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Abstract. The increasing demand on higher accuracy and the rapid
growth of 3D point cloud datasets have led to significantly higher train-
ing costs for 3D point cloud models in terms of both computation and
memory bandwidth. Despite this, research on reducing this cost is rel-
atively sparse. This paper identifies inefficiencies of unique operations
in the 3D point cloud training pipeline: farthest point sampling (FPS)
and forward and backward aggregation passes. To address the ineffi-
ciencies, we propose novel training optimizations that reduce redundant
computation and memory accesses resulting from the operations. Firstly,
we introduce Lightweight FPS (L-FPS), which employs progressive near
point filtering to eliminate the redundant distance calculations inherent
in the original farthest point sampling. Secondly, we introduce the fused
aggregation technique, which utilizes kernel fusion to reduce redundant
memory accesses during the forward and backward aggregation passes.
We apply these techniques to state-of-the-art PointNet-based models and
evaluate their performance on NVIDIA RTX 3090 GPU. Our experimen-
tal results demonstrate 2.25× training time reduction on average with
no accuracy drop.
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1 Introduction

3D point cloud is a set of points representing scenes or objects with 3D geom-
etry information from sensors (e.g., LiDAR and RGB-D cameras). Deep neural
networks (DNNs) [3, 7, 18, 20, 21, 27, 29, 31, 36] have been recently employed for
3D point cloud tasks such as 3D semantic segmentation, object detection, and
others. The capacity of DNNs and the size of 3D point cloud datasets have
rapidly increased and this trend has led to higher training and inference costs,
making real-world deployment challenging. While there have been proposals to
optimize inference latency [8, 9, 37,38], accelerating the training phase has been
less explored likely due to the relatively short history of 3D point cloud models
and their unique pipeline structure.
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Accelerating the training phase of 3D point cloud models is crucial for both
research and production. Researchers often repeat training phases exhaustively
to experiment with different model architectures and hyperparameters. In prac-
tical scenarios, models are frequently retrained to adapt to new patterns and
information extracted from an ever-increasing volume of data. These require-
ments escalate the training cost considerably [6,30]. There are existing techniques
to accelerate the training phase in other application domains, such as natural
language processing (NLP) and graph neural networks (GNNs) [5,10,32]. How-
ever, these techniques are not directly compatible with 3D point cloud models.
Furthermore, no prior work has thoroughly explored and addressed the unique
challenges of 3D point cloud model training.

We have conducted an in-depth empirical analysis on 3D point cloud model
training pipelines to identify that the main performance bottleneck results from
two unique operations differentiating the training of 3D point cloud model from
others: (1) Farthest Point Sampling (FPS) and (2) forward and backward aggre-
gation operations. The FPS operation samples the output point cloud coordi-
nates from the given input point cloud coordinates. It is repeated every epoch,
yielding a significant amount of redundant computations. The aggregation oper-
ation aggregates related input point features for each output point through max-
reduction. This results in a significant amount of redundant reads and writes to
GPU global memory, which slows down the training pipeline.

To address these bottlenecks, we introduce two novel optimization techniques
specifically designed for the 3D point cloud training pipeline.

– Lightweight-FPS (L-FPS): Preserves randomness and sampling quality
while significantly reducing redundant FPS distance calculations. This algo-
rithm leverages two observations: sampling points that are separated by at
least a minimum pairwise distance among the sampled points is sufficient to
achieve a comparable sampling quality as FPS, and this minimum distance
can be predetermined prior to training.

– Fused aggregation: Significantly reduces redundant global memory ac-
cesses by fusing kernels for forward and backward aggregation passes.

We comprehensively evaluate the effectiveness of these techniques using state-of-
the-art PointNet-based models. Evaluations on NVIDIA RTX 3090 GPU demon-
strates 2.25× training time reduction on average with no loss in accuracy.

2 Related Work

2.1 Deep Neural Networks for 3D Point Cloud

Sparse Convolution Based Approaches. Sparse convolution based models use
sparse convolution on voxelized point cloud data instead of raw point cloud
data. They have a network architecture similar to traditional 2D CNNs, which
allows many best practices used in 2D CNNs to be applied to them. This has
led to the development of many sparse convolution based models [3, 11, 22, 39],
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demonstrating high performance in various tasks. Nevertheless, one of the limita-
tions of the sparse convolution based models is that they can only operate on the
voxelized point cloud data, which inevitably results in the loss of information.

