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Abstract

Recently, the pretrain-finetune paradigm has
become a cornerstone in various deep learn-
ing areas. While generally, the pre-trained
model would provide both effectiveness and
efficiency to downstream fine-tuning, studies
have shown that not all knowledge acquired
during pre-training is beneficial. Some of the
knowledge may actually bring detrimental ef-
fects. To address this negative transfer problem,
graceful forgetting has emerged as a promis-
ing approach. The core principle of graceful
forgetting is to enhance the learning plastic-
ity of the target task by selectively discarding
knowledge from irrelevant tasks. However, this
approach remains underexplored in the con-
text of generative language models, and it is
often challenging to migrate existing graceful
forgetting algorithms to these models due to
architecture incompatibility. To bridge this
gap, in this paper we propose a novel frame-
work, Learning With Forgetting (LWF), to
achieve graceful forgetting in generative lan-
guage models. With Fisher Information Ma-
trix weighting the intended parameter updates,
LWF computes forgetting confidence to eval-
uate self-generated knowledge regarding the
forgetting task, and consequently, knowledge
with high confidence is periodically unlearned
during fine-tuning. We evaluate our framework
on domain-specific question-answering tasks,
demonstrating that, although determining the
inter-task interaction mechanisms is still highly
tricky, graceful forgetting can indeed lead to
improved fine-tuning.

1 Introduction

In recent years, the pretrain-finetune paradigm has
emerged as a dominant framework across natural
language processing (NLP) tasks and various other
domains (Zhou et al., 2023). This approach in-
volves pre-training neural networks on large-scale
corpora and subsequently fine-tuning on smaller,
task-specific datasets to adapt to downstream ap-

plications. Its effectiveness has been evidenced by
the success of prominent pre-trained models such
as BERT (Devlin et al., 2019), GPT (Brown et al.,
2020), and T5 (Raffel et al., 2020). These models
have become the backbone of many state-of-the-art
Al systems (OpenAl, 2023; Rombach et al., 2022),
significantly fostering community development.

Despite tempting benefits such as data efficiency
and reusability of this well-established paradigm,
a long-standing issue, known as negative transfer,
arises in exploiting pre-trained knowledge, refer-
ring to the fact that not all pre-trained knowledge
contributes positively to the fine-tuning process of
target learning tasks; in fact, some may even im-
pair the learning plasticity of the target task (Zhang
et al., 2023).

Negative transfer highlights a critical limitation
of vanilla fine-tuning: it treats all pre-trained knowl-
edge indiscriminately, which is not always the
optimal practice. Inspired by this insight, many
works were dedicated to developing more effective
fine-tuning frameworks through alleviating nega-
tive transfer. Among these, a particularly promis-
ing approach is graceful forgetting (Wang et al.,
2021; Liang and Li, 2023; Karakida and Akaho,
2022; Abbasi et al., 2024). Graceful forgetting,
also known as active forgetting, is a concept origi-
nating in neuroscience, describing a memory mech-
anism in biological intelligence where the ability
to acquire new knowledge is enhanced by selec-
tively discarding irrelevant or outdated informa-
tion (Anderson and Hulbert, 2021). Recent studies
have shown that incorporating a similar "forget-
ting" mechanism into machine learning can also
enhance the learning plasticity of new tasks (Zhou
et al., 2022; D’Oro et al., 2023).

To achieve graceful forgetting, a variety of ap-
proaches have been explored. Some works fo-
cus on reflecting task synergy by exploiting met-
rics like gradient projections and loss interference,
thereby reformulating gradient updates (Liang and



Li, 2023; Riemer et al., 2019). Alternatively, meth-
ods like BSS (Chen et al., 2019) and SRS (Shen
et al., 2024) use structural regulation to implicitly
forget pre-trained knowledge.

However, most existing methods are either tai-
lored for vision tasks (particularly image classifica-
tion) or are incompatible with pre-trained models,
making it arduous to migrate them to pre-trained
language models. Furthermore, the diverse and
comprehensive information inherent in natural lan-
guage data often results in ambiguous knowledge
boundaries between different tasks, complicating
the identification of explicit and granular inter-task
correlations (Pruksachatkun et al., 2020). This is-
sue is particularly profound in the rapidly evolv-
ing field of generative language models, where re-
search on negative transfer and graceful forgetting
remains extremely scarce.

To address this gap, in this paper we investigate
the graceful forgetting in generative language mod-
els. The central question we try to explore is: can
generative language models achieve more effective
fine-tuning by gracefully forgetting some unnec-
essary knowledge? To answer this question, we
propose a framework called Learning With For-
getting (LWF), to implement graceful forgetting
in generative language models. Beginning from
addressing the inaccessibility of pre-trained data,
LWF leverages the nature of generative models, ex-
pressing knowledge regarding the forgetting task
through self-generated texts. Then, given that iden-
tifying task-wise correlation is quite arduous, LWF
calculates data-wise forgetting confidence for each
data point by weighting the intended parameter
updates with the Fisher Information Matrix. Fi-
nally, based on this confidence metric, LWF selects
high-confidence data points and integrates machine
unlearning techniques to periodically remove cor-
responding knowledge during the fine-tuning pro-
cess. Experiments on domain-specific question-
answering tasks demonstrate the superiorness of
LWF over vanilla fine-tuning.

