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Abstract

Recently, the pretrain-finetune paradigm has001
become a cornerstone in various deep learn-002
ing areas. While generally, the pre-trained003
model would provide both effectiveness and004
efficiency to downstream fine-tuning, studies005
have shown that not all knowledge acquired006
during pre-training is beneficial. Some of the007
knowledge may actually bring detrimental ef-008
fects. To address this negative transfer problem,009
graceful forgetting has emerged as a promis-010
ing approach. The core principle of graceful011
forgetting is to enhance the learning plastic-012
ity of the target task by selectively discarding013
knowledge from irrelevant tasks. However, this014
approach remains underexplored in the con-015
text of generative language models, and it is016
often challenging to migrate existing graceful017
forgetting algorithms to these models due to018
architecture incompatibility. To bridge this019
gap, in this paper we propose a novel frame-020
work, Learning With Forgetting (LWF), to021
achieve graceful forgetting in generative lan-022
guage models. With Fisher Information Ma-023
trix weighting the intended parameter updates,024
LWF computes forgetting confidence to eval-025
uate self-generated knowledge regarding the026
forgetting task, and consequently, knowledge027
with high confidence is periodically unlearned028
during fine-tuning. We evaluate our framework029
on domain-specific question-answering tasks,030
demonstrating that, although determining the031
inter-task interaction mechanisms is still highly032
tricky, graceful forgetting can indeed lead to033
improved fine-tuning.034

1 Introduction035

In recent years, the pretrain-finetune paradigm has036

emerged as a dominant framework across natural037

language processing (NLP) tasks and various other038

domains (Zhou et al., 2023). This approach in-039

volves pre-training neural networks on large-scale040

corpora and subsequently fine-tuning on smaller,041

task-specific datasets to adapt to downstream ap-042

plications. Its effectiveness has been evidenced by 043

the success of prominent pre-trained models such 044

as BERT (Devlin et al., 2019), GPT (Brown et al., 045

2020), and T5 (Raffel et al., 2020). These models 046

have become the backbone of many state-of-the-art 047

AI systems (OpenAI, 2023; Rombach et al., 2022), 048

significantly fostering community development. 049

Despite tempting benefits such as data efficiency 050

and reusability of this well-established paradigm, 051

a long-standing issue, known as negative transfer, 052

arises in exploiting pre-trained knowledge, refer- 053

ring to the fact that not all pre-trained knowledge 054

contributes positively to the fine-tuning process of 055

target learning tasks; in fact, some may even im- 056

pair the learning plasticity of the target task (Zhang 057

et al., 2023). 058

Negative transfer highlights a critical limitation 059

of vanilla fine-tuning: it treats all pre-trained knowl- 060

edge indiscriminately, which is not always the 061

optimal practice. Inspired by this insight, many 062

works were dedicated to developing more effective 063

fine-tuning frameworks through alleviating nega- 064

tive transfer. Among these, a particularly promis- 065

ing approach is graceful forgetting (Wang et al., 066

2021; Liang and Li, 2023; Karakida and Akaho, 067

2022; Abbasi et al., 2024). Graceful forgetting, 068

also known as active forgetting, is a concept origi- 069

nating in neuroscience, describing a memory mech- 070

anism in biological intelligence where the ability 071

to acquire new knowledge is enhanced by selec- 072

tively discarding irrelevant or outdated informa- 073

tion (Anderson and Hulbert, 2021). Recent studies 074

have shown that incorporating a similar "forget- 075

ting" mechanism into machine learning can also 076

enhance the learning plasticity of new tasks (Zhou 077

et al., 2022; D’Oro et al., 2023). 078

To achieve graceful forgetting, a variety of ap- 079

proaches have been explored. Some works fo- 080

cus on reflecting task synergy by exploiting met- 081

rics like gradient projections and loss interference, 082

thereby reformulating gradient updates (Liang and 083
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Li, 2023; Riemer et al., 2019). Alternatively, meth-084

