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Abstract

Learning-based neural network (NN) control policies have shown impressive em-
pirical performance. However, obtaining stability guarantees and estimates of the
region of attraction of these learned neural controllers is challenging due to the
lack of stable and scalable training and verification algorithms. Although previous
works in this area have achieved great success, much conservatism remains in
their frameworks. In this work, we propose a novel two-stage training framework
to jointly synthesize a controller and a Lyapunov function for continuous-time
systems. By leveraging a Zubov-inspired region of attraction characterization to
directly estimate stability boundaries, we propose a novel training-data sampling
strategy and a domain-updating mechanism that significantly reduces the conser-
vatism in training. Moreover, unlike existing works on continuous-time systems
that rely on an SMT solver to formally verify the Lyapunov condition, we extend
state-of-the-art neural network verifier α,β-CROWN with the capability of per-
forming automatic bound propagation through the Jacobian of dynamical systems
and a novel verification scheme that avoids expensive bisection. To demonstrate
the effectiveness of our approach, we conduct numerical experiments by synthe-
sizing and verifying controllers on several challenging nonlinear systems across
multiple dimensions. We show that our training can yield region of attractions with
volume 5 ´ 1.5 ¨ 105 times larger compared to the baselines, and our verification
on continuous systems can be up to 40 ´ 10,000 times faster compared to the
traditional SMT solver dReal. Our code is available at https://github.com/
Verified-Intelligence/Two-Stage_Neural_Controller_Training.

1 Introduction

Learning-based neural network control policies have demonstrated great potential in complex systems
due to their high expressiveness [19, 53]. However, the applications of these neural controllers in
safety-critical real-world physical systems raise concerns since they typically lack stability guarantees.
A promising method for quantifying safety is estimating the region of attraction (ROA), which refers
to the set of initial states from which a system is guaranteed to converge to a desired equilibrium point.
The computation of the ROA is often formulated as the search for an appropriate Lyapunov function
satisfying some algebraic conditions over its sublevel sets [26, 41, 31]. Due to the highly complex
and nonlinear nature of neural networks, searching for a Lyapunov function is not easy. Many
existing works that are able to make stability guarantees about a system have some restrictions on the
problem structure, for example, requiring linear or polynomial parameterizations of the system, where
sum-of-squares technique [37, 47, 30, 7] can be applied. To enable certification for general nonlinear
systems, many recent works explore data-driven methods to synthesize a neural certificate [8], such as
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Lyapunov functions [4, 6, 55, 44, 48, 35, 24, 34, 29, 23], barrier Functions [3, 32, 7, 10, 25, 9, 16, 17],
and contraction metrics [38, 40, 39, 36, 22], to certify the system’s stability.

In this work, we aim to synthesize neural controllers of continuous-time systems together with a
Lyapunov certificate. Unlike typical machine learning tasks, this problem requires that the Lyapunov
and boundary conditions hold over the entire continuous domain of interest, rather than statistically
achieving high accuracy on a discrete test set. However, since at each iteration only a small number of
points can be selected, the problem forces us to adopt specialized strategies both to pick the training
domain and to sample training data from the domain. We argue that these two are the key factors for
the conservativeness issue observed in many previous works. For selecting the training domain, many
previous works simply select a fixed domain of interest and enforce the Lyapunov condition over
it. While some previous works have proposed a new formulation to overcome the conservativeness
by introducing an extra term to verify forward invariance and allow the ROA to touch the training
domain nontrivially [48, 35], we argue that this does not fully solve the conservativeness issue and
leaves the training domain selection a hard hyperparameter to tune.

In addition to the training domain, training data selection also plays an important role. Besides
simple random sampling that typically does not suffice for certification, previous works dealing
with similar problems [4, 6, 55, 48] typically achieve co-learning with a counterexample-guided
(CEGIS) approach, which generates counterexamples of the Lyapunov condition as the training data,
either using a verifier [4, 6] such as an SMT or MILP solver or a gradient-based approach [44, 48].
While these approaches have led to great success, such approaches can typically only refine upon
already worked controller/Lyapunov function pair and thus rely on carefully tuned LQR-/RL-based
initializations [4, 44, 48]. This limitation makes these works both conservative in their estimation of
the ROA and also very difficult to apply to new systems without much domain-specific knowledge.

In our work, we propose a two-stage training framework with carefully designed curriculum domain
expansion and training sample selection that can yield significantly less conservative ROA estimation
inspired by Zubov theorem [56, 24, 18, 28], which provides a characterization of the true ROA
with a PDE. During the first stage, we propose a Zubov-inspired training data sampling strategy
by combining points from both inside and outside of the current ROA estimation to better guide
the learning. Moreover, we eliminate the conservativeness introduced by the training domain
by dynamically expanding it using trajectory information. This stage can provide us an almost-
working controller and Lyapunov function that we can refine upon. The second stage then involves
counterexample-guided learning (CEGIS) to eliminate all the counterexamples inside the ROA
estimation and thus obtain a verifiable Lyapunov certificate. Importantly, our training also fully
utilizes the physics-informed Zubov loss and can eliminate the conservatism introduced by the inner
approximation nature of the normal Lyapunov function. As we shall demonstrate in our numerical
experiments, our approach can robustly produce controllers with significantly larger ROAs compared
to previous state-of-the-art approaches in all the benchmarks with various control input limits.

As we deal with continuous-time systems, verification over Jacobian vector products also presents a
challenge. Previous works addressing the Lyapunov stability verification for continuous-time systems
typically rely on SMT-, MIP-, or SDP-based solvers [4, 1, 24, 5, 49, 14, 5] such as dReal [15] or
Z3 [11]. Inspired by the success in [48, 35], we also utilize the state-of-the-art neural network
verification tool α,β-CROWN [52, 33, 45, 46, 43, 51] for formally verifying Lyapunov stability. The
key challenge is to handle the Jacobian-related operators in dynamical systems, which have not been
discussed or implemented in existing neural network verifiers. To ensure verification tightness, we
design new linear relaxations for these Jacobian operators in continuous time system learning such as
Tanh and Sigmoid. Furthermore, we introduce a novel verification scheme to dynamically adjust the
specifications when noticing counterexamples without incurring much computational cost to avoid
expensive bisections as in [48, 24].

To summarize, our main contributions include:

• We introduce a novel two-stage Zubov-based training framework with carefully designed curriculum
training domain expansion and training sample selection that significantly reduces the conservatism
during training.
• We customize and strengthen the advanced neural network verification tool α,β-CROWN with
the ability of handling many commonly used Jacobian-related operators in continuous-time systems.
Moreover, we propose a novel verification algorithm that can effectively avoid expensive bisections
without sacrificing on soundness.
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• We demonstrate through numerical experiments that our training can yield region of attraction with
volume 5 ´ 1.5 ¨ 105 times larger than the baselines. Moreover, across the systems under evaluation
which we can formally verify, our verification achieves 40 ´ 10,000 times speedup compared to the
previous SMT solver dReal.

2 Background and Problem Statement

We consider a nonlinear continuous-time state-feedback control system

9x “ gpx, πpxqq “ fpxq (1)

where x is the system state, g denotes the open-loop dynamics, u denotes the controller, and f
denotes the closed-loop nonlinear dynamics. We denote the solution of the system starting with
initial condition x “ x0 by ϕpt, x0q, and denote the equilibrium state and the control input as
x˚{u˚ respectively. We denote the sublevelset tx : fpxq ď cu of some function f as fďc and
correspondingly f“c for the levelset. Our objective is to jointly search for a neural network control
policy uθ together with a Lyapunov function Vθ that can certify the stability of the closed-loop
dynamics (1) according to the Lyapunov theorem. The goal is to learn a controller that maximizes
the region of attraction (ROA), which has the formal definition below.