To the best of our knowledge, LWF represents
the first systematic investigation of graceful for-
getting in generative language models. Through
extensive experiments and analyses, we validate the
feasibility of promoting fine-tuning performance
through graceful forgetting. Furthermore, our em-
pirical findings shed light on some insights into
this topic and hopefully offer inspiration for future
investigation and innovation.

2 Related Work

2.1 Negative Transfer

The precise interpretation of negative transfer
kindly varies among different research domains.
In Multi-Task Learning (MTL), negative transfer
refers to the performance degradation that occurs
when learning conflicting tasks simultaneously (Go
et al., 2023). Since the primary goal of MTL is to
improve performance across all tasks, graceful for-
getting is not a widely adopted strategy. Instead,
methods to mitigate negative transfer in MTL typi-
cally focus on designing suitable criteria, such as
gradient directions (Jiang et al., 2023) or signal-
to-noise ratio (Go et al., 2023), to quantify the
inter-task synergy and subsequently divide tasks
into separate clusters.

In Continual Learning, negative transfer is re-
garded as a sacrifice of plasticity when pursuing
stability (Karakida and Akaho, 2022). Specifically,
the emphasis on retaining knowledge from previ-
ous tasks may result in reduced performance on
learning new tasks. In this context, forgetting is
employed as a counterbalance component to algo-
rithms that overly prioritize memorizing past tasks,
rather than as an independent mechanism to en-
hance performance on new tasks (Liang and Li,
2023; Wang et al., 2021; Schwarz et al., 2018).

Finally, as pre-trained models gradually become
the critical foundation in various applications, re-
search of negative transfer within the pretrain-
finetune paradigm has gained increasing attention.
This is the most consistent scenario with our work.
A distinguishing characteristic of this paradigm is
that pre-training involves training the model on vast
amounts of data across diverse tasks, which is often
inaccessible during fine-tuning. Consequently, cur-
rent approaches to mitigating negative transfer in
this context tend to rely on implicit forgetting meth-
ods, such as the Batch Spectral Shrinkage (Chen
et al., 2019) and the Stable Rank Shrinkage (Shen
et al., 2024).

2.2 Graceful Forgetting

Although forgetting is commonly regarded as an
undesirable trait, suggesting the incapability of
memorizing knowledge, recent studies have ar-
gued that striving for an omniscient model may
be impractical due to limited model capacity and
inevitable knowledge conflicts (Zhou et al., 2022;
D’Oro et al., 2023). Inspired by neuroscience (An-
derson and Hulbert, 2021), an increasing amount



of research has explored the potential of improving
learning plasticity through actively forgetting irrel-
evant knowledge. However, a universally accepted
algorithm has yet to emerge, as the implementation
is highly dependent on specific model architectures
and task characteristics. Hitherto, most work in
this area has focused on vision tasks, particularly
image classification (Abbasi et al., 2024; Go et al.,
2023; Wang et al., 2019; Liang and Li, 2023). For
language tasks, (Chen et al., 2023) proposed a for-
getting method that periodically resets the learned
embedding layer to enhance the multi-lingual learn-
ing ability. But it is deployed during pre-training
rather than fine-tuning. BSS (Chen et al., 2019)
integrated their method into BERT and evaluated
it on text classification tasks. Despite these tri-
als, existing methods either lack generalizability or
perform inadequately when applied to generative
language models.

2.3 Machine Unlearning

Machine unlearning is a vibrantly investigated
topic studying removing specific data, patterns,
or knowledge from trained models (Yao et al.,
2023). In the context of generative language mod-
els, unlearning is usually applied to aligning lan-
guage models with human values, such as pro-
tecting user privacy (Patil et al., 2024), remov-
ing harmful contents (Liu et al., 2024), and re-
ducing hallucination (Yao et al., 2023). A vari-
ety of unlearning strategies have been proposed
for generative language models, including gradient
ascent (Jang et al., 2023), localization-informed
unlearning (Jang et al., 2023), influence function-
based methods (Jia et al., 2024), and so on. While
current generative language model unlearning re-
search primarily focuses on eradicating undesirable
behaviors, our work repurposes unlearning as a
mechanism to achieve graceful forgetting, thereby
enhancing the plasticity of fine-tuning. In essence,
we leverage unlearning for better learning.

3 Methodology

In this section, we detail the implementation of
our framework for graceful forgetting in generative
language models. The framework primarily con-
sists of three components: eliciting self-knowledge,
evaluating forgetting confidence, and periodically
unlearning. Fig 1 illustrates the overview. For
the sake of convenience in exposition, we use Dy,
to represent the learning task and Dr to denote

the forgetting task. But it is worth noting that the
framework is task quantity-agnostic, which will be
elaborated on Section 4.

3.1 Eliciting Self-Knowledge

The first step in forgetting specific knowledge is to
acquire its representation. However, as discussed in
Sec 2.1, the pre-training corpus is typically inacces-
sible in practice, making it uncertain whether D
can adequately represent the model’s knowledge.
Fortunately, the inherent characteristics of genera-
tive language models provide a viable alternative:
leveraging self-generated data. Specifically, we
input the prompts (e.g., questions or instructions)
from Dpr into the base model My 4. and collect
its responses to form the unlearning dataset, which
we donate as Dy f.

3.2 Evaluating Forgetting Confidence

Apparently, not all instances of forgetting are grace-
ful. To ensure that forgetting enhances rather than
hinders fine-tuning, we need a metric to reflect the
confidence that forgetting specific knowledge will
not lead to catastrophe. Moreover, given the rich
and diverse semantic information present in natu-
ral language sentences, we argue that a task-level
metric is too coarse-grained. Instead, we define for-
getting confidence at the data point level, allowing
for a more granular evaluation of which knowledge
should be forgotten.

