 ∣∣gτ ∣∣22
,1 ≤

t ≤ T. Then the regret of the policy can be upper-bounded
as follows:

RegretT ≤D

¿
Á
ÁÀ2

T

∑
t=1
∣∣gt∣∣22. (11)

It is important to note that the above bound is scale-free,
i.e., no a priori bounds on the gradients are needed for the
above result (Putta and Agrawal, 2022; Hadiji and Stoltz,
2023). Specializing Theorem 1 to our surrogate problem Ξ,
we obtain the following regret bound, which depends on the
sequence of queue variables:

RegretΞt ≤ 2

¿
Á
ÁÀ

t

∑
τ=1
∑
i

(Qi(τ − 1) + V )2ri(t)2

≤ 2

¿
Á
ÁÀ2

t

∑
τ=1
∑
i

Q2
i (τ) + 2V

√
2Nt. (12)

In the above, we have used the fact that 0 ≤ ri(t) ≤ 1,∀t, i,
and the elementary inequalities (a + b)2 ≤ 2(a2 + b2),
√
x + y ≤

√
x +
√
y, x, y ≥ 0.

4Without any loss of generality, we set ηt = 0 if gt = 0.

3.1 ANALYSIS

Unlike the analysis in Patil et al. (2021) and Cai et al. (2018),
which proceed by constructing stochastic confidence inter-
vals for the mean rewards of each arm, we directly make use
of the regret bound (12) via an "adversarial-style" analysis,
which critically makes use of a new self-bounding inequality
derived below. Since the state variables {Q(t)}t≥1 evolve
according to the recursion (6), we do not immediately have
an explicit control on the regret bound (12), which depends
on the queue lengths. Hence, to bound the regret, we take
an indirect approach. Fix any feasible distribution x∗ ∈ Ω.
From Eq. (8), we have

Φ(τ) −Φ(τ − 1) − 2V ∑
i

ri(τ)xi(τ)

≤ 2 + 2∑
i

Qi(τ − 1)λi −

2∑
i

(Qi(τ − 1) + V )ri(τ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r′i(τ)

xi(τ).

Summing up the above inequalities from τ = 1 to τ = t and
recalling that Φ(t) = ∑iQ

2
i (t),Φ(0) = 0, we obtain

∑
i

Q2
i (t) + 2

t

∑
τ=1

V ∑
i

ri(τ)(x
∗
i − xi(τ))

≤ 2t + 2
t

∑
τ=1
∑
i

Qi(τ − 1)(λi − ri(τ)x
∗
i ) + 2RegretΞt ,

(13)

where RegretΞt denotes the worst-case regret for the surro-
gate problem (defined similarly as Eq. (3)). Note that, in
the above, the regret bound on the RHS is random as it
depends on the magnitude of the random process {Q(τ)}τ .
Let {Fτ}τ≥0 be the natural filtration generated by the se-
quence of rewards {r(τ)}τ≥0. Taking expectations, we have
the following set of inequalities for any benchmark distribu-
tion x∗ ∈ Ω(λ⃗):

∑
i

EQ2
i (t) + 2V Regrett(x

∗
)

= ∑
i

EQ2
i (t) + 2V

t

∑
τ=1

E∑
i

ri(τ)(x
∗
i − xi(τ))

(a)
≤ 2t + 2

t

∑
τ=1

E∑
i

Qi(τ − 1)(λi − x
∗
iE[ri(τ)∣Fτ−1]) +

2E[RegretΞt ]

(b)
≤ 2t + 2

t

∑
τ=1

E∑
i

Qi(τ − 1)(λi − µix
∗
i ) + 2E[RegretΞt ]

(c)
≤ 2t + 2E[RegretΞt ]

(d)
≤ 2t + 4

¿
Á
ÁÀ2

t

∑
τ=1
∑
i

EQ2
i (τ) + 4V

√
2Nt, (14)

where in (a), we have taken the expectation of both sides of
(13) with respect to the i.i.d. reward process {r(t)}t≥1, and



used the law of iterated expectations; in (b), we have used
the i.i.d. nature of the reward process; in (c) we have used
the feasibility condition of the benchmark x∗ from Eq. (1);
in (d), we have used the second-order regret bound from Eq.
(12) in conjunction with Jensen’s inequality for the square
root function. We emphasize that step (d) is the only place
where we use any property of the online learning subroutine.
In other words, our reduction is universal in the sense that
any online learning subroutine for Ξ, which could be very
different from OGA but has a data-dependent regret bound
similar to (11), can be used with BANDITQ .

Inequality (14) constitutes the key step in our analysis. It
shows that the queue-length process {Q(t)}t≥1 possesses a
self-bounding property in the sense that the expected queue-
length squared at any round t is bounded by the square
root of the sum of expected queue-length squared up to
round t plus other auxiliary terms. The regret decomposition
inequality (14) will be used to prove our main result in the
full information setting.

Theorem 2. The BANDITQ policy described in Algorithm
1 achieves the following regret and rate violation bounds:

RegretT = O(max(
T
√
V
,
√
NT )),V(T ) = O(

√
V T ).

In particular, upon setting V =
√
T , we obtain

RegretT = O(max(T
3/4,
√
NT )), V(T ) = O(T 3/4

).

The proof given below involves solving a non-linear sequen-
tial inequality to obtain a sublinear bound for the queue
lengths. The resulting queue length bound is then used to
control the regret.

