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ABSTRACT

Multi-player multi-armed bandits have been researched for a long time due to their
application in cognitive radio networks. In this setting, multiple players select
arms at each time and instantly receive the feedback. Most research on this prob-
lem focuses on the content of the immediate feedback, whether it includes both
the reward and collision information or the reward alone. However, delay is com-
mon in cognitive networks when users perform spectrum sensing. In this paper,
we design an algorithm DDSE (Decentralized Delayed Successive Elimination)
in multi-player multi-armed bandits with stochastic delay feedback and establish
a regret bound. Compared with existing algorithms that fail to address this prob-
lem, our algorithm enables players to adapt to delayed feedback and avoid colli-
sion. We also derive a lower bound in centralized setting to prove the algorithm
achieves near-optimal. Numerical experiments on both synthetic and real-world
datasets validate the effectiveness of our algorithm.

1 INTRODUCTION

Multi-armed Bandits (MAB) is a classic framework widely applied in diverse fields such as on-
line advertising, clinical trials, and recommendation systems. In this framework, a single player
sequentially selects an arm k from a finite set [K] := {1,..., K} and receives a random reward
X} (t). However, in many real-world scenarios, the standard MAB framework may not adequately
capture the complexities involved. Considering cognitive radio systems which aim that spectrum
resources are shared efficiently to users, a key difference from the traditional MAB problem is that
when users select the same channel, they collide and no message is transmitted. This situation mo-
tivates multi-player multi-armed bandits (MMAB) framework in which M players simultaneously
pull arms. If two or more players pull the same arm, their rewards turn to zero which represents
failed transmission.

In multi-player bandits, the problem is categorized into centralized and decentralized settings. In
the centralized setting, players can freely share their rewards without any loss. Whereas this di-
rect communication would consume substantial energy in cognitive networks, recent studies have
primarily focused on the decentralized problem, where players cannot communicate directly. This
setting is more complex than centralized MMAB because it requires additional techniques to sim-
ulate communication between players. Most recent studies on decentralized MMAB (Boursier &
Perchet, 2019; Wang et al., 2020) simulate communication between players by forcing collisions, as
the occurrence or absence of a collision provides binary information on optimal arms.

However, in practical cognitive radio networks, a more realistic scenario involves users experiencing
delays in signal reception due to various inherent factors. These delays arise from spectrum analysis,
where different link layer protocols are needed for different spectrum bands to handle path loss
and wireless link errors, leading to different packet transmission delays at the link layer (Akyildiz
et al., 2006; Ahmad et al., 2020). Although these delays are common in real-world cognitive radio
networks, current research on decentralized MMAB (Xiong & Li, 2023; Xu et al., 2023; Richard
et al., 2024) largely overlooks this issue and most existing works discuss the setting that rewards are
immediately revealed after players pull arms. Actually, this setting does not align with the practical
challenges faced by users, where delays significantly alter the effectiveness of algorithms.

Delayed feedback in single-player bandits has received much attention for several years (Joulani
et al., 2013; Lancewicki et al., 2021; Tang et al., 2024). In their model, a player selects an arm but
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Table 1: Comparison of lower bound and upper bounds of algorithms. The first row comes from The-
orem 1. The second row is derived from Corollary 1, the third row is based on Theorem 2, and the last
row comes from Theorem 3. Define d; := E[d] —+/020/(1 — ), ds := E[d]+ /o2 log(1/(1 — 0))
and d3 := E[d] + \/o2log(K), where § € (0,1] is a quantile of delay distribution. o3 is
the sub-Gaussian parameter of delay distribution and E[d] is the expectation. We also define
Ay = pary — k-

Setting Algorithm Regret bound
Centralized lower bound Q (Zk>M los’i(z> + M Zk;M 2k di — %
Centralized DDSE o (Zk>M l‘;fgz) N EI’(‘f% 2k E[d])
Decentralized DDSE 0] (Zk>M I%E:A(? +dy + M Eka% 2k Jg)
. L log(T dod. d: E[d o
Decentralized DDSE (simplified)! O (Ek>M %k) +E2+ W + eXP(% + KT,%))

observes the reward only after a period of delay. Centralized MMAB can be tackled by slightly
adjusting the well-studied single-player bandit algorithms because players know the exploration
results of others at each time. In contrast, the decentralized problem is more difficult. Players
have to simulate communication by sending collisions but the feedback of collisions is delayed as
well. More importantly, since players are independent and do not know others, straightforward
applications of single-player algorithms do not work because players will all attempt to sample the
same best arm.

Current algorithms for decentralized MMAB, which rely on immediate feedback to coordinate
player actions, are ill-suited to scenarios where delays are introduced. These algorithms typically
depend on the timely reception of collision feedback to allow players to adjust their policies and
avoid future collisions. However, when feedback is delayed, players cannot determine the suc-
cess or failure of their actions in real time. This leads to a breakdown in the coordination among
players, resulting in frequent collisions and inefficient exploration of the arms. Therefore, existing
decentralized MMAB algorithms are not equipped to handle the complexities introduced by delayed
feedback, necessitating the development of new algorithms that address these challenges.

1.1 CONTRIBUTION

Motivated by the pressing challenge of delay in cognitive radio networks, we propose a novel ban-
dit framework where multiple players engage in a multi-armed bandit and if two or more players
select the same arm, none of them receive the reward. Crucially, in our framework, players receive
feedback after a period of stochastic delay, which complicates their ability to learn and adapt in real
time, making it exceedingly difficult to avoid collisions and optimize performance.

For this problem, we introduce an algorithm DDSE (Decentralized Delayed Successive Elimination
), where players are divided into a leader and several followers. The leader explores all arms and
gradually eliminates sub-optimal arms, while followers pull arms only from the set of best empirical
arms. Before each exploration phase begins, players coordinate to use the same best empirical arm
set based on the estimation of delay, ensuring that no collision occurs. At regular intervals, the
leader communicates the update to followers also using the coordinated set so that followers stay
synchronized and receive correct information.

Table 1 compares the regret bound of our algorithm with DDSE_without_delay_estimation which
is a simplified version of DDSE. In this version, players do not make estimations on delay and
directly pull arms in the latest updated set of best empirical arms. This leads to collisions after
every communication ends and derives O(ds/0KM ", . \; A?) + O(dads/K M). The regret due
to incorrect communication is bounded by exp(E[d]/ K M + o2/ K?M?) which grows exponentially
with increasing E[d] and o2.

!Simplified version of DDSE. In this algorithm, players do not estimate delay and wait for others.
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Through careful algorithm design, DDSE successfully performs communication and thus prevents

M2k>1vl

this exponential term. The added term O(—5#>17 S Jg) is the regret that players coordinate with

each other to select the same set of best empirical arms. Compared with O(%E[d]) in
the centralized upper bound, the regret of our algorithm in the decentralized setting differs by only

O(% o2 log(K)), which diminishes when the delay remains stable. Additionally, we

establish a lower bound in Table 1 for centralized MMAB with delay, demonstrating that our regret
bound is near-optimal.

2 PRELIMINARIES

In this section, we describe the formulation for multi-player multi-armed bandits with delayed feed-
back. For a positive integer n, we will use [n] to represent {1, 2, ...,n}.

Denote M as the number of players and K as the number of arms. Note that M/ < K so that
there is at least one arm available for each player without mandatory overlap or collision. At time
s € [T, player j selects an arm k and gains a random reward X7 (s) which is drawn i.i.d. according
to unknown fixed distribution with expectation i € [0, 1]. Denote 77 as the arm that is selected
by player j at s. After pulling their arms, players do not observe feedback immediately. On the
contrary, they receive the feedback after delayed d? at t, i.e. s + d’ = t. If more than one players
select the same arm, they will collide with each other and none of them gets a reward. We define
Nk(s) := 1{#C}(s) > 1} as the collision indicator where Cj(s) := {j € [M] | 7] = k} is the set
of players who pull the same arms at time step s. Then we define r7(s) := X} (s) [1 — ny(s)] as the
reward that player j selects a arm k at s time step.

In this paper, we discuss collision sensing in which player j receives a tuple < r}.(s),n.(s),s >
where s is the previous time index. In real-world networks, transmission delays are naturally
bounded by physical and protocol limits, preventing extreme values (Azarfar et al., 2015). Sim-
ilarly, in single-player bandits, many works assume that delays are bounded by d,,.x which is a
fixed constant (Li & Guo, 2023; van der Hoeven et al., 2023; Wang et al., 2024). However, we do
not adopt this assumption; instead, we introduce a more relaxed assumption that allows for larger
delays, but with a low probability of occurrence, which aligns with real-world scenarios where large
delays in cognitive networks are rare.

Assumption 1 Let {d{ }tT:’JKj:l are independent non-negative random variables with sub-Gaussian

distribution. Denote 03 as the sub-Gaussian parameter and E[d] as the expectation of the distribu-

tion. Then for any a > 0,
2

P(|d] —E[d]| > a) < 2exp(— o).