Definition 2.1 (Region of Attraction (ROA) [21]). Region of attraction for the system (1) is the set
R such that limtÑ8 ϕpt, x0q “ x˚ for all x0 P R.

Theorem 2.2 (Lyapunov Theorem [26, 21]). Given a forward invariant set S containing the equilib-
rium, if there exists a function V : S Ñ R such that we have

V px˚q “ 0

V pxq ą 0 p@x P Sztx˚uq

∇V pxqJfpxq ă 0 p@x P Sq

(2)

then S is a subset of the region of attraction.

Therefore, the objective of this work can be formalized as the optimization problem

max
πθ,Vθ

VolpSq, subject to Theorem (2.2) (3)

To maximize the possible ROA, we adopt the Zubov theorem, which states that a function that satisfies
a stricter set of constraints than the Lyapunov condition can express the real underlying ROA R.

Theorem 2.3 (Zubov Theorem [56, 24, 18]). Consider the nonlinear dynamical system in (1) and
we assume that x˚ “ 0 without loss of generality. Let A Ă Rn and assume that there exists a
continuously differentiable function W : A Ñ R and a positive definite function Ψ : Rn Ñ R
satisfying the following conditions,

W p0q “ 0 and 0 ă W pxq ă 1, @x P Azt0u (4)
W pxq Ñ 1 as x Ñ BA or }x} Ñ 8 (5)

∇W pxqJfpxq “ ´Ψpxqp1 ´W pxqq, @x P A (6)

Then x˚ “ 0 is asymptotically stable with the region of attraction is exactly A.

Here, equation (6) is called the Zubov equation and can be utilized as the physics-informed loss
during our training. It is noticed that there exists a ground truth value for the Zubov function that can
be obtained through the following theorem.

Theorem 2.4 (Liu et al. [24]). We adopt the convention that divergence of integration yields the value
8. Then for any a, p ą 0, W pxq “ tanhpa

ş8

0
}ϕpt, xq}p dtq solves the Zubov equation equation

∇W pxqJfpxq “ ´ap1 `W pxqqp1 ´W pxqq}x}p.

We refer the readers to [24] for more theoretical details. This theorem enables us to obtain the ground
truth value of W during the training without solely depending on the PDE residual loss, making the
training process more robust, and can provide better learning dynamics for the Lyapunov function.
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3 Methods

3.1 Learning of Neural Controller and Lyapunov Function

In this section, we introduce our training pipeline for synthesizing the neural controller and a
corresponding Lyapunov function. As we have discussed, the selection of the training domain and
training samples are the most crucial factors for successful training. We shall see that the Zubov
theorem provides us not only the physics-inspired loss, but also a principled way of data selection.
During training, we parameterize the controller and Lyapunov function as

uθpxq “ c ¨ tanhpNNcpxq ´ NNcpx˚q ` tanh´1
p
u˚

c
qq, Vθpxq “ sigmoidpNNvpxqq (7)

This parametrization ensures that we have 0 ď Vθ ď 1 and the crucial property uθpx˚q “ u˚,
which ensures that the origin is also an equilibrium for the closed-loop system. Moreover, this
parametrization constrains the control input lie in the range r´c, cs. Sometimes, if a non-symmetric
limit r0, cs is more natural, we append another ReLU layer to uθ. This operation can also be applied
to each coordinate separately to support mixed control-input limits.

3.1.1 ROA Estimation Stage

V = c

Figure 1: An illustration of the key idea used in
the ROA estimation stage. Notice the balanced
training sample selection from both in and out-
side of the ROA estimation V ďc. The training
domain is also dynamically expanded to include
all the states along a convergent trajectory.

The first stage of colearning which we call ROA
estimation stage, aims to set up a mostly work-
ing controller and an estimate of the Lyapunov
function that can be further refined. As we have
discussed, in this stage the most important aspect
is the selection of training data and training do-
main.

Zubov Guided Sampling: Intuitively, a good
training data selection scheme should mix the data
points inside and outside of the running region of
attraction. Selecting only “outside” points risks
collapsing the sublevel set back toward the origin,
while sampling exclusively “inside” offers no sig-
nal to enlarge it. In low dimensions, a well-chosen
training box plus random sampling can approxi-
mate this mix, but as dimensionality grows, the
ROA occupies a vanishing fraction of the domain,
and naive draws will almost always only select the
points outside of the ROA. For example, in the
cartpole system, the ROA we found at the end of
training only occupies less than 1% of the full training domain, and this will only be more pronounced
in even higher-dimensional systems, and therefore naive sampling is infeasible.

In the traditional Lyapunov function framework, it is difficult to obtain this running estimation of the
ROA. Zubov theorem, on the contrary, characterizes the exact region of attraction by the sublevel
set V ď1. Intuitively, in our training pipeline, since our parametrization already deems that V cannot
exactly equal 1, we propose picking the training data by selecting a batch of points lying in V ďc

θ and
another batch with Vθpxq as close to 1 as possible, with c « 1. To achieve this, we select data by
performing projected gradient descent (PGD) [27] with the following two objectives

Linteriorpθq “ ReLUpVθpxq ´ cq (8)
Loutsidepθq “ |Vθpxq ´ 1|. (9)

The first interior loss will push points to the sublevel set V ďc
θ and the outside loss will push points

further away from the region of attraction as shown in Figure 1. A detailed discussion on how to pick
c is presented in Appendix A.4.

Dynamic Training Domain Expansion: While previous works attempt to resolve the conserva-
tiveness introduced by a fixed training domain by allowing the ROA to touch non-trivially with it,
we argue that the best way is instead to dynamically expand the domain during training. We thus
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propose to utilize the trajectory information to dynamically update the training box. We start from
a relatively small training region and periodically perform a trajectory simulation starting from the
points inside the current ROA estimation V ďc

θ with the same c in the data selection. We then expand
the training region to include the farthest states that the converged trajectories can reach. To also
benefit simple systems where all trajectories converge to zero in a monotone fashion, we further
enlarge the box uniformly for the final training domain. If there is no convergent trajectory for
many iterations, we manually enlarge the box for further exploration. This approach simultaneously
resolves conservativeness in ROA posed by fixed domain and also resolves the challenging forward
invariance issue. A visualization of our approach can be found in Figure 1, where the original blue
training domain is expanded further to incorporate the states along the convergent trajectories. The
domain updating algorithm can be found in Algorithm 2 in appendix.

Loss Function: The training loss can be easily adapted from the Zubov theorem. The objective of the
training is to train the Lyapunov function and controller to encourage Vθ to behave more like a Zubov
function. Therefore, naturally we could minimize Vθp0q and train on the PDE residual of (6) and the
data loss (2.4). In the handling of data loss, previous works such as [42] often simulates the trajectory
till convergence to compute

ş8

0
}ϕpt, xq}p dt. This, however, would lead to very lengthy training and

add difficulty in the implementation of efficient batched operations since different trajectories have
different convergence speeds. We thus propose to replace this term using a Bellman-type dynamic
programming approach. We note that the following rewrite is possible:

W pxq “ tanhpa

ż 8

0

}ϕpt, xq}p dtq

“ tanhpa

ż T

0

}ϕpt, xq}p dt` tanh´1
pW pϕpT, xqqqq.