Proof. First, we will derive a sublinear bound for the ex-
pected queue lengths under the BANDITQ policy. The rate
violation and regret bounds will follow from this result.

1 (a). Bounding the queue lengths: Since the reward
components are bounded in [0,1], using the fact that
∑i ri(τ)(xi(τ) − x

∗
i ) ≤ 1,∀τ, we have that Regrett(x

∗) ≥
−t. Hence, from Eq. (14), we have for all t ≥ 1 ∶

∑
i

EQ2
i (t) ≤ 2(V + 1)t + 4

¿
Á
ÁÀ2

t

∑
τ=1
∑
i

EQ2
i (τ)

+4V
√
2Nt. (15)

Hence, for any round 1 ≤ τ ≤ t, we have that

∑
i

EQ2
i (τ) ≤ 2(V + 1)t + 4

¿
Á
ÁÀ2

t

∑
τ=1
∑
i

EQ2
i (τ) + 4V

√
2Nt.

Summing up the above inequalities for all τ ∈ [1, t], we
have

R2
(t) ≤ 2(V + 1)t2 + 4

√
2NV t

3/2
+ 4
√
2tR(t).

where we have defined R(t) ≡
√

∑
t
τ=1∑

N
i=1EQ2

i (τ). Solv-
ing the above quadratic inequality in R(t), we obtain

R(t) = O(t) +O(t
√
V ) +O(N

1/4√V t
3/4
) = O(t

√
V ). (16)

Plugging the above bound in (15), we have for each i ∈ P ∶

EQ2
i (t) = O(V t) +O(t

√
V ) +O(V

√
Nt) = O(V t)

(Jensen’s ineq.)
Ô⇒ EQi(t) = O(

√
V t). (17)

1 (b). Bounding the rate violation penalty V(T ): Upon
expanding (6), we obtain the following well-known repre-
sentation for the Lindley recursion (Asmussen, 2003, pp.
92):

Qi(t) = sup
1≤τ≤t

(0, λiτ −
t

∑
z=t−τ+1

ri(z)xi(z)), ∀i ∈ P. (18)

Combining Eq. (18) with the bound (17), we can bound the
constraint violation penalty as

V(T ) ≤max
i∈P

EQi(T ) = O(
√
V T ).

2. Bounding the regret: Substituting (16) into the in-
equality (14) and using the fact that Q2

i (T ) ≥ 0,∀i, t, we
have for any x∗ ∈ Ω ∶

2V RegretT (x
∗
) ≤ O(T ) +O(T

√
V ) +O(V

√
NT ).

This yields the following regret bound

RegretT (x
∗
) = O(

T

V
) +O(

T
√
V
) +O(

√
NT )

= O(max(
T
√
V
,
√
NT )).

Remarks: It may appear from the statement of Theorem
2 that BANDITQ achieves a sub-optimal O(T 3/4) regret
bound even for the standard regret minimization problem
with no specified target reward rates, i.e., λ = 0. However,
as we show in Section B of the Appendix, the BANDITQ
policy actually achieves the optimal instance-independent
O(
√
T ) regret bound for both full-information and bandit

feedback settings for λ = 0.

As an immediate corollary of Theorem 2, the following
result shows that under the action of the BANDITQ policy,
the target reward accrual rates are met asymptotically for
each arm i ∈ P ∶

Proposition 1. Upon setting V =
√
T , for any interval

I ⊆ [T ] such that T 3/4 = o(∣I ∣), the BANDITQ policy in
the full-information setting yields:

lim inf
∣I∣→∞

∣I ∣
−1E∑

t∈I
ri(t)xi(t) ≥ λi, ∀i ∈ P.



See Appendix C for the proof. Although Theorem 2 gives
an O(T

3/4) regret bound compared to the minimax re-
gret bound of O(

√
T logN) for the unconstrained problem

(Zhao and Chen, 2019, Theorem 4), the next result shows
that the proposed BANDITQ policy achieves a substantially
stronger O(

√
T ) bound for the average regret, where the

regret is averaged over the entire time horizon T .

Proposition 2. In the full information setting, un-
der the BANDITQ policy with V =

√
T , we have

1
T ∑

T
t=1 Regrett(x

∗) = O(
√
NT ), for any x∗ ∈ Ω and

V(T ) = O(T 3/4).

Proof. Define S2
t ≡ ∑iEQ2

i (t). From Eq. (13), for all t ∈
[T ], we have

S2
t + 2V Regrett(x

∗
) ≤ 2t + 4

¿
Á
ÁÀ2

t

∑
τ=1

S2
τ + 4V

√
2Nt

≤ 2T + 4

¿
Á
ÁÀ2

T

∑
τ=1

S2
τ + 4V

√
2NT.

Summing up the above inequalities from t = 1 to t = T and

defining zT ≡
√

∑
T
τ=1 S

2
τ , we obtain

z2T − 4TzT + 2V
T

∑
t=1

Regrett(x
∗
) ≤ 2T 2

+ 4V
√
2NT 3/2. (19)

Upon completing the square, we have z2T − 4TzT = (zT −
2T )2 − 4T 2 ≥ −4T 2. Hence, from (19), we conclude that:

1

T

T

∑
t=1

Regrett(x
∗
) ≤ 3

T

V
+ 2
√
2NT.

The final result follows upon setting V =
√
T .