ods like BSS (Chen et al., 2019) and SRS (Shen085

et al., 2024) use structural regulation to implicitly086

forget pre-trained knowledge.087

However, most existing methods are either tai-088

lored for vision tasks (particularly image classifica-089

tion) or are incompatible with pre-trained models,090

making it arduous to migrate them to pre-trained091

language models. Furthermore, the diverse and092

comprehensive information inherent in natural lan-093

guage data often results in ambiguous knowledge094

boundaries between different tasks, complicating095

the identification of explicit and granular inter-task096

correlations (Pruksachatkun et al., 2020). This is-097

sue is particularly profound in the rapidly evolv-098

ing field of generative language models, where re-099

search on negative transfer and graceful forgetting100

remains extremely scarce.101

To address this gap, in this paper we investigate102

the graceful forgetting in generative language mod-103

els. The central question we try to explore is: can104

generative language models achieve more effective105

fine-tuning by gracefully forgetting some unnec-106

essary knowledge? To answer this question, we107

propose a framework called Learning With For-108

getting (LWF), to implement graceful forgetting109

in generative language models. Beginning from110

addressing the inaccessibility of pre-trained data,111

LWF leverages the nature of generative models, ex-112

pressing knowledge regarding the forgetting task113

through self-generated texts. Then, given that iden-114

tifying task-wise correlation is quite arduous, LWF115

calculates data-wise forgetting confidence for each116

data point by weighting the intended parameter117

updates with the Fisher Information Matrix. Fi-118

nally, based on this confidence metric, LWF selects119

high-confidence data points and integrates machine120

unlearning techniques to periodically remove cor-121

responding knowledge during the fine-tuning pro-122

cess. Experiments on domain-specific question-123

answering tasks demonstrate the superiorness of124

LWF over vanilla fine-tuning.125

To the best of our knowledge, LWF represents126

the first systematic investigation of graceful for-127

getting in generative language models. Through128

extensive experiments and analyses, we validate the129

feasibility of promoting fine-tuning performance130

through graceful forgetting. Furthermore, our em-131

pirical findings shed light on some insights into132

this topic and hopefully offer inspiration for future133

investigation and innovation.134

2 Related Work 135

2.1 Negative Transfer 136

The precise interpretation of negative transfer 137

kindly varies among different research domains. 138

In Multi-Task Learning (MTL), negative transfer 139

refers to the performance degradation that occurs 140

when learning conflicting tasks simultaneously (Go 141

et al., 2023). Since the primary goal of MTL is to 142

improve performance across all tasks, graceful for- 143

getting is not a widely adopted strategy. Instead, 144

methods to mitigate negative transfer in MTL typi- 145

cally focus on designing suitable criteria, such as 146

gradient directions (Jiang et al., 2023) or signal- 147

to-noise ratio (Go et al., 2023), to quantify the 148

inter-task synergy and subsequently divide tasks 149

into separate clusters. 150

In Continual Learning, negative transfer is re- 151

garded as a sacrifice of plasticity when pursuing 152

stability (Karakida and Akaho, 2022). Specifically, 153

the emphasis on retaining knowledge from previ- 154

ous tasks may result in reduced performance on 155

learning new tasks. In this context, forgetting is 156

employed as a counterbalance component to algo- 157

rithms that overly prioritize memorizing past tasks, 158

rather than as an independent mechanism to en- 159

hance performance on new tasks (Liang and Li, 160

2023; Wang et al., 2021; Schwarz et al., 2018). 161

Finally, as pre-trained models gradually become 162

the critical foundation in various applications, re- 163

search of negative transfer within the pretrain- 164

finetune paradigm has gained increasing attention. 165

This is the most consistent scenario with our work. 166

A distinguishing characteristic of this paradigm is 167

that pre-training involves training the model on vast 168

amounts of data across diverse tasks, which is often 169

inaccessible during fine-tuning. Consequently, cur- 170

rent approaches to mitigating negative transfer in 171

this context tend to rely on implicit forgetting meth- 172

ods, such as the Batch Spectral Shrinkage (Chen 173

et al., 2019) and the Stable Rank Shrinkage (Shen 174

et al., 2024). 175

2.2 Graceful Forgetting 176

Although forgetting is commonly regarded as an 177

undesirable trait, suggesting the incapability of 178

memorizing knowledge, recent studies have ar- 179

gued that striving for an omniscient model may 180

be impractical due to limited model capacity and 181

inevitable knowledge conflicts (Zhou et al., 2022; 182

D’Oro et al., 2023). Inspired by neuroscience (An- 183

derson and Hulbert, 2021), an increasing amount 184
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of research has explored the potential of improving185