(10)

With this approach, only simulation to time T is required. In practice, we found that this term can
benefit training even if a very small T like T “ 0.01s is adopted. We also utilized a similar strategy
as in [42] to decouple the learning of the Lyapunov function and controller using the actor-critic
framework and impose the boundary condition Vθpyq « 1 for y P Bp2Ωq to guide the early phase
learning. Moreover, to ensure that the second CEGIS stage is numerically stable, we minimize Vθp0q

only with a hinge-type loss. Let ϵ ą 0 be a small positive number. The final loss function is a
weighted combination of the following components:

Lzeropθq “ ReLU
`

V 2
θ p0q ´ ϵ

˘

, (11)

Lpdepθq “
1

k1

k1
ÿ

i“1

`

∇Vθpxiq
Jfpxi, detachpupxiqqq ` ap1 ` Vθpxiqqp1 ´ Vθpxiqq}xi}

p
˘2
,

(12)

Ldatapθq “
1

k2

k2
ÿ

i“1

˜

Vθpxiq ´ tanhpa

ż T

0

}ϕpt, xiq}p dtq ´ tanh´1
pVθpϕpT, xiqqq

¸2

, (13)

Lcontrollerpθq “
1

k1

k1
ÿ

i“1

detachp∇VθpxiqqJfpxi, upxiqq, (14)

Lboundarypθq “
1

k3

k3
ÿ

i“1

pVθpyiq ´ 1q
2
, (15)

where k1, k2, k3 ą 0 represents the number of data points. Here, the PDE loss minimizes the PDE
residual (6) by optimizing the Lyapunov function, whereas the controller loss optimizes the controller
akin to a Sontag-style formula. Here xi are training data sampled by our novel sampling scheme, and
yi are the boundary points from Bp2Ωq. More details about the loss function design can be found in
appendix A.3.

3.1.2 CEGIS-based Refinement

Many previous works [4, 44, 48] start their training with a counterexample-guided approach
(CEGIS [2]). However, without a good initialization, the counterexamples generated cannot be
easily eliminated and will accumulate through the training and cause failure eventually, which is
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shown in the ablation studies Table 2. We found that our first stage can yield a great initialization for
CEGIS-based training. The controller after the pretraining stage is already almost working, meaning
that almost all trajectories starting within V ďc

θ will successfully converge to the equilibrium. However,
as we have discussed, no certification can be given at this time since random samples typically are
not sufficient to guarantee the condition holds over the entire continuous domain. Therefore, another
stage of CEGIS-based finetuning is performed to ensure the certifiability of the system. To find
counterexamples, we follow the previous works as in [48, 44] to use a cheap gradient-based PGD
attack with the objective

Lcexpxq “ minp∇Vθpxqfpxq, Vθpxq ´ c1, c´ Vθpxqq (16)

Maximizing this objective leads to potential xcex that violates the Lyapunov condition in the band
V ďc
θ zV ďc1

θ . Here we require a lower c1 since there is no guarantee that Vθp0q “ 0, and so near the
origin there must exist some small violations. However, we can choose this c1 to be just slightly
larger than Vθp0q. These counterexamples then serve as the dataset for the CEGIS training. We then
eliminate these counterexamples with the loss function

Lcegispθ;xcexq “ ReLUp∇Vθpxcexqfpxcexqq (17)

where it enforces the Lyapunov condition. Moreover, the overall shaping of the Lyapunov function
should mostly be formed at the ROA estimation stage due to the presence of Zubov-inspired loss
and should thus be only slightly refined at the CEGIS stage. Therefore, we denote v0 as the value of
Vθp0q prior to the CEGIS finetuning, and apply the regularization term

Lregpθq “ maxpReLUpv0 ´ Vθp0qq,ReLUpVθp0q ´ c1qq `
ÿ

xPBΩ

|Vθpxq ´ 1| (18)

with the aim of preventing the levelset of Vθ from changing drastically during CEGIS. The first term
thus stabilizes the levelset structure near the origin by restricting Vθp0q to stay close to the original
value, whereas the second term stabilizes the levelset near the boundary of the training domain and
encourages the ROA to stay away from this boundary to prevent trajectories from escaping from it.

Algorithm 1 Training of Neural Controller and Lyapunov Function
Require: Network Parameters θ, Starting Domain Ω, Maximum Iterations M1,M2, Integration

Time T and Discretizations Timesteps dt, Learning rate α, Number of Training Points N ,
Domain Update Frequency γ, Number of TrajectoriesNT , Lyapunov Upper Threshold c, Domain
Expansion Factor β. PGD steps P and step size α1, Finetuning learning rate α2 and epochs K

1: for i “ 1 to M do Ź Stage 1: ROA Estimation Stage
2: if γ | i then
3: Ω Ð UPDATEDOMAIN(θ, Ω, T , dt, NT , c, β) Ź See algorithm 2
4: x Ð N data points from (8) and (9)
5: xboundary Ð N points from Bp2Ωq

6: θ Ð θ ´ α∇Lpθ, x, xboundary, T, dtq Ź See loss function section.

7: Dataset Ð H Ź Stage 2: CEGIS Refinement
8: for i “ 1 to M do
9: x Ð P points from Ω

10: for j “ 1 to P do
11: x Ð x` α1∇Lcexpxq Ź See equation (16)
12: Dataset Ð tDataset, xu Ź Buffer has length limit. See appendix .
13: for j “ 1 to K do
14: θ Ð θ ´ α2∇pβ1Lcegispθ;Datasetq ` β2Lregpθqq Ź See section 3.1.2
15: if No CEX in dataset for at least n steps then
16: break
17: return Trained parameters θ, Final Training Domain Ω

3.2 Verification

Criterion: Since there is no guarantee that Vθp0q “ 0, counterexamples near the origin are unavoid-
able. As the Lyapunov condition enforces the Lyapunov function value to decrease along trajectories,
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we propose to exclude an unverifiable region defined as a sublevel set of the Lyapunov function. If
the excluded set is small enough, this verification suffices for most practical needs. Formally, we
propose the verification criterion
Theorem 3.1. Let 0 ă c1 ă c2. Suppose we have

x P pV ďc2zV ďc1q X Ω ÝÑ ∇V pxq ¨ g
`

x, πpxq
˘

ă 0, (19)

x P BΩ X V ďc2 ÝÑ g
`

x, πpxq
˘

¨ n⃗pxq ă 0, (20)

where n⃗pxq is the outer normal vector of BΩ at x. Then both V ďc1 and V ďc2 are forward invariant,
and every trajectory initialized in V ďc2 enters the smaller set V ďc1 in finite time.

The proof of this theorem can be found in appendix section B.1. Here equation (19) states the normal
Lyapunov condition has to hold in the band tx : c1 ď V pxq ď c2u whereas equation (20) states that
the trajectory cannot escape through the boundary. Compared to previous works that simply exclude
a rectangle near the origin [48], our verification scheme is more principled since it also provides
some guarantees inside the unverifiable region. In systems where formal certification over the full
domain is challenging, verifying the condition within a thin band where c2 ´ c1 ă ϵ for arbitrarily
small ϵ still allows one to certify the forward invariance of the sublevel set V ďc1 .

Formal Verification: For formal verification, instead of the commonly used SMT solver dReal in
previous works [15, 4, 24], we hope to use a state-of-the-art neural network verification framework,
such as α,β-CROWN [52, 33, 45, 46, 43, 51, 54], to rigorously verify the Lyapunov condition through
the tool’s efficient linear bound propagation and branch-and-bound procedures. However, several key
challenges remain for the application of α,β-CROWN. First, since the continuous-time Lyapunov
condition involves Jacobian-vector products, it is essential to support efficient and tight bound propa-
gation for the Jacobian of various dynamical system operators, which were previously not supported
in any NN verifiers. Second, even after applying a CEGIS procedure, small counterexamples can still
arise near the levelset boundaries at c1 and c2. To identify the tightest verifiable values of c1 and c2, a
lengthy and expensive bisection is typically required, as commonly done in prior work [48, 24].