PointNet Based Approaches. PointNet [26] and PointNet++ [27] are the first to
apply DNN on raw 3D point cloud without preprocessing. Following the success
of PointNet++, numerous other variations [17–19, 25, 28, 29, 33] have emerged,
and they have continuously enhanced the performance and computational ef-
ficiency of the model. PointNeXt [29] achieves a significant performance im-
provement through various data augmentation, optimizations, and model scaling.
Mesorasi [9] significantly reduces floating-point operations (FLOPs) by adopt-
ing the technique called delayed aggregation, changing the order of grouping and
MLP; Section 3 describes the details of this technique. Very recently, Point-
MetaBase [18] has introduced explicit positional embedding to further improve
model performance. It outperforms state-of-the-art voxel based methods on the
S3DIS [2] dataset. They thoroughly explore the optimal PointNet based model
architecture in terms of accuracy and FLOPs, providing standard building blocks
for future PointNet based models. In this paper, we aim to accelerate the train-
ing phase of PointNet based models, which are one of the most commonly used
network architectures in 3D point cloud processing.

2.2 Accelerating PointNet Based Models

Efficient Sampling and Neighbor Search. EdgePC [37] accelerates farthest point
sampling and neighbor search by structuring point cloud data with Morton
codes. QuickFPS [1, 12] proposes a hardware-assisted solution with k-d tree
based algorithm to speed up farthest point sampling. While these works reduce
the inference latency to some extent, EdgePC suffers from considerable accuracy
loss and QuickFPS is limited by its reliance on the specialized hardware sup-
port. However, our L-FPS technique accelerates sampling in the training pipeline
without sacrificing accuracy and additional hardware changes.

Several proposals have been made to address the inefficiency of the FPS,
including random sampling [13], adjustable FPS [16], and grid sampling [14,35].
However, none of these methods have consistently shown better performance
than FPS, mostly resulting in model performance degradation as demonstrated
by adjustable FPS [16]. Moreover, these approaches mainly target inference use
cases, while we focus on accelerating the training of FPS-based models by ex-
ploiting the unique opportunities presented by FPS in the training pipeline.

Reducing Memory Overhead. LPN [15] reduces memory footprint in the training
phase by freeing the memory allocated for intermediate values in the forward
pass. These values are reconstructed later in the backward pass. While this helps
reduce peak memory usage during the training phase, it does not reduce DRAM
accesses, thereby failing to improve training throughput. Our fused aggregation
technique removes both memory footprint and DRAM accesses to these interme-
diate values through kernel fusion. Applying the fused aggregation to the LPN
not only accelerates training speed but also reduces the peak memory usage.
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(a) Overall Training Pipeline of PointNet-based Models
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Fig. 1: General Training Flow of PointNet-based Models

3 Background: Overview of Training Pipeline for
PointNet Based Models

This section overviews the training pipeline of PointNet based models. The model
architecture is based on PointMetaBase [18], which demonstrates state-of-the-art
performance in both accuracy and computational efficiency by adopting delayed
aggregation and positional embeddings.

The PointNet based models are mainly composed of downsampling layers.
Upsampling layers are used in segmentation models but we mainly focus on
describing the downsampling layers as they are the key performance bottlenecks
(refer to Section 4.1). Figure 1a demonstrates the forward and backward pass of
a single downsampling layer.

The forward pass requires the following steps. 1 First, the input point coor-
dinates are used to sample n = N/stride output points where N is the number
of input points and stride is the downsampling rate. To preserve the shape and
information of the input points, Farthest Point Sampling (FPS) [27] is often uti-
lized to sample output points from an unordered set of input points (Figure 1b).
2 Then, input point features, each represented by a d-dimensional vector, are
processed through a Multi-Layer Perceptron (MLP) network. This results in the
transformation of the input point feature matrix dimension from N×d to N×d′.
3 A ball query is performed on each output point as a centroid to identify the
neighbor input points of each output point. The nneigh. neighbor indices of each
output point are stored in the neighbor index table (Figure 1c). 4 Finally, the
features of the neighbor points for each output point are grouped according to
the neighbor index table and then max-reduced to aggregate the local features
of the neighbor points. Several works [17, 18] use positional embeddings in the
aggregation stage to encode the relative position information between the neigh-
bors and the centroid. We explain more details about this process in Section 5.2.

