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ABSTRACT

Sparse autoencoders (SAEs) have shown success at decomposing language model
activations into a sparse set of interpretable linear representations (“latents”).
However, recent work identifies a challenge for SAEs: high frequency latents
(HFLs) that are seemingly uninterpretable and occur on greater than 10% of to-
kens. In this work, we find that HFLs have many unique properties: 1) most HFLs
have a “pair”, another HFL pointing in the geometrically opposite direction that
they never co-occur with; 2) the HFL subspace is robust to the SAE initialization
seed, but HFLs themselves are not; 3) when an SAE is trained on activations with
the HFL subspace ablated, no new HFLs are learned; and 4) HFLs have uniquely
high similarity with the SAE bias vector. Our experiments lead us to hypothesize
that the HFL subspace is not an artifact of SAE training, but instead represents a
subspace of truly dense language model features. We present preliminary results
interpreting this dense subspace, including finding HFLs that represent context
position, HFLs that fire continuously on large blocks of text, HFLs that fire on
topic sentences, and HFLs that fire on numeric data.

1 INTRODUCTION

Sparse autoencoders (SAEs) (Bricken et al., 2023; Cunningham et al., 2023a;b) are an unsupervised
learning technique that identifies a “dictionary” of latents. Model activations on any one token are a
sparse combination of these latents. Most SAE latents are monosemantic, meaning they correspond
to human-interpretable concepts. For instance, Templeton et al. (2024) find a “Golden Gate Bridge”
latent in Claude 3 Sonnet Anthropic (2024), which they amplify to steer model behaviour.

However, as noted by Anthropic (2024), SAEs often still learn a few high-frequency latents (HFLs)
that occur on a significant proportion of input tokens (f ⪆ 10%). While it seems possible to reduce
the number of such learned latents by enforcing greater sparsity (Anthropic, 2024), this does not
remove them entirely; we show in Figure 16 that even low sparsity SAEs have a handful of HFLs.

Even if we could make sparsity low enough to remove HFLs, this may be a mistake: there are dense
features that language models may need to track for all input tokens, such as context position. We
hypothesize that HFLs span a subspace of these truly dense language model features. However,
SAEs rely on features being sparse. Thus, in this dense regime, SAEs may not learn HFLs that align
exactly with the true features (see Section 2), explaining why prior work has found that HFLs are
mostly uninterpretable. We explore this hypothesis in two high level steps:

1. In Section 2, we explore the geometry and characteristics of HFLs and the HFL subspace.
We find evidence that the HFL subspace contains true features: HFLs come in geometri-
cally opposite pairs, the same HFL subspace is learned between SAE seeds (but the same
HFLs are not), and ablating the HFL subspace causes HFLs not to be learned.

2. In Section 3, we investigate specific HFLs, finding that HFLs are actually somewhat inter-
pretable: we find HFLs that depend on context position, distance to digit tokens, distance
to newlines, and whether the given HFL fired previously.

Additionally, we discuss related work in Appendix A, show example texts that HFL pairs fire on in
Appendix D, and show that our results generalize in Appendix E. Overall, our results are promising
evidence that the HFL subspace can be understood and contains dense language model features.
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Figure 1: HFL cosine similarity matrix. For the
most part, HFLs are perpendicular to each other,
except that for all but the first HFL there is an-
other HFL with −1 cosine similarity.

Figure 2: SAE latent frequency vs. cosine simi-
larity with the SAE bias vector across all seeds.
HFLs make up most of the latents with a high co-
sine similarity with the bias.1

2 CHARACTERISTICS OF HIGH-FREQUENCY LATENTS

Method: In this section, we examine properties of HFLs and their subspace. We use seeds 42,
43, 44, and 45 to train TopK (Gao et al., 2024) SAEs on layer 12 of Gemma-2-2B (Team et al.,
2024; Team, 2024). We obtain frequency data from 5M tokens of RedPajama (Weber et al., 2024),
discovering ∼ 20 latents with frequency f > 10%. See Appendix B for our full methodology. We
note that our findings generalize well; we include reproductions on other SAEs in Appendix E. We
denote by #i the latent with the ith largest frequency.