203
This assumption allows for a practical modeling of the delay without imposing overly restrictive
conditions on its behavior, making it reasonable to capture the inherent variability and uncertainty
in network delays. We also define d(6) := min{y € N|P(d < 7) > 6} as the quantile function of
the delay distribution. Note that we allow E[d] and o4 to be unknown. Then the expected regret is
defined as

T
RTIZTZM(J‘)—E Zer(t) ,
JE[M] t=1 je[M]

where (15 is j-th order statistics of i, i.e. (1) = pi2) 2 - 2 H(K)-

3 ALGORITHM

The proposed algorithm DDSE (Decentralized Delayed Successive Elimination) is composed of
exploration phase, communication phase and exploitation phase. Players are divided into one leader
and M — 1 followers. Define p,.x as the maximum number of communication phases within a
given time horizon. We also define Mg, as the best empirical arm set of player j that the leader
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intends to pass to the followers during the p-th communication phase. Due to delays, players might
have different perceptions of M7, which will lead to collisions. A natural idea is that players use

previous M;, where p’ < p < pmax to maintain consistency with others. Considering cognitive
wireless sensor networks, sensor nodes are usually pre-deployed (Joshi et al., 2013), so they are
equipped with information on the total number of nodes and their ID. Consequently, we assume that
each player in our algorithms is initialized with her rank among all players and is aware of the total
number of them. Algorithm 1 describes DDSE from the view of the leader. The algorithm from the
view of followers is in Appendix C.1.

Algorithm 1 DDSE (Leader)
Input: K, M,
1: Initialize Mé‘é randomly, K = [K], eps = 0 (ending signal), p = 0, gar = 0, Si(t) = 0,
fu(t) = 0, it = 0 and (53)™ = 0:
2: whilet < T do

3 Explorein M) and K/ M

4 Update ', (67)™, Sk(t), fur(t);

5: Remove from K all arms k s.t. |{i € K|LCB.(i) > UCB(k)}| > M;

6: if t mod (K MTlog(T)]) = O then

T P & RNITIog(TT"

8: it MO % M then > communication phase
9: Communication(a,, , a;, ia; ,eM, ./\/ly_qM);
10: else VirtualCommunication(MB )
11: end if
12: Find qps s.t. (1); > coordinate to the same best empirical arm set
13: end if
14: if |IC| = M && epy = M && gy = 0 then > exploitation phase
15: Select M (M) until T'.
16: end if

17: end while

3.1 EXPLORATION

Denote [/, as player j’s estimation of E[d] and (63)7 as the estimation of o5 from player j. We
initialize M} for each player j € [M] and assign an ID to them. The player with ID M becomes the
leader and others are followers. In the beginning, these followers pull arms from the best empirical
arm set in a round-robin way. To avoid collision with followers and ensure sufficient exploration,
the leader first pulls arms in the set of best empirical arms with followers. Then she selects other
arms in K] in a round-robin way while skipping arms in the best arm set. In other words, the leader
constantly explores all arms except what has been eliminated. Players also estimate /7, and (62)7
when they receive the feedback.

We define Ny (k) := >, _, 1{m! = k,j = M} as the number of times that the leader chooses arm

before ¢. Define (k) := >, _, 1{m! = k,d]+s < t,j = M} as the number of received feedback
of the leader from arm k before t. When the leader receives the feedback of arm k at ¢ in exploration
phase, she updates

R 2log(T) X 2log(7)
UCB(k) := fu(t ———=, LOB(k) := ix(t) — | —=
t( ) I‘Lk( )+ nt(k) ’ t( ) /'[/k?( ) nt(k) I
where i, (t) := ff((ig is the empirical reward of arm k and Sy (t) is the sum of rewards that the

leader has collected on arm & by the end of time ¢. Define /C as the active arm set and it is initialized
as {1, ..., K'}. During the exploration phase, she eliminates an arm k from K at ¢ if there exist more
than M arms whose lower confidence bounds are bigger than UC By (t).

Due to the influence of delay, Mg #* M; if player [ does not receive the feedback from the p-th
communication phase. When they select arms in a round-robin way, different sets of best empirical
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arms might lead to collisions. To avoid this situation, players need to select a previous best empirical
arm set based on i/, and (0%)7. Specifically, by delay’s sub-Gaussian property, we know that when

t— pI M log(T) > E[d) + /203 log(M — 1)(K +2M)(T),

M;{; from the p-th communication phase has been received by all followers with high probability.
Therefore, the algorithm aims to identify ¢; € N which is defined as player j’s backward counting
number of communication phase, i.e. at the current time step ¢, all players have received results

of the (p — ¢;)-th communication phase, allowing them to use the same M;_ q; 0 avoid collision
caused by delay. Specifically, g; increases from 0 and when it satisfies

£ i+ 1/2(6%)7 log (M — 1)(K +2M)(T)) + (p — ¢;) KM log(T), (1)

then the (p — ¢;)-th result of communication is exactly what we want.

Note that the length of each exploration phase is fixed, rather than depending on the number of ac-
tive arms (Boursier & Perchet, 2019; Wang et al., 2020). This is because players receive feedback
at different times and have varying numbers of active arms, making it difficult to maintain synchro-
nization with a dynamic phase length. In our algorithm, players remain synchronized and select
arms from the same set of best empirical arms, ensuring collision-free exploration.

Sub-optimal arms in K are gradually eliminated by the leader. When || = M, she waited to
communicate with followers about the end of exploration. After that, the leader remains in the
exploration phase until gy = 0, at which point she moves to the exploitation phase and pulls
MM (M). When a follower j receives the ending signal and finds ¢; = 0, she will enter the

Pmax

exploitation phase and continuously select arm M7 () until T.

3.2 COMMUNICATION

Players enter the communication phase every K M log(T) times and the length of each communi-
cation phase is K + 2M/. On each communication beginning, if M;)VI #* /\/lé”_ 1, then the leader
begins communication. Otherwise, she runs a virtual communication (see Appendix C.1) to main-
tain synchronization with followers. Motivated by Wang et al. (2020), the communication phase in
our algorithm is divided into three parts. The first and second parts are used for removing and adding

an arm in M,,. The third part is used for the leader to send the ending signal. Denote a,, as the arm
to remove and a;r as the arm to add in the p-th communication phase. We also define ¢;, < M as the

position of arm k € M7,

Part 1: Remove Arm  The leader firstly identifies a, € M ]10\4 and finds its position ia;. Then in
this part, the leader selects arm Mﬁ{ q(ia;) for M consecutive rounds. Meanwhile, followers pull

arms from M?__ in a round-robin way, ensuring that each follower collides once with the leader.
Denote ag, as the arm that follower j selects and collides with the leader in the first part of the p-th
communication. Since M, is ordered for all p < ppax, followers can receive the update of the
leader to remove ./\/lg)(iag) during the p-th communication phase by selecting arms from M;_q.
Thus, the information is passed successfully even if M:{) is incomplete for follower 7, allowing our
algorithm to adapt to large delays.

Part 2: Add Arm In this part, the leader continuously pulls a™ for K rounds while followers
select arms in [K] in a round-robin way. Each follower also collides once with the leader. After
receiving both the collision from Part 1 and Part 2, followers place a™ in the position of M{)(ia;),

which does not break the order of M{,.

Part 3: Notify End If |[K| = M, it indicates that all the sub-optimal arms have been eliminated
and the leader selects arms in /\/lzjjw sequentially, while followers continuously select arm M ()

for M times. Otherwise, the leader does not send collisions by selecting /\/lé” (M) for M times.
Finally, each follower receives a collision which means the end of exploration.
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Algorithm 2 Communication (Leader) Algorithm 3 Communication (Follower)
Input: a,,, a,f, iqz > €M, /\/li,w_qj; Input: M) 4;»J (D of each player);
Part 1: Remove Arm Part 1: Remove Arm

1: for M time steps do 1: for M time steps do

2: Select M;’,”,qj (i) 2: m; < [(t + j) mod MJ;

3: end for 3: Select My, 4, (m;);
Part 2: Add Arm 4: end for

4: for K time steps do Part 2: Add Arm

5: Select a™; 5: for K time steps do

6: end for 6: m; < [(t+ j) mod KJ;
Part 3: Notify End 7: Select m;;

7. for M time steps do 8: end for

8: if |IC| = M then Part 3: Notify End

9: m; < [t mod M] and pyax < p; 9: for M time step do

10: em < enm + 13 10:  Select M;_, (j).