Finally, if one is only interested in achieving the target
rate vector λ⃗ while completely disregarding the regret, the
following Proposition shows that the queue-length bound,
and hence, the rate violation penalty given in Proposition 2
can be further improved to O(

√
T ) upon setting V = 0.

Proposition 3. The cumulative constraint violation under
the BANDITQ policy in the full-information setting with
V = 0 can be bounded as follows:

V(T ) ≤max
i

EQi(T ) ≤ 6
√
T .

Proof. From Eq. (14), we have for any fixed t and any
1 ≤ τ ≤ t ∶

∑
i

EQ2
i (τ) ≤ 2t + 4

¿
Á
ÁÀ2

t

∑
τ=1
∑
i

EQ2
i (τ) ∀t ≥ 1,∀i. (20)

Summing up the above inequalities for 1 ≤ τ ≤ t and defin-
ing z2t ≡ ∑

t
τ=1∑iEQ2

i (τ), we have

z2t ≤ 2t
2
+ 4
√
2tzt.

Solving the above quadratic inequality, we conclude that

¿
Á
ÁÀ

t

∑
τ=1
∑
i

EQ2
i (τ) = zt ≤ 6t.

Substituting the above bound in (20) and using Jensen’s
inequality, we conclude that EQi(t) ≤ 6

√
t,∀i ∈ [N].

Sharper regret bound under a monotonicity assumption:
The regret and constraint violation bounds derived above
hold unconditionally. We now show that the BANDITQ pol-
icy achieves the minimax optimal O(

√
T ) regret under a

mild monotonicity assumption on the queue length sequence
stated below.

Assumption 1 (Monotonicity in expectation). Under the
action of the chosen OLO subroutine, the sequence of vari-
ables Q2(t) ≡ ∑iEQ2

i (t), t ≥ 1 are non-decreasing in t.

Theorem 3. Under Assumption 1, the regret of the BAN-
DITQ policy in the full-information setting is bounded as

Regrett ≤
5t

V
+ 2
√
2Nt, 1 ≤ t ≤ T.

In particular, with V =
√
T , we have Regrett = O(

√
Nt)

for any t ∈ [T ].

See Appendix D for the proof. Assumption 1 is related
to a stochastic monotonicity assumption. Many closely re-
lated Markov chains, e.g., the birth-death chain, which is a
continuous-time model of a queue with zero initial states, are
known to be stochastically monotone (Ross, 1995, Proposi-
tion 9.2.4) (Van Doorn, 1980, Theorem 6.1), (Keilson and
Kester, 1977).

4 BANDITQ POLICY WITH BANDIT
FEEDBACK

Under bandit feedback, only the reward of the selected arm,
i.e., rIt(t), is revealed to the policy at the end of round t.
The reader should compare this with the full-information
setup where the entire reward vector r(t) is revealed ir-
respective of the action. To deal with the resulting in the
exploration-vs-exploitation trade-off in the limited informa-
tion setup, we replace the full-information OGA policy (10)
with an adversarial MAB policy, proposed recently by Putta
and Agrawal (2022), that enjoys a scale-free second-order re-
gret bound similar to Eq. (11). Their Follow-the-regularized-
leader (FTRL)-based MAB policy uses the standard inverse
propensity score to estimate the reward vectors and em-
ploys a log-barrier regularizer in the FTRL algorithm with
a carefully chosen learning rate schedule. The arms are fi-
nally selected by mixing a uniform exploration component
with the distribution obtained from the FTRL algorithm. For



completeness, we describe the BANDITQ policy in the ban-
dit information setting in Appendix G. Putta and Agrawal
(2022) showed that their proposed MAB policy works for
any real loss vector (unlike, e.g., EXP3, which requires non-
negative losses) and enjoys the following scale-free adaptive
regret bound.

Theorem 4 (Putta and Agrawal (2022)). MAB Algorithm 1
of Putta and Agrawal (2022), when run with the oblivious
linear reward sequence with coefficient vectors {gt}Tt=1,
enjoys the following scale-free regret bound:

RegretT = Õ(

¿
Á
ÁÀN

T

∑
t=1
∣∣gt∣∣22 +max

t∈[T ]
∣∣gt∣∣∞

√
NT). (21)

It can be seen that the only essential difference be-
tween the above expression and that of the OGA regret
bound in Eq. (11) is the presence of the additional term
Õ(maxt∈[T ] ∣∣gt∣∣∞

√
NT ) in the former. With a more care-

ful analysis using martingales, our previous arguments go
through with minimal changes. We now outline the main dif-
ferences between the full information and the bandit setup.

Notation: Let us encode the index of the selected arm
It on round t by the one-hot encoded vector X(t) =
(X1(t),X2(t), . . . ,XN(t)) ∈ {0,1}

N , where Xi(t) =
1(It = i),∀i. Thus, if xi(t) denotes the conditional prob-
ability that the ith arm is pulled, we have P(Xi(t) =
1∣Ft−1) = 1 − P(Xi(t) = 0∣Ft−1) = xi(t) and
E(Xi(t)∣Ft−1) = xi(t),∀i, t.