High-frequency latents come in geometrically opposite pairs: We find the cosine similarity be-
tween all latent directions within a single SAE. While most SAE latents are almost orthogonal to
each other, we find that some latents that have a “pair” latent with cosine similarity ≈ −1. In-
terestingly, this group of latents is almost entirely HFLs, and almost all HFLs occur in a pair (see
Figure 6). We plot the HFL pairs in Figure 1 for the seed=42 SAE, using a cutoff cosine similarity
of < −0.85. These latents are not only geometrically opposing, but also functionally opposing —
HFL pairs do not co-occur on the same token, despite individually having high frequencies (Table 2).
Thus, each pair represents just one true model feature direction, but instead of the SAE learning one
latent for this direction, the zero point (bias) is set at the center of this spread, and the SAE learns
two latents in opposite directions.2 For most of our experiments, we consider pairs of HFLs as the
unit of study.

HFLs tend to be more bias-aligned: Most SAE latent directions are orthogonal to the decoder bias
direction (which also tends to approximately equal the average input activation). However, a subset
of HFLs have large absolute cosine similarity with the decoder bias, and they furthermore tend to be
the only latents with such high similarity to the bias. We plot the absolute cosine similarity of each
latent with the bias vector versus latent frequency for the seed 42 SAE in Figure 2.

The HFL subspace is rediscovered between SAEs: We train SAEs with 4 different seeds and find
their HFL pairs. We then filter the HFLs to only pairs with a combined frequency of greater than
50% and take 1 member of each of these filtered pairs. We find 6-7 such HFLs across all seeds. In
Figure 3 we plot the cosine similarity between the HFLs from each seed versus the HFLs from seed
42. We see that, while the HFLs are not always exactly rediscovered, the principal angles between
the subspaces spanned by the HFLs from different seeds are extremely low. In other words, the HFL
subspace seems to be consistently rediscovered, but not always along the same basis.

1The spike at moderate frequencies may be due to the presence of latents related to the <bos> token, since
our SAEs were trained on all model activations including on <bos>.

2We are not sure why the SAE does not just learn the bias such that the “center” is at the corner of the HFL
subspace; we suspect that the HFL “center” may be different from the “center” of most other sparse features.
The finding that HFLs are similar to the bias supports this hypothesis.
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Figure 3: HFL to HFL cosine similarities (grids), and HFL
subspace to HFL subspace principal angles (red dots) between
seed=42 and seed=43, 44, and 45 SAEs.

Figure 4: For each latent vj ,
we find

∑30
i=1(vj ·ui)

2 where
ui is the i-th PC component.3

Addressing Alternative Hypotheses: We address two alternative explanations for the HFL sub-
space. Concern 1: The HFL subspace is an artifact of SAE training. Concern 2: The HFL subspace
is simply the SAE learning the highest variance dimensions.

To address concern 1, we train an SAE with the same seed = 42, but ablate the subspace spanned by
all originally found HFLs with frequency > 10%. Our results (in Figure 8) show that the new SAE
discovers only one latent with frequency > 0.1 (at frequency ≈ 11%) and no other HFLs. Thus,
HFLs truly arise from a specific language model subspace.

To address concern 2, if the HFLs are merely directions of high variance in the data, then we expect
the HFL subspace (effectively ≈ 10 dimensions) and the top PCA subspace to be extremely similar.
However, finding the components of HFLs along the top 30 PCA components (Figure 4), we see a
significant proportion of the variance still unexplained. Furthermore, the HFL directions themselves
do not simply correspond to the top PCA components (Figure 7). Thus, the SAE seems to be
working well to break down the top PCA dimensions.