learning plasticity through actively forgetting irrel-186

evant knowledge. However, a universally accepted187

algorithm has yet to emerge, as the implementation188

is highly dependent on specific model architectures189

and task characteristics. Hitherto, most work in190

this area has focused on vision tasks, particularly191

image classification (Abbasi et al., 2024; Go et al.,192

2023; Wang et al., 2019; Liang and Li, 2023). For193

language tasks, (Chen et al., 2023) proposed a for-194

getting method that periodically resets the learned195

embedding layer to enhance the multi-lingual learn-196

ing ability. But it is deployed during pre-training197

rather than fine-tuning. BSS (Chen et al., 2019)198

integrated their method into BERT and evaluated199

it on text classification tasks. Despite these tri-200

als, existing methods either lack generalizability or201

perform inadequately when applied to generative202

language models.203

2.3 Machine Unlearning204

Machine unlearning is a vibrantly investigated205

topic studying removing specific data, patterns,206

or knowledge from trained models (Yao et al.,207

2023). In the context of generative language mod-208

els, unlearning is usually applied to aligning lan-209

guage models with human values, such as pro-210

tecting user privacy (Patil et al., 2024), remov-211

ing harmful contents (Liu et al., 2024), and re-212

ducing hallucination (Yao et al., 2023). A vari-213

ety of unlearning strategies have been proposed214

for generative language models, including gradient215

ascent (Jang et al., 2023), localization-informed216

unlearning (Jang et al., 2023), influence function-217

based methods (Jia et al., 2024), and so on. While218

current generative language model unlearning re-219

search primarily focuses on eradicating undesirable220

behaviors, our work repurposes unlearning as a221

mechanism to achieve graceful forgetting, thereby222

enhancing the plasticity of fine-tuning. In essence,223

we leverage unlearning for better learning.224

3 Methodology225

In this section, we detail the implementation of226

our framework for graceful forgetting in generative227

language models. The framework primarily con-228

sists of three components: eliciting self-knowledge,229

evaluating forgetting confidence, and periodically230

unlearning. Fig 1 illustrates the overview. For231

the sake of convenience in exposition, we use D𝐿232

to represent the learning task and D𝐹 to denote233

the forgetting task. But it is worth noting that the 234

framework is task quantity-agnostic, which will be 235

elaborated on Section 4. 236

3.1 Eliciting Self-Knowledge 237

The first step in forgetting specific knowledge is to 238

acquire its representation. However, as discussed in 239

Sec 2.1, the pre-training corpus is typically inacces- 240

sible in practice, making it uncertain whether D𝐹 241

can adequately represent the model’s knowledge. 242

Fortunately, the inherent characteristics of genera- 243

tive language models provide a viable alternative: 244

leveraging self-generated data. Specifically, we 245

input the prompts (e.g., questions or instructions) 246

from D𝐹 into the base model M𝑏𝑎𝑠𝑒 and collect 247

its responses to form the unlearning dataset, which 248

we donate as D𝑠𝑒𝑙 𝑓 . 249

3.2 Evaluating Forgetting Confidence 250

Apparently, not all instances of forgetting are grace- 251

ful. To ensure that forgetting enhances rather than 252

hinders fine-tuning, we need a metric to reflect the 253

confidence that forgetting specific knowledge will 254

not lead to catastrophe. Moreover, given the rich 255

and diverse semantic information present in natu- 256

ral language sentences, we argue that a task-level 257

metric is too coarse-grained. Instead, we define for- 258

getting confidence at the data point level, allowing 259

for a more granular evaluation of which knowledge 260

should be forgotten. 261

For a generated text 𝑥 in D𝑠𝑒𝑙 𝑓 , the posteriori 262

𝑃(D𝐿 |𝑥) intuitively reflects to what extent D𝐿 263

and 𝑥 are synergistic. The lower 𝑃(D𝐿 |𝑥) is, the 264

more likely 𝑥 is conflicted with D𝑠𝑒𝑙 𝑓 . Consid- 265

ering 𝑃(D𝐿 |𝑥) is computationally intractable, we 266

use 𝑃(D𝐿 |𝜃∗(𝑥)) as a surrogate, where 267

𝜃∗(𝑥) = arg max
𝜃

𝑃(𝜃 |𝑥) (1) 268

Since only the relative value is required, we can 269

use 𝑃(𝜃∗(𝑥) |D𝐿) to represent 𝑃(D𝐿 |𝜃∗(𝑥)), as the 270

two are positively proportional according to the 271

Bayes’ Theorem. Based on this, we define the 272

forgetting confidence as: 273

𝐹𝐶 (𝑥) ∝ − log 𝑃(𝜃∗(𝑥) |D𝐿) (2) 274

Following prior works (Kirkpatrick et al., 275

2017; Wang et al., 2021), we assume 𝑃(𝜃 |D𝐿) 276

as a Gaussian distribution centered at 𝜃∗
𝐿

= 277

arg max
𝜃

𝑃(𝜃 |DL), and this distribution can be ap- 278

proximated using a second-order Taylor expansion 279
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Prompts:  How
do living things
have children?

Living things have
children by having
babies. 

she read 12 + 2*12
= 36 pages. Today,
she wants ......

Living things have
children by having
babies. 

Living things have
children by having
babies.    FC=0.12

stomach doesn't
cause sick FC=0.32

stomach doesn't
cause sick FC=0.32

For every  samples
learned from , one sample
from  will be unlearned

she read 12 + 2*12
= 36 pages. Today,
she wants ......

Step 1

Eliciting Self-knoledge
Step 2

Evaluating Forgetting Confidence

Only input prompts
in dataset  to
the base model

Dataset 
contains the self-
generated texts

For each datapoint
, compute

the forgetting
confidence 
with respect to the
target 

Form  with the
subset of  that
has higher values

Step 3

Periodically Unlearning

Figure 1: The overview of the LWF framework. Given the forgetting task D𝐹 and learning task D𝐿 , LWF first
constructs D𝑠𝑒𝑙 𝑓 through self-generated texts to represent the knowledge regarding the forgetting task. Then, with
the Fisher Information Matrix 𝐹𝐿 and the optimal parameters of the learning task approximated from D𝐿 , LWF
calculates forgetting confidence for each data point in D𝑠𝑒𝑙 𝑓 . Finally, data points with high forgetting confidence
are selected for unlearning, represented by D𝑈 . The unlearning process is integrated into the fine-tuning process of
D𝐿 and is executed periodically at intervals of 𝑁𝑢.

around 𝜃∗
𝐿

:280

log 𝑃(𝜃 |D𝐿) ≈ −1
2
(𝜃 − 𝜃∗𝐿)𝑇

( 𝜕
2 log 𝑃(𝜃 |D𝐿)

𝜕2𝜃
|𝜃∗

𝐿
) (𝜃 − 𝜃∗𝐿)

(3)281

In practice, we integrate Equation 2 with Equa-282

tion 3 and use a single-step update from the base283

model to represent 𝜃∗(𝑥), thereby reducing compu-284

tational costs:285

𝐹𝐶 (𝑥) = 1
2

∑︁
𝑖

𝐹𝐿,𝑖 (𝜃𝑏𝑎𝑠𝑒,𝑖 − 𝛼
𝑑L(𝑥)
𝑑𝜃𝑖

− 𝜃∗𝐿,𝑖)2

(4)286

𝐹𝐿 represents the Fisher Information Matrix287

(FIM), which is the negative expectation of the Hes-288

sian Matrix in Equation 3. The parameters of the289

base model are represented by 𝜃𝑏𝑎𝑠𝑒, while L(𝑥)290

refers to the cross-entropy loss of 𝑥. 𝛼 controls the291

length of the single-step update. The 𝜃∗
𝐿

is obtained292

by training the base model on D𝐿 .293

Intuitively, Equation 4 measures the conflict be-294

tween 𝑥 and D𝐿 by evaluating the alignment be-295

tween the intended parameter update induced by 𝑥296

and the target 𝜃∗
𝐿

. The FIM 𝐹𝐿 serves as a weight-297

ing mechanism that captures the relative impor-298

tance of each parameter.299

3.3 Periodically Unlearning 300

With the forgetting confidence 𝐹𝐶 (𝑥), we can filter 301

data from D𝑠𝑒𝑙 𝑓 with higher values to construct a 302

subset D𝑈 . However, given the well-known "insta- 303

bility" characteristic of machine unlearning (Yao 304

et al., 2023; Liu et al., 2024), casually unlearning 305

D𝑈 is unlikely to yield consistent improvements. 306

Especially the data selected for forgetting in D𝑈 is 307

only potentially "conflicting" with the target task, 308

rather than definitively harmful. 309

Therefore, to make the training process sta- 310

ble, we adopt a "periodically unlearning" strategy. 311

Specifically, we perform learning on D𝐿 and un- 312

learning on D𝑈 simultaneously, while maintaining 313

a fixed interval 𝑁𝑢 between consecutive unlearning 314

sessions. For example, if the interval 𝑁𝑢 = 7, then 315

for every 7 data points learned from D𝐿 , one data 316

point from D𝑈 will be unlearned. 317

We use Gradient Ascent as our unlearning 318

algorithm, which merely involves negating the 319

loss function. For a periodic batch X = 320

{𝑥𝑙1, . . . , 𝑥
𝑙
𝑁𝑢

, 𝑥𝑢} where {𝑥𝑙1, . . . , 𝑥
𝑙
𝑁𝑢

} ⊂ D𝐿 and 321

𝑥𝑢 ∈ D𝑈 , the loss can be written as: 322

L𝑝𝑢 (X) =
∑︁

𝑥∈{𝑥𝑙1,...,𝑥
𝑙
𝑁𝑢

}

L(𝑥) − 𝛽L(𝑥𝑢) (5) 323
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where L is the sft loss and 𝛽 is the unlearning rate.324

