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ABSTRACT

Analysis of the human microbiome using metagenomic sequencing data has
demonstrated high ability in discriminating various human diseases. Raw metage-
nomic sequencing data require multiple complex and computationally heavy
bioinformatics steps prior to data analysis. Such data contain millions of short
sequences read from the fragmented DNA sequences and are stored as fastq files.
Conventional processing pipelines consist multiple steps including quality con-
trol, filtering, alignment of sequences against genomic catalogs (genes, species,
taxonomic levels, functional pathways, etc.). These pipelines are complex to use,
time consuming and rely on a large number of parameters that often provide vari-
ability and impact the estimation of the microbiome elements. Recent studies have
demonstrated that training Deep Neural Networks directly from raw sequencing
data is a promising approach to bypass some of the challenges associated with
mainstream bioinformatics pipelines. Most of these methods use the concept of
word and sentence embeddings that create a meaningful and numerical representa-
tion of DNA sequences, while extracting features and reducing the dimentionality
of the data. In this paper we present an end-to-end approach that classifies patients
into disease groups directly from raw metagenomic reads: metagenome2vec. This
approach is composed of four steps (i) generating a vocabulary of k-mers and
learning their numerical embeddings; (ii) learning DNA sequence (read) embed-
dings; (iii) identifying the genome from which the sequence is most likely to come
and (iv) training a multiple instance learning classifier which predicts the pheno-
type based on the vector representation of the raw data. An attention mechanism
is applied in the network so that the model can be interpreted, assigning a weight
to the influence of the prediction for each genome. Using two public real-life data-
sets as well a simulated one, we demonstrated that this original approach reached
very high performances, comparable with the state-of-the-art methods applied di-
rectly on processed data though mainstream bioinformatics workflows. These re-
sults are encouraging for this proof of concept work. We believe that with further
dedication, the DNN models have the potential to surpass mainstream bioinfor-
matics workflows in disease classification tasks.
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1 Introduction

Recent technological advances made it possible over the past decade to collect DNA from nearly
all accessible ecosystems and sequence it with extremely high resolution at an increasing low cost.
Such developments made it possible for a whole new field - that of metagenomics, to develop very
rapidly (Oulas et al. 2015; Mardis 2017). Even though in theory it may be used all kind of or-
ganisms, metagenomics is mostly used to explore the structure of microbial communities living in
a given ecosystem. The microbiome, was shown to play a crucial role not only in the environ-
mental ecosystems but also in relation with the host when they inhabit it. This is the case also for
humans. When the gut microbiome is altered, which is also the largest reservoir of bacteria in-
habiting humans and reaching up to several kilograms, it often is reflected as an alteration of the
human health. Indeed, recent abundant research has demonstrated the strong relationship between
these microorganisms and complex and chronic human diseases such as diabetes, cirrhosis, autism,
obesity and more (D. Liang et al. 2018). The field is maturing rapidly and large public reposito-
ries store an increasing number of standardized datasets. Data collection is performed using Next
Generation Sequencing (NGS), taking advantages of parallelization of DNA sequencing (shotgun),
which generates millions of sequence reads in a short time. Reads are short DNA sequences (gen-
erally between 50 to several thousands of nucleotides (A, C, G, T) and are stored in standardized
files such as the fastq. The development of metagenomic sequencing came along with the rapid
development of bioinformatics workflows, which ultimately yield quantitative measurements of bi-
ological objects such as genes, species, genera and other taxonomic levels, functional pathways,
etc in the form of count tables (Nayfach et al. 2016; Wen et al. 2017). Several steps are required
to obtain such count tables and all of them rely on assumptions that affect the final outcome. The
complex bioinformatics workflow starts by reading the fastq files and using the quality scores to
filter out nucleotides and reads that do not pass the decided confidence criteria. Next, the reads are
aligned onto the host genome to filter them out, while focusing on the microbiome data. Finally the
resulting reads are grouped together (binned) using different techniques, either through alignment
with reference gene/genome catalogues or thorough other approaches based on k-mer similarity or
co-abundance clustering (MetaHIT Consortium et al. 2014, Qian et al. 2019). After these bioin-
formatics processing steps, the data needs to be prepared for further statistical analyses including
constructing machine learning models.

The bioinformatics workflows are dependent on different software, which are not designed to work
together in the most efficient way. Moreover, a large number of parameters and thresholds are to
be set, often arbitrarily that affect the final outcome. It is however possible in the context of mi-
crobiome classifications, to follow another strategy and reduce the complexity of the bioinformatics
workflows described above. In recent years, distributed representations of words in a vector space
has been increasingly used in Natural Language Processing (NLP) to improve the performance of
learning algorithms (Mikolov et al. 2013). These representations, called embeddings, are projection
of words in a numerical vector space capturing semantic and lexical information learned with con-
texts of words. These vectors can be used as features for many applications like sentiment analysis
(Maas et al. 2011), translation (Qi et al. 2018) or even speech recognition (Bengio et al. 2014),
outperforming standard word count representation. In metagenomics, DNA sequences can be em-
bedded in a similar way with some pre-processing (Ng 2017, Menegaux et al. 2019, Joulin et al.
2016). A DNA sequence is composed of four nucleotides A, C, G and T. Consequently, it may be
similar to a sentence in NLP with a shorter alphabet. However, it is necessary to take into considera-
tion other distinctions between metagenomes and NLP data. DNA sequences do not have concept of
word delimited by spaces between letters. To bypass this, DNA sub-strings (k-mers) may be intro-
duced. K-mers are composed of k nucleotides and refer to all sub-sequences from a read obtained
by DNA sequencing. The possible amount of k-mers given a read of length L is L − k + 1, and
the possible number of combinations is equal to 4k (since there are 4 distinct nucleotides). Further-
more, NGS makes “massively parallel sequencing” to numerically convert several DNA fragments
from different sources into short reads. Thus, metagenomic data is composed of several sequences
with any information about the order. This is very different since textual data know order between
sentences or paragraphs.