In our work, we extend α,β-CROWN with the capability to efficiently and tightly bound the Jacobian
of many commonly used operators such as Tanh, Sigmoid. We implemented new linear relaxations
that are much tighter compared to naively treating their Jacobian as composite functions of already
supported operators, where the details can be found in the appendix section B.3. Furthermore, we
enable our verifier to dynamically update c1, c2 during verification to avoid expensive bisection while
remain sound. Intuitively, during the branch-and-bound process, we pick out those domains currently
with the worst bound and try to find counterexamples in those domains. If counterexamples are found,
we update c1 and c2 to exclude the counterexamples. Notice that after this update, all the verified
subproblems during branch and bound still remain sound and do not need to be verified again. This
effectively saves the time needed for the repetitive verification needed if c1 and c2 are to be found by
bisection. The full verification algorithm can be found in appendix section B.4.

Evaluation Schemes: Compared to discrete-time systems, where the final verification is performed on
the discrete Lyapunov condition ∆V pxq “ V pgpx, upxqq ´ V pxq ă 0 through domain. Continuous-
time systems require formally verifying the Jacobian vector product (19). The large number of
multiplications is challenging for current verifiers since it is hard to bound multiplication well with
a linear relaxation. Therefore, even with the strongest verification tool, verification is hard to scale
to higher dimensions due to bound tightness issues. We thus define three evaluation schemes we
considered. As system dimensionality increases, we must rely increasingly more on empirical checks.

1. Formal Verification: This scheme implies the condition in theorem (3.1) is formally verified
throughout the domain with a verifier.
2. PGD Evaluation: In this scheme, we use a strong PGD attack to attempt finding counterexamples
of the condition in theorem (3.1). If counterexamples are not found, we say the empirical PGD
evaluation succeeds.
3. Trajectory Evaluation: In this scheme, we randomly sample trajectories from the sublevel set
V ďc2 and determine whether the trajectories converge to the desired equilibrium.

We can notice that these schemes are more and more empirical but are also more and more scalable
to higher dimensional systems. The formal verification scheme, even though it is the strongest
verification and can imply the other two schemes, can be hard to scale up. The empirical PGD
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evaluation can scale up better, but still fails on our hardest 12-dimensional system. However, the
trajectory based evaluation can be easily scaled up to any dimension. While this sampling approach
provides no formal guarantees, several previous works utilize this technique to validate the learned
controller [50, 10, 47].

4 Experiments

Setups: We demonstrate the effectiveness of our methods in several challenging benchmarks including
four 2D systems (Van-Der-Pol, Double-Integrator, Inverted Pendulum, Path Tracking), one 4D system
(Cartpole), three 6D systems (PVTOL, 2D Quadrotor, Ducted Fan), and a 12D system (3D Quadrotor).
System details follow prior works [44, 48, 35] and are also provided in appendix C.2. We compare
our training framework against baselines from DITL [44], Yang et al. [48], and Shi et al. [35]. We
note that all of them work with discrete-time systems. We focus on comparing to these baselines
due to limitations in the existing continuous-time methods. The works [4, 42, 13] incorrectly handle
the condition upx˚q “ u˚, so that the origin fails to be the equilibrium for most systems. Further
discussions and examples are included in the appendix C.1. However, to ensure fair comparison, we
still run and present the comparison with Fossil 2.0 [13] for those systems that their method handle
correctly. For each method, we run the training/verification pipeline five times with different seeds.
We compare training success rates and ROA volumes, where the latter is estimated following previous
works [44, 35] as the fraction of points within the ROA sublevel set among a dense sample from the
full domain. All models undergo the three evaluation steps from section 3.2 in reverse order. More
experimental details can be found in appendix C.
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Figure 2: Region-of-Attraction (ROA) for Double Integrator and Cartpole compared to baselines.
The dotted box shows the baseline’s training box being used. For the double integrator system, it is
clear that the initial training box is limiting the baseline’s potential but is not constraining us.

Two and Four Dimensional Systems: On all the 2D systems, our methods robustly produce much
larger ROAs compared to existing baselines. On both the path tracking and the inverted pendulum
system, our training framework yields 5 times bigger ROA compared to the baselines as shown in
table 1. Moreover, on the more challenging systems such as inverted pendulum with small torque,
our method is the only one that can get perfect success rate. Visualizations of the learned ROA for
Double Integrator can be seen in the left of Figure 2. We also test our method on a more challenging
Cartpole system with four dimensions. Compared to the baselines, we obtain an ROA with more
than 330ˆ larger than the previous state of the art, as can be seen in Table 1. The visualizations
for different projections of the ROA for Cartpole can be found on the right of Figure 2. The rest
visualizations and details can be found in the Appendix C.6.

Six Dimensional Systems: We also implement our method on three higher dimensional systems:
PVTOL, 2D Quadrotor, and Ducted Fan. For each system, our training pipeline yields a much larger
ROA robustly. Compared to the baselines, we obtain an ROA with more than 150000ˆ larger
than the previous state of the art on average for 2D quadrotor and more than 380ˆ larger for the
PVTOL system as can be seen in Table 1. In the ducted fan case, we are the only method that can
achieve an empirically verifiable ROA. We choose one projection to visualize for each of the system
given in Figure 4. More visualizations can be found in the Appendix C.6. Due to the difficulty
of continuous-time system verification, formal verification for these three systems is challenging.
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Figure 3: Slice of the ROA for the 6D benchmark systems compared to baselines.

Table 1: Success rates (Succ) and ROA volume (ROA) across methods. Dashes (–) denote systems
that are not already covered by the baseline and we were unable to obtain successful runs. The
"Scheme" column indicates the evaluation scheme for each system as described in section 3.2: Formal
= formal verification; PGD = empirical PGD evaluation; Trajectory = trajectory evaluation. "B" in a
system implies the Big-torque setting, and "S" implies Small-torque.

System Eval Scheme Fossil [13] DITL [44] Yang et al. [48] Shi et al. [35] Ours

ROA Succ ROA Succ ROA Succ ROA Succ ROA Succ

Van-der-Pol Formal 3.05 ˘ 0.58 60% – – 1.36 ˘ 1.57 80% 20.2 ˘ 18.3 80% 57.6 ˘ 3.4 100%
Double Int Formal 258.1 ˘ 36.3 80% – – 18.18 ˘ 16.19 60% 130.3 ˘ 3.9 60% 302.5 ˘ 10.7 100%
Pendulum B Formal 106.5 ˘ 23.5 80% 61 ˘ 31 100% 70.6 ˘ 12.2 100% 487.5 ˘ 58.5 80% 2946.5 ˘ 149.1 100%
Pendulum S Formal 285.2 ˘ 53.3 80% – – 217.34 ˘ 6.07 60% 306.3 ˘ 48.7 40% 1169.2 ˘ 124.5 100%
Path Tracking B Formal – – 9 ˘ 3.5 100% 24.06 ˘ 0.29 100% 15.3 ˘ 8.9 60% 122.0 ˘ 3.7 100%
Path Tracking S Formal – – – – 14.86 ˘ 0.18 100% 12.5 ˘ 6.5 100% 73.8 ˘ 12.5 100%

Cartpole Formal – – 0.021 ˘ 0.012 100% – – 0.9266 20% 306.1 ˘ 54.2 100%

PVTOL PGD – – – – – – 49.87 ˘ 3.91 80% p1.91 ˘ 0.23q ¨ 104 100%
2D Quadrotor PGD – – – – 2.33 ˘ 0.47 100% 44.53 ˘ 18.38 80% p6.64 ˘ 4.67q ¨ 106 100%
Ducted Fan PGD – – – – – – – – p4.31 ˘ 1.86q ¨ 104 100%

3D Quadrotor Trajectory – – – – – – – – p1.17 ˘ 0.64q ¨ 109 100%

However, empirical verification is confirmed for these systems, and in 2D Quadrotor, we can formally
verify the forward invariance of the sublevelset V ď0.2 using Theorem 3.1.
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Figure 4: ROA estimation for 3D quadrotor. As we can see from the flow map, all the trajectories in
our ROA estimation converges to the origin.