4 Experiments325

4.1 Setup326

4.1.1 Datasets327

To discuss the application and effectiveness of328

LWF, we deploy our method to domain-specific329

question-answering tasks. We select five datasets,330

each representing distinct domains of knowledge,331

to observe the outcomes of various learning-332

forgetting combinations. The datasets include:333

gsm8k (Cobbe et al., 2021) representing math;334

qasc (Khot et al., 2020) representing primary sci-335

ence; sst5 (Socher et al., 2013) representing sen-336

timent recognition; dental, the subset of MedM-337

CQA (Pal et al., 2022) regarding dental knowledge;338

psychol, the subset of MMLU (Hendrycks et al.,339

2021) regarding psychology.340

4.1.2 Implementation Details341

We utilize Llama3.2-1B (Touvron et al., 2023) as342

the base model for all experiments. To elicit self-343

knowledge, we use a 3-shot prompt concatenated344

with the input question, employ a greedy decod-345

ing strategy, and constrain the maximum number346

of generated tokens to 256. When computing the347

forgetting confidence, we set the one step update348

coefficient 𝛼 to 1e-2 (as defined in Equation 4). To349

maintain the coherence of batch gradient descent350

during periodically unlearning, we combine D𝐿351

and D𝑈 by incorporating one data point from D𝑈352

for every 𝑁𝑢 data points from D𝐿 . The training353

process uses a batch size of 4, a learning rate of354

1e-5, and spans in total one epoch. 𝑁𝑢 is set to 7,355

and 𝛽 (as defined in Equation 5) is either 0.1 or356

0.05, depending on forgetting tasks. All training357

procedures are carried out on eight NVIDIA RTX358

4090 GPUs with full parameter tuning. For more359

details please refer to Appendix A.360

4.2 Results on Question Answering361

Table 1 shows the results on question-answering362

tasks. Each column represents different learning363

task and each row indicates different forgetting task.364

Specifically, the first row none means no forgetting365

task, that is, vanilla fine-tuning; and the last row366

mixed implies that the forgetting task comprises all367

datasets except the one used for learning.368

As the results show, in most learning-forgetting369

combinations, LWF promotes the performance on370

the learning task compared to vanilla fine-tuning.371

gsm8k qasc sst5 dental psychol

none 19.71 42.98 49.55 36.87 46.42

gsm8k - +4.03% +2.83% +1.46% +6.33%
qasc +5.38% - +2.54% -4.53% +5.54%
sst5 +2.67% +3.02% - +0.22% +0.41%

dental +10.40% +5.28% +2.10% - +1.59%
psychol +1.17% +2.00% +1.27% -4.10% -

mixed +6.95% +5.54% +2.10% +1.46% +7.93%

Table 1: Results on domain-specific question answering.
Each column shares the same learning task and the rows
represent different forgetting tasks. All percentages are
calculated based on none.

qasc sst5 dental psychol

qasc - -14.93% -0.37% +1.00 %
sst5 -4.94% - -1.36% -1.85%

dental -1.45% +0.17% - -3.65%
psychol -17.43% -12.02% +4.80% -

Table 2: Side-effect results. Percentages are calculated
based on vanilla fine-tuning.

Two exceptions are when learning dental with for- 372

getting qasc and psychol. We believe this is at- 373

tributed to the low forgetting confidence of self- 374

generated samples in these two cases. The as- 375

sumption is evidenced by the results of the last 376

row, where mixing all other datasets as the for- 377

getting task consistently improves performance on 378

the learning task. This suggests that the distribu- 379

tion of forgetting confidence varies across datasets. 380

Therefore, when the forgetting task is composed 381

of a diverse set of datasets, the likelihood of im- 382

provement on the learning task grows, as there are 383

potentially more high-confidence samples available 384

for selection. 385

We also examine the side effects of LWF, i.e., 386

its impact on datasets that are neither part of the 387

learning task nor the forgetting task (for simplicity 388

we denote them as side-tasks). To evaluate, we 389

compute the average accuracy on side-tasks and 390

compare it to that of the vanilla fine-tuned model. 391

Table 2 shows the results, where each column 392

represents the learning task and the row indicates 393

the forgetting task. The gsm8k is excluded because 394

its different format will cause superficial forgetting, 395

which we discuss in Appendix B. As observed in 396

the other tasks, the side effects vary depending 397

on the specific learning-forgetting combinations. 398

Overall, the impact is much milder when learning 399

complex tasks like psychol and dental. 400
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Figure 2: Distribution of accuracy changes between two
filtering strategies. Percentages are calculated based on
vanilla fine-tuning.

4.3 Analysis on Forgetting Confidence401

In LWF, one of the most critical steps is computing402

the forgetting confidence, which reflects the confi-403

dence that forgetting specific data will positively404

contribute to the learning task. To achieve this, we405

propose the computable metric 𝐹𝐶 (𝑥) (in Sec 3.2).406

However, the computation involves approximation407

errors. More importantly, the relation between the408

final model performance and to what extent the gra-409

dient update direction of individual data aligns with410

expectations is not a definitive mapping. These lim-411

itations make 𝐹𝐶 (𝑥) a non-absolute measurement.412

In practice, we also observed that unlearning data413

points with relatively lower 𝐹𝐶 does not absolutely414

result in degradation.415

To better understand the role of forgetting con-416

fidence from a statistical perspective, we design417

a comparison for LWF that employs the opposite418

filtering strategy, i.e., selecting data with the lowest419

forgetting confidence. For each learning task, we420

calculate the accuracy change percentage of these421

two strategies across all forgetting tasks, based on422

vanilla fine-tuning results. To enlarge the sample423

D𝐹 gsm8k qasc sst5 dental psychol

none 19.71 42.98 49.55 36.87 46.42

gsm8k - -65.6% +0.5% -0.8% -9.9%
qasc +5.0% - +0.4% -7.4% +3.6%
sst5 +4.3% +7.8% - -3.5% +9.1%

dental -8.5% -26.6% +1.2% - +0.0%
psychol -6.5% -8.3% -21.7% -4.9% -

mixed -3.5% -73.9% +2.3% +0.8% -7.9%

Table 3: Results of ahead unlearning, ablation study for
periodically unlearning, where unlearning is completed
before fine-tuning.