In this proof of concept paper, we documented an implementation of the idea that deep neuronal net-
works can bypass the classical bioinformatics workflow and allow to classify metagenomic samples
directly from raw sequence data. Moreover, the trained DNN may automatically discover impor-
tant biological concepts that could be further used to understand the contextual signatures of the
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classification process. Besides the robustness that this approach might offer, it could also prove to
be computationally more efficient. Indeed, to predict the class of one sample, the time required in
bioinformatics workflows is between 1 to 3 hours (Ugarte et al. 2019) whereas with this method less
than one hour is necessary. Such end-to-end approach could be very useful in the clinical setting,
without having to send out the data for heavy processing in bioinformatics platforms

The core of our approach lies on the integration of different types of embeddings that encode the
metagenomic sequences. We divide this approach into four main stages and assign a name to
each of them for more clarity. The first one, kmer2vec, consists of a transformation of k-mers
into embeddings. The second, read2vec, refers to read projection into embeddings. kmer2vec and
read2vec acts in a similar way to NLP which transforms words and sentences into vectors. The
third, read2genome, classifies reads onto bacterial genomes from which they most likely originated.
The purpose of this step was to group similar read embeddings in order to amplify their information.
The fourth and last step, metagenome2vec, begins by transforming the metagenomes onto robust
multiple instance representations using read2vec and read2genome and drastically reduce the ini-
tial dimensional complexity. Finally, a multiple instance learning (MIL) classifier is trained on the
transformed metagenomes’ vector space using labels from the classes to discriminate.

2 The representation of metagenomic data with embeddings

Representing Metagenomes When using microbiome data in a precision medicine context, one
critical task is to discriminate diseased patients from healthy or within different severity groups
(Jobin 2018). To represent mathematically the different concepts of our approach, let D =

(xm, ym)
M
m=1 = {X,Y } denote a set of M metagenomes and the associated labels Y ∈ {0, 1}M .

A metagenome xm is composed of Rm � 106 DNA reads. A DNA read sr, r ∈ {0..Rm} is a se-
quence of lengthLr ∈ 50 ∼ 200 formed by several nucleotides in the vocabularyA = {A, T,C,G},
so sr ∈ ALr .

Representing reads In NLP, there are explicit word and sentence delimiters. On the contrary,
in the case of DNA reads there is no explicit information to systematically delimit sub-sequences.
Moreover, it is difficult to know the location of a read in genomes because the DNA were fragmented
prior to sequencing and there is no particular order to the reads after sequencing. To transform the
reads onto something similar to words, a possible approach may be to simply split the sequences
into k-mers (Menegaux et al. 2019; Woloszynek et al. 2018; Min et al. 2017; Q. Liang et al. 2020).
Various size of k can be considered depending on the task. Padding between k-mers is equal to one
because k-mers refers to all sub-sequences of length k. For example, if we have a sequence of seven
bases “AATCCGA” and if k = 3, then after splitting we do not only obtain the k-mers “AAT” and
“CCG” but also “ATC”, “TCC” and “CGA”.

Building k-mers, reads and metagenome embeddings Similar to the NLP applications, using
vector representations of k-mers can overcome some limitation to treat reads as discrete atomic se-
quence of nucleotides. Similarly, vector representation of reads and metagenomes can be envisioned
to go beyond their simple encoding representations (Woloszynek et al. 2018). In this paper we fo-
cus on learning metagenome embeddings that have the ability to both reduce the data dimensions
and also support computationally-efficient predictive models from embedded raw metagenomes. As
Metagenomes are composed of reads and reads are composed of k-mers, it is natural to consider
a multilevel embeddings approach. This is the reason why we have introduced three main stages
of data transformation1: kmer2vec, read2vec and metagenome2vec to compute respectively vector
representations of k-mers, reads and metagenomes. These transformations are detailed in section 4.

3 Related work

Several recent deep learning methods have been adapted to support the analysis of genomic1 or
metagenomic data for different tasks. The differences between these studies are the representation
of DNA sequences, the types of algorithms and obviously the final objective. The Figure A.1 in

1Genomic differs from metagenomics in the fact that in the latter multiple organisms are considered in the
same time and their DNA is mixed together and consequently the sequenced data as well.

3



Under review as a conference paper at ICLR 2021

appendix summarizes the different metagenomic embeddings models in relation to our approach
metagenome2vec.

Machine learning models from nucleotide one hot encoding It is a well known that recurrent
neural network (RNN) as well as convolutional neural networks (CNN) both work well on sequential
data (Cui et al. 2016, Young et al. 2018). That is why, Genomic studies have used both architectures
on DNA sequences. One classical genomic task is to analyze chromatin accessibility2. Different
works have shown that RNN or CNN on DNA sequences can capture relevant patterns and outper-
form state-of-the-art methods in chromatin accessibility prediction for instance (DanQ - Quang et al.
2016, DeepSEA - Zhou et al. 2015, Basset - Kelley et al. 2016). A benchmark of these approaches
was introduced by Hildick-Smith et al. (2016).
In metagenomics, some studies focus on the hierarchical taxonomy structure and are faced with a
multi-class classification problem. This is the case of GeNet (Rojas-Carulla et al. 2019), a deep
learning model based on CNN and ResNet architecture (He et al. 2015). Authors use a one-hot en-
coding of the input nucleotides and their position in the read. The loss function is computed at each
taxonomy level and the prediction at any level is forwarded to the next one adjusting the decision of
the classifier.
However, all these algorithms keep the initial representation of DNA and simply one-hot encode the
four nucleotide bases {A, C, G, T}. In other words, most algorithms operate on a 4 × Lr matrix
where Lr is the sequence length. This representation is quite basic and does not consider the simi-
larities between k-mers. This is comparable to representing a sentence as a set of letters rather than
a set of words.