The backward pass of the downsampling layer is only performed for the
operations that handle the feature vectors, i.e., aggregation and MLP operations.
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Fig. 2: Training Time Breakdown of PointNet-based 3D point cloud models. FPS, BQ,
MLP, and AGG stand for Farthest Point Sampling, Ball Query, Multi Layer Perceptron,
and Aggregation, respectively. Upsampling layers are included in misc.

4’ For the backward pass of aggregation, gradients of size n×d′ are scattered and
then sum-reduced to the matrix of size N ×d′. More details about the backward
pass of aggregation will be explained in Section 4.2 as well. 2’ Finally, using the
sum-reduced gradients, the weights for the MLP layers are updated.

4 Analysis of Training Pipeline

4.1 Bottleneck Analysis

Figure 2 shows the latency breakdown of the training phases of 3D point cloud
neural network models [18, 27]. Due to the delayed aggregation technique [9],
which significantly reduces the overhead of the MLP operations, FPS and aggre-
gation operations arise as new performance bottlenecks in the training pipeline.
These two most time-consuming operations take 47-79% of the training time.
First, the FPS is a sampling method whose cost quadratically increases as the
size of input point cloud grows. Since the cost is heavily dependent on the in-
put point cloud size, the portion of the FPS execution time significantly differs
across datasets. The high cost of the algorithm results from its sequential na-
ture. Each iteration depends on the results from previous iterations, and there
is redundant computation caused by repeated sampling overhead across epochs.
Second, the aggregation for forward and backward passes also takes an average
22.84% of the overall training time. We observe that this results from redundant
accesses to GPU global memory of the aggregation kernel. Section 4.2 presents
a detailed analysis of the redundancy in these most time-consuming operations.

4.2 Key Observations

Redundant Computations from FPS. FPS has inherent inefficiency that makes
it challenging to parallelize on GPUs. The purpose of the FPS operation is to
sample N/stride output points from N input points that are as far apart from
each other as possible to preserve the boundary shape of the 3D point cloud. The
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Fig. 3: Standard Aggregation

process begins with selecting a seed point that is used throughout all layers in
the model. Then, the process continues by selecting a point that has the farthest
distance from the group of previously selected points. The distance between
a point p and a group of points is defined as the minimum of the distances
from each point in the group to the point p. This process is iterated until the
number of selected points reaches N/stride. Only a single point is selected for
every iteration, making the entire process sequential. The detailed process is
elaborated in Appendix A.1. By examining FPS from a training perspective, we
make the following two key observations:

– Observation 1: Farthest point sampling in the training process in-
curs a significant number of redundant distance calculations. The
xyz coordinates of the input points do not change throughout the training
process, leading to the redundant distance calculations being recomputed for
the same input scene every epoch. This motivates us to eliminate inefficien-
cies arising from these redundant operations in the training pipeline.

– Observation 2: The key factor in achieving high-quality sampling is
to ensure a minimum spacing among the sampled points, and this
information can be obtained in advance, prior to training. As a result
of employing FPS, the pairwise distance among all sampled points exceeds
a certain minimum threshold. Figure 6a demonstrates the distribution of
minimum spacing between the points sampled by FPS. If we can identify this
threshold value in advance before the sampling phase, simply selecting points
whose spacing is larger than the threshold can yield sampling quality nearly
identical to that achieved by FPS. Actually, we target the FPS operation in
the training process, we can easily calculate the threshold value in advance
by simply performing the FPS once before training.

Redundant Memory Accesses from Aggregation. Figure 3 shows the standard
GPU implementation [24,29] of the aggregation for forward and backward passes
in the training pipeline. The forward pass starts with given N input feature
vectors, each with dimension d′ and the neighbor index table that stores nneigh.

indices of the neighbor points chosen by the ball query operation for each output
point (i.e., 3 from Figure 1a). 1 First, nneigh. features are gathered for each
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output point, generating a matrix of size n × nneigh. × d′ when the number of
output points is n. 2 Then, column-wise max reduction is applied to grouped
nneigh. vectors, reducing the size of the matrix to n×d′. To represent the elements
that are selected through max pooling, each element in a column is colored with
the same color as the point feature to which it belongs. The grouping operation
requires nd′×nneigh. DRAM reads and writes, while the max reduction operation
takes nd′ × nneigh. DRAM reads and nd′ DRAM writes.