For a generated text x in Dy, ¢, the posteriori
P(Dy|x) intuitively reflects to what extent Dy,
and x are synergistic. The lower P(Dy |x) is, the
more likely x is conflicted with Dy . Consid-
ering P(Dy |x) is computationally intractable, we
use P(Dr|6%(x)) as a surrogate, where

0" (x) = arg max P(0]x) (D
0

Since only the relative value is required, we can
use P(0"(x)|Dr) to represent P(Dy |6*(x)), as the
two are positively proportional according to the
Bayes’ Theorem. Based on this, we define the
forgetting confidence as:

FC(x) o« —log P(6"(x)|DL) 2

Following prior works (Kirkpatrick et al.,
2017; Wang et al., 2021), we assume P(6|Dyr)
as a Gaussian distribution centered at 6; =
argmax P(6|9D ), and this distribution can be ap-

0

proximated using a second-order Taylor expansion
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Figure 1: The overview of the LWF framework. Given the forgetting task D and learning task Dy, LWF first
constructs Dy, ¢ through self-generated texts to represent the knowledge regarding the forgetting task. Then, with
the Fisher Information Matrix Fy, and the optimal parameters of the learning task approximated from Dy, LWF
calculates forgetting confidence for each data point in Dy,; . Finally, data points with high forgetting confidence
are selected for unlearning, represented by Dy;. The unlearning process is integrated into the fine-tuning process of

Py, and is executed periodically at intervals of N,,.

around 67 :

1 .
log P(O1DL) ~ =56 - 07)"

9 log P(0|Dy) .
(T|92)(0 - 67)

In practice, we integrate Equation 2 with Equa-
tion 3 and use a single-step update from the base
model to represent 8*(x), thereby reducing compu-
tational costs:

1
FC()C) = 5 E FL,i(gbase,i -
i

3

dL(x)
do;

—6.)°

“)

Fp, represents the Fisher Information Matrix
(FIM), which is the negative expectation of the Hes-
sian Matrix in Equation 3. The parameters of the
base model are represented by 6p,5., While L (x)
refers to the cross-entropy loss of x. @ controls the
length of the single-step update. The 67 is obtained
by training the base model on Dy .

Intuitively, Equation 4 measures the conflict be-
tween x and Dy by evaluating the alignment be-
tween the intended parameter update induced by x
and the target 6, . The FIM F, serves as a weight-
ing mechanism that captures the relative impor-
tance of each parameter.

3.3 Periodically Unlearning

With the forgetting confidence FC(x), we can filter
data from Dy, ¢ with higher values to construct a
subset Dy. However, given the well-known "insta-
bility" characteristic of machine unlearning (Yao
et al., 2023; Liu et al., 2024), casually unlearning
Dy is unlikely to yield consistent improvements.
Especially the data selected for forgetting in Dy is
only potentially "conflicting" with the target task,
rather than definitively harmful.

Therefore, to make the training process sta-
ble, we adopt a "periodically unlearning" strategy.
Specifically, we perform learning on Oy and un-
learning on Dy simultaneously, while maintaining
a fixed interval N, between consecutive unlearning
sessions. For example, if the interval N, = 7, then
for every 7 data points learned from 9Dy, one data
point from Dy will be unlearned.

We use Gradient Ascent as our unlearning
algorithm, which merely involves negating the
loss function. For a periodic batch X =
{xll, . ,xévu,x“} where {xll, . ,xévu} C Dy and
x" € Dy, the loss can be written as:

LouX)= ) LE)-BLE" O

xe{x{,...,vau}



where L is the sft loss and S is the unlearning rate.

4 Experiments

4.1 Setup
4.1.1 Datasets

To discuss the application and effectiveness of
LWE, we deploy our method to domain-specific
question-answering tasks. We select five datasets,
each representing distinct domains of knowledge,
to observe the outcomes of various learning-
forgetting combinations. The datasets include:
gsm8k (Cobbe et al., 2021) representing math;
gasc (Khot et al., 2020) representing primary sci-
ence; sstS (Socher et al., 2013) representing sen-
timent recognition; dental, the subset of MedM-
CQA (Pal et al., 2022) regarding dental knowledge;
psychol, the subset of MMLU (Hendrycks et al.,
2021) regarding psychology.

4.1.2 Implementation Details

We utilize Llama3.2-1B (Touvron et al., 2023) as
the base model for all experiments. To elicit self-
knowledge, we use a 3-shot prompt concatenated
with the input question, employ a greedy decod-
ing strategy, and constrain the maximum number
of generated tokens to 256. When computing the
forgetting confidence, we set the one step update
coefficient a to le-2 (as defined in Equation 4). To
maintain the coherence of batch gradient descent
during periodically unlearning, we combine Dy,
and Dy by incorporating one data point from Dy
for every N, data points from 9Dy. The training
process uses a batch size of 4, a learning rate of
le-5, and spans in total one epoch. N, is set to 7,
and B (as defined in Equation 5) is either 0.1 or
0.05, depending on forgetting tasks. All training
procedures are carried out on eight NVIDIA RTX
4090 GPUs with full parameter tuning. For more
details please refer to Appendix A.

4.2 Results on Question Answering

Table 1 shows the results on question-answering
tasks. Each column represents different learning
task and each row indicates different forgetting task.
Specifically, the first row none means no forgetting
task, that is, vanilla fine-tuning; and the last row
mixed implies that the forgetting task comprises all
datasets except the one used for learning.