Machine learning models from k-mers embeddings Research in NLP has seen a major develop-
ment on low-dimensional representation of words. These methods regularly outperform the simple
version of bag of words by projecting words into a vector representation that accurately captures
syntactic and semantic word relationships. Recently, based on this concept, there has been some
approaches considering k-mers embeddings. In the work of Ng (2017), k-mer embeddings are com-
puted with a word2vec algorithm. A relationship is highlighted between the arithmetic operation on
word2vec vectors and the corresponding concatenation of k-mers. Similarly to the study Min et al.
(2017), where the goal is to classify chromatin accessibility (as we saw in the previous section), the
GloVe algorithm is used to create k-mer embeddings before training the final neural network. Exper-
iments have shown that results are better when the sequence is transformed into k-mer embeddings.
Nevertheless, in their study Glove set the k-mer size to 6 without discussing other configurations
that could have demonstrated the overall importance of this parameter.

There are also several attempts to learn machine learning models directly from raw metagenomic
data. Most of them address the task of predicting the origin of reads (called taxonomic profiling) at
a certain taxonomy level or to perform phenotype classification.

To assign taxonomic information to each read, the authors of FastDNA algorithm Menegaux et al.
2019 have demonstrated that their approach using embeddings of k-mers achieves performances
comparable to the state-of-the-art. In the first step of their approach they define the length k of the
k-mers that describe the DNA sequences. Then they run the fastText algorithm (Joulin et al. 2016)
to learn low-dimensional embeddings (dimension from 10 up to 1000). All k-mers in a sequence are
replaced by their corresponding vector and summed to get an embeddings of the read they belong
to. Then this new vector is passed to a linear classifier, which computes the softmax function and
minimize the cross-entropy loss by gradient descent. The k-mer embeddings are directly learned
from the read classification considering the result of the loss function. The authors demonstrated that
significant results of prediction appear with k-mer size above 9 nucleotides. With a similar objective,
Q. Liang et al. (2020) propose DeepMicrobes, a neural network with an architecture composed of
an embeddings of k-mers, a bidirectional LSTM, and a self-attention layer to predict the species or
the genus of a read. In their experiments, k-mers of size k=12, lead to their best results.

In the work of Woloszynek et al. (2018), the objective is to add, in addition to taxonomic profiling,
a method to retrieve the source environment of a metagenome (phenotype prediction). A Skip-gram
word2vec algorithm (Mikolov et al. 2013) is trained for k-mers embeddings and a SIF algorithm

2It involves in finding some regions of the genome that are accessible for cellular machines involved in gene
expression while others are compactly wrapped and remain inaccessible.
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(Arora et al. (2017)) is used to create reads and samples embeddings. They demonstrate the use-
fulness of such an approach for clustering and classification tasks. Moreover, they show that such
embeddings allow models to be trainable using k-mers with big k (greater than 9), which is not
possible when relying on simpler representation such as one-hot encoding because of their size
exponentially growing with k.

4 metagenome2vec: an approach to learn metagenomes embeddings

We introduce metagenome2vec, a method to transform shotgun metagenomic data into a suitable
embedding representation for downstream task such as disease classification. metagenome2vec is
trained from raw DNA sequences through several specific steps. Indeed, metagenome embeddings
are built from embeddings of reads themselves built from k-mers embeddings. We highlighted
state-of-the-art algorithms that learn embeddings of k-mers and reads. The proposed approach is
based on multiple instance learning to construct metagenome embeddings. The global architecture
is summarized in Appendix B and all blocks of the pipeline are explained below.

4.1 kmer2vec: learning k-mers embeddings

DNA sequences are split into several k-mers before learning k-mers embeddings. The context of
a k-mer corresponds to both the preceding and the following k-mers. The context can consist of
several k-mers; this parameter is called the window size and tuned to the number of surrounding
context k-mers desired. After learning, all k-mers are indexed in the embeddings matrix. Figure 1
illustrates this process.

Figure 1: Left side represents a read cut into k-mers of length 3 with a window size of 2 and a
padding size of 1. Right side corresponds to an embeddings matrix of dimension 300 learnt with
k-mers vocabulary of size 4k = 43 = 64.

We decided to use FastText to encode the lowest level representation of the reads i.e. k-mers. We
briefly described its principle on natural text and detail how we do adapt its use for k-mers in Ap-
pendix C.

4.2 read2vec: Learning Read Embeddings

It has been shown that the algorithms constructing word embeddings give good results for rep-
resenting short sentences by simple arithmetic operations on word vectors (Mikolov et al. 2013,
Pennington et al. 2014, Joulin et al. 2016). Nevertheless, more sophisticated approaches for sen-
tence embeddings have been developed. Sequence-to-sequence models (Sutskever et al. 2014) for
instance, use a first network called the encoder to encode the sentence information. And a sec-
ond one, called decoder decodes the sentence information for a specific task such as a translation
where the authors have demonstrated great performance. The hidden layers of the encoder represent
the sentence embeddings. Skip-thought (Kiros et al. 2015) vectorizes sentences with this approach,
learning to generate surrounding sentences. SDAE, introduced in Hill et al. (2016), uses a LSTM
encoder-decoder to reconstruct noisy sentences (words are removed or switched places according to
a probability). More recently, BERT model (Devlin et al. 2018) trains an encoder with self-attention
mechanism (Luong et al. 2015), called transformer, to learn contextual relations between words to
retrieve masked words or predict the next sentence.