11: Select Mé‘{qj (my); 11: end for

12: else Select M} (M). end if

13: end for

The reason why our communication phase is fixed instead of beginning when Mg, changes is that
players need to ensure synchronization with others. In Wang et al. (2020), the leader sends a collision
to followers as the beginning signal of communication. However, when the feedback of this collision
is delayed, followers hardly receive it at the same time and then stagger with the leader. Once players
are not aligned with others, followers may receive incorrect information during the communication
phase. Furthermore, since communication and exploration are alternating, players might end up
selecting the same arm during the exploration phase, resulting in collisions.

Denote p’ as the communication phase whose result is the most recent to have been completely
received. If the delay is sufficiently small, players can receive the feedback from the p-th communi-
cation phase before the (p + 1)-th communication begins. Then ¢ = 0 in our algorithm and players
continue using M,,. We discuss DDSE_without_delay_estimation which is a simplified version of
our algorithm where players directly use M, in Appendix C.2. This version does not estimate /17,
or (62)7 and also does not coordinate players to pull in the same set of best empirical arms.

4 THEORETICAL ANALYSIS

In this section, we present a thorough analysis of our algorithms. The overall regret of multi-player
bandits problem is decomposed as Ry = Reypi+Reom, Where IR,y can be decomposed as e, =
RL 1 + RF 1 We also define § := minlSkSK_l(,u(k) — ﬂ(k+1))-

exp exp

4.1 CENTRALIZED LOWER BOUND

We first give a lower bound which establishes a foundational standard of this problem. In decen-
tralized multi-player bandits, players intentionally collide with others to simulate communication,
which inevitably results in some regret. Therefore, our goal is to minimize the communication du-
ration and the associated regret. To evaluate this, we compare our results with the centralized lower
bound to evaluate how the additional information exchange impacts regret reduction.

Theorem 1 For any sub-optimal gap set SA = {Ay | Ay = pary — pwy € [0, 1]} of cardinality
K — M and a quantile 0 € (0,1], there exists an instance with an order on Sa and a delay
distribution under Assumption 1 such that

- Oééziogm + (E[d] - ad\/z> % 3 A % ©)

k>M k>M
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The theorem describes the lower bound for centralized multi-player bandits with delayed feedback.
The result and demonstrates that our regret bound in Theorem 2 is near-optimal. The full proof of
this theorem is provided in Appendix G.

4.2 DDSE

Theorem 2 In decentralized setting, for delay distribution under Assumption 1, given any K, M, i1
and a quantile 0 € (0, 1], the regret of DDSE satisfies

Rp <> %gk(T) + (9 + W) Eld] + o4 (3\/6+6,/210g(119)>

k>M
O'dM
+ g k;/[Ak\/log (M —1)(K +2M)) + Ch,

2

where C1 =3, 912% + 4Me§726/2.

Compared with Theorem 1, the first term in Theorem 2 is aligned with (2) up to constant factors.
The difference between our regret bound and Theorem 1 arises from the decentralized setting, where
there is no direct way for players to communicate about rewards and collisions. The regret intro-
duced by the decentralized structure and delay remains independent of 7. Therefore, our result is
near-optimal. Therefore, they need to simulate communication through collisions and wait for other
players to maintain a consistent set of the best empirical reward arms. The proof of Theorem 2 is
divided into several lemmas and the complete proof can be found in Appendix D.

Lemma 1 In decentralized setting, for delay distribution under Assumption 1, given any K, M, i
and a quantile 0 € (0, 1], the regret of the exploration phase in DDSE is bounded as

323log(T") MA
< _— [ _
Reapi < kéM oA, + 2 K-u (QE[d] + o4/log(M — 1)(K + 2M)))

1
+30’d 210g (1_9) +3E[d] +02,

where Cy = 41‘/[%%52/2

This lemma demonstrates that the main regret of DDSE comes from exploration phase. The
second term on the right-hand side arises because, after the exploration phase ends, the leader
does not begin exploitation immediately. She still needs to select arms from M;W_ qu O wait
for followers who have not yet received the final feedback. The feedback is delayed for at
most E[d] + o41/log((M — 1)(K + 2M)) rounds which is proved in (12), and we multiply it by
% > k> Ax. Compared with Theorem 3, we prove that this approach of waiting for others to
avoid collisions is much better than ignoring the followers and updating blindly.

Lemma 2 In decentralized setting, for delay distribution under Assumption 1, given any K, M,
and a 6 € (0, 1], the regret in the communication phase is bounded by

195 1
Reom < —= + 304 | V6 +4/2log(~——) | + 6E[d].
A7 1-46
k>M

Players have a communication phase every K M log(T') rounds, and each communication phase lasts
for a fixed duration of K + 2M rounds. Since communication occurs only during the exploration
phase, the number of communication phases is Teqp; /K M log(T). Therefore, the regret incurred
during the communication phases remains constant with respect to 7T'.

Corollary 1 In centralized setting, for delay distribution under Assumption 1, given any K, M, u
and a quantile 0 € (0, 1], the regret of DDSE satisfies

323 1og(T) MY, A 0
< - = 7 s -
RT,IDEM AL +(3+ T oM E[d] + 304 10g(1—9)+02’
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When DDSE runs in centralized setting which means that players can exchange information freely,
there is no need for additional communication between players. Followers know the latest explo-
ration results of the leader. Once the leader identifies M*, they begin exploitation and do not cause
regret. Proof of Corollary is in Appendix E.

4.3 DDSE WITHOUT DELAY ESTIMATION

Theorem 3 (Comparison) In decentralized setting, for delay distribution under Assumption I,
given any K, M, and a quantile € (0,1], the regret of DDSE_without_delay_estimation is
bounded by

Rr< ), %gk(:ru <9+W>E[d]+0d <3\/5+6m>

k>M

E[d] O'?l (igéig (Zg
+ exp (KM +oeE) YO\ e RS, A2 + Cs.

If players do not estimate the delay and use the latest best empirical arm set Mé,, followers will
collide with the leader after each communication phase ends. This happens because the leader
begins communication after she updates M, while the followers have not yet received this update,
ultimately contributing to a regret of O(dyds /KM +ds /0K M Y s>z A7). Additionally, note that
followers may receive incorrect information during the communication phase if ./\/l;, # M f,v,[ , which

leads to an exponential regret term exp(E[d]/K + 02%/2K?). A more detailed proof is included in
Appendix F.

Compare Theorem 3 with Theorem 2 and we find by using ./\/lg)_qj instead of M, players

will not collide with each other after the communication ends, thereby avoiding O(dods/K M +
d3/0KM Y, .\ A7) which could be large when A? is sufficiently small. Moreover, since
M%,q], = ML _, forall j,I € [M], followers receive correct information from the leader, thus
eliminating the exponential term in the regret.

5 EXPERIMENTS

We conduct various numerical experiments to support our theoretical results. Define A :=
ZkK:_ll % as the average gap between two consecutive arms in terms of reward. All the
results are averaged over 20 runs rounds, with each experiment running for 7' = 300, 000 rounds.
The default parameters are set as K = 20, M = 10, A = 0.05, E[d] = 200 and 0, = 100. We
consider Gaussian rewards and compare the regret of DDSE with DDSE_without_delay_estimation
and SIC-MMAB (Boursier & Perchet, 2019). We also compare with MCTopM, RandomTopM and
Selfish in Besson & Kaufmann (2018); Game of Throne in Bistritz & Leshem (2018); ESER in
Tibrewal et al. (2019). Parameters are set the same with the original works. The interval and shadow
in our figures represent the standard error.

5.1 NUMERICAL SIMULATION

To evaluate the performance of our proposed algorithms under varying delay conditions, we con-
ducted two sets of experiments with different delay parameters. In Figure 1, we set o4 = 50 and
compare the results for different values of E[d]. Each group of four bars with the same color rep-
resents the performance of an algorithm under different delay expectations 50, 100, 200, and 500
respectively. Comparison on different o is in Appendix B. The experiments show that our algo-
rithms perform significantly better than others. As E[d] increases, DDSE achieves an improvement
of more than twofold in reducing regret compared to DDSE _without_delay_estimation.

Figure 2 reports the performance with varying numbers of players, with DDSE again outperform-
ing other algorithms. We also compare on larger number of players with A/ = 30 and M = 40
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Figure 1: Comparison on E[d]

in Appendix B. The results indicate that when M is small, DDSE_without_delay_estimation per-
forms significantly worse than DDSE. This occurs because the interval of each communication is
KMlog(T). When M is small, the interval becomes too short for followers to receive feedback
from the most recent communication phase. As a result, followers may obtain incorrect informa-
tion, leading to staggered exploration, frequent collisions, or premature exploitation. More detailed
comparison on K and A can be found in Appendix B.

