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ABSTRACT

Multimodal learning has achieved remarkable success by integrating diverse data
sources, yet it often assumes the availability of all modalities - an assumption
rarely met in real-world settings. While pretrained multimodal models are pow-
erful, they struggle with small-scale and incomplete datasets (i.e., missing modal-
ities), which limits their practical utility. Previous work on reconstructing miss-
ing modalities has largely ignored the potential unreliability of these reconstruc-
tions, risking the quality of final predictions. We propose SURE (Scalable Uncer-
tainty and Reconstruction Estimation), a framework that enhances pretrained mul-
timodal models by introducing latent space reconstruction and robust uncertainty
estimation for both reconstructed modalities and downstream tasks. Our frame-
work not only enhances performance but also offers a reliable uncertainty metric,
improving interpretability. Key innovations include a novel Pearson Correlation-
based loss and the first application of statistical error propagation in deep net-
works, enabling precise uncertainty quantification from missing data and model
predictions. Extensive experiments on tasks like sentiment analysis, genre classifi-
cation, and action recognition demonstrate that SURE consistently achieves state-
of-the-art performance, offering robust predictions even with incomplete data.

1 INTRODUCTION

Motivation: Multimodal learning has proven to be an effective approach for handling raw data from
various sources and formats, often outperforming traditional unimodal learning techniques Huang
et al. (2021). However, despite achieving state-of-the-art performance across various tasks Zong
& Sun (2023); Wan et al. (2023); Wu et al. (2024), most leading multimodal frameworks rely on
idealized conditions during training and evaluation, assuming access to a great volume of data and
all modalities are available. Nonetheless, such ideal conditions often break down in real-world
applications (e.g. autonomous vehicles or medical centers).

To deal with limited dataset scale, leveraging models pre-trained on larger datasets for similar tasks
has emerged as a promising and efficient solution. While this approach is extensively utilized in
unimodal settings He et al. (2016); Devlin (2018), it remains underexplored in multimodal contexts.
To showcase the benefit of pretrained weights, we compared two versions of MMML model Wu
et al. (2024), a state-of-the-art fusion architecture for Semantic Analysis, on the CMU-MOSI dataset
Zadeh et al. (2016). One model was initialized with pretrained weights from the larger CMU-MOSEI
dataset Zadeh et al. (2018), while the other was trained from scratch. Performance was evaluated
across varying training set sizes, scaled proportionally to the original CMU-MOSI dataset (Figure
1). The observed performance gap underscores the significant potential of leveraging pretrained
models to enhance both training effectiveness and efficiency on small-scale datasets.

A significant barrier to the widespread adoption of pretrained multimodal frameworks is their inabil-
ity to handle missing modalities during training or evaluation. These models typically assume the
availability of all modalities and struggle to adapt effectively when some are absent. Furthermore,
even when they manage to function with incomplete data, they often lack mechanisms to assess
the reliability of their predictions in such cases. This limitation inevitably leads to degraded per-
formance compared to scenarios with full modality availability, as these models are trained under
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Figure 1: Comparison of pretrained and
vanilla MMML framework on CMU-MOSI
dataset.
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Figure 2: SURE reconstructs missing modal-
ities for final predictions, reporting average
errors and uncertainties for both reconstruc-
tion and output.

ideal conditions. This challenge is especially critical in safety-sensitive domains like healthcare and
autonomous driving, where robust and trustworthy decision-making is paramount. Incorporating
uncertainty estimation becomes essential in these scenarios to gauge prediction reliability and miti-
gate risks. The last two bar groups in Figure 2 illustrates this issue using our model’s output on the
CMU-MOSI evaluation dataset under different input modality combinations. The figure records the
average values of Error (MSE) and Estimated Uncertainty. As shown, missing modalities degrade
the model’s performance, particularly when text is absent. However, the model also generates rea-
sonable uncertainty estimates for its predictions. Notably, higher average uncertainties align with
higher errors, suggesting that uncertainty estimates can effectively serve as indicators of prediction
reliability in case of missing modalities.

Current Literature: The first challenge we highlight, missing modalities, is a prevalent issue in the
training and deployment of multimodal models. To address this problem, research has focused on
two main approaches: (1) Contrastive loss-based strategies that align latent spaces for cross-modal
knowledge transfer Ma et al. (2022); Lee & Van der Schaar (2021); Wang et al. (2020), and (2) gen-
erative strategies, such as VAE variations Wu & Goodman (2018) or latent space reconstruction Woo
et al. (2023), to recreate missing modalities. The latter approach can be useful to incorporate with
pretrained multimodal frameworks, as it introduces modules or techniques to reconstruct missing
modalities without altering the remaining parts of the models.

To assess model reliability, a growing branch of research focuses on estimating uncertainty in pre-
dictions. Common directions include Bayesian deep learning Wang et al. (2019b); Kendall & Gal
(2017a), which models uncertainty directly by estimating the output distribution, and post-hoc tech-
niques Maddox et al. (2019); Lakshminarayanan et al. (2017) that introduce perturbations to the
inputs to generate multiple outputs, enabling uncertainty estimation. Adapting or extending these
methods offers valuable support for decision-making during evaluation.

Our approach: Inspired by existing literature, this work tackles the real-world challenges of small-
scale datasets with missing modalities through two key contributions: (1) the effective utilization
of pretrained multimodal frameworks with a simple latent space reconstruction strategy, and (2)
the estimation of reconstruction and output uncertainties, emphasizing their interdependence and
relationship with downstream task performance. Specifically, we show that higher reconstruction
uncertainty correlates with higher output uncertainty, which in turn leads to higher output error
(Figure 2). To achieve this, we focus on three types of uncertainties:

(1) Reconstruction uncertainty for the missing modalities.
(2i) Output uncertainty stemming from the reconstructed inputs.

(2ii) Output uncertainty arising from the inherent nature of the model.

For uncertainties (1) and (2ii), we propose a novel loss function based on Pearson Correlation, com-
bined with a tailored training strategy that balances downstream task optimization with uncertainty
estimation (see Section 2.3). To estimate uncertainty (2i), we introduce the first application of Error
Propagation Arras (1998); Tellinghuisen (2001) in deep neural network training (see Section 2.4).

The proposed approach, named SURE (Scalable Uncertainty and Reconstruction Estimation), can
be integrated seamlessly with any pretrained multimodal deep network. This flexibility allows it
to handle datasets with missing modalities while estimating both input and output uncertainties.
Importantly, our uncertainty estimation mechanisms empower the model to recognize when it faces
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uncertain inputs and respond appropriately with ”I do not know,” enhancing reliability in critical
applications. In summary, the key contributions are summarized as follows:

• We introduce SURE, a pipeline that leverages pretrained models and estimates reconstruc-
tion and output uncertainties for scenarios with missing modalities.

• We explicitly model the interconnections between reconstruction uncertainty, output relia-
bility, and downstream task performance.

• We achieve new state-of-the-art results across all three downstream tasks while effectively
estimating the corresponding uncertainties.

2 PROPOSED METHOD

2.1 PROBLEM FORMULATION

Let D =
⋃

i{(xi, yi)} be the training dataset with pairs from domain X and Y where X , Y lies in
Rn1 × ...×RnM and Rk respectively. Let denote xi = (x1i , ..., xMi ) is the ith input sample where xji
is its jth modality. We consider scenarios in which during training or evaluation, certain modalities
are missing in certain samples.