D𝐹 gsm8k qasc sst5 dental psychol

none 19.71 42.98 49.55 36.87 46.42

gsm8k - -12.6% -0.1% -4.9% +10.3%
qasc -8.8% - +3.9% -2.0% +7.7%
sst5 -8.8% -10.8% - -4.3% +3.6%

dental -6.5% -6.9% +1.8% - +7.5%
psychol -5.0% -13.1% +2.1% -2.7% -

mixed -6.5% -10.1% -0.5% -4.9% +9.5%

Table 4: Results of randomly unlearning, ablation study
for periodically unlearning, where unlearning is ran-
domly executed during fine-tuning.

size, we collected results across four different un- 424

learning rate, 𝛽 ∈ {0.05, 0.10, 0.20, 0.25}. 425

Fig 2 shows the distribution of two strategies. 426

The red part corresponds to unlearning data with 427

the highest 𝐹𝐶 and the blue part represents unlearn- 428

ing data with the lowest. The 𝑥-axis is the accuracy 429

change percentage. As we can see, generally the 430

privilege of unlearning data with high 𝐹𝐶 mani- 431

fests in two aspects. First, the average accuracy 432

enhancement is higher. Second, the enhancement 433

is more stable. Specifically, the variance and over- 434

all range are smaller when selecting data with high 435

𝐹𝐶, while unlearning data with low 𝐹𝐶 may lead 436

to highly variable results, including extremely poor 437

cases. In conclusion, unlearning data with high 438

forgetting confidence yields averagely better per- 439

formance and ensures greater robustness, making 440

it a more reliable approach in practice. 441

4.4 Abaltion on Periodically unlearning 442

To alleviate the vulnerability of machine unlearn- 443

ing, we propose the periodically unlearning strat- 444

egy to stabilize the training process. In this section, 445

we conduct an ablation study to demonstrate that 446

periodically unlearning is the most suitable strategy 447

for effectively combining the learning and unlearn- 448
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Figure 3: Accuracy change percentage of the forgetting
task across different learning-forgetting combinations.
Percentages are computed based on vanilla fine-tuning.

ing processes.449

We design two variants of unlearning strategies450

for comparison. The first strategy involves con-451

ducting the unlearning process prior to the learning452

process, which we refer to as ahead unlearning.453

The second strategy allows the model to randomly454

execute unlearning during fine-tuning, which we455

name as randomly unlearning. It is important to456

note that, together with periodically unlearning, all457

three strategies share the same ratio of learning and458

unlearning samples.459

Table 3 and Table 4 present the results of ahead460

unlearning and randomly unlearning respectively.461

As shown, both of them are significantly less ef-462

fective than periodically unlearning (Table 1) in463

general. In both of them, the majority of learning-464

forgetting combinations lead to negative changes.465

Furthermore, ahead unlearning demonstrates ex-466

tremely undesirable instances. This may be at-467

tributed to that conducting the unlearning process468

on the base model in advance may cause uncon-469

trolled damage to the pre-trained knowledge. If470

critical and foundational knowledge is affected,471

the subsequent learning process may suffer severe472

degradation. Therefore, it can be concluded that473

mixing the learning and unlearning processes is bet-474

ter than conducting them separately, and switching475

them periodically is superior to randomly.476

4.5 Analysis on the Forgotten Task477

In this section, we turn our attention to the forget-478

ting task, examining how the model’s performance479

on it changes before and after the deployment of480

LWF. While it is intuitively reasonable that the481

Figure 4: Cosine similarity between the outputs of for-
getting tasks generated by the vanilla fine-tuned model
and LWF resulting model. Values are multiplied by 100.

Figure 5: TTR change percentage of the forgetting task
across different learning-forgetting combinations. Per-
centages are computed based on vanilla fine-tuning.

model’s knowledge about the forgetting task will 482

be nearly erased, the empirical findings are more 483

complicated. Fig 3 is a heatmap illustrating the 484

percentage changes in accuracy for the forgetting 485

tasks compared to vanilla fine-tuning. As depicted, 486

although the accuracy of the forgetting tasks gen- 487

erally declines after LWF across most learning- 488

forgetting combinations, the extent varies largely. 489

Approximately half of the cases exhibit a drop 490

close to 100%, while others show only marginal de- 491

creases, particularly when either the learning task 492

or the forgetting task involves dental or psychol. 493

Additionally, we noticed that the accuracy 494

merely reflects whether the final answer is correct, 495

which is insufficient to fully capture the nuanced 496

changes in the generated outputs of generative mod- 497

els. Therefore, we take a further step to analyze 498
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semantic changes. Specifically, we use SimCSE499