Queueing recursion and the auxiliary MAB problem:
Note that the queueing recursion (6) for the full-feedback
setting does not work in the case of Bandit feedback be-
cause the rewards of the unobserved arms are not revealed.
However, it is straightforward to modify the recursion (6)
by replacing the sampling probabilities x(t) with the corre-
sponding random realizations X(t). Hence, in the bandit
setting, the queueing evolution for the ith arm reads:

Qi(t) = (Qi(t − 1) + λi − ri(t)Xi(t))
+
, Qi(0) = 0. (22)

Eq. (22) is well-defined in the bandit feedback setting as
Xi(t) = 0 if i ≠ It. Hence, the recursion (22) does not
depend on the reward of any arm which was not played.
Next, analogous to the full-information setting (Eq. (9)), the
BANDITQ policy defines an instance of an adversarial MAB
problem ΞBANDIT where the surrogate reward of the ith arm
on round t is defined as:

r′i(t) ≡ (Qi(t − 1) + V )ri(t), ∀i ∈ [N]. (23)

As before, the surrogate rewards are not bounded a priori
due to the presence of the queueing variables.

4.1 ANALYSIS

As before, the components of the surrogate reward gradients
are given by gt,i = r′i(t) = (Qi(t − 1) + V )ri(t). Using

the quadratic potential function Φ(⋅) defined in Eq. (7) and
working identically up to step (c) of Eq. (14), we derive the
following self-bounding inequality:

∑
i

EQ2
i (t) + 2V Regrett(x

∗
)

≤ 2t + 2E[RegretΞ
Bandit

t ]

(a)
≤ 2t + Õ(

¿
Á
ÁÀN

t

∑
τ=1
∑
i

EQ2
i (τ) +NV

√
t +

V
√
Nt +

√
NtE[ max

i,τ∈[t]
(Qi(τ))]) (24)

(b)
≤ 2t + Õ(

¿
Á
ÁÀN

t

∑
τ=1
∑
i

EQ2
i (τ) +NV

√
t +
√
Nt3/2),

(25)

where, in step (a), we have used the regret bound from
Theorem 4, and in step (b), we have used the trivial bound
Qi(t) ≤ t,∀t ∈ [T ],∀i. The following theorem gives the
performance of the BANDITQ policy with bandit feedback.

Theorem 5. In the bandit feedback setting, the BANDITQ
policy achieves the following regret and target rate violation
bounds:

RegretT = Õ(max(
T
√
N

√
V

,
N

3/4T
5/4

V
,N
√
T )).,

V(T ) = Õ(max(
√
V T ,N

1/4T
3/4
)).

In particular, upon setting V =
√
T , we obtain

RegretT = O(N
3/4T

3/4
), V(T ) = Õ(N 1/4T

3/4
).

Compared to the full-information setting, the proof in the
bandit setting uses a more sophisticated Martingale-based
argument to control the maximum of the queueing process
for bounding the second term in the regret expression (21).
To simplify the exposition, the proof of Theorem 5 is broken
into three interrelated propositions. We begin our analysis
by first deriving a sublinear bound for EQ2

i (t).

Proposition 4. Under the action of the BANDITQ policy
with bandit feedback, we have

EQ2
i (t) = Õ(max(V t,

√
Nt

3/2
)),∀i, t.

Hence, using Jensen’s inequality, we have V(T ) =
Õ(max(

√
V T ,N

1/4T
3/4)).

Proof. Recall that from Eqn. (25) we have:

∑
i

EQ2
i (t) + 2V Regrett(x

∗
) ≤ 2t +

Õ(

¿
Á
ÁÀN

t

∑
τ=1
∑
i

EQ2
i (τ) +NV

√
t +
√
Nt3/2).



Using the fact that ri(t) ≤ 1,∀i, t, we have Regrett(x
∗) ≥

−t. Hence, from the above, we obtain

∑
i

EQ2
i (t) ≤ 2(V + 1)t +

Õ(

¿
Á
ÁÀN

t

∑
τ=1
∑
i

EQ2
i (τ) +NV

√
t +
√
Nt3/2),(26)

which resembles Eqn. (15) in the full-information setting.

Defining R(t) ≡
√

∑
t
τ=1∑

N
i=1EQ2

i (τ) and working simi-
larly as in the full-information setting, we have the following
quadratic inequality:

R2
(t) ≤ 2(V + 1)t2 +

Õ(
√
NtR(t) +NV t

3/2
+
√
Nt

5/2)

Ô⇒ R(t) = Õ(max(t
√
V ,N

1/4t
5/4
)). (27)

Substituting the above bound in (26), we conclude that for
each i ∈ [N] ∶

EQ2
i (t) = Õ(max(V t,

√
Nt

3/2
)).

The next proposition establishes a sublinear bound to the
diameter E[maxi,t∈[T ]Qi(t)], which appears on the RHS
of (24).

Proposition 5. Under the action of the BANDITQ policy,
for any round T ≥ 1, we have the following bound for the
expected maximum of the queueing processes

E[ max
i,t∈[T ]

Qi(t)] = Õ(max(
√
V T ,N

1/4T 3/4
)).

The proof of Proposition 5 is technical and is given in Sec-
tion E in the Appendix. Combining the above two results,
the following proposition gives the worst-case regret bound
for the BANDITQ policy under the bandit feedback.

Proposition 6. The worst-case regret of the BANDITQ pol-
icy under the bandit feedback is bounded as

RegretT = Õ(max(
T
√
N

√
V

,
N

3/4T
5/4

V
,N
√
T )).