In Figure 2(a), Selfish (Besson & Kaufmann, 2018) also performs well. Besson & Kaufmann (2018)
design special UCB index which decreases when collision occurs. However, as the name suggests,
players in this algorithm are selfish and only want to maximize their own rewards. Thus, they fail
to utilize the exploration results of others, causing the regret to increase rapidly as M grows. Both
Game of Throne (Bistritz & Leshem, 2018) and ESER (Tibrewal et al., 2019) follow an explore-
then-commit approach, so they rely on the adjustment of parameters heavily. Meanwhile, MCTopM
and RandomTopM from Besson & Kaufmann (2018) are built on the Musical Chair framework
(Rosenski et al., 2016), where players randomly preempt a chair with no collision. When delay
happens, an arm that is identified to be idle in earlier rounds may already have been preempted by
other players, but the player always gets out-of-date feedback, resulting in non-stop exploration to
find idle arms.

by M =5 ) M="7 (d M =15

Figure 2: Comparison between different algorithms on M

SIC-MMAB (Boursier & Perchet, 2019) involves communication phase where players exchange
rewards with others. However, when feedback is delayed, the communication phase of each player
becomes misaligned. While some players find their optimal arms and enter exploitation phase,
others remain unaware and continue selecting arms in a round-robin manner. This misalignment
leads to collisions with players who have already fixed on their optimal arms.

5.2 REAL-WORLD SIMULATION

We evaluate the performance of our algorithms using real-world spectrum measurement data. This
dataset? was collected in Finland by researchers from the 5G-Xcast project. Figure 3 illustrates
a sample of power measurement across four bands in the dataset. Note that in cognitive radio
networks, users are divided into preliminary users and secondary users. The aim of cognitive radio
networks is that spectrum resources are shared efficiently to secondary users without compromising
the critical operations of primary users. Multi-player bandit algorithms are used for secondary users

2The dataset can be found in https://zenodo.org/records/1293283.
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to find available channels. We consider that primarily user signals are on a frequency channel if
power measurement is higher than the threshold power level —90 dBm, which is the same setting
with Alipour-Fanid et al. (2022).

—— Band: 30-130 MHz
— Band: 130-800 MHz
—— Band: 650-1200 MHz |
Band: 1200-3000 MHz
""" Power level threshold
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—140

0 500 1000 1500 2000 2500 3000
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Figure 3: Captured spectrum data from paging frequency bands

Following Wang et al. (2021) and Alipour-Fanid et al. (2022), we consider accumulative throughput
and collisions to evaluate the algorithms. The throughput B is computed using Shannon’s formula:

B =Wlogy(1+ SNR),

where W denotes bandwidth and SN R is signal to noise ratio. If the channel is busy (with power
bigger than —90 dBm), the cognitive radio acquires no throughput, as it enters sleep mode to avoid
interfering with primary users. If secondary users select the same channel, the throughput of them
is also zero.

Figure 4 illustrates the cumulative throughput over time, highlighting the superior performance of
our algorithm. Additionally, Figure 5 compares the cumulative collisions across algorithms. No-
tably, our algorithm achieves a remarkably low level of cumulative collisions. It is worth mentioning
that ESER experiences almost zero collisions due to its mechanism, where players select arms in a
round-robin fashion, alternating between exploration and exploitation. In comparison, while our al-
gorithm incurs slightly higher collisions, these are attributed to simulating communication between
players. Consequently, our algorithm achieves a lower regret than ESER.
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Figure 4: Comparison on throughput Figure 5: Comparison on collisions

6 CONCLUSION

In this paper, we proposed the algorithm DDSE for multi-player multi-armed bandits with delayed
feedback. We demonstrated that a decentralized MMAB algorithm can avoid collisions and achieve
performance close to its centralized counterpart, even when player feedback is delayed. Rather than
allowing players to update blindly, introducing appropriate waiting significantly improves perfor-
mance and reduces the regret. The lower bound in the centralized setting further confirms that our
algorithm is near-optimal. Additionally, practical simulations have validated the superiority of our
algorithm. A promising direction for future work would be to study player-dependent delays in
multi-player bandits, as delays in cognitive networks often depend on user-specific factors, such as
location and device capability.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Wan Siti Halimatul Munirah Wan Ahmad, Nurul Asyikin Mohamed Radzi, Faris Syahmi Samidi,
Aiman Ismail, Fairuz Abdullah, Md Zaini Jamaludin, and MohdNasim Zakaria. 5g technol-
ogy: Towards dynamic spectrum sharing using cognitive radio networks. IEEE access, 8:14460—
14488, 2020.

Ian F Akyildiz, Won-Yeol Lee, Mehmet C Vuran, and Shantidev Mohanty. Next generation/dynamic
spectrum access/cognitive radio wireless networks: A survey. Computer networks, 50(13):2127—
2159, 2006.

Amir Alipour-Fanid, Monireh Dabaghchian, Raman Arora, and Kai Zeng. Multiuser scheduling
in centralized cognitive radio networks: A multi-armed bandit approach. IEEE Transactions on
Cognitive Communications and Networking, 8(2):1074-1091, 2022.

Venkatachalam Anantharam, Pravin Varaiya, and Jean Walrand. Asymptotically efficient allocation
rules for the multiarmed bandit problem with multiple plays-part i: Iid rewards. IEEE Transac-
tions on Automatic Control, 32(11):968-976, 1987.

Arash Azarfar, Jean-Frangois Frigon, and Brunilde Sanso. Delay analysis of multichannel oppor-
tunistic spectrum access mac protocols. IEEE Transactions on Mobile Computing, 15(1):92-106,
2015.

Lilian Besson and Emilie Kaufmann. Multi-player bandits revisited. In Algorithmic Learning The-
ory, pp. 56-92. PMLR, 2018.

Ilai Bistritz and Amir Leshem. Distributed multi-player bandits-a game of thrones approach. Ad-
vances in Neural Information Processing Systems, 31, 2018.

Ilai Bistritz, Zhengyuan Zhou, Xi Chen, Nicholas Bambos, and Jose Blanchet. Online exp3 learning
in adversarial bandits with delayed feedback. Advances in neural information processing systems,
32,2019.

Ilai Bistritz, Zhengyuan Zhou, Xi Chen, Nicholas Bambos, and Jose Blanchet. No weighted-regret
learning in adversarial bandits with delays. Journal of Machine Learning Research, 23(139):
1-43, 2022.

Etienne Boursier and Vianney Perchet. Sic-mmab: Synchronisation involves communication in
multiplayer multi-armed bandits. Advances in Neural Information Processing Systems, 32, 2019.

Nicol‘o Cesa-Bianchi, Claudio Gentile, Yishay Mansour, and Alberto Minora. Delay and coopera-
tion in nonstochastic bandits. In Conference on Learning Theory, pp. 605-622. PMLR, 2016.

Manegueu Anne Gael, Claire Vernade, Alexandra Carpentier, and Michal Valko. Stochastic bandits
with arm-dependent delays. In International Conference on Machine Learning, pp. 3348-3356.
PMLR, 2020.

Osama A Hanna, Merve Karakas, Lin Yang, and Christina Fragouli. Multi-agent bandit learning
through heterogeneous action erasure channels. In International Conference on Artificial Intelli-
gence and Statistics, pp. 3898-3906. PMLR, 2024.

Jean Honorio and Tommi Jaakkola. Tight bounds for the expected risk of linear classifiers and
pac-bayes finite-sample guarantees. In Artificial Intelligence and Statistics, pp. 384-392. PMLR,
2014.

Wei Huang, Richard Combes, and Cindy Trinh. Towards optimal algorithms for multi-player bandits
without collision sensing information. In Conference on Learning Theory, pp. 1990-2012. PMLR,
2022.

Gyanendra Prasad Joshi, Seung Yeob Nam, and Sung Won Kim. Cognitive radio wireless sensor
networks: applications, challenges and research trends. Sensors, 13(9):11196—-11228, 2013.

Pooria Joulani, Andras Gyorgy, and Csaba Szepesvari. Online learning under delayed feedback. In
International conference on machine learning, pp. 1453-1461. PMLR, 2013.

11



Under review as a conference paper at ICLR 2025

Tal Lancewicki, Shahar Segal, Tomer Koren, and Yishay Mansour. Stochastic multi-armed ban-
dits with unrestricted delay distributions. In International Conference on Machine Learning, pp.
5969-5978. PMLR, 2021.

Yandi Li and Jianxiong Guo. A modified exp3 and its adaptive variant in adversarial bandits with
multi-user delayed feedback. arXiv preprint arXiv:2310.11188, 2023.

Gébor Lugosi and Abbas Mehrabian. Multiplayer bandits without observing collision information.
Mathematics of Operations Research, 47(2):1247-1265, 2022.

Shivakumar Mahesh, Anshuka Rangi, Haifeng Xu, and Long Tran-Thanh. Multi-player bandits
robust to adversarial collisions. arXiv e-prints, pp. arXiv—2211, 2022.

David Martinez-Rubio, Varun Kanade, and Patrick Rebeschini. Decentralized Cooperative Stochas-
tic Bandits. In Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019.