DNA sequences can be transformed into embeddings in the same way as sentences are. It is indeed
possible to train a supervised model on sequences of letters even if it is not related to natural lan-

5



Under review as a conference paper at ICLR 2021

guage inference3 since there is no information about textual concepts to learn. However, sequence
embeddings can be trained by predicting the taxonomy of a read as it is performed with FastDNA
(Section 3).

In our experiments, three algorithms were integrated in the workflow (fastText, FastDNA, sequence-
to-sequence language model) and each of them respect two properties: (i) being efficient enough to
process the millions of sequences per metagenome (a non-blocking point in theory but important for
implementation), and (ii) not involving sentence order in the prediction task. Next we tested fast-
Text sentence embeddings as implemented in the package. FastDNA sequence embeddings extracted
after the model were trained to classify taxonomy reads. And finally, a sequence-to-sequence lan-
guage model 4 based transformer model that generally outperforms LSTM or CNN models in both
performance and efficiency.

4.3 read2genome: reads classification

We would like to take advantage of the putative origin of the reads to construct metagenome rep-
resentation. read2genome then acts as a clustering process producing bag of reads with genome
similarity. To address the question of predicting the genome to whom a read most probably be-
long, we have relied on two methods in our experiments. Firstly, FastDNA (Menegaux et al. 2019)
that learns embeddings and classification with an end-to-end supervised model. Secondly, a Multi
Layer Perceptron (MLP) classifier that takes as inputs the read embeddings learnt by self-supervised
training with read2vec.

4.4 metagenome2vec: learning metagenome embeddings

The following step is to create metagenome embeddings using read embeddings or a set of reads
embeddings. We propose to consider two different approaches in building metagenome embeddings:
(i) the vectorial representation as baseline and (ii) the multiple instances learning representation as
our reference method. The notations in the next sections are in accordance with those introduced in
section 2.

4.4.1 metagenome2vec: Vectorial representation

Once a low-dimensional representation of the reads is available, all reads from a given metagenome
are transformed into embeddings and averaged together, resulting into a single instance embeddings
for one metagenome. A representation of metagenome can be computed as shown with the equation
1:

Φ(xm) =
1

|xm|
∑
s∈xm

ω(s) ,m ∈Mω :

{
xm → E

s 7→ ω(s)
(1)

With ω the read2vec transformation, xm the ensemble of reads in the metagenome m and E the
dimension of the embeddings.

The tabular representation is the one used by most machine learning algorithms. It relies on a more
abstract representation than the multiple instances representation. Indeed, all the information of an
entire metagenome, its millions of reads related to hundreds of different genomes, is summarized
into a unique vector in the latent embeddings space.

4.4.2 metagenome2vec: Multiple instances learning representation

Metagenomic data can be thought as a set that contains millions of reads representing one sample.
The size of a set can vary depending on the sequencing technology and there is no specific order

3Natural language inference is the task of determining whether a “hypothesis” is true (entailment), false
(contradiction), or undetermined (neutral) given a “premise”. InferSent algorithm (Conneau et al. 2017) works
with this concept.

4Language modeling algorithms determine the probability distribution for the likelihood of a given word
(or a sequence of words), to follow a sequence of words
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between reads within a set. Learning from such bags of reads correspond to a Multiple-Instance
Learning (MIL) problem that deals with an objective function that is invariant to permutation and
operates on non-finite dimensional vectors. In this study, we implement a deep learning algorithm
from the work of Zaheer et al. (2017) named deepsets and an extension of the multiple instance
layer with an attention mechanism from Ilse et al. (2018) (see Appendix D for more details about
these algorithms).

Instead of aggregating all the computed embeddings reads to form one vector, a first idea is to
keep this representation to save all information. Unfortunately, one metagenome is composed to
potentially million of reads. Thus, a bag is far too large to fit in memory for further processing by
the machine learning algorithms.

We support another approach, consisting on first training a classifier (read2genome) to predict the
genomes from which the DNA sequences may have originated. Rather than averaging all read
embeddings as in the previous method, it is possible to average embeddings of reads belonging to
the same taxonomic levels, namely genome or genus. As a result, each metagenome is represented
by a set of embeddings. In the literature learning from objects described as sets of tabular value is
called a MIL problem (Wang et al. 2000) where a class label is assigned to a bag of instances. The
equation 2 presents these concepts is described below:

Ψ(xm) = [Φ(c1),Φ(c2), ...,Φ(cn)] , c1..n ∈ C(xm) (2)

Where C is the read2genome function clustering reads of a metagenome into n clusters, thus cn is a
group of reads, xm the ensemble of reads in the metagenome m and cn ⊂ xm.
As reads are fragments of DNA from several genomes, grouping them into clusters projected onto
the embedding vector space could bring specific information for each metagenome.

5 Experiments and Results

We devised several experiments to test the efficacy and the efficiency of our novel metagenome2vec
algorithm to classify metagenomes onto classes of diseases with which the hosts are associated. The
performance of metagenome2vec w.r.t. the state-of-the-art was tested on two benchmark disease
classification tasks (predicting colorectal cancer and liver cirrhosis (Edoardo Pasolli et al. 2015)) as
well as a simulated data-set. The latter consisted of artificially simulated metagenomes using the
CAMISIM (Fritz et al. 2019) generator based on known bacterial genomes and abundance profiles
which significantly vary in abundance between two groups (namely disease vs not). Moreover, to
understand the source of power of the metagenome2vec algorithm, we also tested the intrinsic quality
of the learnt embeddings and the ability to assign a read to the right taxa.