2.2 OVERVIEW OF SURE FRAMEWORK
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Figure 3: Overview of proposed module. It incorporates a set of reconstruction modules ri(.)’
in the middle layers of arbitrary pretrained multimodal fusion frameworks, after their latent space
projection layers f i(.) and before their fusion layers ω(.). These modules consume other modality
latent representation, yield reconstructed representation for the corresponding modality, together
with reconstruction uncertainty. The reconstructed output replaces the role of the original missing
modality, while the uncertainty is propagated through the rest of the network to capture output
uncertainty caused by the reconstruction. The final classifier additionally involves the calculation of
output uncertainty caused by model’s inherent nature.

The overall proposed pipeline is depicted in Figure 3. For clarity and simplicity, we illustrate the
SURE pipeline using two modalities, with a straightforward extension to M modalities discussed
in Appendix A.1.3. In our approach, the only components that require training are the reconstruc-
tion modules ri(.), each tailored for a specific modality, and the final classifier head g(.). This
configuration preserves most of the pretrained framework, with the exception of the final classifier
heads, aligning with standard procedures used in unimodal pretraining and finetuning. In this study,
two primary objectives are established to fully leverage the capabilities of pretrained models: (1)
reconstructing missing modalities, and (2) assessing the reliability of the final outputs.

To address the first objective, we introduce an efficient reconstruction procedure within the shared
latent space. Let Zi denote the latent representation for each modality produced by the pretrained
framework’s unimodal projectors (f i(.) in Fig.3). SURE incorporates reconstruction modules, ri(.),
each specifically designed for a particular modality. The reconstructor for the ith modality, ri(.),
utilizes the latent representation of another available modality (e.g., Zj) to generate an approxima-
tion Z̃i in the event that the ith modality is missing, e.g., ri(Zj) = Z̃i (i = 1, . . . ,M ; j ̸= i).
Additional details and analysis regarding these modules are discussed in Appendix A.1.2.

The second objective naturally arises from the presence of reconstructed inputs, making it crucial
to assess the reliability of these reconstructions, as well as the final results produced by the model
using them. To this end, we have designed both the reconstruction modules and the final classifier to
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produce probabilistic outputs that accurately reflect the associated uncertainties. Specifically, when
reconstructing the representation of the ith modality Z̃i using another modality’s representation
Zj , the module ri(.) is tailored to approximate the underlying distribution PZ̃i|Zj . Similarly, the
classifier head aims to produce the probabilistic outcome PY |X . Although the exact nature of these
distributions is unknown, we introduce a novel yet straightforward loss function that effectively
quantifies the uncertainty associated with the reconstructed input and the output uncertainty arising
from the stochastic nature of the pretrained framework (Section 2.3). Additionally, we quantify
the uncertainty that propagates through the framework due to the uncertainty associated with the
reconstructed input, as detailed in Section 2.4.

2.3 DISTRIBUTION-FREE UNCERTAINTY ESTIMATION

Uncertainty Estimation Preliminaries. Bayesian deep learning models are capable of capturing
uncertainty in their outputs. By maximizing a likelihood function, these models can optimize the net-
work parameters to estimate the output distribution. This allows them to effectively capture aleatoric
uncertainty, which arises from the inherent noise in the input data. Specifically, for a given input
xi from input domain X , the corresponding model output {ỹi, (ζ̃1i , . . . , ζ̃ki )} := ϕ(xi, θ) are param-
eters to specify the distribution PY|X. The likelihood L(θ,D) :=

∏N
i=1 pY|X(yi; {ỹi, ζ̃1i , . . . , ζ̃ki })

is then maximized to estimate the optimal parameters of the model. Additionally, the distribution
PY|X is often chosen so that uncertainty can be estimated using a closed-form solution based on the
model’s estimated parameters. A common choice for this distribution is the heteroscedastic Gaus-
sian Upadhyay et al. (2022); Wang et al. (2019b); Kendall & Gal (2017a), where ϕ(., θ) predicts
both the mean and variance, e.g. {ỹi, σ̃i} := ϕ(xi, θ). In this context, the predicted variance can be
interpreted as the uncertainty of the prediction. The optimization problem then becomes:

θ∗ = argmax
θ

N∏
i=1

1√
2πσ̃2

i

e
−∥ỹi−yi∥2

2σ̃2
i = argmin

θ

N∑
i=1

∥ỹi − yi∥2

2σ̃2
i

+
log
(
σ̃2
i

)
2

(1)

Uncertainty(ỹi) = σ̃2
i . (2)

The closed-form solutions ỹi and σ̃2
i for the problem in Equation 1 can be derived (the detailed

process is shown in Appendix A.1.1), with the final results as follows:

ỹ∗
i = yi; σ̃2∗

i = ϵ̃2i where ϵ̃2i := ∥ỹi − yi∥2 . (3)

The main drawback of this common approach is its reliance on assumptions about the true under-
lying distribution PY|X, which may not hold true across all datasets and scenarios. Additionally,
estimating uncertainty based specifically on a Gaussian assumption presents a further limitation due
to the strict closed-form solution for σ̃2∗

i (Equation 3). Ideally, the objective of Equation 1 would
aim to learn a model capable of precisely approximating its own error ϵ̃2. However, this becomes
increasingly difficult as ϵ̃2 → 0, leading to unstable loss values and poorly defined gradients with re-
spect to σ̃2∗

i (detailed explanation in Appendix A.1.1). Consequently, achieving this strict objective
through gradient-based optimization is highly challenging, if not impossible.

Our method. To overcome these limitations, we introduce a straightforward, distribution-free loss
function centered on a more adaptable constraint for uncertainty: ensuring a strong correlation with
error. This loss function are employed to learn both reconstruction uncertainty as well as output
uncertainty owing to model inherent nature. Specifically, we design our loss to learn the uncertainty
σ̃2 by leveraging the Pearson Correlation Coefficient Cohen et al. (2009) between σ̃2 and prediction
error ϵ̃2:

LPCC(σ̃
2, ϵ̃2) = 1− r(σ̃2, ϵ̃2);

where r(σ̃2, ϵ̃2) =

∑N
i=1

(
σ̃2
i − µσ2

) (
ϵ̃2i − µϵ2

)√∑N
i=1 (σ̃

2
i − µσ2)

2
√∑N

i=1 (ϵ̃
2
i − µϵ2)

2
,

µσ2 =
1

N

N∑
i=1

σ̃2
i , µϵ2 =

1

N

N∑
i=1

ϵ̃2i , ϵ̃
2
i = ∥ỹi − yi∥2 ,

(4)

N is the number of samples in one batch. The Pearson correlation coefficient is essentially a nor-
malized measure of covariance, ensuring that the result always falls within the range of -1 to 1.
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Consequently, LPCC is constrained to a value between 0 and 2. A value of LPCC = 0 indicates a
perfect linear relationship where σ̃2 increases in tandem with ϵ̃2, meaning the uncertainty accurately
reflects the prediction error. Conversely, LPCC = 2 implies an inverse relationship. This metric
focuses on the linear correlation between squared error and uncertainty while relaxing constraints
on the magnitude of the features.