Ciara Pike-Burke, Shipra Agrawal, Csaba Szepesvari, and Steffen Grunewalder. Bandits with de-
layed, aggregated anonymous feedback. In International Conference on Machine Learning, pp.
4105-4113. PMLR, 2018.

Hugo Richard, Etienne Boursier, and Vianney Perchet. Constant or logarithmic regret in asyn-
chronous multiplayer bandits with limited communication. In International Conference on Arti-
ficial Intelligence and Statistics, pp. 388-396. PMLR, 2024.

Jonathan Rosenski, Ohad Shamir, and Liran Szlak. Multi-player bandits—a musical chairs approach.
In International Conference on Machine Learning, pp. 155-163. PMLR, 2016.

Chengshuai Shi, Wei Xiong, Cong Shen, and Jing Yang. Decentralized multi-player multi-armed
bandits with no collision information. In International Conference on Artificial Intelligence and
Statistics, pp. 1519-1528. PMLR, 2020.

Chengshuai Shi, Wei Xiong, Cong Shen, and Jing Yang. Heterogeneous multi-player multi-armed
bandits: Closing the gap and generalization. Advances in neural information processing systems,
34:22392-22404, 2021.

Yifu Tang, Yingfei Wang, and Zeyu Zheng. Stochastic multi-armed bandits with strongly reward-
dependent delays. In International Conference on Artificial Intelligence and Statistics, pp. 3043—
3051. PMLR, 2024.

Harshvardhan Tibrewal, Sravan Patchala, Manjesh K Hanawal, and Sumit J Darak. Distributed
learning and optimal assignment in multiplayer heterogeneous networks. In IEEE INFOCOM
2019-IEEE Conference on Computer Communications, pp. 1693—-1701. IEEE, 2019.

Dirk van der Hoeven, Lukas Zierahn, Tal Lancewicki, Aviv Rosenberg, and Nicolé Cesa-Bianchi. A
unified analysis of nonstochastic delayed feedback for combinatorial semi-bandits, linear bandits,
and mdps. In The Thirty Sixth Annual Conference on Learning Theory, pp. 1285-1321. PMLR,
2023.

Claire Vernade, Olivier Cappe, and Vianney Perchet. Stochastic Bandit Models for Delayed Con-
versions. Conference on Uncertainty in Artificial Intelligence, Aug 2017, Sydney, Australia, 2017.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Dairui Wang, Junyu Cao, Yan Zhang, and Wei Qi. Cascading bandits: optimizing recommenda-
tion frequency in delayed feedback environments. Advances in Neural Information Processing
Systems, 36, 2024.

Po-An Wang, Alexandre Proutiere, Kaito Ariu, Yassir Jedra, and Alessio Russo. Optimal algorithms

for multiplayer multi-armed bandits. In International Conference on Artificial Intelligence and
Statistics, pp. 4120-4129. PMLR, 2020.

12



Under review as a conference paper at ICLR 2025

Wenbo Wang, Amir Leshem, Dusit Niyato, and Zhu Han. Decentralized learning for channel allo-
cation in iot networks over unlicensed bandwidth as a contextual multi-player multi-armed bandit
game. IEEE Transactions on Wireless Communications, 21(5):3162-3178, 2021.

Xuchuang Wang, Hong Xie, and John Lui. Multi-player multi-armed bandits with finite shareable
resources arms: Learning algorithms & applications. arXiv preprint arXiv:2204.13502, 2022.

Guojun Xiong and Jian Li. Decentralized stochastic multi-player multi-armed walking bandits. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 10528-10536,
2023.

Renzhe Xu, Haotian Wang, Xingxuan Zhang, Bo Li, and Peng Cui. Competing for shareable arms in
multi-player multi-armed bandits. In International Conference on Machine Learning, pp. 38674—
38706. PMLR, 2023.

Yunchang Yang, Han Zhong, Tianhao Wu, Bin Liu, Liwei Wang, and Simon S Du. A reduction-
based framework for sequential decision making with delayed feedback. Advances in Neural
Information Processing Systems, 36, 2024.

Yuyang Zhang, Runyu Zhang, Yuantao Gu, and Na Li. Multi-agent reinforcement learning with
reward delays. In Learning for Dynamics and Control Conference, pp. 692—-704. PMLR, 2023.

Zhengyuan Zhou, Renyuan Xu, and Jose Blanchet. Learning in generalized linear contextual bandits
with stochastic delays. Advances in Neural Information Processing Systems, 32, 2019.

13



Under review as a conference paper at ICLR 2025

A RELATED WORK

The problem of multi-player multi-armed bandits has recently been studied in different settings in the
existing literature, where most of the efforts have concentrated on the decentralized setting. Bour-
sier & Perchet (2019) propose an implicit communication mechanism where players intentionally
collide to signal information, achieving performance comparable to centralized approaches. Wang
et al. (2020) improve this communication phase by electing a leader and only allowing the leader to
communicate with followers. Research also has focused on heterogeneous reward settings (Besson
& Kaufmann, 2018; Bistritz & Leshem, 2018; Tibrewal et al., 2019; Shi et al., 2021) and adversarial
collision scenarios (Mahesh et al., 2022). The challenge of incomplete feedback is another promi-
nent topic (Boursier & Perchet, 2019; Shi et al., 2020; Lugosi & Mehrabian, 2022). Notably, Huang
et al. (2022) present near-optimal results under incomplete feedback setting. Wang et al. (2022);
Xu et al. (2023) explore the scenario of shareable arms. Recently, Richard et al. (2024) consider
asynchronous multi-player bandits in the centralized setting and derive a constant or logarithmic
regret.

There has been growing interest in stochastic delay in multi-armed bandits. Vernade et al. (2017)
investigate delayed Bernoulli bandits, although their approach requires knowledge of the delay dis-
tribution. Pike-Burke et al. (2018) consider scenarios where a sum of observations is received after
some stochastic delay. Zhou et al. (2019) explore contextual bandits with stochastic delay. Arm-
dependent delay is discussed by Gael et al. (2020), and Lancewicki et al. (2021) later remove the
restriction on delay distribution. Tang et al. (2024) focus on strongly reward-dependent delay and
achieve near-optimal results. Yang et al. (2024) propose a reduction-based framework to handle
delays with sub-exponential distributions.

A similar setting to ours is multi-agent bandits with delay. Existing literature has focused on de-
centralized cooperative bandits (Cesa-Bianchi et al., 2016; Martinez-Rubio et al., 2019), while non-
cooperative game with delay is discussed in Bistritz et al. (2019; 2022). Zhang et al. (2023) consider
multi-agent reinforcement learning with both finite and infinite delay. Li & Guo (2023) discuss ad-
versarial bandit problem with delayed feedback from multiple users. Hanna et al. (2024) propose
an algorithm in multi-agent bandits with delay and reach a sub-linear regret. However, none of
these works consider collisions between players. Since collisions result in a loss of reward, current
algorithms in multi-agent bandits cannot be directly applied to our problem.

B ADDITIONAL EXPERIMENTS

Figure 6 shows the results for varying values of o4. Each group of four bars in the same color rep-
resents the performance of an algorithm under o4 = 10, 50, 100, and 150. The experiments demon-
strate that our algorithms significantly outperform others across all settings. As E[d] increases,
DDSE achieves over a twofold reduction in regret compared to DDSE_without_delay_estimation,
highlighting its robustness and effectiveness in handling delays.
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Figure 6: Comparison on o4
Figure 7 reports the performance of various algorithms with larger M and varying numbers of

arms. Figure 8 evaluates the impact of K on regret. Among all algorithms, DDSE achieves the
best performance except in Figure 8(d). The results indicate that when both K and M are large,
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DDSE_without_delay_estimation performs similarly to DDSE. This is because the interval between
communication phases is K M log(T'), which is sufficiently long as K and M are big. So players
have enough time to receive the results in the last communication phase. However, when K and
M are small, the interval becomes too short for followers to receive feedback from the most recent
communication phase. As a result, followers may obtain incorrect information, leading to staggered
exploration, frequent collisions, or premature exploitation.
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Figure 7: Comparison between big M

We also note that when K = 50 in Figure 8(d), DDSE_without_delay_estimation performs slightly
better than DDSE. The reason is that, in DDSE_without_delay_estimation, a large K ensures that
followers receive feedback from a communication phase before the next communication phase be-
gins. However, in DDSE, player j adjusts to M;f @ which is deemed to be received by all players
with high probability. This results in the leader being more conservative in exploring sub-optimal
arms, causing DDSE to eliminate arms later than DDSE_without_delay_estimation. However, as
shown in Figure 9(d), DDSE_without_delay_estimation exhibits significant fluctuations and instabil-
ity. In cognitive radio systems, where stable signal transmission is desired, DDSE proves to be more
robust. It adapts well to different environments and consistently performs effectively, making it a
better choice for applications requiring reliable performance.
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Figure 8: Comparison between different algorithms on K

A detailed comparison of these algorithms is presented in Figure 9, which shows their regrets for
different values of A. As A decreases, it becomes harder for the leader to eliminate sub-optimal
arms. The reason that SIC-MMAB performs better when A is small is that players neither accept
nor reject arms within 7" = 300, 000 rounds, continuing to select all arms in a round-robin manner.
With no changes in [K], collisions are avoided, and the regret does not increase significantly. This
also highlights that in multi-player bandits, avoiding collisions is more critical than selecting better
arms.