The backward pass simply updates the corresponding gradients in inverse
order. 3 Given the backpropagated gradients from the previous layer, gradients
are scattered to the exactly matching positions where the corresponding out-
put features have originated. This requires a highly sparse nd′ × nneigh. sized
scattered gradient matrix, with a sparsity of 1/nneigh.. 4 Then, they are re-
duced by performing atomic, element-wise summation to the position where the
corresponding input features have originated. The elements in the next layer’s
gradient are colored with the same color as the summed gradients. (The violet-
colored element of G1

′
indicates that the element is obtained by summing the

second elements of G1 and Gn). The scatter operation requires nd′ DRAM
reads and writes, while the sum reduction takes 2nd′ × nneigh. DRAM reads
and nd′×nneigh. DRAM writes. Through the analysis of the aggregation passes,
we make the following key observations:

– Observation 3: There are redundant memory accesses to interme-
diate values in both forward and backward passes. The forward and
backward passes lead to a significant amount of redundant memory reads
and writes to the nd′ ×nneigh. sized intermediate values in the forward pass
and scattered gradients in the backward pass.

– Observation 4: Ineffectual computations are performed in the back-
ward pass. When performing sum reduction in the backward pass, some
summations are performed on zeros due to the high sparsity of the scattered
gradients matrix. This does not affect the output. For example, we observe
that two GP3 gradient vectors are gathered and summed, even though this
is an ineffectual computation with zero vectors.

5 Our Proposal

We propose two optimization techniques based on the observations from the
previous section. First, we introduce L-FPS, a Lightweight FPS via progressive
near point filtering, which is a technique that produces multiple high-quality
sampling results without redundant distance calculations. Second, we propose
fused aggregation that reduces the redundant memory accesses and computations
by fusing memory operations during the aggregation.

5.1 Lightweight FPS via Progressive Near Point Filtering

There are two key requirements for sampling within the training pipeline. First,
the sampling approach should provide good sampling quality. Second, it also
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should provide enough randomness among samples across epochs. The original
FPS meets the requirements by selecting the farthest samples and utilizing dif-
ferent seed points every epoch. Appendix A.3 elaborates on the importance of
randomness in FPS.

We propose Lightweight-FPS (L-FPS), a sampling technique that maintains
both randomness and sampling quality while eliminating redundant distance
calculations across epochs. Figure 4 illustrates the process using an example of
sampling four points out of ten input points. Note that all steps are performed
offline before training. 1 First, we perform FPS once and find the minimum
spacing between the farthest point sampled points, which is the distance between
the last selected point and the second-to-last selected point in this example. This
value, referred to as the threshold (0.32 in the figure), serves as a key parameter.
2 Then, we perform a ball query with each input point as a centroid to identify
points within the specified threshold proximity. The indices of the identified
points are then saved to the filter matrix. In the illustrated example, indices 0,
1, 2, and 7 are stored in the 0th entry, meaning that the distances between point
P0 and points P0, P1, P2, and P7 are all smaller than the threshold. 3 Finally,
we perform lightweight FPS using the filter matrix. We use a bitmap to indicate
the points that can be sampled. At first, all bitmap entries are initialized to 1,
indicating that all points can be sampled. In each step, the bitmap is updated
by setting the corresponding entries to zeros for the point indices from the filter
matrix. This operation filters out points that are sufficiently close (< threshold)
to the previously sampled points. After filtering, we randomly select a point
index that is still set to 1 from the bitmap. By repeating this step, we can get
the sampling results. This process is performed for nepoch (number of epochs)
times in parallel on the GPU, and nepoch versions of sampling results are saved
to disk. Different versions of sampling results are then loaded for each epoch
during training, ensuring the randomness of samples across the epochs.
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The biggest advantage of L-FPS is that it does not require any redundant
distance calculations when generating nepoch sampling results at the filtering
phase. We perform distance calculations only once when performing FPS and
generating filter matrix. However, the cost is negligible compared to performing
FPS for nepoch times in the original strategy. Actually, L-FPS not only reduces
the amount of computation, but also minimizes memory accesses and memory
footprint through the use of lightweight filter matrix. This further improves the
performance of training. A naive approach to avoid redundant computations
is to store all the distances between points in a lookup table. This leads to a
tremendous amount of memory access and footprint overhead of O(N2), where
N is the number of points. With the proposed near point filtering approach, all
the information we need for sampling can be concisely presented in the filter
matrix, which has O(kN) complexity, where k is the column dimension of the
filter matrix. We empirically observe that setting k to 16 is sufficient to cover
the number of points to be filtered.