Proof. From Eqn. (24), we have

∑
i

EQ2
i (T ) + 2V RegretT (x

∗
) ≤ 2T + Õ(

√
NR(T ) +

NV
√
T + V

√
NT +

√
NTE[ max

i,τ∈[T ]
(Qi(τ))]), (28)

where R(T ) ≡
√

∑
T
τ=1∑

N
i=1EQ2

i (τ). Plugging in the upper
bound for R(T ) from Eqn. (27) and the diameter of the
queueing process from Proposition 5, we obtain:

2V RegretT (x
∗
) = Õ(max(T

√
NV ,NV

√
T ,N

3/4T
5/4
)).

Hence,

RegretT (x
∗
) = Õ(max(

T
√
N

√
V

,
N

3/4T
5/4

V
,N
√
T )).

Proposition 4 and Proposition 6, taken together, establish
Theorem 5.

Following exactly the same arguments, the result in Propo-
sition 1 can be shown to hold in the bandit feedback setting
as well. Finally, as in the full-information setting, we now
discuss the case when one is only interested in satisfying
the target rate constraints while disregarding the accrued
rewards. The following proposition gives a bound on the
cumulative violation in the bandit setting.

Proposition 7. Setting V = 0, the cumulative constraint
violation under the BANDITQ policy in the bandit setting
can be bounded for any T ≥ 1 as follows:

V(T ) ≤max
i

EQi(T ) = Õ(N
3/8T

5/8
).

The above bound is slightly worse compared to the O(
√
T )

bound in the full-information setting (Proposition 3). See
Section F in the Appendix for the proof of Proposition 7.

Remarks: Technically, the scale-free regret bound given
in Theorem 4 was derived for oblivious adversaries, which
fixes the entire sequence of reward vectors at t = 0. However,
in our case, the surrogate reward vector r′(t) in Eqn. (23)
is determined by the past actions of the policy through the
variable Q(t). To see why we can still use the regret bound
(21), note that the surrogate reward r′(t) does not depend
on the current action X(t). Hence, we can invoke the regret
bound for an imaginary adversary that decides the reward
vector r′(t) at the end of round t − 1. Since the reward on
round t does not affect the previous actions of the policy,
the regret bound (21) applies to our problem.

5 EXPERIMENTS

Simulation Setup: We consider a problem instance with
N = 5 arms and k = 2 protected classes consisting of the first
and the second arm. We arbitrarily set the mean reward vec-
tor of the arms to µ = (0.335,0.203,0.241,0.781,0.617) ,
and the target reward rates for the first and the second arm
to λ1 = 0.167 and λ2 = 0.067 respectively. From Eq. (2), it
can be verified that the required rates are feasible for this
problem. Clearly, Arm # 4 is the most rewarding among the
five arms. We simulate the BANDITQ policy for T = 2×106

rounds upon setting the parameter V =
√
T ≈ 1414. We

write a custom optimizer, described in Appendix H, to effi-
ciently implement the optimization subroutines. The simu-
lation code has been made publicly available (Sinha, 2024).
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Figure 1: Reward accrual rates in the
full-information setting
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Figure 2: Queue lengths in the full-
information setting
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information setting
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Figure 4: Reward accrual rates in the
bandit feedback
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Figure 5: Queue lengths in the bandit
feedback setting
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Figure 6: Regret of BANDITQ in the ban-
dit feedback setting

Discussion: Figures 8, 9, and 10 show the performance
of the BANDITQ policy in the full-information set-up. Fig-
ure 8 shows that the protected arms, Arm 1 and Arm 2,
asymptotically meet their target rates. Observe that since
both Arm 1 and Arm 2 have sub-optimal expected rewards,
they would have received asymptotically zero reward rates
under the action of an unfair prediction policy, such as UCB.
Figure 9 shows the evolution of the queue length variables,
and Figure 10 shows the regret of the BANDITQ policy in
the full-information setting. Negative values of the regret
suggest that the cumulative reward of the BANDITQ pol-
icy exceeds the reward achieved by the static benchmark
policy, which is forced to take actions from the restricted
set Ω on all rounds - a constraint that the BANDITQ policy
does not need to respect on every round. Figures 11, 12,
and 13 show the corresponding plots in the bandit feedback
setting. As expected, in the case of bandit feedback, the vari-
ables exhibit greater empirical variance compared to their
full-information counterpart due to the limited availability
of information. However, the BANDITQ policy achieves
the target rates in this case as well. See Section I.2 in the
Appendix for a similar experiment with N = 1000 arms.

Additional experiments: A comparison of the BANDITQ
policy with a UCB-based oracle policy, proposed by Li et al.
(2019), has been given in Appendix I.1. The oracle is as-
sumed to know a feasible fraction of pulls to achieve the
target rates. The plot in Figure 7 shows that the proposed
BANDITQ policy achieves more cumulative rewards com-

pared to the oracle policy as it decides its actions adaptively.