In essence, LPCC is equivalent to the Mean Squared Error (MSE) between squared error and un-
certainty after standardization. Let σ̄2

i :=
σ̃2
i−µσ√

1
N−1

∑N
j=1(σ̃

2
j−µσ2 )2

and ϵ̄2i :=
ϵ̃2i−µϵ2√

1
N−1

∑N
j=1(ϵ̃

2
j−µϵ2 )

2
be

the standardized version of σ̃2 and ϵ̃2 within a mini-batch, ensuring they have zero mean and unit
variance. Given that 1

N−1

∑
i

(
σ̄2
i

)2
= 1 and 1

N−1

∑
i

(
ϵ̄i2
)2

= 1, we have the derivation as follow:

1

2N

N∑
i=1

(
σ̄2
i − ϵ̄2i

)2
=

1

2N

(
(2N − 2)− 2

N∑
i=1

σ̄2
i ϵ̄

2
i

)
=

2N − 2

2N
(1− r(σ̃2, ϵ̃2)) ≈ LPCC . (5)

This equivalence suggests that the loss function relaxes constraints on the magnitude of both ϵ̃2 and
σ̃2, while still enforcing a linear dependency between these two variables. After training with this
loss function, the output uncertainty can be scaled using the mean and standard deviation of the
training errors, allowing it to be approximately aligned with the actual testing error. Additionally,
we later show in Appendix A.1.1 that our loss function promotes a more stable training process near
the optimal solution, which is not the case for ordinary Gaussian NLL loss.

In addition to uncertainty estimation, other loss functions are employed to learn the reconstruction
or output corresponding to the downstream task. The estimated uncertainty is aligned with the cor-
responding reconstruction or prediction error. For reconstruction or regression tasks, Mean Squared
Error (MSE) is used to quantify the error, while for classification tasks, the error is represented by
the cross-entropy loss value. For instance, final loss guiding SURE’s reconstruction modules is:

Li
rec(z̃

i, σ̃2
zi) =

1

N

∑
∥z̃i − zi∥2 + LPCC(σ̃

2
zi , ∥z̃i − zi∥2) (6)

Here, the first MSE term guides the learning of the reconstructed z̃i, whileLPCC directs the learning
of σ2 to accurately reflect the reconstruction error. A similar loss function is applied to estimate the
uncertainty of the output, accounting for the stochastic nature of pretrained models. In this context,
the error ϵ̃2 is defined as MSE for regression tasks or Cross Entropy for classification tasks. In
parallel, we enhance the estimated output uncertainty by quantifying the uncertainty propagated
from the reconstructed input, utilizing Error Propagation through the frozen pretrained network, as
detailed in Section 2.4.

2.4 ERROR PROPAGATION THROUGH DEEP NETWORKS

Error Propagation Preliminaries. While employing PCC loss in the classifier head effectively
models output uncertainty due to the stochastic nature of pretrained frameworks, a strategy is
still needed to quantify uncertainty related to the reconstructed input. Error propagation Arras
(1998); Tellinghuisen (2001) is a fundamental concept in scientific measurement and data analy-
sis, exactly used to quantify how uncertainties in input variables affect the uncertainty in a derived
quantity. Given a function f(A1, A2, . . . , An) of n variables, each attached with uncertainty σ2

Ai

(i = 1, . . . , n), the total uncertainty in the function’s output, denoted as σ2
f , is determined by how

these input uncertainties propagate through the function. This quantity is then calculated using the
formula Arras (1998); Tellinghuisen (2001):

σ2
f ≈

n∑
i=1

(
∂f

∂Ai

)2

σ2
Ai
, (7)

where ∂f
∂Ai

represents the partial derivative of the function with respect to Ai. This formula assumes
that the uncertainties σ2

Ai
(i = 1, . . . , n) are independent and uncorrelated.

Our Method. This concept aligns perfectly with our goal of quantifying output uncertainty propa-
gated from reconstructed inputs. Therefore, we adapt it to SURE’s pretrained deep model pipeline.
Given SURE’s pretrained model, denoted as ω({Zi}i∈I , {Z̃j}j∈J ) where I and J represent the
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sets of indices for which Zi is available or unavailable, respectively, the corresponding output un-
certainty propagated from the reconstructed input is:

σ̃2
input ≈

∑
i∈J

(
∂ω

∂Z̃i

)2

σ2
Z̃i
. (8)

Combining σ̃2
input with the uncertainty stem from ω(.) stochastic nature, denoted by σ̃ω (learnt with

LPCC - Section 2.3), we achieve the final output uncertainty:

σ̃2
Y = σ̃2

input + σ̃2
ω. (9)

This combination follows the Pythagorean theorem for variances, which assumes the estimated un-
certainty are caused by individual sources Dieck (2007), which is suitable for our use case.

Training process. In the initial phase, the reconstruction module is trained using Lrec. One of the
available modalities is used as the ground-truth output, while the remaining modalities serve as input
for prediction. In the second phase, all reconstruction modules are frozen, and the classifier head is
trained using Ldownstream. A detailed summary of the training process is provided in Algorithm 1
in Appendix A.1.3.

3 EXPERIMENTS

3.1 DATASETS AND METRICS

We integrate SURE into three pretrained frameworks, adapting them to smaller-scale datasets with
missing modalities during training and testing. Additional integration details are covered in Ap-
pendix A.1.4.

Sentiment Analysis. This task involves predicting the polarity of input data (e.g., video, transcript).
We use the state-of-the-art multimodal architecture, MMML Wu et al. (2024), pretrained on the
CMU-MOSEI dataset Zadeh et al. (2018), which includes video and sound. To assess the SURE +
MMML pipeline (referred to as SURE hereafter), we fine-tune it on an incomplete version of the
CMU-MOSI dataset Zadeh et al. (2016), where certain modalities are missing during both training
and evaluation. Evaluation metrics include mean absolute error (MAE), correlation (Corr), binary
Accuracy and F1 score, following Wu et al. (2024); Poklukar et al. (2022); Tsai et al. (2018).

Book genre classification. This task involves classifying book genres based on their titles, sum-
maries (text), and covers (images). We integrate SURE with MMBT Kiela et al. (2019), a pretrained
framework originally designed for movie genre classification on the MM-IMDB dataset Arevalo
et al. (2020). The book dataset used for genre classification is sourced from Haque et al. (2022).
Accuracy and F1 scores are used for performance assessment.

Human Action Recognition. This task involves identifying human actions based on recorded
videos and sensor data. We use HAMLET framework Islam & Iqbal (2020), pretrained on the large-
scale MMAct dataset Kong et al. (2019). For prediction, we leverage three modalities: RGB videos,
smartwatch acceleration, and phone gyroscope data. Fine-tuning HAMLET + SURE pipeline is
done on the smaller, incomplete UTD-MHAD dataset Chen et al. (2015). Performance is evaluated
using accuracy and F1 scores.

For all tasks, we evaluate the quality of the estimated uncertainty using two metrics. Uncertainty
Calibration Error (UCE) Guo et al. (2017) quantifies the discrepancy between predictive error and
uncertainty, while the Pearson Correlation Coefficient (PCC) Upadhyay et al. (2022) measures the
correlation between them, with higher values indicating better alignment.