5.1 Datasets

Datasets used to learn embeddings: kmer2vec and read2vec The catalog we used here was
composed of 506 different genomes, that were used to build the IGC gene catalog (Li et al 2014).
These genomes correspond to 235 species, 79 genera and 37 families.

Datasets to learn Read2Genomes classifier The CAMISIM (Fritz et al. 2019) software was used
to simulate 5,11M and 2,19M DNA sequences (for the train and validation set respectively) based
on the genome catalog mentioned above. This allowed us to train and test the DNN models in how
well their performed in estimating the abundance profiles resulting from read classification onto the
genomes. The reference abundance used for the simulation followed a uniform distribution so that
it would be balanced with a number of sequences almost equal for each genomes. This is not the
case in real metagenomes where abundance follows exponential distributions. Nevertheless, in the
case of read classification modeling, this avoids the classifier to focus and predict the predominant
classes, thus learning more robust embedding.

Datasets to learn the Disease prediction tasks Our experiments were performed on two datasets
with controlled disease liver cirrhosis (Cirrhosis) and colorectal cancer (Colorectal) from UCBI open
source studies. In colorectal datast 15 patients had an adenoma, this is a benign tumor so they have
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been labeled as control cases as in Pasolli et al. (2016). We also simulated a third dataset (Simulated)
with an artificial disease using CAMISIM (Fritz et al. 2019). The control case samples are simulated
with the same abundance of genomes, thus the number of reads is almost the same for each species.
In contrast, the samples from diseased patients had an abundance 3 times more important for five
species that imply the disease. Information about datasets are described in Table 1.

Dataset name Disease Control subjects Case subjects Control-to-Case Size5

Colorectal Colorectal Cancer 73 48 60.3% ∼ 866Go
Cirrhosis Liver Cirrhosis 114 118 49.1% ∼ 1To
Simulated Artificial 100 100 50.0% ∼ 10Go

Table 1: Information about the metagenomic datasets

5.2 Reference Methods compared to metagenome2Vec

To our knowledge there is no other study applying machine learning directly on raw metagenomic
data to predict disease. In general, disease classification with metagenomic data is done with stan-
dard pipeline using species-level relative abundances and presence of strain-specific markers (Pasolli
et al. 2016). On top of these bioinformatic processes, machine learning algorithms like SVM, Ran-
dom Forest or Elastic Net are trained to make predictions. More recently, Oh et al. (2020) have
proposed to highlight the use of auto-encoder models on such metagenomic abundance tables. Re-
sults are reported in the table 2 and are used in this paper as part of the state-of-the-art benchmark.

5.3 Results of the Disease prediction tasks

All experiments are done by limiting to one Million the number of reads for each metagenome.
Indeed, learning computation time can take several days and there are many parameters to test for
both structuring and machine learning. This is a way to cover many experiments and save time
before running on the whole data. The datasets are composed by only hundreds of samples so to
tune the hyper parameters and avoid over fitting we apply a nested cross validation. In that way,
20% of the data form the test set, the 80% remaining are used to perform a 10 fold-cross validation
to tune hyper parameters with 20% of the data as validation set. The whole operation is repeated
10 times with different train and test sets. The tuning is driven by accuracy score. AUC, precision,
recall and F1 score are also computed. Details about code implementation are given in appendix E.

MetaML (Pasolli et al. 2016) and DeepMicro (Oh et al. 2020) are the reference methods. BoK
“Bag-of-Kmers” is the baseline to confirm embeddings usefulness. M2V-VR is “metagenome2vec
vectorial representation” and M2V-MIL is “metagenome2vec multiple instance learning represen-
tation”. Colorectal and Cirrhosis datasets are benchmarked with all previous methods whereas the
Simulated dataset is used to evaluate M2V-MIL efficiency and interpretability. Models used for
BoK and M2V-VR methods are tuned with random search using 100 different sets of parameters.
M2V-MIL is tuned with approaches more adapted for model composed by a lot of hyper parameters
like neural network. Thus, Bayesian optimization is applied for continuous parameters and bandit
optimization for discrete parameters. The table 2 summarize our results.

5Datasets have a massive size considering they only have few hundreds of patients. Metagenomes are
composed of ∼ 80 million reads, each one composed of ∼ 90 nucleotides. It is a case where D >> N with D
the number of features and N the number of examples. This is, in general, a complex task for machine learning
algorithms.
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Method Metrics Colorectal Cirrhosis Simulated

MetaML

Accuracy 0.81
(0.068)

0.88
(0.043) -

precision 0.82 0.89 -
recall 0.81 0.88 -

F1-score 0.79 0.88 -
AUC 0.87 0.95 -

DeepMicro AUC 0.81 0.94 -

BoK
k=3 / k=6 / k=9

Accuracy 0.64
(0.061) / 0.69

(0.055) / 0.65
(0.071)

0.67
(0.077) / 0.73

(0.062) / 0.75
(0.043)

0.61
(0.032) / 0.66

(0.040) / 0.63
(0.057)

precision 0.81 / 0.88 / 0.84 0.66 / 0.76 / 0.77 0.61 / 0.66 / 0.71
recall 0.57 / 0.61 / 0.60 0.77 / 0.69 / 0.74 0.56 / 0.62 / 0.55

F1-score 0.55 / 0.59 / 0.56 0.70 / 0.72 / 0.74 0.59 / 0.64 / 0.65
AUC 0.66 / 0.73 / 0.67 0.71 / 0.77 / 0.77 0.65 / 0.69 / 0.67

M2V-VR

Accuracy 0.72
(0.058)

0.79
(0.044)

0.85
(0.047)

precision 0.77 0.78 0.87
recall 0.64 0.67 0.81

F1-score 0.69 0.70 0.84
AUC 0.794 0.81 0.85

M2V-MIL

Accuracy 0.81
(0.065)

0.82
(0.056)

0.92
(0.070)

precision 0.78 0.83 0.94
recall 0.76 0.84 0.91

F1-score 0.76 0.83 0.92
AUC 0.81 0.83 0.92

Table 2: For each method, all the scores are the best of all the experiments.