6 CONCLUSION AND OPEN PROBLEMS

In this paper, we proposed a black-box reduction from the
fair bandits problem to the unconstrained bandits problem
and bounded the regret and cumulative target rate violations.
Since we use adversarial MAB policies as subroutines, it is
reasonable to conjecture that the proposed BANDITQ policy
would work in the adversarial setting as well. Substantiating
this statement would be an interesting research direction
(Sinha and Vaze, 2023). Improving the regret and rate vio-
lation bounds by, e.g., working with a different Lyapunov
function would be practically useful (Sinha and Vaze, 2024).
Finally, coming up with sharper instance-dependent regret
bounds would be interesting as well.
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A ON THE FEASIBILITY ASSUMPTION

Throughout the paper, we assume that the target rate vector λ⃗ is feasible. In practice, we can ensure the feasibility by
estimating the expected rewards from past data and requiring that condition (2) is strictly satisfied with a reasonable margin.
To put it quantitatively, let µ̂ be the estimated expected reward vector where it is known that ∣∣µ̂ −µ∣∣∞ ≤ ϵ, for a small error
bound ϵ ≥ 0. Then, for the required reward rate vector λ⃗ to be feasible, using the first-order Taylor’s series expansion, it is
sufficient that:

∑
i

λi

µ̂i
+ ϵ∑

i

λi

µ̂i
2
≤ 1. (29)

Although the estimated mean rewards can reasonably be used for determining the feasibility of the required reward rates,
they cannot possibly be used for the online selection of the arms with no regret, as even a small constant error in the
estimated rewards may lead to a linear regret.

B O(√T ) REGRET OF THE BANDITQ POLICY WITH NO TARGET RATES

We now consider the classical and special case when there are no specific target rates for any of the arms, i.e., λi = 0,∀i.
Hence, from Eqn. (6), we have that Qi(t) = 0,∀i, t. Furthermore, with λ = 0, the comparator class Ω coincides with the set
of all probability distributions over N arms (∆N ). We have the following result

Proposition 8. With no pre-specified target reward rates, i.e., λ = 0, the BANDITQ policy achieves regret bounds of
O(
√
Nt) and Õ(N

√
t) for the full-information and bandit feedback settings, respectively.

Intuitively, the above result can be understood from the fact that, in this case, the surrogate rewards r′(t) of the BANDITQ
policy is simply a scaled version of the original rewards r(t). See below for a formal proof.

Proof:

Full-information setting: From the regret decomposition inequality (14), we have that

2V Regrett(x
∗
) ≤ 2t + 4V

√
2Nt.

Setting V =
√
T , we have that

Regrett(x
∗
) ≤

t

V
+ 2
√
2Nt = O(

√
Nt).



Bandit information setting: The proof is almost identical to the full-information case. Setting Qi(t) = 0,∀i, t, in the
regret decomposition inequality (24), we have that

2V Regrett(x
∗
) ≤ 2t + Õ(NV

√
t + V

√
Nt).

Setting V =
√
T , the above yields

Regrett(x
∗
) = Õ(N

√
t).

C PROOF OF PROPOSITION 1

Using Proposition 2, we have that EQi(t)
(Jensen’s ineq.)
≤

√
EQ2

i (t) = O(N
1/4T 3/4), ∀i ∈ P, t ∈ [T ]. Let I ⊆ [1, T ] be any

sub-interval of length l = ∣I ∣. Substituting the above bound in Eq. (18), we have for any i ∈ P ∶

inf
I

E(1/∣I∣∑
z∈I

ri(z)xi(z)) ≥ λi −O(
N1/4T 3/4

l
),

which gives a finite-time guarantee for the expected reward accrual rate for each arm in the protected set P. Hence, as long
as T 3/4

/l → 0, we have

lim inf
∣I∣→∞

∣I ∣
−1E[∑

t∈I
ri(t)xi(t)] ≥ λi, ∀i ∈ P.

D PROOF OF THEOREM 3

Let x∗ be an optimal fixed feasible randomized action. From Eqn. (14), we have that

2V Regrett(x
∗
) ≤ 4

¿
Á
ÁÀ2

t

∑
τ=1
∑
i

EQ2
i (τ) −∑

i

EQ2
i (t) + 2t + 4V

√
2Nt.

Define Q2(τ) = ∑iEQ2
i (τ),∀τ ≥ 1. Using the monotonicity assumption 1, the above inequality yields

2V Regrett(x
∗
) ≤ 4

√
2tQ(t) −Q2

(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(A)

+2t + 4V
√
2Nt

(a)
≤ 10t + 4V

√
2Nt.

where in (a), we have upper-bounded the quadratic (A), which is of the form ax − x2, by a2/4 ≡ 8t. Hence, we have

Regrett ≤
5t

V
+ 2
√
2Nt.

E PROOF OF PROPOSITION 5

Proof. Using Eq. (13) and the fact that ∣ri(t)∣ ≤ 1,∀i, t, we have the following sample-path wise bound on the square of the
queue lengths:

∑
i

Q2
i (t) ≤ 2(V + 1)t + 2

t

∑
τ=1
∑
i

Qi(τ − 1)(λi − ri(τ)x
∗
i ) + 2RegretΞt

≤ 2(V + 1)t + Õ(

¿
Á
ÁÀN

t

∑
τ=1
∑
i

Q2
i (τ) +NV

√
t +
√
Nt max

i,τ∈[1,t]
Qi(τ)) + 2∑

i

M i
t , (30)

(a)
≤ 2(V + 1)t + Õ(

¿
Á
ÁÀN

t

∑
τ=1
∑
i

Q2
i (τ) +NV

√
t +
√
Nt3/2) + 2∑

i

M i
t , (31)



where in the above, we have substituted the upper bound to the regret of the surrogate problem from Eq. (21) (as in Eqn.
(25)), used the fact that Q(τ) ≤ τ , and for each i ∈ [N], we have defined the stochastic process {M i

t}t≥1 as follows:

M i
t =

t

∑
τ=1

Qi(τ − 1)(λ
′
i − ri(τ)x

∗
i ), t ≥ 1. (32)

where λ′i
(def.)
= x∗iEri(τ) = x∗i µi ≥ λi. Taking the maximum of both sides with respect to all rounds t ∈ [T ] for some T ≥ 1,

we have

max
i,t∈[T ]

Q2
i (t) ≤ 2V T + Õ(

¿
Á
ÁÀN

T

∑
τ=1
∑
i

Q2
i (τ) +NV

√
T +
√
NT 3/2

) + 2∑
i

max
t∈[T ]

M i
t .