3.2 BASELINES AND EXPERIMENT DETAILS

Baselines. In our comparative evaluation, we incorporate several state-of-the-art approaches, each
representing prominent strategies. The baselines are grouped into two categories, reflecting the
key challenges addressed by SURE: (1) Reconstruction methods for missing modalities, and (2)
Uncertainty estimation methods. The reconstruction techniques include ActionMAE Woo et al.
(2023), DiCMoR Wang et al. (2023), and IMDer Wang et al. (2024). For uncertainty estimation,
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we evaluate against the Gaussian Maximum Likelihood method Kendall & Gal (2017b); Wang et al.
(2019a), Monte Carlo Dropout Maddox et al. (2019); Laves et al. (2019); Srivastava et al. (2014),
and Ensemble Learning Lakshminarayanan et al. (2017). The original codebases of all baseline
implementations are used for best reproducibility.

Experiment details. For all reconstruction methods, we use the same pretrained frameworks as
SURE for fair comparison. Uncertainty estimation methods are integrated into the SURE* + pre-
trained models pipeline, where SURE* is a deterministic version using MSE loss instead of our
proposed Lrec(., .). Training datasets are modified with 50% of each modality’s samples masked as
missing, using distinct masks across modalities. Detailed settings are in Appendix A.1.4.

3.3 MAIN RESULTS

The reported results include the performance of each pipeline given either unimodal inputs (only a
single modality available) or full inputs (all modalities available), averaged over three runs with dif-
ferent random seeds. The best and second-best metrics are highlighted in red and blue, respectively.

Sentiment Analysis. The results for the CMU-MOSI dataset are summarized in Table 1. SURE and
its variations consistently outperform recent reconstruction techniques, highlighting their effective-
ness in handling missing modalities. SURE’s ability to reconstruct missing data on the fly during
training allows every sample to be fully utilized, leading to improved final outputs. Among the
modalities, audio appears to be less effective for the downstream task. All methods perform better
when text is available compared to when only audio is used, and uncertainty estimation also declines
when relying solely on audio.

Table 1: Results of different approaches on CMU-MOSI Dataset.

Model MAE Corr F1 Acc Reconstruct
Uncertainty Corr

Output
Uncertainty Corr Output UCE

T(ext) A(udio) F(ull) T A F T A F T A F T A T A F T A F

Modality Reconstruction Techniques:
ActionMAE 1.106 2.146 1.005 0.506 0.155 0.517 0.717 0.57 0.719 0.724 0.423 0.725 - - - - - - - -
DiCMoR 0.811 1.227 1.106 0.783 0.427 0.537 0.854 0.57 0.65 0.856 0.585 0.654 - - - - - - - -
IMDer 0.707 1.237 1.106 0.797 0.438 0.544 0.846 0.524 0.62 0.846 0.564 0.634 - - - - - - - -

Uncertainty Estimation Techniques:
SURE + Gaussian MLE 0.589 1.133 0.581 0.866 0.53 0.871 0.88 0.676 0.885 0.879 0.678 0.882 0.103 0.013 0.067 0.032 0.059 0.425 0.476 0.385
SURE + MC DropOut 0.63 1.153 0.622 0.858 0.556 0.865 0.877 0.686 0.899 0.876 0.684 0.9 0.047 0.008 0.013 0.009 0.13 0.496 0.51 0.396
SURE + DeepEnsemble 0.592 1.071 0.582 0.868 0.58 0.871 0.886 0.714 0.889 0.885 0.716 0.888 0.062 0.031 0.024 0.074 0.082 0.497 0.492 0.389

SURE 0.602 1.148 0.583 0.865 0.557 0.869 0.896 0.685 0.891 0.894 0.684 0.89 0.739 0.732 0.381 0.18 0.485 0.315 0.429 0.285

Book Genre Classification. Similar to the sentiment analysis task, SURE outperforms recent re-
construction techniques in this classification task (Table 2), showing a stronger correlation between
uncertainty and error for both reconstruction and downstream tasks. In the Book Dataset, the text
modality proves to be highly effective for the downstream task, but it contributes less to uncertainty
estimation for both reconstruction and downstream tasks.

Table 2: Results of different approaches on Book Dataset.

Model F1 Acc Reconstruct
Uncertainty Corr

Output
Uncertainty Corr Output UCE

T(ext) I(mage) F(ull) T I F T I T I F T I F

Uncertainty Estimation Techniques:
ActionMAE 0.277 0.271 0.35 0.186 0.166 0.311 - - - - - - - -
DiCMoR 0.202 0.465 0.467 0.152 0.452 0.454 - - - - - - - -
IMDer 0.204 0.376 0.374 0.155 0.368 0.367 - - - - - - - -

Modality Reconstruction Techniques:
SURE + Gaussian MLE 0.676 0.238 0.685 0.665 0.233 0.672 0.137 0.233 0.358 0.349 0.468 0.193 0.198 0.115
SURE + MC DropOut 0.653 0.491 0.669 0.65 0.466 0.658 0.243 0.334 0.174 0.186 0.41 0.249 0.222 0.134
SURE + DeepEnsemble 0.682 0.327 0.684 0.673 0.31 0.673 0.128 0.135 0.144 0.214 0.227 0.242 0.231 0.177

SURE 0.683 0.413 0.696 0.671 0.401 0.688 0.637 0.833 0.373 0.481 0.474 0.211 0.19 0.103

Human Action Recognition. As suggested in Table 3, SURE consistently delivers the best per-
formance on downstream tasks across all scenarios. Output uncertainty most closely reflects actual
error when the Watch Accel modality is available. However, we observe that a modality effective
for downstream task performance may not always contribute equally to uncertainty estimation. This
is likely due to the independent nature of error distributions across different modality combinations,
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which leads to a divergence between downstream task performance and uncertainty estimation. Ex-
tended report with every input modalities combination is presented in Appendix A.3.1.

Table 3: Results of different approaches on UTD-MHAD Dataset.

Model F1 Acc Reconstruct
Uncertainty Corr

Output
Uncertainty Corr Output UCE

V(ideo) A(ccel) G(yro) F(ull) V A G F V A G V A G F V A G F

Modality Reconstruction Techniques:
ActionMAE 0.044 0.204 0.303 0.531 0.059 0.231 0.311 0.537 - - - - - - - - - - -
DiCMoR 0.069 0.473 0.52 0.653 0.033 0.408 0.472 0.636 - - - - - - - - - - -
IMDer 0.089 0.157 0.141 0.687 0.069 0.158 0.145 0.689 - - - - - - - - - - -

Uncertainty Estimation Techniques:
SURE +
Gaussian MLE 0.116 0.433 0.468 0.693 0.074 0.381 0.387 0.651 0.166 0.115 0.056 0.122 0.476 0.147 0.292 0.451 0.233 0.351 0.281

SURE +
MC DropOut 0.156 0.473 0.595 0.739 0.09 0.404 0.571 0.718 0.122 0.135 0.171 0.136 0.486 0.223 0.512 0.274 0.149 0.257 0.137

SURE +
DeepEnsemble 0.25 0.468 0.593 0.737 0.207 0.453 0.604 0.735 0.249 0.175 0.122 0.126 0.421 0.436 0.481 0.311 0.208 0.187 0.133

SURE 0.161 0.462 0.607 0.739 0.121 0.431 0.59 0.74 0.878 0.837 0.863 0.226 0.53 0.306 0.568 0.301 0.104 0.226 0.009

Summary. Compared to other uncertainty estimation methods, our LPCC loss relaxes strict mag-
nitude constraints, allowing it to efficiently learn uncertainty and accurately capture model errors
based on both input and the model’s stochastic nature. The recorded metrics show a strong correla-
tion between uncertainty and error for both reconstruction and downstream tasks, further validating
the effectiveness of SURE.