As the results show, in most learning-forgetting
combinations, LWF promotes the performance on
the learning task compared to vanilla fine-tuning.

gsm8k qasc sstS dental  psychol

none 19.71 42.98 49.55 36.87 46.42
gsm8k - +4.03% +2.83% +1.46% +6.33%
qasc +5.38% - +2.54% -4.53% +5.54%
sst5 +2.67%  +3.02% - +0.22% +0.41%
dental +10.40% +5.28% +2.10% - +1.59%

psychol  +1.17% +2.00% +1.27% -4.10% -

mixed  +6.95% +5.54% +2.10% +1.46% +7.93%

Table 1: Results on domain-specific question answering.
Each column shares the same learning task and the rows
represent different forgetting tasks. All percentages are
calculated based on none.

qasc sst5 dental  psychol

qasc - -1493% -0.37% +1.00 %

sstS -4.94% - -1.36%  -1.85%

dental -145% +0.17% - -3.65%
psychol -17.43% -12.02% +4.80% -

Table 2: Side-effect results. Percentages are calculated
based on vanilla fine-tuning.

Two exceptions are when learning dental with for-
getting qasc and psychol. We believe this is at-
tributed to the low forgetting confidence of self-
generated samples in these two cases. The as-
sumption is evidenced by the results of the last
row, where mixing all other datasets as the for-
getting task consistently improves performance on
the learning task. This suggests that the distribu-
tion of forgetting confidence varies across datasets.
Therefore, when the forgetting task is composed
of a diverse set of datasets, the likelihood of im-
provement on the learning task grows, as there are
potentially more high-confidence samples available
for selection.

We also examine the side effects of LWE, i.e.,
its impact on datasets that are neither part of the
learning task nor the forgetting task (for simplicity
we denote them as side-tasks). To evaluate, we
compute the average accuracy on side-tasks and
compare it to that of the vanilla fine-tuned model.

Table 2 shows the results, where each column
represents the learning task and the row indicates
the forgetting task. The gsm8k is excluded because
its different format will cause superficial forgetting,
which we discuss in Appendix B. As observed in
the other tasks, the side effects vary depending
on the specific learning-forgetting combinations.
Overall, the impact is much milder when learning
complex tasks like psychol and dental.
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Figure 2: Distribution of accuracy changes between two
filtering strategies. Percentages are calculated based on
vanilla fine-tuning.

4.3 Analysis on Forgetting Confidence

In LWE, one of the most critical steps is computing
the forgetting confidence, which reflects the confi-
dence that forgetting specific data will positively
contribute to the learning task. To achieve this, we
propose the computable metric FC(x) (in Sec 3.2).
However, the computation involves approximation
errors. More importantly, the relation between the
final model performance and to what extent the gra-
dient update direction of individual data aligns with
expectations is not a definitive mapping. These lim-
itations make F'C(x) a non-absolute measurement.
In practice, we also observed that unlearning data
points with relatively lower F'C does not absolutely
result in degradation.

To better understand the role of forgetting con-
fidence from a statistical perspective, we design
a comparison for LWF that employs the opposite
filtering strategy, i.e., selecting data with the lowest
forgetting confidence. For each learning task, we
calculate the accuracy change percentage of these
two strategies across all forgetting tasks, based on
vanilla fine-tuning results. To enlarge the sample

DrF gsm8k  qasc sstS dental psychol
none 19.71 4298 4955 36.87 4642
gsm8k - -65.6% +0.5% -0.8% -9.9%
qasc  +5.0% - +04% -74% +3.6%
sst5 +4.3% +7.8% - -35% 49.1%
dental -8.5% -26.6% +1.2% - +0.0%
psychol -6.5% -83% -21.7% -4.9% -
mixed -3.5% -73.9% +23% +0.8% -7.9%

Table 3: Results of ahead unlearning, ablation study for
periodically unlearning, where unlearning is completed
before fine-tuning.

Dr gsm8k  qasc sst5  dental psychol
none 19.71 4298 4955 36.87 4642
gsm8k - -126% -0.1% -49% +10.3%
qasc -8.8% - +39% -2.0% +7.7%
sst5 -88% -10.8% - -43% +3.6%
dental -6.5% -6.9% +1.8% - +7.5%

psychol -5.0% -131% +2.1% -2.7% -
mixed -6.5% -10.1% -0.5% -49% +9.5%

Table 4: Results of randomly unlearning, ablation study
for periodically unlearning, where unlearning is ran-
domly executed during fine-tuning.

size, we collected results across four different un-
learning rate, 8 € {0.05,0.10, 0.20, 0.25}.

Fig 2 shows the distribution of two strategies.
The red part corresponds to unlearning data with
the highest F'C and the blue part represents unlearn-
ing data with the lowest. The x-axis is the accuracy
change percentage. As we can see, generally the
privilege of unlearning data with high FC mani-
fests in two aspects. First, the average accuracy
enhancement is higher. Second, the enhancement
is more stable. Specifically, the variance and over-
all range are smaller when selecting data with high
FC, while unlearning data with low F'C may lead
to highly variable results, including extremely poor
cases. In conclusion, unlearning data with high
forgetting confidence yields averagely better per-
formance and ensures greater robustness, making
it a more reliable approach in practice.