Twelve Dimensional System: Finally, we test our training pipeline in a 12 dimension 3D quadrotor
system, in which none of the previous methods successfully give any ROA estimation. In this high
dimensional case, we found that our pretraining framework works smoothly and can consistently
yield a working controller. However, we found that CEGIS in higher dimensions does not work
perfectly and we oftentimes found that counterexamples can still be located using longer PGD with
more restarts even if a prolonged CEGIS is already performed. However, the empirical success of our
approach is confirmed by sampling over 106 trajectories inside the levelset V ďc2 and confirm that
they all converge. The flow map in Figure 4 also confirms this.
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Table 2: Success rates of different training schemes under three verification regimes.

System Training scheme Evaluation scheme (% success)

Formal Empirical-PGD Trajectory

Cartpole

Two-stage with Random sampling 0 0 0
ROA-Estimation stage only (Zubov + Domain Expansion) 0 0 100%
CEGIS only 0 0 0
Ours (full pipeline) 100% 100% 100%

2-D Quadrotor

Two-stage with Random sampling 0 0 0
ROA-Estimation stage only (Zubov + Domain Expansion) 0 0 100%
CEGIS only 0 0 0
Ours (full pipeline) – 100% 100%

Verification Time: As we have discussed, our verifier struggles to verify higher-dimensional systems
due to the bound tightness issue over Jacobian vector product. However, we shall note that our
approach is already much faster compared to the previous state-of-the-art verifier dReal [15] used by
many previous work [4, 24] for continuous time systems. In the 2D systems verification, our method
yields 40 ´ 10000ˆ faster verification compared to dReal. And for the cartpole system, the dReal
fails to terminate. The full verification time comparison can be found in Table 3.

Ablation Studies: We also investigate the effectiveness of our training design choices. We mainly
focus on the effectiveness of our training sample selection scheme and the two-stage training by
considering three training settings:

1. Two Stage training with domain expansion but with random sampling.
2. Only the first ROA estimation stage with Zubov inspired sampling and domain expansion.
3. Only CEGIS and domain expansion, no ROA estimation stage.

We then investigate the success rate of these three training schemes under different evaluations with
two higher dimensional systems Cartpole and 2D quadrotor. The overall result can be found in Table 2.
We can found that without our careful design choices, neither training Scheme 1 or Scheme 3 can
yield any verifiable result. However, with our designed ROA estimation stage, even without CEGIS
our trained controller and Lyapunov function can robustly pass the trajectory-based verification. Then
together with CEGIS stage, our full training pipeline consistently yields controller/Lyapunov function
that can be either formally verified or pass the PGD attack evaluation.

Table 3: Example verification time for each solver across our benchmark systems with formal
verification. For 2D quadrotor, it is marked with a star due to only forward invariance of the set
V ď0.2 is verified by involving theorem 3.1 with c1 “ 0.2, c2 “ 0.21.

Method Van der Pol Double Integrator Pendulum B Pendulum S Path Tracking B Path Tracking S Cartpole 2DQuad˚

dReal 39265.21 s 359.27 s 1479.55 s 1709.19 s 113.72 s 142.20 s – –
α,β-CROWN 3.94 s 3.00 s 3.64 s 3.94 s 3.77 s 3.67 s 76443 s 104614 s

5 Conclusion

In this work, we propose a two stage training pipeline with novel training domain and training
data selection for obtaining stabilizing controller with large region of attraction. Through extensive
numerical experiments across various dimensions, we demonstrate that our training pipeline can
achieve ROA volumes that are 5 ´ 1.5 ¨ 105 bigger than the baselines. We also extend the state-of-
the-art verifier α,β-CROWN with the capability of performing bound propagation through many
Jacobian operators and introduce novel verification schemes to avoid expensive bisection. We
demonstrated that our verification can yield a 40 ´ 10,000 times speedup compared to the previously
most commonly used verifier dReal. Although our method achieves promising empirical performance
regarding the ROA volume and dimensionality compared to existing baselines, formal verification is
still challenging for higher dimensional systems. As future works, it will be interesting to explore
more verifier-friendly training strategies and to further tailor and improve the verifier itself for this
specific problem. Moreover, it would be interesting to extend the framework to more general control
system settings, such as discrete-time or hybrid systems, slowly time-varying systems, or to synthesize
and verify robust controller for systems with perturbations.
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A Training Details

A.1 Domain Update Algorithm

The full domain update algorithm can be found in algorithm 2. It first samples a batch of points from
the sublevelset V ďc by PGD with the objective (8), and then performs trajectory simulation starting
from these points. The algorithm then pick out those convergent trajectories and update the training
domain to include the farthest state possible these convergent trajectories can reach.

Algorithm 2 UpdateDomain
Require: Controller uθ, Lyapunov Function Vθ, Domain Ω, Integration Time T and Discretizations

Timesteps dt, Number of Trajectories NT , Lyapunov Upper Threshold c, Domain Expansion
Factor β

1: xinit Ð NT samples from the sublevel set 0 ă Vθ ă c Ź Data from (8)
2: C Ð Set of indices j where trajectory ϕpt, xjinitq converges
3: for each dimension d do
4: dmin Ð minjPC,tPr0,T srϕpt, xjinitqsd

5: dmax Ð maxjPC,tPr0,T srϕpt, xjinitqsd

6: Ωd Ð rdmin, dmaxs

7: Ω Ð β ˆ Ω Ź To handle monotonic trajectories.
8: return Ω

A.2 CEGIS Dataset

The dataset from line 12 of algorithm 1 will not grow without limitations. In practice, we fix a
maximal size k allowed for this dataset. After each iteration, we sort the dataset in descending order
according to the violation of Lyapunov condition, and only keep the top k samples.

A.3 Loss Function

As we have discussed in the main text, the training loss is simply an adaptation of the Zubov theorem.
The goal is to guide Vθ to behave more like the Zubov function through training. We adopt a similar
loss function as in [42] and modify the data loss using the novel derivation (10). Moreover, to ensure
that the second CEGIS stage is numerically stable, we minimize Vθp0q only with a hinge-type loss.
In the loss functions, xi are training data from our novel data selection (8) and (9). yi are boundary
points from Bp2Ωq and this boundary loss would help during the initial phase of learning by ensuring
that the controller does not drive the trajectory to escape from at least two times the training domain.
To ensure a balanced weight of the loss term and ease the hyperparameter tuning, we adopt loss
weights that are learnable using the techniques presented in [20].

A.4 Hyperparameters

Compared to previous works, our training framework significantly reduces the difficulty of hyper-
parameter tuning when adapting to new systems. For example, the training domain now does not
require too much tuning, and the training almost always works when starting from a small domain.
However, several key hyperparameters still require careful adjustment.

Firstly, the weights for each loss term must be chosen with care. In practice, we have found that
the boundary loss and the zero loss benefit from higher weights compared to the other three loss
terms. Conversely, assigning a relatively small weight to the PDE residual loss tends to yield better
results. We hypothesize that this is because an overly dominant PDE loss introduces a complex
optimization landscape, which can impede the learning of other critical components. Secondly,
the integration involved in the data loss must be approximated using a numerical scheme. Both
the discretization timestep and the number of simulation steps play an important role in ensuring
stable and efficient learning. We found that a simple forward Euler scheme, with a small timestep
such as dt “ 0.001 s and approximately 50 simulation steps, is often sufficient. In this context, as
long as dt is not excessively small, a smaller dt generally performs better than a larger one, since
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the dynamics can exhibit stiffness when the controller is only partially learned. Moreover, during
trajectory simulations used for domain updates, a smaller dt and longer steps are recommended.
Using a large timestep in this setting can cause otherwise convergent trajectories to be recognized as
non-convergent. Finally, in the training data selection, the choice of c is crucial. We typically fix it
to be very close to 1, like c “ 0.95. However, as the dimension of the system goes up, the Zubov
equation might not be fitted well, so we reduce c to be around 0.9 for better training stability.