Table 4: Results of different SURE’s variations of
SURE on UTD-MHAD Dataset.

Model F1 Acc Reconstruct
Uncertainty Corr

Output
Uncertainty Corr

(1a) Full 0.151 0.098 - 0.124

Video 0.095 0.094 - 0.128
Accel 0.059 0.081 - 0.322
Gyro 0.408 0.413 - 0.122

R
ec

on
tr

uc
t

A
bl

at
io

n

(1b)

Full 0.519 0.525 - 0.524

Video 0.173 0.117 - -
Accel 0.479 0.427 - -
Gyro 0.589 0.571 - -(2a)

Full 0.736 0.727 - -

Video 0.15 0.113 - 0.159
Accel 0.456 0.489 - 0.489
Gyro 0.512 0.462 - 0.237U

nc
er

ta
in

ty
E

st
.A

bl
at

io
n

(2b)

Full 0.637 0.593 - 0.511

Video 0.031 0.005 0.684 0.026
Accel 0.226 0.237 0.675 0.441
Gyro 0.434 0.418 0.68 0.463

Pr
et

ra
in

in
g

A
bl

at
io

n

(3)

Full 0.615 0.618 - 0.472

Video 0.161 0.121 0.878 0.226
Accel 0.462 0.431 0.837 0.53
Gyro 0.607 0.59 0.863 0.306SURE

Full 0.739 0.74 - 0.568

PCC NLL

Figure 4: Correlation of estimated un-
certainty with prediction error on UTD-
MHAD dataset.

4 ANALYSES

4.1 ABLATION STUDY.

Settings. We analyze the impact of various modules on SURE’s performance in both uncertainty
estimation and downstream tasks. This analysis includes testing several ablated versions of SURE:

(1a) Remove ri(.) modules: Ignore incomplete samples during training.
(1b) Rule-based imputation: Replace missing modalities with zeros.
(2a) Remove uncertainty estimation: Train ri(.) with MSE only, no uncertainty estimation.
(2b) Remove reconstruction uncertainty: Train ri(.) with MSE; omit error propagation logic.

(3) Remove pretrained weights: Reinitialize and train backbone frameworks from scratch.

Results. We present the performance of all SURE variations on the UTD-MHAD dataset in Table 4.
Overall, each ablation negatively impacts SURE’s performance in its respective tasks. Specifically,
ignoring missing modalities (1a) or using simple rule-based imputation (1b) significantly reduces
downstream task performance, as a substantial portion of incomplete yet labeled data remains un-
derutilized. Additionally, while removing uncertainty estimation logic has a negligible effect on the
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(a) Modality 0 is miss-
ing

(b) Modality 1 is miss-
ing

(c) Modality 2 is miss-
ing

Figure 5: Relationship between estimated output uncertainty and
output error on UTD-MHAD test dataset.

(a) Modality 0 is miss-
ing

(b) Modality 1 is miss-
ing

(c) Modality 2 is miss-
ing

Figure 6: Relationship between estimated output uncertainty and
reconstruction uncertainty on UTD-MHAD test dataset.
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Figure 7: Decision Making
Process with Uncertainty on
UTD-MHAD Dataset.

final task result (2a), the inability to quantify output uncertainty from reconstructed inputs negatively
impacts the accuracy of final estimations (2b). Lastly, the results from variation (3) reinforce our
motivation: utilizing pretrained weights is far more efficient and beneficial, especially for smaller
datasets involving similar tasks.

4.2 ANALYSES FOR ESTIMATED UNCERTAINTY.

Convergence Analysis. We visualize the correlation between estimated uncertainties and prediction
errors across all training epochs in Figure 4. Compared to the Negative Log-Likelihood Loss (NLL),
LPCC demonstrates superior performance in both convergence speed and final estimation accuracy.
Additionally, the shape of the NLL curve suggests instability, as the correlation trend declines after
reaching its peak. Although there are fluctuations, our loss maintains an overall upward trend,
eventually stabilizing in the final epochs. This experimental results are highly in accordant with our
theoretical analysis of convergence points for NLL loss and our proposed loss (Appendix A.1.1).

Reconstruction and Output Uncertainty Analysis. To better understand the relationship between
prediction error, reconstruction uncertainty, and output uncertainty, we visualize these three quanti-
ties across all test samples in the UTD-MHAD dataset, with different modalities combinations where
each modality is missing. Ideally, the points should cluster along the bottom-left to top-right diago-
nal, indicating perfect correlation. With SURE, we observe high efficiency in estimating uncertainty
for samples with large prediction errors, which aligns with its intended use as an indicator for poten-
tially error-prone predictions (Figure 5). Notably, when output uncertainties are high, reconstruction
uncertainties tend to be elevated as well (Figure 6), suggesting that uncertainties arising from the
reconstruction process play a significant role in the overall uncertainty estimation. However, the
visualization also indicates a tendency toward overestimating both reconstruction and output uncer-
tainties, highlighting an area for potential improvement in future research.

4.3 APPLICATION: UNCERTAINTY-INFORMED DECISION MAKING WITH SURE

Settings. To demonstrate the impact of SURE’s uncertainty quantification on decision-making, we
simulate this process using a human action recognition task with the UTD-MHAD dataset. SURE
is trained with similar settings to those used in the main experiment (Table 3). After training, we
use the uncertainty estimates to determine whether the model is confident enough to make a final
decision or if it should defer the decision for manual inspection. Different uncertainty thresholds
are set based on output uncertainty values from the test dataset. For each threshold, predictions with
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uncertainty higher than the threshold are deferred, and we record Accuracy, True Deferral Rate,
and False Deferral Rate (representing the rate of correctly and incorrectly deferred samples) across
all test samples.

Results. Figure 7a shows that as more uncertain predictions are deferred, the remaining predictions
become more challenging, resulting in a decline in accuracy. This suggests that while the deferral
strategy successfully excludes uncertain predictions, it also leaves a set of samples that are inherently
harder to predict accurately. Additionally, Figure 7b demonstrates that as the uncertainty threshold
increases, the true deferral rate rises, while the false deferral rate falls. This indicates that the
model effectively identifies uncertain predictions (leading to more true deferrals) while reducing
unnecessary deferrals. The point at which the true deferral rate surpasses the false deferral rate
represents an optimal balance, maximizing decision quality and minimizing unwarranted deferrals.
Combining the extended decision-making process under missing modality conditions (as presented
in Appendix A.3.2), this analysis indicates that SURE’s estimated uncertainty is a reliable indicator
for ensuring high prediction quality.