Linear combination hypothesis: The fact that the same subspace is repeatedly learned but the
exact same HFLs are not implies an interesting hypothesis: the HFL subspace may be made up of
“true” interpretable latents that are dense; however, since such latents occur on almost every token,
the sparsity penalty may not be enough to learn the true basis, and the SAE might instead learn a
“skewed” basis of the HFL subspace. In the next section, we still try to interpret individual HFLs,
as they may be close to the true dense model features and thus still be somewhat interpretable; this
partial interpretability is evidence that the true latents may be in the HFL subspace somewhere.

3 INTERPRETABILITY OF HIGH-FREQUENCY SUBSPACE

In this section, we investigate top HFLs from seed=42 by combined frequency. We include a sum-
mary of our findings in Table 1, and example firing patterns for each HFL are in Appendix D.

Context position latent (#1): Examining the latent activations at each context position, we find that
the top HFL across all seeds (f ≈ 0.5−0.6) is exactly rediscovered (cosine similarity > 0.97 across
seeds) and has a strong context position dependence, firing mostly and strongly early in contexts.
This latent has a low-frequency (≈ 0.05) pair in two seeds, and no pair in the other two. In the top
left of Figure 5, we plot latent firing count against context position.

Phrase-level Semantics (#2 and #4): The next two latents, #2 and #4, seem to have a meaningful
firing pattern; latent #2 fires mostly on numeric data and short, common tokens, while latent #4 fires
on most other tokens (total f = 0.888). We hypothesize that this HFL pair is related to a semantic
axis similar to “structured text” vs. “prose / meaningful tokens”. In the bottom left of Figure 5, we
show that this latent pair fires at high frequency when it is near a digit token.

Context Indicator Hypothesis: We observe that for some HFL pairs, latent firings are “sticky” and
occur in blocks. To quantify this, for a pair, we find the Markov transition matrix between the states

3PCA obtained from model activations on 1000 documents. The spike at f ≈ 10−3 is due to the <bos>
token, which occurs about once every 1024 tokens, as the first PC direction is dominated by activations on the
<bos>.
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Latent Total f Hypothesis Figures
#1 0.526 Context position 5, 10
#2, #4 0.888 Phrase-level semantic meaning 5, 11, 12
#3, #6 0.824 Context indicator 5, 13a
#5, #8 0.712 Context indicator 5, 13b
#7, #10 0.611 Context indicator 5, 13c
#9, #14 0.510 Body text vs. topic sentence 5, 14, 15

Table 1: HFL pairs with f > 50% and our hypotheses of their meanings, with figure links.
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Figure 5: Unique aspects of latents. Top left: Context position vs. frequency; latent #1 has a clear
dependence on context position. Bottom left: Percent of total activation strength vs. distance to
the nearest digit; latents #2 and #4 have opposite correlations. Top right: “Stay/switch odds ratio”
for HFL pairs; latents #2 and #4 are not sticky, but all other pairs are. Bottom right: Percent of total
activation strength vs. distance to last newline token; latents #14 and #9 have opposite correlations.

“neither fires”, “HFL1 fires”, and “HFL2 fires”. For each HFL, we compute the “stay/switch odds
ratio”, which is P (stay on|currently on)/P (switch to pair|currently on). We indeed observe that for
certain pairs, such as (#3,#6) and (#9,#14), once one latent is firing, the probability to switch to
the other latent is very low; these results are shown in the top right of Figure 5. We hypothesize
that these latents are “context indicators”, and indicate some property of the text that persists across
many tokens, such as “this is a paragraph about this concept” or “this context is of a certain type”.

Body vs. Topic Sentence Detection (#9, #14): One particularly interpretable context indicator
HFL pair is #9 and #14, which seems to indicate “body text” vs “topic sentences”. We quantify this
by examining the propensity to fire versus the distance from the last newline. The bottom right of
Figure 5) shows that #14 fires strongly after newlines (but not trivially so, see Figure 15) while #9
fires minimally.