The key distinction between L-FPS and FPS lies in allowing the ability to
sample any points that exceed a predetermined threshold for spacing, rather
than selecting a single point farthest from the previously selected point set.
The experimental results corroborate this claim. In Section 6.2, we compare
the minimum spacing distribution and visualization outcomes between L-FPS
and FPS. Additionally, we demonstrate through experiments that L-FPS has no
negative impact on accuracy.

Compatibility with Data Augmentation Techniques. In practice, PointNet based
models adopt various data augmentation techniques [18, 29] to achieve higher
model performance. Popular transformations including scaling, rotation, jitter-
ing, and shifting are all compatible with L-FPS with minor impacts on sampling
quality because they do not significantly change the relative distances between
points. Random cropping, which adjusts the size of an input scene by randomly
cropping a particular section, is also compatible with L-FPS with minor code
changes in the dataloader. (Appendix C.2 and C.3).

Time and Space Overhead. Saving sampling results on disk for all scenes in
the training dataset results in time and space overhead. However, L-FPS incurs
a one-time cost, and thus the overall cost is negligible when compared to the
entire training time. The latency accounts for at most 3% of the baseline training
time. The space overhead is also relatively marginal, which is around 1 to 10
gigabytes (refer to Appendix A.2 for the details). Furthermore, it does not incur
any additional GPU memory usage as we don’t store the sampled indices for all
training data samples in memory during training. Only the necessary indices are
loaded and released in each iteration.

5.2 Fused Aggregation

To eliminate the memory and computational inefficiencies in aggregation, we
propose fusing the two operations: grouping and max-reduction. Figure 5 illus-
trates fused aggregation for the forward and backward passes. The fused forward
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Fig. 5: Overview of Fused Aggregation

pass works as follows: 1 target columns that are to be max-reduced are read
from DRAM and temporarily written to SRAM (i.e., shared memory in GPU).
2 Max-reduction is then performed on the fly in SRAM and the maximum ele-
ment is written to DRAM. Note that this does not incur any additional SRAM
usage compared to standard aggregation. The large intermediate value matrix
(n×nneigh. × d′) does not need to be present in SRAM at the same time, which
is the same case in standard aggregation. The total DRAM access is reduced to
nd′ × nneigh. reads and nd′ writes by eliminating redundant DRAM accesses.
However, once the two kernels are fused in the forward pass, we cannot perform
backpropagation without additional information about where to scatter the gra-
dients. To address this, we save extra information that tracks corresponding
sources of input point features for the selected maximum elements. This source
index table is later used in the backpropagation. This incurs an additional over-
head of nd′ writes to DRAM, which makes the total DRAM write count 2nd′.

Given the source index from the forward pass, the backward pass can be
easily fused. 3 All we have to do is to scatter the gradients according to the
source index table. For example, given the source indexes of the gradient vector
G1, i.e., (i, 1, 2, 2, i, i), the corresponding gradient values from the first, fifth,
and sixth columns are scattered to the ith gradient, the corresponding value
from the second column is scattered to the 1st gradient, and the values from the
third and fourth columns are scattered to the 2nd gradient. Since the memory
accesses to the intermediate gradient matrix are eliminated, the fused version of
backpropagation only incurs 3nd′ DRAM reads and nd′ DRAM writes.

To sum up, the total amount of DRAM accesses is reduced from (3nd′ ×
nneigh. + nd′) to (nd′ × nneigh. + 2nd′) in the forward pass and from (3nd′ ×
nneigh. +2nd′) to 4nd′ in the backward pass. Considering that nneigh. is usually
32 in most conventions [18, 29], fused aggregation requires about 5.13× fewer
DRAM accesses than the baseline.