The BoK baseline has been computed with three different values of k equal to 3, 6 and 9. Better
results are obtained when k = 6 or k = 9 without a significant difference among them. It cannot
be computed with higher value of k due to the number of distinct k-mers in the vocabulary that
becomes too large. Scores are lower than other methods as expected but still leads quite good
results for a simple, training free representation. Our results demonstrate that adding embeddings
abstraction increases the performance and that the MIL representation yields better results. Our
approach M2V-MIL reaches the same level as the state-of-the-art for Colorectal but is still lag behind
for the Cirrhosis dataset. On the Simulated dataset, M2V MIL provides better results. This dataset
is useful to assess whether the MIL model retrieved the genomes that play a role in the classification
or not. We use the model to predict, for each well-classified positive samples, the top-5 genomes
that had the greatest impact on the outcome. This results in 12 distinct genomes appearing in the
ranking. Two of the five genomes with altered abundance were predicted at the species level at 18%
and 14.5%. All the ranked genomes were similar at the genus level with four of the genomes to find.
These results showed the descriptive accuracy of the models.

6 Conclusion

Phenotype prediction using metagenomic data is a critical task especially in a clinical setting. In this
work, we proposed metagenome2vec, an algorithm which transform raw metagenomic data onto
automatically learned representations allowing us to apply on them multiple instance learning ap-
proach based. Combined with an attention mechanism, the algorithm was able to detect instances
/ genomes in the MIL set that could play a role in the phenotype prediction. Thus, the model of-
fers some interpretability which may be a requirement in metagenomics-based precision medicine.
Compared to standard quantitative metagenomics, our model displayed a performance comparable
with the state of the art ML approaches directly applied to data processed through bioinformatics
workflows. However, as it is an end-to-end algorithm all the time required to run a costly bioin-
formatics pipeline is saved. One of the limits of this work lies in the computational complexity
of the learning of the different embeddings and the identification of each one’s contribution to the
prediction power. That is why we have proposed some analyses for each step to facilitate their in-
trinsic evaluation and optimization. We plan to test a wider range of parameters in the pipeline along
with various algorithms so as to read multi-purpose embeddings and test them on all existing public
datasets related to other diseases (Pasolli et al. 2016).
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Appendix: metagenome2vec

A Deep Learning workflow in metagenomics

Figure A.1: Work flow of metagenomic data projected into low-dimensional representation with
embeddings learning algorithms. The blue color represents the input data, the grey color repre-
sents different internal modules of the pipeline and the red color the prediction task performed.
The dotted line is only a part of the metagenome2vec algorithm. Algorithms written (including
metagenome2vec) are linked with their corresponding task. We can see that read2vec is a module
for both phenotype and read classification. If the abstraction is at the read level, results are handled
to classify reads for taxonomic profiling. If the abstraction is at the metagenome level, prediction
could be used for phenotype classification

B Architecture overview

In the following diagrams, the color blue corresponds to the metagenomic data, while yellow refers
to the learned embeddings, and red represents the learning part of the module.
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B.1 Global architecture of metagenome2vec

Figure B.2: Numbers indicate the order of each operation block. Raw metagenomic data is the
input of metagenome2vec. All DNA sequences are embedded by kmer2vec and read2vec algorithms
(Figure B.3 and B.4). Then, read2genome (Figure B.5) uses these embeddings to assign a cluster,
corresponding to a genome id, for all reads. Embeddings of reads in a same cluster are averaged.
It results in a multiple instance dataset where a bag of embeddings representing one metagenome.
At the end, a multiple instance learning model DeepSets is trained to perform disease prediction.
Blocks numbered by 1, 2 ans 3 are detailed bellow

B.2 kmer2vec: Example with FastText

Figure B.3: The first step is to transform genomes sequences into k-mers with a specific k size. On
the figure k=3 because k-mers are composed of three nucleotides. Then, k-mers are passed to the
FastText skip-gram model learning to retrieve surroundings k-mers context.
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B.3 read2vec: Example with a transformer language model

Figure B.4: Sequences, cut into k-mers, pass into a transformer sequence-to-sequence model. A first
layer converts k-mers to their embeddings learnt in kmer2vec (Figure B.3) The encoder creates the
read embeddings with two blocks composed by a multi-head attention and a feed forwoard neural
network. The decoder tries to predict the next k-mers from the source sequence passing the read
embeddings in a fully connected layer before computing the softmax to get a probability for each
k-mers. When k is relatively big, this last layer is quite intensive to compute because it complexity
grows linearly with the size of the vocabulary. Thus, the adaptative softmax proposed by Grave et al.
(2017) is used instead of softmax to be more efficient without reducing performance.

B.4 read2genome

Figure B.5: A catalog of complete genome is used by the CAMISIM software (Fritz et al. 2019) to
simulate metagenomic data with a specific taxonomic profile (abundance of species). The resulting
dataset is a set of reads associated with the identifier of the genome from which they originate.
Reads are embedded by read2vec (Figure B.4) before to be passed into read2genome trained to
retrieve their source genome.