4 CONCLUSION

In this work, we argue that high frequency latents likely represent true dense language model fea-
tures, and that because SAEs are optimized for sparsity, it is not surprising that these features are
not learned cleanly by SAEs. Overall, we believe that our work provides a way forward to under-
stand HFLs: if we carefully focus on each HFL one by one, they seem feasible to interpret. We also
can try rotating the HFL space to result in maximally interpretable latents by some metric, as we
hypothesize that the HFL subspace’s current orientation may not line up with the model’s ontology.
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ret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Char-
line Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-
son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge,
Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar,
Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Wein-
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A RELATED WORK

A.1 INVESTIGATING SPARSE AUTOENCODER LATENTS

Cunningham et al. (2023a) and Bricken et al. (2023) demonstrate that SAEs can decompose model
activations into a set of over-complete latents that are more monosemantic than the original neu-
ron basis. To quantify this monosemanticity, these works perform extensive analysis of individual
latents, both manually and using language models, and generate explanations of each latent using in-
put text that they activate on. This work has been extended by Paulo et al. (2024), who develop more
efficient methods for doing this “automated-interpretability” process at scale. Our work follows in
this tradition of carefully examining individual SAE latents.

However, not all latents are interpretable, and SAEs do not capture all types of language model
features. Dense latents, those that occur on greater than 10% of examples (and the subject of this
work) were identified by both the early SAE work mentioned above and by Anthropic (2024). The
phenomenon of ”dark matter” in SAEs—features that exist in the model but are persistently not
captured by the SAE as it scales—was first identified by Gao et al. (2024) and explored further by
Engels et al. (2024).

SAEs also struggle with learning even sparse, interpretable features. Chanin et al. (2024) study
feature splitting–the phenomenon that as SAEs scale the sparsity penalty causes interpretable latents
to split into more specific versions–and feature absorption–the phenomenon that latents merge with
other latents they frequently co-occur with. We hypothesize that these phenomenon occur to some
extent with the HFL subspace identified in this work: if the sparsity is made extremely low, the HFL
subspace is broken apart, even if it is truly dense.

A.2 LANGUAGE MODEL FEATURE STRUCTURE

Understanding the geometry of language model representations has been an active area of research
since the early days of word embeddings. Mikolov et al. (2013b) show that word embeddings ex-
hibit linear structure and have semantic relationships that can be captured through vector arithmetic.
Elhage et al. (2022) formalize this observation as the Linear Representation Hypothesis (LRH) and
develop toy models to understand how networks might learn to represent an over-complete basis
of linear features in a lower-dimensional space through superposition. Park et al. (2023) provide
further theoretical grounding for when and why linear features might emerge in language models.

However, some recent work has challenged the universality of linear representations. Engels et al.
(2024) demonstrate that some language model features are fundamentally multi-dimensional, and
Csordás et al. (2024) find non-linear onion-like features in a toy RNN. On the other hand, while
Li et al. (2022) study models trained on Othello and find that some representations seems to be
nonlinearly encoded in the model, Nanda et al. (2023) find that with a change of basis these same
variables are actually linearly encoded.

The geometry of features learned by sparse autoencoders has also received attention. Mendel (2024)
argues that SAE features are not merely almost orthogonal random vectors, and that the relationships
between them matter, while Li et al. (2024) studies SAE latent structure at many different layers of
structure. In this work, we do not seek to propose an entirely new theory for how language model
features and SAE latents are structured, but instead we just aim to explain high frequency features
by postulating that they represent truly dense language model features.

A.3 DENSE MODEL REPRESENTATIONS

While much work has focused on sparse features in language models, there is a scattering of evi-
dence for dense representations. Yedidia (2023a;b) finds that GPT-2’s positional embeddings form a
helix structure; the “height” of the helix is thus a feature that always activates. Gurnee et al. (2024)
identify ”universal neurons” that participate in many dense tasks, including encoding the context
position and allowing the model to increase uncertainty (“entropy” neurons). Michaud et al. (2024)
find structured lattice-like representations in toy models, an example of possible dense geometric
structure. Mixed dense-sparse representations have also been explored in classical sparse coding:

8
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Tasissa et al. develop dictionary learning methods for learning combined dense and sparse represen-
tations.