5 RELATED WORKS

Multimodal missing modalities. Recent research has focused on developing models that are re-
silient to missing modalities Ma et al. (2021; 2022); Poklukar et al. (2022); Woo et al. (2023); Lee
et al. (2023a). For example, Smil Ma et al. (2021) employs Bayesian meta-learning to approximate
latent features for modality-incomplete data. GMC Poklukar et al. (2022) maintains geometric align-
ment in multimodal representations, allowing unimodal representations to substitute for missing
modalities. Similarly, ActionMAE, inspired by the masked autoencoder framework Feichtenhofer
et al. (2022); Bachmann et al. (2022), learns to predict the latent representation of a missing modality
by randomly dropping its feature token and reconstructing it. Despite success in specific scenarios,
these approaches rely heavily on labeled data and lack uncertainty analysis for incomplete inputs,
reducing their real-world reliability. SURE addresses these gaps by leveraging pretrained models
with fewer labeling requirements and providing a reliable system for estimating uncertainty in both
reconstruction and output.

Uncertainty Estimation. Recent methods for uncertainty estimation in predictions primarily rely
on Bayesian models Lakshminarayanan et al. (2017); Kendall & Gal (2017c). However, while these
models can estimate uncertainty, their predictive performance often lags behind other approaches.
Some post-hoc works have explored using Laplace approximation to estimate uncertainty Daxberger
et al. (2021); Eschenhagen et al. (2021), but these methods require computing the Hessian ma-
trix, making them infeasible for high-dimensional problems Fu et al. (2018). Another direction
involves test-time data augmentation Wang et al. (2019b); Ayhan & Berens (2018), where mul-
tiple outputs are perturbed to estimate uncertainty. However, this approach is sometimes poorly
calibrated, which is critical for accurate uncertainty estimation Gawlikowski et al. (2023). SURE
offers a more efficient alternative by estimating uncertainty without compromising predictive perfor-
mance on downstream tasks. Unlike Laplace approximation, SURE avoids computational issues in
high-dimensional spaces, and it does not rely on test-time perturbations, ensuring better-calibrated
uncertainty estimates across diverse settings. Additionally, SURE imposes no assumptions on the
output size, making it more flexible for a variety of applications.

6 CONCLUSION

Contributions. This work introduces SURE (Scalable Uncertainty and Reconstruction Estimation),
which leverages pretrained multimodal frameworks for small datasets with missing modalities using
latent space reconstruction. SURE integrates uncertainty estimation via a Pearson Correlation-based
loss and error propagation, ensuring reliable predictions and adaptability across tasks and networks.
It achieves state-of-the-art results in both downstream performance and uncertainty estimation.

Limitations. In developing SURE, we observed that certain modalities dominate the reconstruction
process, making it easier to predict missing ones but causing significant performance drops when un-
available. This imbalance, unexplored in the current SURE framework, may limit the development
of robust reconstruction modules and presents a valuable direction for future work.
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REPRODUCABILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work, focusing on several key
areas:

• Code Availability: The complete codebase for this work, including all models, training
scripts, and evaluation procedures, is prepared. Upon acceptance, this code will be open-
sourced and made publicly available on GitHub.

• Dataset Preparation: Detailed instructions for dataset setup, including any preprocessing
steps and data splits used in our experiments, are provided in Section 3, enabling other
researchers to replicate our exact experimental conditions.

• Hardware and Hyperparameters: A comprehensive description of the hyperparameters used
in our experiments, including optimization settings, the GPUs used, and other configuration
details, is provided in Appendix A.2.

• Architecture Transparency: Detailed descriptions of our model architectures are provided
in Appendix A.1.4, ensuring others can understand and reconstruct the models accurately.

• Evaluation Metrics: The exact definitions of all evaluation metrics used are provided in
Section 3 of the main paper.

By offering this comprehensive set of resources, we aim to facilitate the reproduction of our results
by the research community. We believe that this level of transparency is crucial for advancing the
field and supporting thorough validation and extension of our work.
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A APPENDIX

A.1 SURE’S ADDITIONAL DETAILS

A.1.1 NEGATIVE LOG LIKELIHOOD LOSS FOR UNCERTAINTY ESTIMATION

Analysis for the convergence of LNLL(., .).

The detailed derivation of the gradient of LNLL with respect to prediction ỹi is:

∂LNLL(ỹ, σ̃
2)

∂ỹi
=

∂
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2
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σ̃2
i

.

Solving ∂LNLL(ỹ,σ̃2)
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= 0 give us the closed form solution ỹ∗i = yi (One can further verify sufficient

condition ∂2LNLL(ỹi,σ̃
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Similarly, gradient of LNLL with respect to σ̃2
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Setting ∂LNLL(ỹ,σ̃2)
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= 0 yield σ̃2∗

i = ϵ̃2i . Verifying the sufficient condition:
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This test result indicates a local minimum at σ̃2∗
i = ϵ̃2i .

The issue optimizing LNLL(ỹ, σ̃
2) come up when ϵ̃i → 0, this pull the gradient ∂LNLL(ỹi,σ̃

2
i )

∂σ̃2
i

to

the form 0
0 , which is mathematically undefined. This pose a significant issue for gradient-based

optimization algorithms like Gradient Descent and cause arbitrary potential issues (gradient vanish-
ing/exploding, numerical under/overflow sensitive to small changes of ϵ̃2, etc).

Analysis for the convergence of LPCC(., .).

For this analysis, we focus on the convergence for finding optimal σ̃2∗
i of LPCC(., .). With:
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2, ϵ̃2) = 1− r(σ̃2, ϵ̃2);

r(σ̃2, ϵ̃2) =

∑N
i=1

(
σ̃2
i − µσ2

) (
ϵ̃2i − µϵ2

)√∑N
i=1 (σ̃

2
i − µσ2)

2
√∑N

i=1 (ϵ̃
2
i − µϵ2)

2
:=

A

B
.

We have:

∂LPCC(ỹ, σ̃
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Also,
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j=1

(
σ̃2
j − µσ2

)2
, σϵ̃2 :=

∑N
j=1

(
ϵ̃2j − µϵ2

)2
, we have:

∂B

∂σ̃2
i

= σϵ̃2
1

2σσ̃2

∂

∂σ̃2
i

N∑
j=1

(
σ̃2
j − µσ2

)2
= σϵ̃2

1

2σσ̃2

 N∑
j=1

2(σ̃2
j − µσ2)(δij −

1

N
)


= σϵ̃2

1

2σσ̃2

2(σ̃2
i − µσ2)− 2

N

N∑
j=1

(σ̃2
j − µσ2)


= σϵ̃2σσ̃2

σ̃2
i − µσ2

σ2
σ̃2

Assembling the results, we have:

∂LPCC(ỹ, σ̃
2)

∂σ̃2
i

= −∂r(ỹ, σ̃2)

∂σ̃2
i

= − 1

B

∂A

∂σ̃2
i

+
A

B2

∂B

∂σ̃2
i

= − ϵ̃2i − µϵ2

σϵ̃2σσ̃2

+
σ̃2
i − µσ2

σ2
σ̃2

∗
∑N

j=1

(
σ̃2
j − µσ2

) (
ϵ̃2j − µϵ2

)
σϵ̃2σσ̃2

= − ϵ̃2i − µϵ2

σϵ̃2σσ̃2

+
σ̃2
i − µσ2

σ2
σ̃2

∗ r(σ̃2, ϵ̃2)

=
1

σσ̃2

[
σ̃2
i − µσ2

σσ̃2

∗ r(σ̃2, ϵ̃2)− ϵ̃2i − µϵ2

σϵ̃2

]
=

1

σσ̃2

[
σσ̃2 ∗ r(σ̃2, ϵ̃2)− σϵ̃2

]
.