Taking the expectation of both sides of the above inequality, we obtain

E[ max
i,t∈[T ]

Q2
i (t)] ≤ 2V T + Õ(

¿
Á
ÁÀN

T

∑
τ=1
∑
i

EQ2
i (τ) +

√
NT 3/2

) + 2∑
i

E[max
t∈[T ]

M i
t ]

(a)
≤ 2V T + Õ(max(T

√
V ,N

1/4T
5/4
)) + Õ(

√
NT 3/2

) + 2∑
i

E[max
t

M i
t ] (33)

= Õ(max(V T,
√
NT 3/2

)) + 2∑
i

E[max
t

M i
t ], (34)

where in step (a), we have used the bound for R(T ) from Eqn. (27). Next, we claim that each of the processes {M i
t}t≥1

is a zero-mean martingale process with respect to the natural filtration {Fτ}τ≥1. This follows from the definition (32) as
Qi(τ − 1) ∈ Fτ−1 is pre-visible, and the random variable ri(τ) is independent of Fτ−1 s.t. E(λ′i − ri(τ)x∗i ) = 0. Using the
L2 maximum inequality for Martingales (Durrett, 2019, Theorem 4.4.4), (Doob, 1953, Theorem 3.4), (Dubins and Schwarz,
1988), we have

E[max
t∈[T ]

M i
t ] ≤ 2

√

E(M i
T )

2. (35)

Since {Mt}t≥1 is a zero-mean martingale sequence, using the Pythagorean formula for martingales (Williams, 1991, Eq. (b),
Section 12.1) and the fact that ∣λ′i − ri(τ)x

∗
i ∣ ≤ 1, we have

E(M i
T )

2
≤

T

∑
τ=1

EQ2
i (τ − 1) (36)

≤ R2
(T ),

where we have defined R(T ) ≡
√

∑
T
τ=1∑

N
i=1EQ2

i (τ). Combining the above with Eq. (33), we obtain the desired bound for
the diameter of the queueing process:

E[ max
i,t∈[T ]

Q2
i (t)] ≤ Õ(max(V T,

√
NT 3/2

)) +O(R(T )) = Õ(max(V T,
√
NT 3/2

)),

where we have again used the bound for R(T ) from Eqn. (27). The result stated in the lemma finally follows from an
application of Jensen’s inequality.

F PROOF OF PROPOSITION 7

Setting V = 0 and plugging in the bound from Proposition 5, we have the following bound from (24) for any round 1 ≤ t ≤ T ∶

∑
i

EQ2
i (t) ≤ 2T + Õ(

¿
Á
ÁÀN

T

∑
t=1
∑
i

EQ2
i (t)) +N

3/4T
5/4). (37)

Define z2T ≡ ∑i∑
T
t=1EQ2

i (t). Summing up the inequalities (37) from t = 1 to t = T, we obtain

z2T ≤ 2T
2
+ Õ(

√
NTzT +N

3/4T
9/4
) Ô⇒ zT = Õ(N

3/8T
9/8
).

Plugging in the above bound in (37), we conclude that

∑
i

EQ2
i (T ) = Õ(N

3/4T
5/4
)

(Jensen’s ineq.)
Ô⇒ EQi(T ) = Õ(N

3/8T
5/8
), ∀i ∈ [N].



G PSEUDOCODE FOR THE BANDITQ POLICY IN THE BANDIT FEEDBACK SETUP

As discussed in the main text, the BANDITQ policy in the Bandit feedback setting uses the scale-free MAB algorithm of
Putta and Agrawal (2022) in conjunction with the surrogate reward function defined in Eq. (23). The complete pseudocode of
the BANDITQ policy is given below in Algorithm 2. In line 12 of the pseudocode, BregF (x∣∣y) denotes the usual Bregman

Algorithm 2 BANDITQ Policy in the Bandit-feedback setting

1: Input: Target reward rate vector λ⃗, η ← N,γ ← 1/2, Regularizer F (q) = ∑N
i=1(f(q(i) − f(1/N)), where f(x) =

− log(x).
2: Q← 0,p← [1/N,1/N, . . . ,1/N], V ←

√
T ,S ← 1, R̃ ← 0. ▷ Initialization

3: for each round t = 1 ∶ T : do
4: x← (1 − γ)p + γ/N . ▷ Updating the sampling distribution
5: Sample an arm It ∈ [N] from the distribution x.
6: Observe the reward of the selected arm rIt(t) ▷ Bandit feedback
7: Qi = (Qi + λi − ri(t)(It = i))

+
, ∀i ∈ P. ▷ Updating the queues

8: r′i ← (Qi + V )ri(t)1(It = i), ∀i ▷ Computing the surrogate rewards

9: r̃i ←
r′i
xi
1(It = i) ▷ Estimating the rewards via the inverse propensity scores (IPS)

10: R̃ ← R̃ + r̃ ▷ Updating the cumulative estimated surrogate rewards
11: γ ←min(1/2,

√
N/t).