4.4 Abaltion on Periodically unlearning

To alleviate the vulnerability of machine unlearn-
ing, we propose the periodically unlearning strat-
egy to stabilize the training process. In this section,
we conduct an ablation study to demonstrate that
periodically unlearning is the most suitable strategy
for effectively combining the learning and unlearn-
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Figure 3: Accuracy change percentage of the forgetting
task across different learning-forgetting combinations.
Percentages are computed based on vanilla fine-tuning.

ing processes.

We design two variants of unlearning strategies
for comparison. The first strategy involves con-
ducting the unlearning process prior to the learning
process, which we refer to as ahead unlearning.
The second strategy allows the model to randomly
execute unlearning during fine-tuning, which we
name as randomly unlearning. It is important to
note that, together with periodically unlearning, all
three strategies share the same ratio of learning and
unlearning samples.

Table 3 and Table 4 present the results of ahead
unlearning and randomly unlearning respectively.
As shown, both of them are significantly less ef-
fective than periodically unlearning (Table 1) in
general. In both of them, the majority of learning-
forgetting combinations lead to negative changes.
Furthermore, ahead unlearning demonstrates ex-
tremely undesirable instances. This may be at-
tributed to that conducting the unlearning process
on the base model in advance may cause uncon-
trolled damage to the pre-trained knowledge. If
critical and foundational knowledge is affected,
the subsequent learning process may suffer severe
degradation. Therefore, it can be concluded that
mixing the learning and unlearning processes is bet-
ter than conducting them separately, and switching
them periodically is superior to randomly.

4.5 Analysis on the Forgotten Task

In this section, we turn our attention to the forget-
ting task, examining how the model’s performance
on it changes before and after the deployment of
LWE. While it is intuitively reasonable that the
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Figure 5: TTR change percentage of the forgetting task
across different learning-forgetting combinations. Per-
centages are computed based on vanilla fine-tuning.

dental

psychol

model’s knowledge about the forgetting task will
be nearly erased, the empirical findings are more
complicated. Fig 3 is a heatmap illustrating the
percentage changes in accuracy for the forgetting
tasks compared to vanilla fine-tuning. As depicted,
although the accuracy of the forgetting tasks gen-
erally declines after LWF across most learning-
forgetting combinations, the extent varies largely.
Approximately half of the cases exhibit a drop
close to 100%, while others show only marginal de-
creases, particularly when either the learning task
or the forgetting task involves dental or psychol.
Additionally, we noticed that the accuracy
merely reflects whether the final answer is correct,
which is insufficient to fully capture the nuanced
changes in the generated outputs of generative mod-
els. Therefore, we take a further step to analyze



semantic changes. Specifically, we use SimCSE
model ! (Gao et al., 2021) to obtain the sentence
vectors of the responses generated by the vanilla
fine-tuned model and LWF model for the same for-
getting task question. We then compute the cosine
similarity between these vectors to quantify seman-
tic differences. The results are shown in Fig 4.
Considering a cosine similarity score above 80%
is generally required to confidently assert that two
sentences are semantically similar, the figure re-
veals that the semantic changes in most combina-
tions are substantial. Notably, the cases where the
similarity approaches or exceeds 80% align almost
entirely with those exhibiting minimal accuracy
drops, that is, combinations involving dental or
psychol. We believe this phenomenon may be at-
tributed to that dental and psychol are inherently
more complex than the other tasks. Learning or
forgetting these domains requires the model to en-
gage with more sophisticated knowledge structures,
making it less susceptible to extreme forgetting.
We also evaluate changes in lexical diversity, as
shown in Fig 5, with Type Token Ratio (TTR) as
the metric. Similar to the trends observed in ac-
curacy changes, the TTR experiences a significant
decline in most combinations, and the cases that
maintained high correctness and semantic similar-
ity also largely preserved their lexical diversity.

4.6 Multi-Task Learning

In this section, we discuss the performance of the
LWEF in multi-task learning scenarios. Specifically,
we select one from the five datasets as the forget-
ting task and combine the remaining four to form
the learning tasks. To mitigate the risk of catas-
trophic forgetting of earlier tasks, we evenly mix
the learning tasks during training. Fig 6 shows
the comparison of multi-task accuracy between
LWF and vanilla fine-tuning. As we can see, LWF
demonstrates an overall improvement in perfor-
mance compared to vanilla fine-tuning, while at
the individual task level, not all learning tasks ben-
efit equally from LWFE.

The results underscore the complexity of multi-
task learning scenarios. Beyond the overall gains
achieved through graceful forgetting, there are in-
tricate interactions among the learning tasks them-
selves. Improvements in one task may inadver-
tently suppress the performance of others.

Thttps://huggingface.co/princeton-nlp/unsup-simese-bert-
base-uncased

gsm8k gasc sst5 dental psychol
LWF 37.26 50.54 38.47 49.17
vanilla 37.90 50.45 36.72 46.06
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Figure 6: Accuracy results in the multi-task learning
setting. Labeled below each subplot are the forgetting
task and learning tasks.

5 Conclusion

In this paper, we propose a novel framework, Learn-
ing With Forgetting (LWF), to achieve graceful
forgetting in generative language models. LWF
addresses the inaccessibility of pre-trained data
by leveraging self-generated knowledge, calculates
forgetting confidence for each data point by weight-
ing the intended parameter update with Fisher In-
formation Matrix, and employs gradient ascent to
periodically unlearn high-confidence data during
fine-tuning. Empirical results on domain-specific
question-answering tasks demonstrate the effective-
ness of LWF. Furthermore, we conduct extensive
experiments to analyze the contribution of each
component of LWF, the effects of forgetting spe-
cific tasks, and the framework’s performance in
learning or forgetting multiple tasks. While fully
elucidating the mechanisms of inter-task interac-
tions and achieving optimal graceful forgetting still
need great effort, we hope our work provides valu-
able insights into this emerging area and inspires
future research endeavors.