This last result suggest the gradient ∂LPCC(ỹ,σ̃2)
∂σ̃2

i
involves all standardized variables, which are

within a manageable numerical range, reducing the risk of numerical instability. In addition, there
is no divisions by σ̃2

i , hence stabilize the training process even in the event when ϵ̃2i → 0.

A.1.2 RECONSTRUCTION MODULES.

SURE involves a set of reconstruction modules to best leverage the pretrained models’ weights.
Each reconstruction module is tailored for a specific modality, hence this reconstruction logic is
linearly scale with the total number of modalities.

Design. While not mentioned in SURE logic, it should be noted that all zj are first linearly projected
into a shared latent space wherever needed, before passing to the reconstruction modules. This step
involves a single matrix multiplication done per modality, and the learnable matrix is trained together
with the reconstruction modules. With that, all ri(.)’s are working with the same input latent space,
we unify the design of ri(.)’s to be identical across different modalities. Specifically, the design
of reconstruction module ri(.) is kept as simple as possible, with the major component as Fully
Connected layers and ReLU activations as follow:

rishare(z
j) = FC(ReLU(FC(zj))),

riµ(z
j) = FC(ReLU(FC(ReLU(rishare(z

j))),

riσ(z
j) = SoftP lus(FC(ReLU(FC(ReLU(rishare(z

j)||riµ(zj))).
(10)
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In Equation 10, || denotes the concatenation operation, and SolfP lus() activation is used to ensure
the positiveness of returned uncertainty.

Complexity. Below, we analyze the complexity of the chosen reconstruction modules. Table 5 lists
hyper-parameters involved in the analysis.

Table 5: ri(.) related hyper-parameters

Notation Description

M number of modalities
L number of FC layers (in total)
di hidden dimension of ith layer’s output
d0 input dimension

Time Complexity. Assume a single multiplication or summation operation can be performed in unit
time (O(1)). We have the calculation for number of operations in a forward pass as follows.

Within the ith FC layer:
di−1 ∗ di + di,

Over L layers:
L∑

i=1

di−1 ∗ di + di.

In our implementations, we choose the same dimensions for all hidden outputs (same d = di∀i =
1, . . . , L), and there are M modules ri(.). With this, the total number of operation is:

M

L∑
i=1

di−1 ∗ di + di = M ∗ L ∗ d ∗ (d+ 1) = O(M ∗ L ∗ d2)

By utilizing matrix product and GPU acceleration, d2 operations can in fact be performed in O(1)
time, make the whole time complexity for individual branches beO(M ∗L), which is linearly scaled
with M .

Space Complexity. Regarding the space complexity, within ith layer, beside the need for storing
parameter matrix of size (di−1 + 1) × di, output after performing ReLU activation are also stored
to later perform back-propagation. Hence, the total number of stored parameters is:

(di−1 + 1) ∗ di + di = (di−1 + 2) ∗ di.

Following similar derivation with L layers and M branches, replacing d = di∀i = 1, . . . , L, we
have the total space complexity is:

M ∗ L ∗ (d+ 2) ∗ d = O(M ∗ L ∗ d2).

Despite utilizing straightforward reconstruction procedure, SURE demonstrates effective recon-
struction in the latent space while maintaining an overall additional time and space complexity
linearly scaled with M - the number of all modalities and L - the number of FC layers (6 in our
implementation including both reconstruction and uncertainty heads).

A.1.3 EXTENSION TO M MODALITIES.

For extension to M modalities, we train the reconstruction module using Lrec. We use each of the
available modalities as the ground-truth output and the rest available modalities as input to predict.
In the second phase, we freeze all of the reconstruction modules and train the classifier head with
Ldownstream. For each sample with missing modalities, we reconstruct them with remaining avail-
able ones, and perform simple average operation to obtain the final reconstruction. Algorithm 1
summarize the whole training process of SURE for m ≥ 2 modalities.
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Algorithm 1 SURE training process
Input:
▷ Dtrain = {(xi

k);yk|i ∈ Ik − set of indices for available modalities in sample kth}.
▷ f i(.) - frozen pretrained projectors; ri(.) - reconstruction modules (i = 1, . . . ,M).
▷ ω(.) - frozen pretrained fusion module; g(.) - classifier head.
Output:
▷ ri∗(.) - Trained reconstruction modules; g∗(.) - Trained classifier head (i = 1, . . . ,M).

1: Initialize ri(.)’s and g(.)
▷ Train reconstruction modules

2: for mini-batch B ∈ Dtrain do
3: lrec ← 0;
4: for i ∈ {1, . . . ,M} do
5: lirec ← 0;

6: for j ∈ {1, . . . ,M}; j ̸= i do
7: zik = f i(xi

k) (∀k : i ∈
Ik);

8: z̃ik, σ̃
i
k ← ri(zjk) (∀k :

i, j ∈ Ik);
9: lirec ← lirec+Lrec(zi; zj);

10: end for
11: lrec ← lrec + lirec;

12: end for
13: Backprop with lrec;
14: Optimizer step;
15: end for

16: Freeze reconstructed modules ri(.);
▷ Train classifier head

17: for mini-batch B ∈ Dtrain do
18: zik = f i(xi

k) (∀i : i ∈ Ik);
19: For ∀i, j; i /∈ Ik, j ∈ Ik:
20: z̃ij−k, σ̃

i
j−k = ri(xj

k));
21: z̃ik = average(z̃ij−k));
22: σ̃2

z̃i
= average(σ̃i

j−k);

23: ỹk, σ̃ω−k ← g(ω(zik, z̃
j
k))

24: σ̃input−k ←
∑

i/∈Ik

(
∂ω
∂z̃i

k

)2
σ̃2
z̃i

;

25: σ̃2
ỹk
← σ̃input−k + σ̃ω−k;

26: ldownstream ← Ldownstrean(ỹk;yk);
27: ly−pcc ← LPCC(σ̃

2
ỹk
; ldownstream);

28: Backprop with ly−pcc and ldownstream;
Optimizer step;

29: end for

A.1.4 ADDITIONAL IMPLEMENTATION DETAILS

SURE’s Implementation Details. In SURE, we reutilize pretrained multimodal frameworks chosen
for specific tasks. The only replacement is the final layers producing prediction, since the classifi-
cation task might involve different number of classes, and there is an additional output head for
estimation of output uncertainty.

Sentiment Analysis. We use MMML Wu et al. (2024) trained on the CMU-MOSEI dataset Zadeh
et al. (2018) as the pretrained framework. SURE’s reconstruction modules are added right after
the projection modules - Text/Audio feature networks in original paper’s language Wu et al. (2024).
Their fusion network are kept intact to leverage most pretrained weights as possible. We replace the
last fully connected layer - classifier with two layers - one for the final output and one for estimated
output uncertainty.

Book genre classification. We integrate SURE with MMBT Kiela et al. (2019), a pretrained frame-
work on the MM-IMDB dataset Arevalo et al. (2020). MMBT is a bitransformer architecture, hence
we consider the all the processing before positional embedding and segment embedding as the pro-
jection logic (refer to Kiela et al. (2019) for clearer architecture details), and add our reconstruction
modules are inseted after this logic. The remaining transformer logic are considered fusion modules,
and kept intact.