Additionally, as seen in Figure 9(d), DDSE_without_delay_estimation shows large fluctuations. This
is because when A is small, it becomes difficult for the leader to rank arms based on their empirical
rewards. As a result, Méw changes frequently. Combined with the delay in communication, this
causes large discrepancies between M{; for different followers j € [M], j # M, leading to frequent
collisions and significant fluctuations.

We observe that the regrets of some algorithms that in our comparison increase rapidly, so we eval-
uated DDSE in both decentralized and centralized settings. Experimental results in Figure 10 show
that performance of DDSE closely matches that in the centralized setting.
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(b) A =0.05 (c) A=0.01 (d) A =0.005

Figure 9: Comparison between different algorithms on A
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Figure 10: Comparison on M with centralized algorithm

C ALGORITHMIC DETAILS

More details about algorithms are provided in this section.

C.1 DETAILS OF DDSE

Algorithm 4 outlines DDSE from the perspective of followers. During the exploration phase, fol-

lowers select arms within ./\/lf,_ @ in a round-robin way and communicate with the leader every
K M log(T') rounds. At the end of each communication phase, follower j determines ¢; based on
her estimation of /12 and (02)7, allowing her to use /\/lf,_ q; In the next exploration phase. If a fol-
lower receives an ending signal from the communication phase and g; = 0, she begins exploitation

by continuously selecting M7 () until 7.

Algorithm 4 DDSE (Follower)
Input: j (ID_of each player), K, M; _ ‘
1: Initialize M} randomly, e; (ending signal), p = 0, ¢; = 0, i, = 0 and 67, = 0;
2: while t < T do

3: Explore arms in M, ;

4 Update ,&gl, (62)7, M,y forall p’ < p;

5 ift mod KM[log(T)] = 0 then > communication phase
6: P RMTRe@

7 Communication(j, M;,_, );

8: Find ¢; s.t. (1); > coordinate to the same set of best empirical arms
9: end if

10: ifej =1&& q;j = 0 then
11: Select M, (j) until T'. > exploitation phase
12: end if

13: end while

If the leader chooses not to update Mé\{qM during the p-th communication phase, she conducts a
virtual communication where no collision signals are sent to the followers. Algorithm 5 describes
the virtual communication process, which is also divided into three parts. However, unlike real
communication, the leader selects arms from Mg{ an with followers in a round-robin fashion and
pulls from MZ]}{ for M rounds in the third part. Consequently, even though she has no new

information to share with the followers, she remains synchronized with them.
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Algorithm 5 VirtualCommunication
Input: M)
Part 1: Remove Virtual Arm
for M time steps do
m; < [(t + M) mod M];
Select M) (m;); > do not sent collisions
end for
Part 2: Add Virtual Arm
T M;
for K time steps do
m; < [(t + M) mod KJ;
Select m;;
end for
Part 3: Notify End
10: for M time step do
11:  Select M (M).
12: end for

ey

g AR

C.2 DDSE WITHOUD DELAY ESTIMATION

In this section, we provide a detailed description of DDSE_withoud_delay_estimation, which is a
simplified version of Algorithm 1. By comparing this simplified version with the full algorithm, we
demonstrate the superiority of the complete version.

The key difference between DDSE and this simplified algorithm is that, in Algorithm 6, the leader
does not wait for the followers to select the same set of best empirical arms. Instead, she continues
exploring in the latest MIJ)” and updates it at any time. After communication, she immediately uses
the new result, regardless of whether the followers have received the update.

Algorithm 6 DDSE_withoud_delay_estimation (Leader)
Input: K, M,
1: Initialize M} randomly, K = [K] eps = 0 (ending signal), p = 0, Sy.(t) = 0 and jix(t) = 0;
2: whilet < T do
3: Explore in ./\/léw and K/ /\/lg/f ; > directly use the latest result
: Update Sy (t), fix(t);

4

5: Remove from K all arms k s.t. |{i € K|LCB.(i) > UCB(k)}| > M;
6: if t mod (KM [log(T)]) = 0 then
7: !
8

9

P RaMog(mT>
update MM
it MO % M then > communication phase
10: Communication(a,, , a;, ia; , €M, ./\/ly);
11: else VirtualCommunication(M});
12: end if
13: end if
14: if |IC| = M && ey = M then > exploitation phase
15: Select M (M) until T'.
16: end if

17: end while

Algorithm 7 depicts the procedure from the view of followers. In the beginning, they select arms
from M} which is randomly initialized. After at least one communication phase has passed, fol-
lowers check whether they have received both a;r, and i, . Since M{) is maintained in a specific

order, the followers place a;“, at the position of a;,; otherwise, the order is disrupted and followers
fail to receive the update M;{; by using Mfgf g, If both of a;, and ¢, have been received, follower
Pl

Jj updates M;/ and uses it in the following round.
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Algorithm 7 DDSE_withoud_delay_estimation (Follower)
Input: j (IDlof each player), K, M;
1: Initialize M} randomly, p = 0 and e; = 0 (ending signal);
2: whilet < T do

3: Find the latest received Mf,,; > update the set of best empirical arms
4: Explore in MZ,;

5: if t mod (K MTlog(T)]) = O then

. t .

6: P RaMegmT>

7: Communication(J, M;,); > communication phase
8: end if ‘

9: ife; =1 && M, has been received then
10: Select M7 () until T. > exploitation phase
11: end if

12: end while

D PROOF OF THEOREM 2

D.1 AUXILIARY LEMMAS

In this section, we provide some technical lemmas that will be useful in the proofs. The first is the
well-known Hoeffding’s Inequality.

Lemma 3 If X1, Xs, ..., X,, are sequence of i.i.d. random variables with mean p and for every
i, X; € 0,1], fin, := %Zzgn X, then for all a > 0,

P(|jin — p| > a) < exp(—2na?)

In addition, we need some known results about delayed feedback. The following lemma describes
the relation between the received feedback and the sent feedback before d(6).

Lemma 4 (Lancewicki et al., 2021) At time ¢, for any quantile 6 € (0, 1], it holds that
0 0
P nipae) (k) < 2Nt(k):| < exp <8Nt(k)> )

where we review that Ny(k) = > _, 1{nl = k,j = M} is the number of times that the leader

chooses arm k before t and (k) = >, _, 1{m] = k,d! +s < t, j = M} is the number of received
feedback of the leader from arm k before ¢.

The overall regret can be decomposed as Ry = Regpr + Reom. Define M* as the set of optimal
arms with |M*| = M. We prove Theorem 2 by first analyzing the exploration phase and then the
communication phase.

D.2 EXPLORATION

In the exploration phase, Lemma 5 ensures that the delayed feedback from the communication phase
of all followers is bounded. Then Lemma 6 establishes the accuracy of the estimates for E[d] and
o2. As aresult, player j can correctly determine ¢; and align with the same best empirical arm set,
thereby preventing collisions caused by inconsistencies between the leader and the followers. Thus,
the regret in exploration phase is generated from (1) selecting sub-optimal arms, (2) players not
receiving any feedback initially, and (3) the leader not entering the exploitation phase immediately
after identifying all sub-optimal arms. During the period after the leader identifies all sub-optimal
arms but before entering the exploitation phase, the leader still needs to maintain consistency with
followers by selecting arms in M,_,, , i.e., K| = M, epy = M but gay # 0 which do not satisfy
Line (14) in Algorithm 1.

Lemma 5 The feedback in one communication phase is received by all the followers after E[d] +
V202 log((M — 1)(K + M)T) rounds with probability at least 1 — .
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Proof Let Ayz(s) denote the time interval in which the feedback from time s during the p-th com-
munication phase is fully received by player ;7 completely. We define

A::{p21|/\/1 £ MM

P—aqm>’

vjeM]j<M-1},

which is the event where the best empirical arm of any follower j differs from that of the leader.
Then we have

M-1
P(A) < Y7 P(d > 3(5) s d_ e panr—y = 3(5) — (K +2M — 1))
7 3)
M-1K+2M-1
<

> Pl 256 -0,

j=1

Due to the sub-Gaussian property of the delay,
P(d] > ~;(s)) = P(d] — E[d] > ~)(s) — E[d])
J(s) — E[d])? 4
. <_<wp<s> ) ) @

2
203

Plug (4) into (3) and we obtain

S

R G U s
p(= 203

(v (s) — ]E[dD2)
203

(73(s) — E[d])*
203

P(A) < )

1M

t=0

INE
S
L

(K +2M)exp(—

<.
I

< (M —-1)(K +2M)exp(— ),

where the inequality (a) is because (4) increase as 713;(8) decreases. We set the probability to % and
it holds that v/ (s) > E[d] + /207 log((M — 1)(K + 2M)T). Hence, we have proved the lemma.