Limitation

As the first framework for graceful forgetting in
generative language models, LWF has several ar-
eas that warrant further improvement. The first area
concerns the measurement of forgetting confidence.
Quantifying the interactions among learning data
has long been a challenge in the field of knowledge
transfer. In this paper, we adopt a popular perspec-
tive of intended parameter updates. While empiri-
cal results demonstrate its statistical effectiveness
in selecting better data and enhancing robustness,
its applicability is likely to decrease when the avail-
able data for selection is limited. We anticipate
that future advancements in knowledge transfer re-
search will yield more precise and reliable metrics
for measuring forgetting confidence.

The second area pertains to the unlearning pro-
cess. While LWF demonstrates the feasibility of
graceful forgetting through machine unlearning,
the adopted algorithm, gradient ascent, is a rela-
tively naive approach within machine unlearning al-
gorithms. As observed, this method may introduce
instability and unintended side effects. Although
we have implemented countermeasures, such as
periodically unlearning, to mitigate these issues,
we believe that future work could benefit from the
development of more sophisticated and tailored
unlearning algorithms.
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EN IT ZH ES TR
none 19.71 6.67 9.78 7.81 9.10
EN +6.90% +2.35% +3.84% +4.18%
1T +5.38% - S5.42%  +1.92% -14.18%
ZH  +2.69% -30.73% - -3.84% -9.23%
ES +041% -35.23% -6.24% - +5.05%
TR  +6.95% -25.04% -8.49% -1.02% -
mixed +3.45% +25.04% +7.77% +10.63% +20.77%

Table 5: Results on multi-lingual question-answering.

gsm8k qasc  sst5 dental psychol AVG.

vanilla-FT ~ 19.71 4298 49.55 36.87 4642 39.12
BSS 2039 4428 49.73 3551 44777 3894
SRS 1736 40.28 50.50 35.05 46.61 37.96
LWF-mixed 21.08 4536 50.59 3741 50.10 4091

Table 6: Results of structural regulation methods

A More Implementation Details

Table 7, Table 8, Table 9, Table 10, and Table 11
present the few-shot CoT prompts designed for
each dataset, which are utilized during both the
self-knowledge elicitation and evaluation stages.
As illustrated in the prompts, answers are formatted
with the phrase 'The answer is’ to facilitate the
convenience of extracting answers. Any model
output that deviates from this format is considered
incorrect. In cases where multiple occurrences
of *The answer is’ appear in the output, the first
instance is treated as the definitive answer.

B Superficial Forgetting

Although all five datasets used in our experi-
ments are question-answering datasets, gsm8k
differs significantly in format from the other
four. Specifically, gsm8k is free-form numerical
question-answering, while the other four datasets
are multiple-choice question-answering (see exam-
ples in Table 7 and Table 8). We observed that
this format discrepancy can lead to significant side
effects when gsm8k is the learning task and the
other datasets are the forgetting tasks. By analyzing
the model’s outputs, we identified that the model
trained under this setting often fails to generate
answers in the multiple-choice format.

To illustrate, Table 12 provides examples of
the model’s output sentences on three tasks when
gsm8k is the learning task and qasc is the forgetting
task. As shown, while the rationale portion of the
output appears coherent, the model fails to select a
valid option at the end of its response.
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This phenomenon suggests that, under the LWF
framework, the model tends to focus on the most
superficial pattern differences to distinguish the
learning task from the forgetting task. Therefore,
to mitigate extreme side effects, it is better to ensure
that there are no overly superficial format differ-
ences between the learning and forgetting tasks.

C LWF in Multi-Lingual Tasks

Beyond domain-specific question-answering, an-
other promising application of graceful forgetting
is in multilingual learning, where hopefully the
model’s performance in a target language can be
enhanced by forgetting its representations in other
languages. To explore this, we applied LWF to
the gsm8k dataset across five languages: English
(EN), Italian (IT), Chinese (ZH), Spanish (ES), and
Turkish (TR). The results are presented in Table 5.
We observed an interesting phenomenon: aside
from the mixed approach, which consistently im-
proves performance across all languages, the re-
sults are all positive when learning English with
forgetting other languages, or vice versa. However,
when the combination does not involve English,
the outcomes are predominantly negative. We hy-
pothesize that this phenomenon may stem from the
disproportionate volume of English data used dur-
ing the model’s pre-training, which likely stabilizes
LWF’s performance when English is involved.

D Structural Regulation Methods

As discussed in Section 2.1, structural regulation
methods such as BSS (Chen et al., 2019) and
SRS (Shen et al., 2024) are typical approaches
for mitigating negative transfer within the pretrain-
finetune paradigm. However, both of them have
only been evaluated on classification tasks. We
attempted to adapt them for generative language
models, and the results of our implementations are
presented in Table 6, along with vanilla fine-tuning
(vanilla-FT) and LWF (LWF-mixed).

As observed, the performance of BSS and SRS is
consistently inferior to LWF-mixed. In some cases,
these methods even result in negative changes com-
pared to vanilla-FT. We attribute this ineffective-
ness to architecture differences. Specifically, BSS
and SRS rely on operations applied to feature vec-
tors, whereas the hidden states in generative lan-
guage models are not inherently designed to rep-
resent sentence embeddings, the models for which
BSS and SRS were originally designed.



Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there
will be 21 trees. How many trees did the grove workers plant today? Let’s think step by step.

Answer: We start with 15 trees. Later we have 21 trees. The difference must be the number of trees they planted. So, they
must have planted 21 - 15 = 6 trees. The answer is 6.

Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot? Let’s think
step by step.

Answer: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 =5 cars. The answer is 5.
Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total? Let’s
think step by step.

Answer: Leah had 32 chocolates and Leah’s sister had 42. That means there were originally 32 + 42 = 74 chocolates. 35
have been eaten. So in total they still have 74 - 35 = 39 chocolates. The answer is 39.

Table 7: Few-shot prompts for gsm8k.

Question: What type of water formation is formed by clouds? (A) pearls (B) streams (C) shells (D) diamonds (E) rain (F)
beads (G) cooled (H) liquid Let’s think step by step.

Answer: Beads of water are formed by water vapor condensing. Clouds are made of water vapor. Beads of water can be
formed by clouds. The answer is (F).

Question: Removing what from food will preserve it? (A) flavor (B) body water (C) heat energy (D) color (E) Water (F)
Bodily water (G) moisture (H) ingredients Let’s think step by step.

Answer: Dehydrating food is used for preserving food. Dehydration preserves foods by removing moisture. Removing
moisture from food preserves it. The answer is (G).

Question: Reproduction is the process by which living things what? (A) Most plants (B) allow growth (C) spread flower
seeds (D) have wide set eyes (E) members of their own species (F) have birthing hips (G) have quiet laughter (H) give
birth to babies Let’s think step by step.

Answer: Reproduction is the process by which living things give rise to offspring. Whenever it starts to give birth, it
gives birth up to two to four babies offspring. Reproduction is the process by which living things give birth to babies. The
answer is (H).

Table 8: Few-shot prompts for qasc.

Question: What is the emotional attitude reflected in the sentence: "in his first stab at the form , jacquot takes a slightly
anarchic approach that works only sporadically ."? (A) very negative (B) negative (C) neutral (D) positive (E) very positive
Let’s think step by step:

Answer: The phrase "first stab" suggests this is an initial attempt, which can imply inexperience but also experimentation.
"Slightly anarchic approach” does have a mild negative connotation with "anarchic," but it’s softened by "slightly." "Works
only sporadically” indicates mixed results. It doesn’t work consistently, but it does work sometimes, which isn’t entirely
negative. Given these considerations, while there are elements that lean towards a negative interpretation, the overall tone
of the sentence is not strongly positive or negative. So the emotional attitude is neutral. The answer is (C)

Question: What is the emotional attitude reflected in the sentence: "one long string of cliches."? (A) very negative (B)
negative (C) neutral (D) positive (E) very positive Let’s think step by step:

Answer: The phrase "one long string" suggests an extended or continuous sequence, which in this context implies that
there are many instances of something undesirable. The term "cliches" refers to expressions or elements that have been
overused to the point of losing their original impact, freshness, or appeal. It generally carries a negative connotation
because it indicates a lack of originality or creativity. Considering these points, the sentence does not contain any positive
words or phrases and is clearly pointing out a flaw or criticism. Therefore, the emotional attitude reflected in the sentence is
negative. Since it’s a straightforward criticism without strong intensifiers (like "extremely" or "utterly"), we can conclude
that the most fitting emotional attitude is negative. The answer is (B)

Question: What is the emotional attitude reflected in the sentence: "although laced with humor and a few fanciful touches,
the film is a refreshingly serious look at young women."? (A) very negative (B) negative (C) neutral (D) positive (E) very
positive Let’s think step by step:

Answer: The word "although" introduces a concession, acknowledging that the film contains elements of humor and some
imaginative aspects ("fanciful touches"). This part suggests that there are positive qualities present in the film. The main
clause uses the term "refreshingly," which conveys a positive and invigorating experience. It indicates that the seriousness
of the film’s approach to its subject matter is not only appreciated but also seen as something new or different from
what might be expected. The focus on "young women" being treated seriously adds depth to the evaluation. It implies
that the film offers a thoughtful and mature perspective on its subject, which can be seen as commendable. Given these
considerations, the overall tone of the sentence is appreciative and positive. The use of "refreshingly" especially signals a
positive emotional response to the film’s treatment of its subject. However, since the positivity is moderate and not overly
enthusiastic or exuberant, the most fitting emotional attitude is positive. The answer is (D).

Table 9: Few-shot prompts for sst5.

12



Question: Resistance to lateral shifting or anteroposterior shifting is called as:? (A) Retention. (B) Stability. (C) Support.
(D) None. Let’s think step by step:

Answer: The question is asking about the term used to describe resistance to lateral (side-to-side) or anteroposterior
(front-to-back) shifting. Retention generally refers to the ability to hold or keep something in place. In dentistry, for
example, it refers to the resistance of a dental prosthesis to displacement in a vertical direction. Stability refers to the
resistance to movement, particularly lateral or anteroposterior shifting. It is the ability of an object or structure to maintain
its position when subjected to forces. Support refers to the ability to bear weight or hold something up, but it does not
specifically refer to resistance to shifting. Based on the definitions, stability is the term that specifically refers to resistance
to lateral or anteroposterior shifting. The answer is (B).