Human Action Recognition. We use HAMLET framework Islam & Iqbal (2020), pretrained on
the large-scale MMAct dataset Kong et al. (2019) for this task. HAMLET define their projection
modules as Unimodal Feature Encoders Islam & Iqbal (2020). SURE’s reconstruction modules are
included right after these encoders, while retain their original MAT module.

Baselines’ Implementation Details. For all baselines, we also reutilize pretrained multimodal
frameworks chosen for specific tasks like the adoptation with SURE. In addition, the hidden dimen-
sion used within Reconstruction-based baselines are also modified to be the same as those SURE
for fair comparison.
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A.2 ENVIRONMENT SETTINGS

All implementations and experiments are performed on a single machine with the following hard-
ware setup: a 6-core Intel Xeon CPU and two NVIDIA A100 GPUs for accelerated training.

Our codebase is primarily built using PyTorch 2.0, incorporating Pytorch-AutoGrad for deep learn-
ing model development and computations. We also use tools from Scikit-learn, Pandas, and Mat-
plotlib to support various experimental functionalities. The original codebase for SURE will be
released publicly upon publication.

A.3 ADDITIONAL EXPERIMENTS AND ANALYSES

A.3.1 EXTENDED MODALITIES MISSING SCENARIOS

In Table 6, we provide a comprehensive evaluation of different frameworks across all combinations
of input modalities on the UTD-MHAD dataset. This table expands on the information presented
in Table 3 in the main text. The reported reconstruction uncertainty for cases with more than one
available modality is averaged over all missing modalities (e.g., given (Video + Accel) inputs, the re-
ported reconstruction uncertainty represents the average value for Gyro reconstruction). The results
show that SURE consistently delivers the best performance in most uncertainty estimation scenarios
while maintaining competitive results for the downstream task, underscoring its robustness across
different missing modality situations.

A.3.2 EXTEND DECISION MAKING ANALYSIS
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Figure 8: Decision Making with uncertainty when Video is missing
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Figure 9: Decision Making with uncertainty when Accel is missing
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Table 6: Results of different approaches on UTD-MHAD Dataset given every possible combination
of input modalities.

Model F1 Acc Reconstruct
Uncertainty Corr

Output
Uncertainty Corr

Video 0.044 0.059 - -
Accel 0.204 0.231 - -
Gyro 0.303 0.311 - -
Video + Accel 0.034 0.085 - -
Video + Gyro 0.301 0.305 - -
Accel + Gyro 0.31 0.306 - -

ActionMAE

Full 0.531 0.537 - -

Video 0.069 0.033 - -
Watch Accel 0.473 0.408 - -
Phone Gyro 0.52 0.472 - -
Video + Accel 0.524 0.449 - -
Video + Gyro 0.536 0.553 - -
Accel + Gyro 0.577 0.586 - -

DiCMoR

Full 0.653 0.636 - -

Video 0.089 0.069 - -
Watch Accel 0.157 0.158 - -
Phone Gyro 0.141 0.145 - -
Video + Accel 0.152 0.152 - -
Video + Gyro 0.248 0.257 - -
Accel + Gyro 0.316 0.278 - -

M
od

al
R

ec
on

st
ru

ct
io

n

IMDer

Full 0.687 0.689 - -

Video 0.116 0.074 0.166 0.122
Watch Accel 0.433 0.381 0.115 0.476
Phone Gyro 0.468 0.387 0.056 0.147
Video + Accel 0.432 0.443 0.104 0.237
Video + Gyro 0.462 0.502 0.095 0.143
Accel + Gyro 0.639 0.67 0.242 0.29

SURE* +
Gaussian MLE

Full 0.693 0.651 - 0.292

Video 0.156 0.09 0.122 0.136
Watch Accel 0.473 0.404 0.135 0.486
Phone Gyro 0.595 0.571 0.171 0.223
Video + Accel 0.452 0.52 0.186 0.292
Video + Gyro 0.546 0.56 0.101 0.376
Accel + Gyro 0.618 0.639 0.201 0.417

SURE* +
MC DropOut

Full 0.739 0.718 - 0.512

Video 0.25 0.207 0.249 0.126
Watch Accel 0.468 0.453 0.175 0.421
Phone Gyro 0.593 0.604 0.122 0.436
Video + Accel 0.652 0.662 0.092 0.346
Video + Gyro 0.776 0.781 0.176 0.462
Accel + Gyro 0.839 0.843 0.278 0.486

U
nc

er
ta

in
ty

E
st

im
at

io
n

SURE* +
DeepEnsemble

Full 0.737 0.735 - 0.481

Video 0.161 0.121 0.878 0.226
Watch Accel 0.462 0.431 0.837 0.53
Phone Gyro 0.607 0.59 0.863 0.306
Video + Accel 0.542 0.606 0.873 0.412
Video + Gyro 0.609 0.637 0.862 0.379
Accel + Gyro 0.679 0.706 0.455 0.51

SURE

Full 0.739 0.74 - 0.568

Building on the main text analysis, we simulate the decision-making process on the UTD-MHAD
dataset under conditions where different modalities are missing (Figures 8, 9, 10). Each figure
represents the inference scenarios when the Video, Accel, or Gyro modality is absent. Similar
to the decision-making process with full modalities, incorporating uncertainty estimates in cases
with missing modalities continues to guide a reliable decision-making process by adjusting different
uncertainty thresholds.

A.3.3 ADDITIONAL COMPARISON WITH PROMPT-BASED TECHNIQUES
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Figure 10: Decision Making with uncertainty when Gyro is missing

Table 7: Additional results of different approaches on CMU-MOSI Dataset.

Model MAE Corr F1 Acc
T(ext) A(udio) F(ull) T A F T A F T A F

MPMM 0.683 1.197 0.668 0.83 0.495 0.834 0.87 0.69 0.874 0.871 0.689 0.875
MPLMM 0.624 1.166 0.607 0.838 0.509 0.842 0.865 0.697 0.879 0.865 0.694 0.879
SURE 0.602 1.148 0.583 0.865 0.557 0.869 0.896 0.685 0.891 0.894 0.684 0.89

We further compare our SURE pipeline with two representative approaches that use prompt-based
tuning techniques to address missing modalities Lee et al. (2023b); Guo et al. (2024). Similar to our
work, these approaches also leverage pretrained multimodal pipelines for efficient training. Their
key innovation lies in introducing trainable prompts to indicate the presence of missing modalities.

Setting. The chosen task for demonstration is Semantic Analysis task. In line with the CMU-
MOSI experiment described in the main text, both frameworks are implemented using the MMML
Wu et al. (2024) model, pretrained on the CMU-MOSEI dataset Zadeh et al. (2018). To ensure a
fair comparison, all core modules from the original codebases of the two approaches are preserved
to accurately replicate their performance. The training dataset is designed similarly to the main
experiment, with 50% of modalities randomly masked and treated as missing.

Result. As shown in Table 7, SURE outperforms the two prompt-based approaches in handling
missing modalities, achieving better downstream task performance. This advantage may stem from
the limited number of learnable parameters introduced by these techniques, which likely constrain
their ability to adapt effectively to scenarios with missing modalities.
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