B Verification Details

B.1 Proof of theorem 3.1

Proof. Notice that if the trajectory is in pV ďc2zV ďc1q X Ω, the Lyapunov function value will keep
decreasing along the trajectory. Indeed, by the mean value theorem, we have

V pxptqq ´ V pxp0qq “ t 9V pxpτqq ă 0 (21)

First, we shall show that V ďc2 X Ω is forward invariant. Assume by contradiction that there exists
x P V ďc2 X Ω such that ϕpT, xq R V ďc2 X Ω for some T ą 0. We define the first exit time as
T˚ “ inftt : ϕpt, xq R V ďc2 X Ωu. By continuity, we have ϕpT˚, xq P BpS2 X Ωq, which satisfies

ϕpT˚, xq P BpV ďc2 X Ωq Ă pBΩ X V ďc2q Y pΩ X V “c2q

If ϕpT˚, xq P pBΩ X V ďc2q, condition (20) says that it cannot exit through the boundary of Ω.
Otherwise, suppose ϕpT˚, xq P ΩXV “c2 . We know by definition and continuity that on a small time
interval pT˚ ´ δ, T˚q we have V pxptqq ă c2, which contradicts the decrease on Lyapunov function.
Next, we show that on finite time the trajectory will enter ΩXV ďc1 . Indeed, suppose for the contrary
that the trajectory stays within pV ďc2zV ďc1q X Ω, the Lyapunov value will decrease indefinitely as
we know by the above derivation V pxpt1qq ă V pxpt2qq for t1 ą t2, which cannot be possible by the
definition of the set. Finally, we show that S1 is forward invariant. With the same proof, it is easy
to show that for any 0 ă ϵ ă c2 ´ c1 the set V ďc1`ϵ is forward invariant. Now if S1 is not forward
invariant, we know by definition that there exists x P V ďc1 and t ą 0 such that V pϕpx, tqq “ c1 ` ϵ1.
This violates the forward invariance of V ďc1`ϵ for any ϵ ă ϵ1, leading to a contradiction.

B.2 The α,β-CROWN verifier

α,β-CROWN has been developed to be the state-of-the-art neural network verifier, where formally,
the toolbox aims to certify

F pxq ď 0 for all x P B (22)

with F being a general computation graph and B being a hyper-rectangle.

High Level Intuition: α,β-CROWN couples fast symbolic linear bound propagation with input-
space branch-and-bound. For a box B, it constructs an affine upper bound of F and provide
certification based on the maximum value of this affine bound. If inconclusive, it splits B into
sub-boxes and repeats. As boxes shrink, local linear relaxations tighten and nonlinearities stabilize,
so on small sub-boxes the affine bound is often already exact. The full process is very efficient, as
each bound computation essentially costs a backward pass; thus many sub-boxes can be processed
in parallel (tens of thousands), enabling rapid pruning of large regions and certification with only
coarse bounds on tiny boxes. Moreover, thanks to the tensorized nature of bound propagation
and the flexibility of the branch-and-bound procedure, α,β-CROWN can naturally handle general
specifications with "or" and "and". In principle, α,β-CROWN can handle all cases a traditional SMT
solver, such as dReal, can handle, and in a much more scalable fashion. We refer the readers to the
following papers for more details [52, 45, 45, 46, 43, 51].

For our application, since the condition in theorem 3.1 can be effectively rewritten as

p∇V pxq ¨ gpx, upxqq ă 0q _ pV pxq ą c2q _ pV pxq ă c2q (23)
pgpx, upxqq ¨ n⃗pxq ă 0q _ px R BBq _ pV pxq ą c2q, (24)

and each term is a computation graph, α,β-CROWN can efficiently verify this condition.
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B.3 Linear Relaxation of d
dx tanhpxq and d

dx sigmoidpxq

To compute the Jacobian of a neural Lyapunov function involving tanhpxq and sigmoidpxq, by
the chain rule, we need to propagate the gradient through the operators d

dx tanh and d
dx sigmoid.

Naturally, to use CROWN [52] to compute bounds for the Jacobian of the network, we need to
linearly relax these operators so that we can propagate linear bounds through them. Given

d

dx
tanhpxq “ 1 ´ tanh2pxq,

d

dx
sigmoidpxq “ sigmoidpxqp1 ´ sigmoidpxqq,

(25)

Finding linear relaxations of d
dx tanh and d

dx sigmoid can be reduced to computing the composition
of the linear relaxations of tanhpxq, x2, sigmoidpxq, and x ¨ y. The linear relaxations of these
operators are already supported by auto_LiRPA [45]. However, in practice, this results in overly
conservative relaxations. Thus, in our work, we directly derive a novel linear relaxation for these two
gradient operators.
d
dx tanhpxq and d

dx sigmoidpxq are "bell-shaped" functions having similar monotonicity and con-
vexity/concavity properties, as shown in figure 5. Thus, we apply similar strategies finding linear
relaxations for both of them. Suppose the function to be bounded is denoted as σpxq, with the bounds
of x as x P rl, us. We aim to find a lower bound αLx` βL and an upper bound αUx` βU , such that

αLx` βL ď σpxq ď αUx` βU , @x P rl, us, (26)

where parameters αL, βL, αU , βU are dependent on l and u. In our following discussion, for a "bell-
shaped" functions σpxq, we denote ˘zσ as the two inflection points (i.e. the solution to σ2pxq “ 0),
and we assume that l` u ě 0 without loss of generality. In many cases, the linear bound is chosen to
be a tangent line of σ, and thus is solely determined by the tangent point dL or dU .
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Figure 5: d
dx tanhpxq (left) and d

dx sigmoidpxq (right) have similar monotonicity and convex-
ity/concavity properties.

The segment to be bounded is concave if ´́́zσ ďďď l ďďď u ďďď zσ. In this case, the lower bound is
chosen to be the line directly connecting two endpoints pl, σplqq and pu, σpuqq. For the upper bound,
dU can be any point between l and u (e.g. the middle point). See (a) of figure 6 (a).

The segment to be bounded is convex if zσ ďďď l ďďď u. In this case, the upper bound is chosen to be
the line directly connecting two endpoints. For the lower bound, dL can be any point between l and u
(e.g. the middle point). See figure 6 (b).

The segment is bounded similarly to an "S-shaped" function if l ăăă zσ ăăă u. See figure 6 (c).

• For the lower bound, let dl be the tangent point of the tangent line that passes through
pl, σplqq. If u ď dl, the lower bound is chosen to be the line directly connecting two
endpoints. Otherwise, dL can be any point between dl and u (e.g. the middle point).

• For the upper bound, let du be the tangent point of the tangent line that passes through
pu, σpuqq. If l ě du, the upper bound is chosen to be the line directly connecting two

17



endpoints. Otherwise, dU can be any point between 0 and du (e.g. linearly interpolated
given l ranging from ´u to du).
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Figure 6: Illustration of linear relaxations of a "bell-shaped" function (sigmoid). (a) ´zσ ď l ď u ď

zσ. The segment to be bounded is concave. (b) zσ ď l ď u. The segment to be bounded is convex.
(c) l ă zσ ă u. The segment is bounded similarly to an "S-shaped" function.

B.4 Verification Algorithm

Although a CEGIS procedure has been applied during training, small counterexamples can still exist.
Previous works use bisection to identify the optimal boundaries of the region where the Lyapunov
condition can be verified. This requires test running the entire verification procedure every time a new
candidate boundary is set, which is very inefficient. In contrast, our work, thanks to the formulation
of the region to verify as a levelset defined by c1 and c2 in 19, and the input-split branch-and-bound
pipeline, can adaptively adjust the values of c1 and c2 in a single verification run, avoiding the tedious
and time-consuming bisection process.