Support for Explicit Positional Embedding. Several recent works [17,18] use ex-
plicit positional embedding to encode the relative position information between
the centroid and its neighbors. Since they are added to each of the grouped fea-
ture vectors before max pooling, we have made some minor changes to our fused
kernel. Detailed descriptions of the algorithm can be found in Appendix B.1.
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Dataset Model Npoint Nlayer Epochs Batch
size

Accuracy (Stdev.)
Baseline L-FPS

S3DIS [2]
PN++ 24000 4 100 8 63.19 (0.54) 63.39 (0.34)
MB-L 24000 15 100 8 69.82 (0.40) 69.76 (0.40)

MB-XL 24000 20 100 8 70.67 (0.37) 70.74 (0.43)

ScanNet [4]
PN++ 64000 4 100 2 59.42 (0.26) 59.54 (0.57)
MB-L 64000 15 100 2 70.52 (0.27) 70.54 (0.31)

MB-XL 64000 20 100 2 71.78 (0.28) 71.74 (0.44)

Table 1: Dataset, Model Training Parameters, and Model Performance. PN++, MB
stands for PointNet++, PointMetaBase.

Time and Space overhead. As explained above, saving the source index table
incurs an additional time overhead for DRAM writes (nd′) and the same amount
of space overhead (nd′) for DRAM memory capacity. However, this is almost
negligible compared to the saved DRAM access and footprints (2nd′ × nneigh.),
considering that the common value of nneigh. is 32 [18,29].

6 Experiments

6.1 Methodology

Dataset, Models, and Metrics. We evaluate our proposals based on six PointNet-
based models [18,27] for various 3D point cloud tasks [2,4]. Table 1 shows target
models, datasets, and training parameters. Note that Npoint denotes the size of
point cloud scene and Nlayer refers to the total building blocks in PointNet++
and PointMetaBase. We use two versions of PointMetaBase (L and XL) [18]
that recently achieved state-of-the-art performance in S3DIS datasets. For Point-
Net++ [27], we have augmented the model architecture with delayed aggrega-
tion [9] and positional embedding [18] to make the baseline stronger by boosting
the performance in both accuracy and efficiency as described in Appendix B.2.
Furthermore, we use the same training techniques and evaluation methodology
used in PointMetaBase [18] and PointNeXt [29]. Appendix C.1 describes more
information about data augmentations. We use mIoU (mean Intersection over
Union) as an accuracy metric in 3D semantic segmentation. We measure the
training throughput by running three epochs, multiplying the average through-
put by the number of epochs and adding preprocessing time required for gen-
erating sampling results using our L-FPS strategy. We evaluate the accuracy
impact with validation set because the test labels are not publicly available.

Implementations. We have implemented our proposals on OpenPoints library [29],
which is a highly optimized framework that supports various PointNet-based
models. We have applied a minor change to the dataloader and implemented a
new custom GPU kernel in CUDA to support L-FPS and fused aggregation.
L-FPS can be easily applied by adding a few lines of code to the dataloader
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Fig. 6: Comparison of sampling quality for S3DIS dataset

and our fused GPU kernel can be used just like other operations registered in
the OpenPoints library. We only apply L-FPS to the first layer of each model
since they are the major bottleneck in most cases. This is because as the number
of points decreases due to downsampling, the execution time of FPS decreases
quadratically. We use one NVIDIA RTX 3090 GPU [23] and 2×Intel(R) Xeon(R)
Gold 6338 CPU with 32 core and 512GiB of DRAM. For software setup, we use
PyTorch 1.10.1 with CUDA 11.2. All training is performed in FP32 data format.

6.2 Sampling Quality and Model Accuracy

This section analyzes the impact of L-FPS on sampling quality and end-to-end
model accuracy. Note that fused aggregation does not introduce any algorithmic
change to the training pipeline and thus does not impact accuracy. Figure 6b
and 6c present the sampling quality of FPS and L-FPS, respectively, through vi-
sualization of the point cloud scene from S3DIS dataset sub-sampled with each
strategy. We report visualization results for other datasets in Appendix D.2.
The results indicate that L-FPS maintains sampling quality. Figure 6a demon-
strates the distribution of minimum point spacing between the sampled points.
L-FPS maintains near-identical point spacing to FPS, consistently exceeding the
threshold. This is especially evident compared to random sampling. In contrast
to FPS, which selects the farthest points from each other, L-FPS samples any
point beyond a predefined threshold, leading to a point spacing distribution
slightly skewed towards lower values. However, the accuracy analysis in Table 1
demonstrates that the L-FPS has a negligible impact on accuracy, as indicated
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Fig. 7: Performance Improvements. PN++ and MB stands for PointNet++ and Point-
MetaBase.

by a maximum mIoU loss of 0.06% and a potential gain of 0.2%. We also demon-
strate the superiority of L-FPS in Appendix D.1 through comparisons with other
sampling algorithms. Additionally, the applicability of L-FPS to other models
and datasets is described in Appendix D.5 and D.6.