O

Define
. <t (dgn{s+4g <t}) 52,y De<t ((dﬂ udj)ﬂ{s +dl < t})
& Esgt ]l{S + dg < t} ’ & Zsﬁt ]1{8 + dg < t}

as the estimation of E[d] and o2 of player j by the end of time ¢. Note that 02 is the sub-Gaussian
parameter, and we estimate it using the sample variance (&3?- ).

Lemma 6 For any given K, M, j € [M] and positive integer n,

nK2M?2 log(T)

KM log(T) 1\~ =2
> 2V )L il
(,udJ Eld]| > 5 ) <2 <T> ,
W2 M2
(1o 2 g2~ FEMPLog(D)) _ ) (1 350v3e2
(63,)" —oal 2 ——5=— ) <2{ 7

Proof  After the first communication phase, players begin to select a previous best empirical arm
set based on u and o a . Next, we consider how large the error in ;ﬂ ; and 07 leads to different

sets of best empmcal arms. Since the goal of player j is to find a backward Countmg number ¢; S.t.

> iy 207, lon((M — DK +200)T) + (p = ) KM log(T), )
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only when the error of (5) reach K M log(T), it will lead that player j chooses a wrong Mf,,q
Define the error of E[d] as €,, and the error of 02 as €,.

We know that d] ~ sub-G(a3), so u is also a sub-Gaussian variable with parameter 0% /n;, where

= D ke[K] Dus<t 1{d? ts< t, 7r7 = k} is the total number that feedbacks are received by the
end of time ¢. Thus, (d — ) is a sub-Gaussian variable with parameter 02(1+1/n;). According to
Lemma 2.7.5 i m Vershynin (201 8), the product of sub-Gaussian variables is sub- Exponentlal which

implies that ( )7 is sub-Exponential. The tail-bound for the sub-Exponential variable (62 G )7 with
parameter (v2, a) is
. 1 5 Ni€o
P(|(&§{)J — 05l > €,) < 2exp (—2 min{nzza, ng }) . (6)

We consider three situations. The first is /lj ; is very close to E[d] but the error of (& d]) is quite
large. By (6), large ¢, leads to the probablhty of \( )J — 02| > €, is small. This means that the
probability of significant deviation on (& dj) s extremely low, leading to almost correct /i’ e and
(ad )? with high probability. Another situation is that (& j)j is very close to o2 but the error of
i’ o is large. The analysis is similar to the first situation bfecause ,&;{ is a sub-Gaussian variable.

Therefore, when ji; and (63,)7 have errors of
t t

c > KM log(T)
) KMlog(T)\> ™
es(2log((M — 1)(K +2M)T)) > (2> ,

incorrect ¢; will occur. Since M < K, we have

K2M?(log(T))?
~ 8(log(BKMT))

K2M?(log(T))?

8(log(M) + 3log(K) + log(T))
K 2M?log(T)
- 40 ’
The gap between estimated mean ﬂg and expectation of delay E[d] is bounded as

’I’Lt€2

€o

P(| 5, — Eld]| > €,) < 2exp(— 5 5)-
94
Plug (7) and it holds that
KM log(T ny K2 M?(log(T))?
P (10, ~ Bl > KAL) < g e ECACCBY,

nK2M?2 log(T)
1 802
<2| =
T

From Honorio & Jaakkola (2014) we have v? = 41/20%(1 + 1/n;) and @ = 40%(1 + 1/n;). Thus,
it holds that

; K2M?log(T 1 2 p
P (|6é — 04| > Og()) < 2exp | —= min "o y 5 1€
n?K?M?log(T)
160\f0d (ne +1)
nk2Mm?2

( )”’“
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where the last inequality comes from ny > 1.

O

Lemma 7 (Restatement of Lemma 1) In decentralized setting, for delay distribution under As-
sumption 1, given any K, M, and a quantile 0 € (0, 1], the regret of the exploration phase in
DDSE is bounded by

) %&;@) + ;{A& (2E[d] + o4/ 1og((M — 1)(K +201)) )

k>M k>M

Rempl <

1
+ 304 210g( 9) + 3E[d] + Cs,

4Me=5/2
where Cy = e

Proof We have proved that in the exploration phase, players coordinate to the same set of best
empirical arms and collisions do not happen with high probability. Thus, when players are in the
exploration phase, the regret is only due to the selection of sub-optimal arms and delays. Define the
following events:

Bzz{tZIIMﬁ;#M*,VjE[MLp [ w 1§p§pmax}7

KMlog
21
C::{t21|3ke[ ] 5.t | (k) >\ [ Og }
321og(T) 0
D:{t21|3k€[K]st N (k) > eg erago) (k) < N )}
E={t>1| M =M, Mﬁfm#/\/ljmx,ang—l}.

Here B means that the best empirical arm set of players is different from M™ by the time step
t. C represents the occurrence of a bad event where successive elimination leads to an incorrect
result. D means that the received feedback after after d(6) is insufficient. £ indicates that the leader
has already identified M™* but at least one follower has not yet received feedback from the final
communication phase by the time step ¢.

Recall that § = miny<gp<r—1(tk) — H(k+1)) is the minimum gap between the rewards of arms.
When the error between [i; and py less than §/2, the leader can distinguish each arm by their
empirical rewards. Denote T, as the total time of the exploration phase. Define player j does not

receive feedback before d%. By Lemma 3, we have

Texpl
§ ;
E[B] <E | > 2exp(-2t()*) +dj

t=t
+oo 6224: .
g[ 2exp(— ') dt + Eld]
t
467562/2
ST
46752/2

< —— +E[d].

®)

+E[d]

We can bound E[|C|] < 27! by directly using Lemma 3. From Lemma 4 and a union bound,
we also have E[|D|] < T—!. Next, we give some definitions that are similar to Lancewicki et al.
(2021). Denote ¢, as the time that the leader pulled all the active arms after 321og(T’)/0¢? times
where ¢, = 27¢. Define 0 < x; < K such that ¢, + d(6) + ¢ is an elimination step. Let S; be the
set of sub-optimal arms, that were not eliminated by time ¢, + d(0) + x;, but were eliminated by
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time ¢y + d(0) + x¢+1. Then the regret of eliminating sub-optimal arms is bounded as

t0+d(0 “+Ko
Reim < Z Z {m = k}A, + Z ( )+ K)ersa + Z Nt2+d(9)+'€z(k)Ak>

t=1 k>M £=0 keS,

32log(T 288 log(T
g%(K_M)H(d(eHKHE %()
k>M k
3231log(T)
< P
< 3 S sd0),
k>M

)
which is a direct consequence of Theorem 2 in Lancewicki et al. (2021). Recall that d(#) = min{~y €
N | P(d <) > 6}. By Assumption 1,

P(d <d#)=1-P (d{ —E[d] > d(0) — ]E[d])
S 1 exp GW) _

2

Thus, we have § > 1 — exp(—(d(0) — E[d])?/20?) and
d(6) < /202 10g (119) +E[d]. (10)

After the leader identifies M*, she still needs to coordinate to use Mé\/f an and wait for followers
who have not received the last feedback. Define 7, = {t., ...,t. + K + 2M } as the final communi-

cation phase. Feedbacks from 7, will be received after max;er, j<ar_1 dJ. Then E[|€]] is bounded
as

IE[|5|]§IE{ max d{]

t€Te,j<M—-1
By Jensen’s inequality, we have

i) < j
exp (NE[_max, ]} < Bloxplr_max )

_ J
= E[te’ﬁr};%}Z{VI—l exp(Ad])] (11
K+2M M—1

<E[ Y 3 exp(rd)],

t=1 j=1

Since d — E|[d] is a sub-Gaussian variable with zero expectation, Elexp(A(d] — E[d]))] <
exp(\20?/2). Therefore, we have
2,2

Elexp(Ad)] < exp (A + )\E(d)) .

Plug it into (11) and we get
2,52

i) < _
exp (AE[teﬁ%3§jl dt]) < (M -1)(K+2M)exp <

+ )\E(d)> .

When \* = /2log((M — 1)(K +2M)) /o4,

E[engE[ max dg]

teT,,j<M—-1 (12)

< o4y/2log(M — 1)(K + 2M)) + E[d].