Specifically, during the branch-and-bound procedure, for each batch of subdomains, apart from
identifying each of them as VERIFIED or UNKNOWN based on its certified bounds, we additionally
empirically search for counterexamples on some of them (usually the one with the worst certified
bound). We shall note that searching for counterexamples in a subdomain by either random or
PGD attack is much easier than doing so in the whole initial domain, and thus is more likely to
find counterexamples that were missed out in the CEGIS based training stage. We then shrink the
levelset by increasing c1 or decreasing c2 to exclude all the counterexamples. The key intuition
here is although the specification to verify is updated, the subdomains that has been verified remain
verified, so we don’t need to rerun the whole algorithm from the beginning again. The full verification
algorithm is shown in algorithm 3.

C Experiment Details

C.1 Continuous Time Baselines

In the main text, we discussed the limitations of the continuous-time baselines [4, 12, 42]. A critical
condition for theoretical guarantees is that the controller satisfies upx˚q “ u˚; otherwise, x˚ is
no longer an equilibrium point, rendering the Lyapunov-based guarantee vacuous. In NLC [4], we
observed that the provided code mistakenly uses a bias-free controller for both the inverted pendulum
and the path-following dynamics. While this is correct for the inverted pendulum, where u˚ “ 0, it
is incorrect for the path-following dynamics, as the chosen parametrization still enforces up0q “ 0,
which does not hold in this case. This exact issue has also been noted in an open issue on NLC’s of-
ficial GitHub repository: https://github.com/YaChienChang/Neural-Lyapunov-Control/
issues/14. For the method proposed by Wang et al. [42], we found no special treatment to enforce
this condition. In fact, when testing the publicly released checkpoints from their GitHub repository,
we found that none of them satisfied upx˚q “ u˚. For example, in the Double Integrator system,
up0q “ 0.3733, and in the Van der Pol system, up0q “ ´0.0633, despite both systems having u˚ “ 0
as their correct equilibrium input. Moreover, we believe there are some subtle issues in the verification
formulation of Fossil 2.0. In [12], which underpins Fossil 2.0, we notice that their Certificate 2 misses
the boundary condition, which should supposedly ensure either tx : V pxq ď βu X X is empty or any
trajectory starting from this intersection will remain in X . We have observed that their method can
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Algorithm 3 Adaptive Branch-and-Bound Verification with Levelset Adjustment

Require: Neural network f , specification functions V and 9V “ ∇V ¨ f , initial domain Ω, initial
levelset thresholds c1 ă c2, batch size B, boundary update margin ϵ

1: S Ð stackprΩsq Ź stack of unverified subdomains
2: while S ‰ H and c1 ă c2 do
3: B Ð POPBATCHpS, Bq Ź pop up to B subdomains
4: U Ð H Ź unverified subdomains in this batch
5: for each D in B do
6: Compute certified bounds of V pxq and 9V pxq over D
7: if condition 19 is not verified to satisfy then Ź c1 and c2 are used here
8: add D to U
9: if U ‰ H then

10: Dworst Ð WORSTDOMAINpUq Ź greatest positive upper bound of 9V pxq

11: Empirically search Dworst for counterexample xce
12: if counterexample found then
13: UPDATETHRESHOLDS(xce, c1, c2, ϵ)
14: for each D in U do
15: Split D into D1, D2; PUSH(S, D1, D2) Ź branching
16: if S “ H then
17: return VERIFIED Ź all subdomains have been verified
18: else
19: return FALSIFIED Ź c1 “ c2, the levelset is completely excluded

20: function UPDATETHRESHOLDS(xce, c1, c2, ϵ)
21: v Ð V pxceq

22: if |v ´ c1| ă |v ´ c2| then
23: c1 Ð v ` ϵ Ź counterexample near lower bound
24: else
25: c2 Ð v ´ ϵ Ź counterexample near upper bound

occasionally return false positives, i.e., a controller and Lyapunov function are claimed to be found
while the controller cannot stabilize any trajectory. Therefore, on top of their returned results, we ran
an additional check with trajectory simulations, and recorded a negative for a run if the controller
does not work.

C.2 Dynamical Systems

Van Der Pol: The dynamics is given by

9x1 “ x2

9x2 “ ´x1 ` µp1 ´ x21qx2 ` u

with µ “ 1. We choose the control input limit as |u| ď 1 for all the baselines.

Double Integrator: The dynamics is given by

9x1 “ x2
9x2 “ u

and constrain the torque limit as |u| ď 1.

Inverted Pendulum: The dynamics is given as

9θ1 “ θ2

9θ2 ´
β

ml2
θ2 `

g

l
sinpθ1q `

1

ml2
u.

We consider two set of torque limits as in [35]. The large torque case sets |u| ď 8.15mgl and the
small torque case presents the more challenging limit |u| ď 1.02mgl.
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Path Tracking: The dynamics is given as
9de “ v sinpθeq

9θe “
v

l
u´

cospθeq
r
v ´ sinpθeq

.

We also consider two set of torque limits for this dynamics. We set |u| ď 1.68 l
v in the large torque

case and |u| ď l
v in the small torque case following [35].

Cartpole: The dynamics is given by

:x “
1

mc `mp sin
2 θ

pu`mp sin θpl 9θ2 ´ g cos θqq

:θ “
1

lpmc `mp sin
2 θq

p´u cos θ ´mpl 9θ2 cos θ sin θ ` pmc `mpqg sin θq.

Following DITL [44], we set mc “ 1.0,mp “ 0.1, l “ 1.0, g “ 9.81 and |u| ď 30.

2D Quadrotor: The dynamics is given by

:x “ ´
1

m
sinpθqpu1 ` u2q

:y “
1

m
cospθqpu1 ` u2q ´ g

:θ “
l

I
pu1 ´ u2q

with m “ 0.486, l “ 0.25, I “ 0.00383, g “ 9.81. We also set the control input u P R2
ě0 to have

the constraints }u}8 ď 1.25mg as in [35].

PVTOL: The dynamics is given by

9xptq “

»

—

—

—

—

—

—

–

vx cosϕ´ vz sinϕ
vx sinϕ` vz cosϕ

9ϕ

vz 9ϕ´ g sinϕ

´vx 9ϕ´ g cosϕ
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

–

0 0
0 0
0 0
0 0
1
m

1
m

l
J ´ l

J

fi

ffi

ffi

ffi

ffi

ffi

fl

u (27)

where g “ 9.8,m “ 4.0, l “ 0.25, J “ 0.0475. We set the control input u P R2
ě0 to have the limit

}u}8 ď 39.2 as in [44].

Ducted Fan: The dynamics is given by

:x “
1

m
p´d 9x` u0 cos θ ´ u1 sin θq

:y “
1

m
p´d 9y ` u0 sin θ ` u1 cos θq ´ g

:θ “
r

I
u0

with m “ 11.2, r “ 0.156, I “ 0.0462, d “ 0.1, and g “ 0.28. We set the control input
u “ ru0, u1sJ P R2 to be u0 P r´10, 10s, u1 P r0, 10s.