C FastText for k-mers embeddings

We first introduce the word2vec skip-gram model because FastText is a derivative of this algorithm.

word2vec This is the well known model popularized by Google with Mikolov et al. (2013). It is a
shallow two-layer neural network auto-encoder. We opted for the skip-gram version of the model.
So the neural network has been trained to predict the most obvious surrounding context for each
k-mers. The prediction is based on the softmax function that gives the posterior distribution of
k-mers:

p(c|k) =
exp(s(k, c))∑|K|

ci=1 exp(s(k, ci))

s(k, c) = vTc vk
With k the current k-mer, K the vocabulary of k-mers, c the context k-mer, v represents a vector,
s(w, c) denotes the scoring function between w and c.
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FastText Published by Facebook (Joulin et al. 2016; Bojanowski et al. 2016), this algorithm brings
the concept of subword information based on character n-grams. In fact, fastText works like the
word2vec skip-gram model but with a different scoring function. In word2vec a dot product is done
between the current word and its context words. Here, the dot product is computed between all
corresponding characters from min-n-gram to max-n-gram (two hyper parameters). For example if
we consider a k-mer “ATACCA”, min-n-gram=3 and max-n-gram=6, the n-grams are {ATA, TAC,
ACC, CCA, ATAC, TACC, ACCA, ATACC, TACCA, ATACCA}. A k-mer is finally represented as
the sum of the vector representations of its n-grams. The scoring function is re-written as follows:

s(k, c) =
∑
g∈Gk

zTg vc

Where Gk is the set of character n-grams of the k-mer k, z is a vector representation of all character
n-grams and v is a k-mer vector. This method allows to learn a reliable representation even for
rare k-mers. It can be useful since we don’t know the true size of each k-mer and where they are
separated.

D Multiple instance learning

The method of Zaheer et al. (2017) named deepSets is an approach adapted to this kind of problem.
They defined function invariant to permutation and place it in a neural network. The model is
separated into 3 steps. A first neural network Phi projects each instance of the bags into a lower
representation. A MIL layer (aggregation operation) invariant to permutation aggregates all instance
in a bag. Finally, a last neural network operates on a single instance (aggregated by the preceding
step) to compute prediction.

Mathematically Zaheer et al. (2017) defined a property and proved a theorem:

• Invariance to permutation can be formulate like this:

f(x1, ..., xm) = f(xσ(1), ..., xσ(m))

With m the number of elements in the bag and σ any permutation.

• Theorem: A function S(X) operating on a set X can be a valid scoring function i.e it is
permutation invariant to the elements in X, if and only if it can be decomposed in the forme
ρ(
∑
x∈X φ(x))

The last theorem gives a structure for the neural network: φ the first neural network,
∑
x∈X the

aggregation function and ρ the last neural network for classification. The sum operation is trivially
invariant to permutation but we can also defined other function like mean or max pooling. Those
aggregation functions are quite basic since they are not learned by the network. That’s why Ilse et al.
(2018) have recently proposed a new method to parameterize all transformations. They defined a
new function based on an attention mechanism (Luong et al. 2015). The proposed MIL pooling is:

z =

|H|∑
k=1

akhk

ak = softmax(wT tanh(V hTk ))

Wherew ∈ Rn and V ∈ Rn×m are parameters withN M andH = h1, ..., hk is a bag of k genomes
embeddings.

This method allows to determine which instances in the bag helped to predict the label by assigning
a weight to each instance. To be invariant to permutation the weights’ sum must be equal to one. As
the metagenomes are represented as bag of genomes embeddings, it is interesting for us to integrate
such an aggregation operation to determine the taxa that play a bigger role in the prediction. In that
way the model could be interpretable, which is a relevant point in metagenomics as explained in the
study of Prifti et al. (2020).
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E Code implementation

The full Pipeline is developed to train k-mers embeddings, reads embeddings, classfier of reads into
taxa and classifier of metagenomes into disease. It takes as inputs raw metagenomic fastq files and
raw genomic fasta files. The source code is available at the following link ???. The algorithms and
frameworks used for experiments are summarized below.

Data processing Given the amount of data we decided to take advantage of the Spark 2.4.5 python
Framework (Zaharia et al. 2012) running on distributed clusters to manage memory and make par-
allel computing on CPU for all data processing. We use YARN or Torque as cluster managers to
change the resources allocated for each of our experiments. The deep learning models are always
trained on GPU computing.

Machine learning

• kmer2vec: FastText, version 9.2 from GitHub written in C++.

• read2vec:

– FastText embeddings mean aggregation.
– Language model transformers, trained with Pytorch 1.6.
– FastDNA, from GitHub written in C++.

• read2genome:

– Multiple Layers Perceptron on top of read embeddings, H2O sparkling water 3.30.
– FastDNA, from GitHub written in C++.

• metagenome2vec:

– SVM, Random Forest, Gradient Boosting and Ada Boost from scikit-learn 0.22.1 for
classification benchmark on metagenome2vec vectorial representation and BoK repre-
sentation 6.

– DeepSets, using Pytorch 1.6, Ax 0.1.13 and ray-tune 0.8.5 packages for training and
tuning the multiple instance learning model.

F DNA embeddings evaluation

F.1 Intrinsic evaluation

kmer2vec K-mer embeddings are trained in a self-supervised manner that the algorithm try to pre-
dict the surrounding k-mers in regard to the current one. The principal parameters that we can mod-
ify are the embeddings size (dimensionality complexity), the k-mer size (smaller or bigger pieces of
DNA) and the window size (more or less surrounding words). It creates a big parameters space that
influences severity points like the vocabulary size, the embeddings learning and more globally the
final representation.