12: S ← S + η−1 supq∈∆N
(⟨r̃,q − p⟩ −BregF (q∣∣p).

13: η ← N/S ▷ Adaptively choosing the learning rate
14: p← argminq∈∆N

[F (q) − η⟨q, R̃⟩] ▷ The FTRL step
15: end for each

divergence between the points x and y with respect to the convex function F (⋅), i.e.,

BregF (x∣∣y) = F (x) − F (y) − ⟨∇F (y), x − y⟩.

H EFFICIENT IMPLEMENTATION OF THE OPTIMIZATION MODULE

To speed up the simulation, we implemented a custom-made optimizer for the optimization steps 12 and 14 involved in
the BANDITQ algorithm in the bandit-feedback setting. For this, we directly solved the KKT optimality condition, where
we computed the optimal KKT multiplier by using the classic Newton-Raphson root-finding algorithm. This empirically
resulted in about two orders of magnitude speed-up compared to using standard convex optimization packages such as CVX
(Grant et al., 2011).

Let r ∈ RN be a given N -dimensional real vector. After some simple algebraic manipulations, both the optimization
problems in steps 12 and 14 of Algorithm 2 can be expressed in the following form:

OPT(r) ∶ max
N

∑
i=1

logxi + ⟨r,x⟩ (38)

Subject to,

∑
i

xi = 1, xi ≥ 0, ∀i ∈ [N]. (39)

Since the objective function (38) is strictly concave, and the constraint (39) is linear, using the KKT condition, a probability
vector x∗ is an optimal point for the above problem if and only if there exists a real number µ ∈ R s.t.

1

x∗i
+ ri + µ = 0 Ô⇒ x∗i = −(ri + µ)

−1, ∀i, (40)

where x∗ satisfies the feasibility condition (39). For the non-negativity constraint on x∗, we must have:

ri + µ < 0 Ô⇒ µ < −max
i

ri.



Finally, we require that

∑
i

x∗i = 1.

i.e.,

∑
i

1

ri + µ
− 1 = 0. (41)

We now use the Newton-Raphson method for solving (41) starting from µ(0) = −maxi ri − 1. The algorithm is given below:

Algorithm 3 Custom optimizer for the problem OPT (r)

1: Input: r, tolerance← 10−8.
2: µ← −maxi ri − 1,error← 1.
3: while error > tolerance do

µ← µ +
∑i

1
ri+µ − 1

∑i
1

(ri+µ)2
.

error← ∣∑i
1

ri+µ − 1∣.
4: end while
5: x∗i ← −(ri + µ)

−1, ∀i.
6: Return x∗.

I ADDITIONAL NUMERICAL RESULTS

I.1 COMPARISON WITH AN ORACLE POLICY
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Figure 7: Comparison of reward accrued by the BANDITQ policy and the Oracle LFG policy (η = 100)

In this section, we compare the performance of the BANDITQ policy with an Oracle policy that knows the optimal fraction
of pulls of each arm to satisfy the required reward rate constraints. With the given mean reward µ and the required reward
rate vector λ, the optimal fraction of pulls can be easily computed to be f1 = λ1/µ1 = 1/2, f2 = λ2/µ2 = 1/3, f3 = 0, f4 =
1 − (1/2 + 1/3) = 1/6, f5 = 0. In the above computation, we have used the fact that Arm #4 is the most rewarding arm. We
emphasize that the oracle policy should have exact knowledge of the mean reward vector µ - a non-zero error in the value of
the reward vector either leads to not achieving the target rates or having a linear regret or both.

Note that the online policy proposed by Patil et al. (2021) cannot be used with the above profile of fraction of pulls as their
policy requires the required fraction of each arm to be at most 1/N−1 = 1/4. Hence, we use the UCB-based policy proposed
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Figure 8: Reward accrual rates in the
full-information setting
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Figure 9: Queue lengths in the full-
information setting
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Figure 10: Regret of BANDITQ in the
full-information setting
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Figure 11: Reward accrual rates in the
bandit feedback
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Figure 12: Queue lengths in the bandit
feedback setting
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Figure 13: Regret of BANDITQ in the
bandit feedback setting

by Li et al. (2019) called Learning with Fairness Guarantee (LFG) as the benchmark. LFG uses queue variables to balance
meeting the target fraction of pulls and achieving the small regret. However, as stated in Li et al. (2019, Theorem 2), the
best-known regret bound of the LFG policy increases linearly with time.

Observation: From Figure 7, we see that the proposed BANDITQ policy yields strictly better cumulative rewards compared
to the oracle LFG policy that knows the optimal fraction of arm pulls to meet the given reward rate constraints. This result
can be attributed to the fact that the BANDITQ policy directly takes into account the reward realizations through the queue
evolutions, whereas the Oracle LFG policy works based only on the expected rewards.

I.2 LARGE-SCALE SIMULATION WITH N = 1000 ARMS

Figures [8-13] show the performance of the BANDITQ policy with N = 1000 arms in both full and bandit information
settings. The mean rewards µ for each arm are sampled uniformly at random from the interval [0,1]. As before, we consider
two protected arms - arm 1 and arm 2 and set λ1 = µ1/2, λ2 = µ2/3. The plots show that even for a large instance, the
BANDITQ policy continues to perform satisfactorily in terms of both regret and achieving the target rates.
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