3D Quadrotor:

:p “

«

0
0

´g

ff

`
1

m
Rcolpϕ, θ, ψq ¨ T

9ϕ “ ωx ` tanpθqpsinpϕqωy ` cospϕqωzq

9θ “ cospϕqωy ´ sinpϕqωz

9ψ “
sinpϕqωy ` cospϕqωz

cospθq

9ω “ I´1 p´ω ˆ pIωq ` τ q
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where

Rcolpϕ, θ, ψq “

«

sinψ sinϕ` cosψ sin θ cosϕ
´ cosψ sinϕ` sinψ sin θ cosϕ

cos θ cosϕ

ff

The control input u P R4 represents the four rotor thrusts. These are mapped to generalized forces via
»

—

–

T
τx
τy
τz

fi

ffi

fl

“

»

—

–

1 1 1 1
0 l 0 ´l

´l 0 l 0
c ´c c ´c

fi

ffi

fl

u

The hyperparameters are specified with m “ 0.486, l “ 0.225, g “ 9.81, I “ diagpIx, Iy, Izq “

diagp0.0049, 0.0049, 0.0088q, c “ 1.1
29 « 0.03793, u˚ “

mg
4 “ 0.486ˆ9.81

4 “ 1.190325. The
torque limit of u P R4

ě0 is given by |u| ď 3.6.

C.3 Examples of Domain Update

We present some examples on the effect of the dynamic domain expansion mechanism and demon-
strate its effectiveness. The initial domain for 2D Quadrotor is picked by 0.4 multiplied the original
domain from [48, 35], and the other ones are designed to be small but overall are picked quite
arbitrarily without much tuning. A comparison between the initial training domain and the one after
the first stage training is presented in Table 4. We can notice that our domain update mechanism is
able to enlarge the training domain and thus the ROA by a large amount, resulting in much bigger
and much more less conservative ROA estimation compared to the baselines.

Table 4: Example start and end domain for each dynamical system. Lower/Upper bound of the
domain is given.

System Start Domain End Domain

Double Integrator ˘r1, 1s ˘r27.6, 9.6s

Van der Pol ˘r1, 1s ˘r6, 8.5s

Pendulum (small torque) ˘r1, 2s ˘r27.6, 69.6s

Pendulum (large torque) ˘r1, 2s ˘r30, 120s

Path Tracking (small torque) ˘r2, 2s ˘r9.6, 7.2s

Path Tracking (large torque) ˘r2, 2s ˘r12, 12s

Cartpole ˘r0.4, 0.4, 0.4, 0.4s ˘r4.8, 3.6, 13.2, 13.2s

2D Quadrotor ˘r0.3, 0.3, 0.2π, 1.6, 1.6, 1.2s ˘r12, 13.2, 12, 19.2, 20.4, 88.8s

PVTOL ˘r0.4, 0.4, 0.4, 0.4, 0.4, 0.4s ˘r3.6, 3.6, 3.6, 6, 8.4, 33.6s

Ducted Fan ˘r0.4, 0.4, 0.4, 0.4, 0.4, 0.4s ˘r6, 7.2, 10.8, 4.8, 3.6, 25.2s

C.4 Examples of verifiable c1 and c2

Table 5 gives some examples of the final verifiable c1, c2 thresholds. To demonstrate that the
unverifiable hole is small, we also report the volume of the sublevelset V ďc1 and the volume it
occupies the full ROA. We can see that for all the systems the unverifiable region occupies only less
than 0.1% of the full ROA. For the higher-dimensional (6-D) systems, none of the 5 ˆ 107 samples
fell into the small unverifiable region.

C.5 Training Time

Table 6 provides the training time for our method. The time needed for the ROA estimation stage is
relatively stable since it is trained to a fixed epoch. However, the time taken by CEGIS will depend
on the c1 chosen and the hardness of counterexamples near c1. In practice, we found that even though
the CEGIS time varies, all training processes complete within reasonable time.

C.6 More ROA Visualizations

We also provide more visualizations on the final ROA obtained through our methods in figure 7.
Across all visualized slices, our method yield much larger ROA estimation compared to the baselines.
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Table 5: Examples of verifiable thresholds c1, c2, and the volume of the unverifiable sublevel set
tx : V pxq ď c1u with its proportion of the full ROA. The ROA is estimated in a Monte-Carlo fashion
with 50000000 points.

System c1 c2 VoltV pxq ď c1u Proportion to Full ROA

Double Integrator 0.01 0.99 0.038 0.014%
Van der Pol 0.0106 0.99 0.015 0.025%
Pendulum (small torque) 0.0103 0.98 0.17 0.016%
Pendulum (large torque) 0.022 0.98 0.36 0.012%
Path Tracking (small torque) 0.0108 0.99 0.057 0.08%
Path Tracking (large torque) 0.0105 0.99 0.040 0.03%
Cartpole 0.0068 0.95 0.0154 0.003%
2D Quadrotor 0.096 0.89 0 0%
PVTOL 0.003 0.90 0 0%
Ducted Fan 0.0058 0.89 0 0%

Table 6: Training time (in seconds) for each system. We report separately for the ROA Estimation
stage, CEGIS stage, and a combined overall time in seconds.

System ROA Estimation CEGIS Full

Double Integrator 1173.20 ˘ 30.83 162.39 ˘ 97.61 1335.6 ˘ 123.80
Van der Pol 1201.10 ˘ 25.35 187.53 ˘ 28.14 1388.64 ˘ 44.38
Pendulum (small torque) 1169.27 ˘ 139.29 225.14 ˘ 64.17 1394.41 ˘ 134.53
Pendulum (large torque) 2946.59 ˘ 166.73 98.25 ˘ 44.97 3044.85 ˘ 153.15
Path Tracking (small torque) 789.30 ˘ 29.64 131.55 ˘ 54.61 920.85 ˘ 62.67
Path Tracking (large torque) 820.67 ˘ 42.41 161.67 ˘ 48.19 982.35 ˘ 81.07
Cartpole 4421.06 ˘ 78.97 3182.58 ˘ 879.25 7603.65 ˘ 881.36
2D Quadrotor 5704.92 ˘ 251.83 12050.59 ˘ 7258.85 17755.52 ˘ 7110.40
PVTOL 7100.86 ˘ 192.40 10240.46 ˘ 1554.67 17341.33 ˘ 1570.56
Ducted Fan 6132.89 ˘ 408.35 12129.13 ˘ 3419.57 18262.03 ˘ 3187.87
3D Quadrotor 4721.13 ˘ 306.55 – 4721.13 ˘ 306.55

C.7 Computation Resource

The training was performed on NVIDIA V100 gpus, each with 16GB memory. The verification was
performed on NVIDIA 5090 gpus with 32GB memory.
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(b) Path Tracking large.
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(c) Path Tracking small.
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(d) Pendulum big.
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(e) Pendulum small.
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(f) Cartpole px, 9xq slice.

3 2 1 0 1 2 3
x (m)

3

2

1

0

1

2

3

y(
m

)

Ours
Shi et al

(g) PVTOL px, yq slice.

3 2 1 0 1 2 3
y (m)

8

6

4

2

0

2

4

6

8

y
(m

/s
)

Ours
Shi et al

(h) PVTOL py, 9yq slice.
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(i) 2D Quadrotor px, yq slice.
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(j) 2D Quadrotor px, 9xq slice.
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(k) Ducted fan px, yq slice.
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Figure 7: More ROA visualizations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please see method and experiments section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We clearly discussed the limitations in the conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: One theorem about verification condition is included in theorem 3.1. Assump-
tion is fully discussed, proof can be found in appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Complete algorithms are exactly discussed. Hyperparameters are discussed in
appendix, and a GitHub link containing codes we used can be found in abstract.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The codes are open-sourced. All data used is generated along the way (details
in code), no additional data source is needed.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All parameters can be found in codes. Hyperparameters are discussed also in
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Each method is trained 5 times with different seeds, and success rate is reported.
Variance of the result is also reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The machine being used is discussed in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no particular societal impact of the work that the authors can foresee
that are important to discuss.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks are presented as far as the authors concern.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Code is original, no other data is used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All codes are clearly documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There are no such experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: There are no such experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are only used for polishing the writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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