Analyzing k-mers vectors and finding best hyper parameters are done by intrinsic evaluation of the
embeddings. The intrinsic evaluation is an important test that can help identifying if the algorithms
learned a good DNA embeddings. Unfortunately, this is not an obvious task according to DNA
sequences. There is not a lot of information about the vocabulary compared to natural language
where we assume that the vectors of two words like synonyms have a high similarity. Several
intrinsic evaluation methods for NLP word embeddings are enumerated in Bakarov (2018) but none
of them can be used with DNA because their rely on text-specific concepts. To overcome the fact that
these methods are not available to evaluate the DNA embeddings, distance between k-mer chains
is taken in account. Ng (2017) measure the relation between the cosine similarity of two vectors
with their corresponding k-mers Needleman-Wunch score. In Min et al. (2017), authors prefer to
compute the relation between the cosine similarity and the Edit distance. Both Edit distance and
Needleman-Wunsch score are computed on k-mer chain and compared to the cosine similarity of

6The BoK (Bag of K-mers) method is related to BoW (Bag of Word). Thus, BoK represents a metagenome
as a vector by counting all the occurrences of its k-mers without using embeddings.
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their embeddings. Figure F.6a and F.6b confirm that the distance between k-mers and between
their embeddings do correlate. Unfortunately, these methods are only feasible when k is not too
high, generally less than or equal to 6. Indeed, when k increases, so does the number of k-mers in
vocabulary, which makes the calculation of distances much too long.

(a) Correlation between Edit distance of k-mers and
cosine similarity of k-mers embeddings

(b) Correlaltion between Needleman-Wunsch score
of k-mers and cosine similarity of k-mers embed-
dings

Figure F.6: Each violin plot shows mean, median and the extreme values at a specific score. A
smaller Edit distance and a higher Needleman-Wunsch score implies that k-mers are more similar.
A higher cosine similarity implies that vectors are more co-linear.

read2vec Embeddings at the read level can’t benefit from previous analysis because reads’ length
are a lot bigger than k-mers. Nevertheless, as the 506 reference genomes catalog has been used to
train the read embeddings, it can be projected in this new vector space. Then, species from a same
genus or with a similar genetic material should be more closely related to each other. We have set
up two methods to observe this phenomenon. One is to project and visualize genomes embeddings
using the t-SNE algorithm. Results on Figure F.7 highlight that some clusters are formed of genomes
from the same family. The other method is to compute a Mantel test and compare the correlation
between two distance matrix of genomes. First is the cosine similarity between genome embeddings,
second is the Mash distance7 between genome DNA. A high value in the mantel test implies that
cosine similarity of the embeddings is correlated with the mash distance of DNA, then it gives a
good indicator on the relevance of the representation learnt by the model. Models are tuned and
results are reported in Table F.1. FastDNA has the highest scores in this analysis. However, the
transformer model could not benefit from learning with a bigger k due to the complexity and size of
the vocabulary that increases with this variable. This is a track that we are optimizing.

7The Mash distance is a genome distance estimation using the MinHash algorithm. It is computed using the
GitLab from the study of Criscuolo (2019).
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Figure F.7: Each point is the projection into a 2D space with t-SNE algorithm of genome embeddings
from FastDNA model. Points similarly colored have the same family.

Method Mantel Test
FastText k=3,dim=300 0.50
FastText k=6,dim=300 0.54
FastText k=9,dim=300 0.56

Transformer k=3,dim=300 0.52
Transformer k=6,dim=300 0.56
Trasnformer k=9,dim=300 0.59
FastDNA k=13,dim=100 0.64

Table F.1: Mantel Test scores between Mash distance and genomes embeddings. Parameters k and
dim are for k-mer size and embeddings dimension respectively. When k increases the Mantel test
gets a better value. FastDNA dominates the ranking in front of the Transformer, which is itself better
than FastText.

G Read classification evaluation

We ensure that the read2genome model returns probability associated with the prediction, in that way
we can set a threshold to reject classifications with too much uncertainty. As there is a tremendously
high number of sequences by metagenome, rejecting uncertain predictions improve the precision of
the model without impacting clusters of reads. Q. Liang et al. (2020) also use a reject threshold
determined manually in DeepMicrobes.

We compare the results of FastDNA and transformer+MLP models trained on 10 of the 235 species
in the dataset. As FastDNA obtains the best scores on 10 species, we trained the model on the whole
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235 species with parameters set to 13 for k-mer size, 100 for embeddings dimension and 30 for the
number of epochs. We compute and plot the accuracy, precision, recall, f2-score and rejected rate
in accordance to the rejected threshold (see Figure ??). Metrics’ formula are recalled bellow :

Accuracy = TP+TN
N

Precision = 1
C

C∑
i

TPi

TPi+FPi

Recall = 1
C

C∑
i

TPi

TPi+FNi

F1-Score = 2× precision×recall
precision+recall

RejectedRate = R
N

With N = # of samples, C = # of classes, R = # of rejected samples, TP = True Positive,
TN = True Negative, FP = False Positive, FN = False Negative

(a) FastDNA on 10 species (b) transformer+MLP on 10 species

(c) FastDNA on 235 species

Figure G.8: Scores obtained to classify reads into species from the 2.19M simulated reads of the
validation dataset. The threshold corresponds to the minimum probability of the class predicted by
the model so that the read is not rejected.
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H Metagenomes clustering

To test the metagenomes embeddings we have set up a clustering approach based on the
metagenome2vec vectorial representation (see Section 4.4.1). m1 metagenomes are selected and
m2 < m1 others are cut in 10 sub parts. Each metagenome or part of metagenome are represented
by one vector. An agglomerative clustering is trained on these embeddings to compute a clustermap
and show distances between them (Figure H). Results show logically that embeddings from portions
of the same metagenome are closer to each other. It also indicate this relation for metagenome from
a same class even if some of them are in a wrong cluster.

Figure H.9: Cluster map computed on the Colorectal Dataset with the metagenome2vec vectorial
representation

. Blue ids and red ids refer to healthy patients and sick patients respectively. Underscores on ids
followed by a digit correspond to partitions of a same metagenome. On the map, the darker the

color, the more similar the metagenomes.
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