B METHODOLOGY

TopK SAEs: SAEs reconstruct model activations x as a sparse linear combination of a set of dSAE

latents, with dSAE ≫ dmodel. The rows of the SAE decoder matrix correspond to SAE latent
directions. We use TopK SAEs, which enforce sparsity by zeroing out the activations of all but the
top k latent pre-activations f :

f = ReLU (We(x− bd) + be) (1)
x̂ = Wdf + bd (2)

For our main paper experiments, we train TopK SAEs with dSAE = 16384 and k = 64.

Latent activations: We obttain latent activations by running Gemma on 5000 documents with
context length of 1024 tokens from the shuffled RedPajama 1T sample (Weber et al., 2024), and
capture all SAE latent activations on layer 12. High-frequency latents are defined as those that occur
on > 10% of tokens.

SAE training: We train SAEs on the layer 12 activations on 1B tokens from the RedPajama 1T
sample dataset, with 4 random seeds: 42, 43, 44, and 45. For our studies where we ablate part of
the HFL subspace, we first subtract the learned bd, ablate the HFL subspace, add back bd, and then
train the SAE on that.

C FURTHER ANALYSIS OF HFL CHARACTERISTICS

Linear probing: Since we suspect true dense features may be stored in the HFL subspace, but
not exactly aligned with the learned HFLs, we attempt to probe true features by running a linear
regression on the model activations with the “true” feature. We repeat this for the model activations
projected only onto the HFL (f > 0.1) encoder subspace, and its complement.

Preliminary analysis finds that for context position, probing on the HFL subspace indeed performs
better (r2 ≈ 0.55) than its complement (r2 ≈ 0.45) and on a random subspace spanned by the
same number of latents (r2 ≈ 0.05), despite the context position not necessarily being linearly
represented. However, attempting to probe other “true” features such as token length and log(token
frequency) have not shown much success, and one reason could be that the “true” features are not
necessarily token-level.

Quantifying semantic predictability: We train a word2vec (Mikolov et al., 2013a; Řehůřek &
Sojka, 2010) model on all Gemma tokenized tokens (removing spaces) in the RedPajama dataset
with window = 7, to generate the 300-dim embedding of the n tokens. This is concatenated into
a 300n-dim vector and passed through a logistic regression or simple MLP. Preliminary testing on
some non-context-position HFLs such as #2 with n = 5 gives a balanced accuracy of around 70%,
compared to the baseline test on the context position HFL #1 that gives a balanced accuracy of
around 50%, suggesting a greater degree of semantic predictability.

9



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Latent 1 Latent 2 Pair

ID # Freq. ID # Freq. Cosine Sim. Total Freq. Jaccard Sim.

12723 1 0.526 - - - - 0.526 -
13312 2 0.485 10028 4 0.403 -0.991 0.888 0
2837 3 0.483 600 6 0.341 -0.930 0.824 0
5019 5 0.393 10751 8 0.319 -0.972 0.712 0
8286 7 0.333 3817 10 0.279 -0.968 0.611 0
15161 9 0.283 6324 14 0.227 -0.892 0.510 0
3208 11 0.263 2242 12 0.238 -0.957 0.501 0
9929 13 0.233 12628 16 0.209 -0.925 0.442 0
11298 15 0.218 9900 18 0.155 -0.874 0.373 0
6279 17 0.176 14012 19 0.148 -0.934 0.324 0
11549 20 0.138 10430 165 0.026 -0.861 0.163 1.59× 10−6

522 21 0.102 - - - - 0.102 -

Table 2: Table with HFLs, shown by their IDs and frequency ranks. For pairs, we show their cosine
similarity, total frequency, and Jaccard similarity.