model 1 (Gao et al., 2021) to obtain the sentence500

vectors of the responses generated by the vanilla501

fine-tuned model and LWF model for the same for-502

getting task question. We then compute the cosine503

similarity between these vectors to quantify seman-504

tic differences. The results are shown in Fig 4.505

Considering a cosine similarity score above 80%506

is generally required to confidently assert that two507

sentences are semantically similar, the figure re-508

veals that the semantic changes in most combina-509

tions are substantial. Notably, the cases where the510

similarity approaches or exceeds 80% align almost511

entirely with those exhibiting minimal accuracy512

drops, that is, combinations involving dental or513

psychol. We believe this phenomenon may be at-514

tributed to that dental and psychol are inherently515

more complex than the other tasks. Learning or516

forgetting these domains requires the model to en-517

gage with more sophisticated knowledge structures,518

making it less susceptible to extreme forgetting.519

We also evaluate changes in lexical diversity, as520

shown in Fig 5, with Type Token Ratio (TTR) as521

the metric. Similar to the trends observed in ac-522

curacy changes, the TTR experiences a significant523

decline in most combinations, and the cases that524

maintained high correctness and semantic similar-525

ity also largely preserved their lexical diversity.526

4.6 Multi-Task Learning527

In this section, we discuss the performance of the528

LWF in multi-task learning scenarios. Specifically,529

we select one from the five datasets as the forget-530

ting task and combine the remaining four to form531

the learning tasks. To mitigate the risk of catas-532

trophic forgetting of earlier tasks, we evenly mix533

the learning tasks during training. Fig 6 shows534

the comparison of multi-task accuracy between535

LWF and vanilla fine-tuning. As we can see, LWF536

demonstrates an overall improvement in perfor-537

mance compared to vanilla fine-tuning, while at538

the individual task level, not all learning tasks ben-539

efit equally from LWF.540

The results underscore the complexity of multi-541

task learning scenarios. Beyond the overall gains542

achieved through graceful forgetting, there are in-543

tricate interactions among the learning tasks them-544

selves. Improvements in one task may inadver-545

tently suppress the performance of others.546

1https://huggingface.co/princeton-nlp/unsup-simcse-bert-
base-uncased

Figure 6: Accuracy results in the multi-task learning
setting. Labeled below each subplot are the forgetting
task and learning tasks.

5 Conclusion 547

In this paper, we propose a novel framework, Learn- 548

ing With Forgetting (LWF), to achieve graceful 549

forgetting in generative language models. LWF 550

addresses the inaccessibility of pre-trained data 551

by leveraging self-generated knowledge, calculates 552

forgetting confidence for each data point by weight- 553

ing the intended parameter update with Fisher In- 554

formation Matrix, and employs gradient ascent to 555

periodically unlearn high-confidence data during 556

fine-tuning. Empirical results on domain-specific 557

question-answering tasks demonstrate the effective- 558

ness of LWF. Furthermore, we conduct extensive 559

experiments to analyze the contribution of each 560

component of LWF, the effects of forgetting spe- 561

cific tasks, and the framework’s performance in 562

learning or forgetting multiple tasks. While fully 563

elucidating the mechanisms of inter-task interac- 564

tions and achieving optimal graceful forgetting still 565

need great effort, we hope our work provides valu- 566

able insights into this emerging area and inspires 567

future research endeavors. 568
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Limitation569

As the first framework for graceful forgetting in570

generative language models, LWF has several ar-571

eas that warrant further improvement. The first area572

concerns the measurement of forgetting confidence.573

Quantifying the interactions among learning data574

has long been a challenge in the field of knowledge575

transfer. In this paper, we adopt a popular perspec-576

tive of intended parameter updates. While empiri-577

cal results demonstrate its statistical effectiveness578

in selecting better data and enhancing robustness,579

its applicability is likely to decrease when the avail-580

able data for selection is limited. We anticipate581

that future advancements in knowledge transfer re-582

search will yield more precise and reliable metrics583

for measuring forgetting confidence.584

The second area pertains to the unlearning pro-585

cess. While LWF demonstrates the feasibility of586

graceful forgetting through machine unlearning,587

the adopted algorithm, gradient ascent, is a rela-588

tively naive approach within machine unlearning al-589

gorithms. As observed, this method may introduce590

instability and unintended side effects. Although591

we have implemented countermeasures, such as592

periodically unlearning, to mitigate these issues,593

we believe that future work could benefit from the594

development of more sophisticated and tailored595

unlearning algorithms.596
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EN IT ZH ES TR

none 19.71 6.67 9.78 7.81 9.10

EN - +6.90% +2.35% +3.84% +4.18%
IT +5.38% - -5.42% +1.92% -14.18%
ZH +2.69% -30.73% - -3.84% -9.23%
ES +0.41% -35.23% -6.24% - +5.05%
TR +6.95% -25.04% -8.49% -1.02% -

mixed +3.45% +25.04% +7.77% +10.63% +20.77%

Table 5: Results on multi-lingual question-answering.

gsm8k qasc sst5 dental psychol AVG.