6.3 Training Throughput Improvement with Ablation Study

Figure 7a shows normalized end-to-end training throughput improvement based
on various models and datasets. With the L-FPS standalone, our proposal can
improve the geomean end-to-end throughput by 1.72×. With the fused aggrega-
tion standalone, we can achieve 1.22× geomean end-to-end speedup. The portion
of FPS is quadratically proportional to the number of points, while the portion
of aggregation is proportional to the number of downsampling layers. Based on
this fact, the model configurations shown in Table 1 explain the speedup results.
The speedup of fused aggregation tends to increase as the model size scales,
whereas the speedup of L-FPS shows the opposite trend. This trend can be well
observed in S3DIS dataset. While the speedup of L-FPS dominates the overall
speedup in lightweight PointNet++ model, the trend is reversed as the model
scales to PointMetaBase-XL.

On the other hand, the speedup of L-FPS far exceeds that of fused aggrega-
tion as the dataset size (number of input points) increases. This trend can be
observed in the case of ScanNet dataset, which has the most number of points
per scene. Our proposal achieves 2.25× geomean end-to-end speedup when both
techniques are applied. L-FPS tends to contribute more to the overall speedup
than fused aggregation because the portion of the FPS operations is usually
larger than that of the aggregation as shown in Figure 2. Actually, the portions
vary depending on model configurations. We can expect that these orthogonal
approaches can have an additive effect. The experimental results substantiate
that both are essential to achieve speedups across various models and datasets.

The detailed training time numbers are presented in Appendix D.3. The
speedup specifically for the aggregation part is reported in Appendix D.4.
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6.4 Energy Efficiency Improvement

We monitor the power consumption of GPU by running nvidia-smi command
at 1ms intervals, and multiply average power consumption and training time to
obtain energy consumption. Figure 7b demonstrates the normalized GPU energy
efficiency. Our proposal achieves geomean 1.94× energy efficiency improvements
when both techniques are applied. Smaller energy efficiency improvements than
the speedup implies that the power consumption increases when our techniques
are applied. This is because during the baseline training, GPU becomes almost
idle while performing inefficient FPS, resulting in low power consumption.

6.5 Sensitivity Study
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Fig. 8: Sensitivity to batch size.

Batch Size. We evaluated three
training batch sizes: default batch
size for main experiments, halved,
and doubled batch size. Figure 8
shows that our proposal generally
performs better in small batch
sizes because FPS becomes more
computationally inefficient when
the batch size decreases.

Number of Points. In Section 6.2, we employed large-scale datasets with tens of
thousands of points per scene. To assess the sensitivity to the number of points,
we tested our proposal on PointNet++ model with ModelNet40 [34] dataset,
which uses only 1024 points per scene. With fused aggregation, whose speedup
is not sensitive to the number of points, we achieved a 1.22× speedup, whereas
L-FPS did not show any speedup and even resulted in a 1.16× slowdown. The
latency of FPS is so minimal that the preprocessing time of L-FPS and the
overhead of loading sampling results from the dataloader take more than the
actual time required to perform FPS. Therefore, we recommend employing only
fused aggregation when dealing with an extremely small number of input points.

7 Conclusion

PointNet-based models are widely used for 3D point cloud tasks. However, the
training costs have escalated rapidly due to the increase in model capacity and
datasets. This work presents a comprehensive analysis of the training pipeline
for state-of-the-art PointNet-based models, identifying unique optimization op-
portunities. To capitalize on these opportunities, we propose two techniques:
Lightweight FPS via progressive near point filtering and fused aggregation. Our
proposal significantly reduces redundant computations and memory accesses.
The experimental results demonstrate that our techniques can substantially re-
duce the training time without compromising accuracy. We believe these findings
are valuable for researchers and practitioners who seek to efficiently train and
deploy their 3D point cloud applications in real-world scenarios.
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