Figure 6: For each latent in seed=42, we find the minimum cosine similarity it has with another
feature, and plot against frequency of the latent. We observe a distinct high-frequency group with
highly negative minimum cosine similarity, while average features have minimum cosine similarity
closer to zero.
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Figure 7: Left: Absolute cosine similarity between HFLs and the first 30 PC components, with
the principal angles between the subspaces shown. Right: A similar plot for random features. We
notice that while the HFLs are not closely aligned with the PCA components, they span a more
similar subspace than random latents.
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Figure 8: Histogram (count) of feature frequencies, in 200 log-spaced bins from 10−7 to 100. We
observe that across all seeds, there are a handful of HFLs that fire > 10% of the time. However,
when this HFL subspace is ablated, almost no latents discovered fire > 10%.
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Figure 9: Jaccard similarity Z-score between latents’ activations, ranked by their frequencies. The
expected Jaccard similarity is calculated by randomly shuffling the activations across all tokens,
repeating 50 times to obtain a mean and standard deviation. We observe that HFL pairs which never
co-occur have an extremely low z-score. Between some non-pair HFLs, Jaccard similarity z-scores
are high, indicating some relationship in their firing pattern.
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Figure 10: Histogram of activation strength when active, binned by context position in groups of 20.
Not only does #1 fire more often early in contexts as shown in Figure 5, it also fires strongly early
in contexts as shown here. Meanwhile, #2 has a more semantic meaning, and thus shows no clear
dependence in firing strength on context position.

D HFL EXAMPLES

In this section, we present some examples of text, shaded by a pair’s firing pattern. Pairs never
activate on the same token, and un-highlighted text means neither latent activated. The highlight
color is scaled by the maximum activation in that document’s context (excluding the <bos> and
first tokens which tend to have high activations).

Figure 11: Blue = #2, red = #4. We observe that #2 tends to fire on numbers and short, common
words, as well as some names, while #4 fires more on “meaningful” words in the context.

Figure 12: Blue = #2, red = #4. #2 fires strongly in the table with numeric data.
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(a) Blue = #3, red = #6 (b) Blue = #5, red = #8 (c) Blue = #7, red = #10

Figure 13: Firing pattern of “sticky” feature pairs, on same text. While it is difficult to concretely
interpret what these features represent, they seem to correspond to specific general concepts present
in the context. For instance, biological facts, scientific analysis / self-reference in text, and informa-
tion on the study or experiments.

Figure 14: Latent pair #9 and #14 firing on a con-
text (#9 in blue and #14 in red). Latent #14 seems
to fire on topic sentences, while latent #9 seems
to fire on body text.

Figure 15: The latents seem robust to artificially
adding newlines; they are doing something more
than just detecting newlines.
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E GENERALIZATION OF MAIN RESULTS

In Figure 16, Figure 17, and Figure 18 we reproduce our key results on feature geometry on the
Gemma Scope (Lieberum et al., 2024) and Llama Scope (He et al., 2024) suites of SAEs, and find
that HFLs are indeed discovered in different SAEs and different models (focusing on middle model
layers).
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Gemma-2-2b, Layer12, Width=16k, l0=41
Gemma-2-2b, Layer12, Width=65k, l0=38
Llama-3.1-8b, Layer15, Width=32k
Llama-3.1-8b, Layer15, Width=131k

Figure 16: Frequency histogram for different SAEs on different models. We notice that in all SAEs,
there are a handful of features with frequencies > 10%.
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Figure 17: For each HFL (f > 0.1) in Gemma-2-2b SAEs of different widths and sparsities, we
search for a geometrically opposite pair, and present their cosine similarities here.
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Figure 18: Similarly, for each HFL (f > 0.1) in Llama-3.1-8b SAEs of different widths, we search
for a geometrically opposite pair, and present their cosine similarities.
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