vanilla-FT 19.71 42.98 49.55 36.87 46.42 39.12

BSS 20.39 44.28 49.73 35.51 44.77 38.94
SRS 17.36 40.28 50.50 35.05 46.61 37.96

LWF-mixed 21.08 45.36 50.59 37.41 50.10 40.91

Table 6: Results of structural regulation methods

A More Implementation Details775

Table 7, Table 8, Table 9, Table 10, and Table 11776

present the few-shot CoT prompts designed for777

each dataset, which are utilized during both the778

self-knowledge elicitation and evaluation stages.779

As illustrated in the prompts, answers are formatted780

with the phrase ’The answer is’ to facilitate the781

convenience of extracting answers. Any model782

output that deviates from this format is considered783

incorrect. In cases where multiple occurrences784

of ’The answer is’ appear in the output, the first785

instance is treated as the definitive answer.786

B Superficial Forgetting787

Although all five datasets used in our experi-788

ments are question-answering datasets, gsm8k789

differs significantly in format from the other790

four. Specifically, gsm8k is free-form numerical791

question-answering, while the other four datasets792

are multiple-choice question-answering (see exam-793

ples in Table 7 and Table 8). We observed that794

this format discrepancy can lead to significant side795

effects when gsm8k is the learning task and the796

other datasets are the forgetting tasks. By analyzing797

the model’s outputs, we identified that the model798

trained under this setting often fails to generate799

answers in the multiple-choice format.800

To illustrate, Table 12 provides examples of801

the model’s output sentences on three tasks when802

gsm8k is the learning task and qasc is the forgetting803

task. As shown, while the rationale portion of the804

output appears coherent, the model fails to select a805

valid option at the end of its response.806

This phenomenon suggests that, under the LWF 807

framework, the model tends to focus on the most 808

superficial pattern differences to distinguish the 809

learning task from the forgetting task. Therefore, 810

to mitigate extreme side effects, it is better to ensure 811

that there are no overly superficial format differ- 812

ences between the learning and forgetting tasks. 813

C LWF in Multi-Lingual Tasks 814

Beyond domain-specific question-answering, an- 815

other promising application of graceful forgetting 816

is in multilingual learning, where hopefully the 817

model’s performance in a target language can be 818

enhanced by forgetting its representations in other 819

languages. To explore this, we applied LWF to 820

the gsm8k dataset across five languages: English 821

(EN), Italian (IT), Chinese (ZH), Spanish (ES), and 822

Turkish (TR). The results are presented in Table 5. 823

We observed an interesting phenomenon: aside 824

from the mixed approach, which consistently im- 825

proves performance across all languages, the re- 826

sults are all positive when learning English with 827

forgetting other languages, or vice versa. However, 828

when the combination does not involve English, 829

the outcomes are predominantly negative. We hy- 830

pothesize that this phenomenon may stem from the 831

disproportionate volume of English data used dur- 832

ing the model’s pre-training, which likely stabilizes 833

LWF’s performance when English is involved. 834

D Structural Regulation Methods 835

As discussed in Section 2.1, structural regulation 836

methods such as BSS (Chen et al., 2019) and 837

SRS (Shen et al., 2024) are typical approaches 838

for mitigating negative transfer within the pretrain- 839

finetune paradigm. However, both of them have 840

only been evaluated on classification tasks. We 841

attempted to adapt them for generative language 842

models, and the results of our implementations are 843

presented in Table 6, along with vanilla fine-tuning 844

(vanilla-FT) and LWF (LWF-mixed). 845

As observed, the performance of BSS and SRS is 846

consistently inferior to LWF-mixed. In some cases, 847

these methods even result in negative changes com- 848

pared to vanilla-FT. We attribute this ineffective- 849

ness to architecture differences. Specifically, BSS 850

and SRS rely on operations applied to feature vec- 851

tors, whereas the hidden states in generative lan- 852

guage models are not inherently designed to rep- 853

resent sentence embeddings, the models for which 854

BSS and SRS were originally designed. 855
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Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there
will be 21 trees. How many trees did the grove workers plant today? Let’s think step by step.
Answer: We start with 15 trees. Later we have 21 trees. The difference must be the number of trees they planted. So, they
must have planted 21 - 15 = 6 trees. The answer is 6.
Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot? Let’s think
step by step.
Answer: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars. The answer is 5.
Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total? Let’s
think step by step.
Answer: Leah had 32 chocolates and Leah’s sister had 42. That means there were originally 32 + 42 = 74 chocolates. 35
have been eaten. So in total they still have 74 - 35 = 39 chocolates. The answer is 39.

Table 7: Few-shot prompts for gsm8k.

Question: What type of water formation is formed by clouds? (A) pearls (B) streams (C) shells (D) diamonds (E) rain (F)
beads (G) cooled (H) liquid Let’s think step by step.
Answer: Beads of water are formed by water vapor condensing. Clouds are made of water vapor. Beads of water can be
formed by clouds. The answer is (F).
Question: Removing what from food will preserve it? (A) flavor (B) body water (C) heat energy (D) color (E) Water (F)
Bodily water (G) moisture (H) ingredients Let’s think step by step.
Answer: Dehydrating food is used for preserving food. Dehydration preserves foods by removing moisture. Removing
moisture from food preserves it. The answer is (G).
Question: Reproduction is the process by which living things what? (A) Most plants (B) allow growth (C) spread flower
seeds (D) have wide set eyes (E) members of their own species (F) have birthing hips (G) have quiet laughter (H) give
birth to babies Let’s think step by step.
Answer: Reproduction is the process by which living things give rise to offspring. Whenever it starts to give birth, it
gives birth up to two to four babies offspring. Reproduction is the process by which living things give birth to babies. The
answer is (H).

Table 8: Few-shot prompts for qasc.

Question: What is the emotional attitude reflected in the sentence: "in his first stab at the form , jacquot takes a slightly
anarchic approach that works only sporadically ."? (A) very negative (B) negative (C) neutral (D) positive (E) very positive
Let’s think step by step:
Answer: The phrase "first stab" suggests this is an initial attempt, which can imply inexperience but also experimentation.
"Slightly anarchic approach" does have a mild negative connotation with "anarchic," but it’s softened by "slightly." "Works
only sporadically" indicates mixed results. It doesn’t work consistently, but it does work sometimes, which isn’t entirely
negative. Given these considerations, while there are elements that lean towards a negative interpretation, the overall tone
of the sentence is not strongly positive or negative. So the emotional attitude is neutral. The answer is (C)
Question: What is the emotional attitude reflected in the sentence: "one long string of cliches."? (A) very negative (B)
negative (C) neutral (D) positive (E) very positive Let’s think step by step:
Answer: The phrase "one long string" suggests an extended or continuous sequence, which in this context implies that
there are many instances of something undesirable. The term "cliches" refers to expressions or elements that have been
overused to the point of losing their original impact, freshness, or appeal. It generally carries a negative connotation
because it indicates a lack of originality or creativity. Considering these points, the sentence does not contain any positive
words or phrases and is clearly pointing out a flaw or criticism. Therefore, the emotional attitude reflected in the sentence is
negative. Since it’s a straightforward criticism without strong intensifiers (like "extremely" or "utterly"), we can conclude
that the most fitting emotional attitude is negative. The answer is (B)
Question: What is the emotional attitude reflected in the sentence: "although laced with humor and a few fanciful touches,
the film is a refreshingly serious look at young women."? (A) very negative (B) negative (C) neutral (D) positive (E) very
positive Let’s think step by step:
Answer: The word "although" introduces a concession, acknowledging that the film contains elements of humor and some
imaginative aspects ("fanciful touches"). This part suggests that there are positive qualities present in the film. The main
clause uses the term "refreshingly," which conveys a positive and invigorating experience. It indicates that the seriousness
of the film’s approach to its subject matter is not only appreciated but also seen as something new or different from
what might be expected. The focus on "young women" being treated seriously adds depth to the evaluation. It implies
that the film offers a thoughtful and mature perspective on its subject, which can be seen as commendable. Given these
considerations, the overall tone of the sentence is appreciative and positive. The use of "refreshingly" especially signals a
positive emotional response to the film’s treatment of its subject. However, since the positivity is moderate and not overly
enthusiastic or exuberant, the most fitting emotional attitude is positive. The answer is (D).