Question: Tannerella forsythia is a ? (A) Nonmotile, gram-negative obligate anaerobe (B) Motile, gram-negative obligate
anaerobe (C) Nonmotile, gram-negative obligate aerobe (D) Motile, gram-negative obligate aerobe Let’s think step by step:
Answer: Tannerella forsythia is a bacterium associated with periodontal disease. It is known to thrive in environments
with little to no oxygen. Tannerella forsythia is nonmotile, meaning it does not have structures like flagella to move on
its own. It is a gram-negative bacterium, which means it has a thin peptidoglycan layer and an outer membrane. It is an
obligate anaerobe, meaning it cannot survive in the presence of oxygen and requires an oxygen-free environment to grow.
So, it is a nonmotile, gram-negative obligate anaerobe. The answer is (A).

Question: Which of the following bacteria is not a primary colonizer:? (A) Streptococci. (B) Actinomyces. (C)
F.nucleatum. (D) None. Let’s think step by step:

Answer: Primary colonizers are the first bacteria to adhere to the tooth surface and form dental plaque. They are typically
gram-positive bacteria, such as Streptococci and Actinomyces. Fusobacterium nucleatum is not a primary colonizer. It is a
secondary colonizer that adheres to the primary colonizers and helps bridge the gap between early and late colonizers. The
answer is (C).

Table 10: Few-shot prompts for dental.

Question: Ani believes that her attitudes and behavior play a central role in what happens to her. Such a belief is likely to
be associated with? (A) a strong superego. (B) low self-esteem. (C) low self-efficacy. (D) an internal locus of control.
Let’s think step by step:

Answer: The question is asking about a psychological construct that aligns with the belief that one’s own actions and
attitudes influence life events. This is closely related to the concept of locus of control. Locus of control refers to the extent
to which individuals believe they can control events that affect them. There are two types: 1.Internal locus of control:
Individuals believe they have control over their lives through their actions and decisions; 2.External locus of control:
Individuals believe that external forces (e.g., luck, fate, or other people) control their lives. Ani’s belief that her attitudes
and behavior play a central role in what happens to her indicates an internal locus of control. She feels responsible for her
outcomes and believes her actions matter. The answer is (D).

Question: According to Caplan’s model of consultee-centered case consultation, the consultant is primarily interested in?
(A) identifying the causes and solutions of the client’s presenting problems (B) identifying and eliminating the causes of
the consultee’s difficulties in handling a problem (C) establishing a hierarchy of authority to enable effective decision
making (D) presenting a single, well-defined and unambiguous course of action for the consultant to overcome skills
deficits Let’s think step by step:

Answer: Caplan’s model of consultee-centered case consultation focuses on helping the consultee (e.g., a teacher, therapist,
or other professional) improve their ability to handle a specific case or problem. The consultant does not directly intervene
with the client but instead works with the consultee to address their difficulties in managing the situation. The primary
goal is to identify and address the consultee’s difficulties, which may stem from a lack of knowledge, skills, confidence, or
objectivity. The consultant helps the consultee overcome these issues so they can better handle the client’s problem. The
correct answer is (B), as Caplan’s model is primarily concerned with identifying and addressing the consultee’s difficulties
in handling a problem. The answer is (B).

Question: Pascale is interested in the processing strategies children use to learn new information. Pascale would best be
classified as what type of psychologist? (A) sociocultural (B) clinical (C) cognitive (D) behaviorist Let’s think step by
step:

Answer: The question is asking about the type of psychologist Pascale would be classified as, based on her interest in
processing strategies and learning. This aligns with the field of psychology that studies mental processes such as thinking,
memory, and learning. Sociocultural psychologists focus on how social and cultural factors influence behavior and mental
processes. While this could involve learning, it is not primarily about individual cognitive processing strategies. Clinical
psychologists focus on diagnosing and treating mental health disorders. This does not align with Pascale’s interest in
learning and processing strategies. Cognitive psychologists study mental processes such as thinking, memory, and learning.
This directly aligns with Pascale’s interest in how children process and learn new information. Behaviorists focus on
observable behaviors and how they are influenced by the environment. While learning is a part of behaviorism, it does not
emphasize internal processing strategies as cognitive psychology does. The answer is (C).

Table 11: Few-shot prompts for psychol.
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Learning task: gsm8k Forgetting task: qasc

sst5: The phrase "no movement" suggests a lack of action or movement, which in this context implies a lack of interest or
enthusiasm. The term "yuks" is a slang term for laughter, which in this context carries a negative connotation because
it indicates a lack of seriousness or sincerity. The phrase "not much of anything" suggests a lack of substance or depth,
which in this context implies a lack of complexity or sophistication. Considering these points, the sentence does not
contain any positive words or phrases and is clearly pointing out a flaw or criticism. Therefore, the emotional attitude
reflected in the sentence is negative. Since it’s a straightforward criticism without strong intensifiers (like "extremely" or
"utterly"), we can conclude that the most fitting emotional attitude is negative. The answeris (6 -2 -2) =2

dental: Heavy forces on periodontal ligament cause osteoclastic activity around the tooth, which results in the formation
of new bone around the tooth. This new bone helps to support the tooth and prevent further damage. The answer is (6 - 2 -
2)=2

psychol: The heritability of a trait is the proportion of the trait’s variation that is due to genetic factors. In a population
with 100 individuals, the heritability of a trait is 100% - 25% = 75%. The answer is 75

Table 12: Cases of superficial forgetting.
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