Table 9: Few-shot prompts for sst5.
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Question: Resistance to lateral shifting or anteroposterior shifting is called as:? (A) Retention. (B) Stability. (C) Support.
(D) None. Let’s think step by step:
Answer: The question is asking about the term used to describe resistance to lateral (side-to-side) or anteroposterior
(front-to-back) shifting. Retention generally refers to the ability to hold or keep something in place. In dentistry, for
example, it refers to the resistance of a dental prosthesis to displacement in a vertical direction. Stability refers to the
resistance to movement, particularly lateral or anteroposterior shifting. It is the ability of an object or structure to maintain
its position when subjected to forces. Support refers to the ability to bear weight or hold something up, but it does not
specifically refer to resistance to shifting. Based on the definitions, stability is the term that specifically refers to resistance
to lateral or anteroposterior shifting. The answer is (B).
Question: Tannerella forsythia is a ? (A) Nonmotile, gram-negative obligate anaerobe (B) Motile, gram-negative obligate
anaerobe (C) Nonmotile, gram-negative obligate aerobe (D) Motile, gram-negative obligate aerobe Let’s think step by step:
Answer: Tannerella forsythia is a bacterium associated with periodontal disease. It is known to thrive in environments
with little to no oxygen. Tannerella forsythia is nonmotile, meaning it does not have structures like flagella to move on
its own. It is a gram-negative bacterium, which means it has a thin peptidoglycan layer and an outer membrane. It is an
obligate anaerobe, meaning it cannot survive in the presence of oxygen and requires an oxygen-free environment to grow.
So, it is a nonmotile, gram-negative obligate anaerobe. The answer is (A).
Question: Which of the following bacteria is not a primary colonizer:? (A) Streptococci. (B) Actinomyces. (C)
F.nucleatum. (D) None. Let’s think step by step:
Answer: Primary colonizers are the first bacteria to adhere to the tooth surface and form dental plaque. They are typically
gram-positive bacteria, such as Streptococci and Actinomyces. Fusobacterium nucleatum is not a primary colonizer. It is a
secondary colonizer that adheres to the primary colonizers and helps bridge the gap between early and late colonizers. The
answer is (C).

Table 10: Few-shot prompts for dental.

Question: Ani believes that her attitudes and behavior play a central role in what happens to her. Such a belief is likely to
be associated with? (A) a strong superego. (B) low self-esteem. (C) low self-efficacy. (D) an internal locus of control.
Let’s think step by step:
Answer: The question is asking about a psychological construct that aligns with the belief that one’s own actions and
attitudes influence life events. This is closely related to the concept of locus of control. Locus of control refers to the extent
to which individuals believe they can control events that affect them. There are two types: 1.Internal locus of control:
Individuals believe they have control over their lives through their actions and decisions; 2.External locus of control:
Individuals believe that external forces (e.g., luck, fate, or other people) control their lives. Ani’s belief that her attitudes
and behavior play a central role in what happens to her indicates an internal locus of control. She feels responsible for her
outcomes and believes her actions matter. The answer is (D).
Question: According to Caplan’s model of consultee-centered case consultation, the consultant is primarily interested in?
(A) identifying the causes and solutions of the client’s presenting problems (B) identifying and eliminating the causes of
the consultee’s difficulties in handling a problem (C) establishing a hierarchy of authority to enable effective decision
making (D) presenting a single, well-defined and unambiguous course of action for the consultant to overcome skills
deficits Let’s think step by step:
Answer: Caplan’s model of consultee-centered case consultation focuses on helping the consultee (e.g., a teacher, therapist,
or other professional) improve their ability to handle a specific case or problem. The consultant does not directly intervene
with the client but instead works with the consultee to address their difficulties in managing the situation. The primary
goal is to identify and address the consultee’s difficulties, which may stem from a lack of knowledge, skills, confidence, or
objectivity. The consultant helps the consultee overcome these issues so they can better handle the client’s problem. The
correct answer is (B), as Caplan’s model is primarily concerned with identifying and addressing the consultee’s difficulties
in handling a problem. The answer is (B).
Question: Pascale is interested in the processing strategies children use to learn new information. Pascale would best be
classified as what type of psychologist? (A) sociocultural (B) clinical (C) cognitive (D) behaviorist Let’s think step by
step:
Answer: The question is asking about the type of psychologist Pascale would be classified as, based on her interest in
processing strategies and learning. This aligns with the field of psychology that studies mental processes such as thinking,
memory, and learning. Sociocultural psychologists focus on how social and cultural factors influence behavior and mental
processes. While this could involve learning, it is not primarily about individual cognitive processing strategies. Clinical
psychologists focus on diagnosing and treating mental health disorders. This does not align with Pascale’s interest in
learning and processing strategies. Cognitive psychologists study mental processes such as thinking, memory, and learning.
This directly aligns with Pascale’s interest in how children process and learn new information. Behaviorists focus on
observable behaviors and how they are influenced by the environment. While learning is a part of behaviorism, it does not
emphasize internal processing strategies as cognitive psychology does. The answer is (C).

Table 11: Few-shot prompts for psychol.
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Learning task: gsm8k Forgetting task: qasc

sst5: The phrase "no movement" suggests a lack of action or movement, which in this context implies a lack of interest or
enthusiasm. The term "yuks" is a slang term for laughter, which in this context carries a negative connotation because
it indicates a lack of seriousness or sincerity. The phrase "not much of anything" suggests a lack of substance or depth,
which in this context implies a lack of complexity or sophistication. Considering these points, the sentence does not
contain any positive words or phrases and is clearly pointing out a flaw or criticism. Therefore, the emotional attitude
reflected in the sentence is negative. Since it’s a straightforward criticism without strong intensifiers (like "extremely" or
"utterly"), we can conclude that the most fitting emotional attitude is negative. The answer is (6 - 2 - 2) = 2
dental: Heavy forces on periodontal ligament cause osteoclastic activity around the tooth, which results in the formation
of new bone around the tooth. This new bone helps to support the tooth and prevent further damage. The answer is (6 - 2 -
2) = 2
psychol: The heritability of a trait is the proportion of the trait’s variation that is due to genetic factors. In a population
with 100 individuals, the heritability of a trait is 100% - 25% = 75%. The answer is 75

Table 12: Cases of superficial forgetting.
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