Finally, the regret in the exploration phase can be bound as

Zk>1w Ap

Rerpl < Relm + MIE[B U 8] K — M
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Plug (8), (9), (10), (12) and we have

3231og(T) 1 AMe=5"/2
eapl < — 21 _— Ed J—
Reupi kéM oA, + 304 0g<1_9)+3 [d] + 52

£ B (ot 4 oo T 207
k>M

D.3 COMMUNICATION

We have already known that the length of each communication phase is K + 21/. Note that player
enter a communication phase evert K M log(T") rounds. The next step is to bound the times that the
leader need to receive feedback and eliminate all sub-optimal arms.

Lemma 8 (Restatement of Lemma 2) In decentralized setting, for delay distribution under As-

sumption 1, given any K, M, and a 6 € (0, 1], the regret in the communication phase is bounded
by

195 1
Rcom S Z W +30’d (\/6+ 210g(1_9)> + GE[d]

k>M k

Proof Denote the time that the leader need to receive feedback and eliminate all sub-optimal arms

by Tewpi. After Te,p, the leader has waited for the followers for ]E[maxte;pe GE[M] d] rounds after
eliminating all sub-optimal arms. Consider a sub-optimal arm & which has not been eliminated
at time 7y, but remains active until the next exploration phase ends. From the arm elimination
condition, the gap between the arm ks with pi(5r) which is the M-th reward mean and k is bounded

by
2log(T) 21log(T)
=2 l\/ e (F) +\/ e k)
21og(T) 21og(T)
=7 [\/ e, (F) +\/ e, (F)

2log(T)
B np, (k)

13)

Since E[|D|] is bounded by T, n,, (k) > ON., _q)(k)/2 and N,, _q@) < 64log(T)/0A7.
Thus, T, is bounded as

Teapt < > Ny (k) +E[ max df]

E>M teTe,jelM]
< 1+ N, _aor(k) + N» (k) — No_go0 (k) + E 4.
_121%4( + N7, —aey (k) + Ny, (k) —d(0) (k) [teTIB?g[M] 7]

d(9)

Define f(k) as the number of active arms at 7,. By K > M, we have

M

1 1
,;\:4 f(k) _;K—j
< log(K) — log(K — M)
< log(K)
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Note that the leader makes selection over all active arms, so it holds that

65 log(T) :
. max  d}
. Z 65log + (1 +log(K))E[d] + o4(log(K) 2log(1%9) (14)
k>M

+4/2 log((M —1)(K +2M))).

The leader communicates with followers every K M log(T') times, so the total communication
time Lo, 18 Tegpi/ K M log(T). Then the regret of communication can be bounded as Reom <
(K + 2M)MT,,,, where we take a union bound of M players. Since M < K,we have
Reom < 3KMT,,,,. Plugging in (10) and (14), we have the following result:

Tpx l
< 14
Beom < 3K M g ey KM log(T)
195 3log(K) 1 3044/6log(K)
2E 21
=3 987 * Tog(T) ( (4] + 04y 2log(1— 9)> T g (1) (15)
k>M
195 1
< Z ] + 304 <\/6+ 1/210g(10)> + 6E[d].
k>M -
O

E PROOF OF COROLLARY 1

Proof In centralized setting, players can freely communicate with each other so we do not need the
communication phase and (15) vanishes. Due to the centralized setting, followers constantly know
the latest exploration result of the leader, leading to M{, = Mf), Vi € [M],¢ € [M],p < Pmax-
Thus, there is no need for the leader to wait for followers to receive the final feedback in 7. and the
regret caused by E[|€|] in (12) also disappears. The regret of DDSE in centralized setting is

Ay
RT S Relm + ME“B”%

Plug (8), (9) and we obtain the result.

F PROOF OF THEOREM 3

Denote R, 1 as the regret of DDSE_without_delay_estimation in exploration phase and R! . asthe

regret of DDSE without_delay_estimation in communication phase. We decompose the total regret
as Ry = Rexpl + Rcom

Lemma 9 In decentralized setting, for delay distribution under Assumption 1, given any K, M, i
and a quantile 6 € (0, 1], the regret of DDSE_without_delay_estimation in exploration phase is
bounded by

1
76)

23log(T M A
Ry<> 323log(T) 3+ M)E[d] + 30y 210g(1 —

OA K-M
k>M

2
+exp<E[d]+ 7d )+C’2,

KM  2K?2M?

4Me=5/2
where Cy = e
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Proof  We define player j selects a certain arm at s, in the p-th communication phase. Then after
a period of time d;,, she receives < r{ 7] ,s > atty,. Then we define

]: = {tsp—l | t3p71 > t8p7vp € 7;:0m}7

which indicates that at least one feedback from the (p — 1)-th communication phase has not been
received by the time the feedback from the p-th communication phase is received. Then after certain
time -y, the probability that player j receive the feedback from s, is P(ds, < 7,). The probability
that certain feedback in phase p — 1 has not been received is P(ds,_, > 7, + s, — 5,—1). Denote
R 7 as the regret if F happens. Then we have

Ry =E[P(F)T]
= E[P(dsp < VP)P(dqu >+ 8p —sp—1)|T (16)
< E[P(dspfl > Y+ Sp — sp—1)] T

By Assumption 1, it holds that
P(ds,_, = v+ sp — sp-1) = P(ds,_, —E[d] = v + sp — sp—1 — E[d])

< exp (_ (7p + sp _25;7;1 - E[d])2> . 17
d

Plug (17) into (16) and Rx can be bounded as

Rr <E [exp <(7P + Sp *2352_1 — EM)Z)} ,
< exp <—E [”P * S —28221 — E[d])QD 7
gew(—mmﬁwpazi—EmW)T
<o ((Em 2P

Here, inequalities (a) and (b) follow from Jensen’s inequality. Since players enter communication
phase every K M log(T') rounds, we have E[s, — s,_1] = KM log(T'). Note that E[d] is a constant
about delay. Thus, we have

(E[sp — sp—1] — E[d])?
Rr<exp <— 20% ) T s
o (M o8(T) Bl
202 '

We perform a change of variables by denoting = log(7’) so that ' = e®. Then (18) is equals

y 2 2
to exp(z — %), which achieves its maximum when x* = % + Kf]”\l/[z Therefore, the

regret that bad event £ happens is bounded as

Eld o2
Ry < exp (K[]\j[ + 2K2(f7\42> ) (19)

When F does not occur, players can communicate successfully and remain synchronized while
exploring the set of best arms. Since players always use the latest result of communication that they
have received, the leader does not wait for followers after she identifies M* and the regret caused
by & vanishes. Then the regret of DDSE_without_delay_estimation in exploration phase is bounded

by
Zk>M Ay

+ Ry

Apply (8), (9), (19) and we have completed the proof.
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Lemma 10 In decentralized setting, for delay distribution under Assumption 1, given any K, M, i
and a quantile 0 € (0, 1], the regret of DDSE_without_delay_estimation in communication phase is
bounded by

195 1
Rl <> oAz + 304 <\/6+ 2log(5 9)> + 6E[d]

k>M

dady d;
O (KM TRy, ., Ai) ’

where dy = E[d] + /02 1og(1/(1 — 0)) and d3 = E[d] + /02 log(K).

Proof In our algorithm, although players use their latest sets of best empirical arms, during the
period after communication ends, their sets of best empirical arms still differ, which leads to colli-
sions. Specifically, after the leader updates ./\/lé” and passes the update to followers, it takes time
for them to receive the information because it is delayed. However, since the leader continues to use
the latest Mé” , she will collide with followers before they receive the update of M;) Define

. '

Since the length of every communication phase is K + 2M, by applying the same technique in (12),
we have

E[[H]) < 0a\/2105(M — D(K + 2M)) + Eld].

Note that after each communication phase, at most one arm changes. Players select arms in a round-
robin fashion, resulting in collisions every M rounds, as one round-robin cycle consists of M steps.
Then taking a union bound over the M players, we have

MTCOTTL
M

< B[H] e

Reor < IEHHH

Plug (14),

(Cion 225 + 30 (VB + /210g(25) ) + 6Eld))
SKM

Reot < (0a+/2108((M = 1)(K + 2M)) + E[d] )

o d2d3 d3
=0 (KM M 9KMZk>M Ai) .

Finally, the regret of DDSE_without_delay_estimation in communication phase is bounded by

R/ < Rcom + Rcol

com —

Also by applying (14), we have completed the proof.

G PROOF OF THEOREM 1

Denote ALG™™4 as the algorithm of a centralized multi-player multi-armed bandit problem and
R™mab ag the regret of ALG™™. We also denote ALG?!%Y as the algorithm of a centralized

MMAB with delayed feedback. Denote R%elay as the regret of ALG9lay - Apnantharam et al. (1987)
proved that any strongly consistent algorithm satisfies

(1-o0(1 N —
Rmm“b > Z o( ))(N(M) ,u(k)) log(T).
S Prrlee, man)
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where D r (f4(k), f1(ary) is the KL-divergence. Then by inverse Pinsker’s inequality, we have

Rmmab > Z ]' — O( )) IOg(T) ) (20)
S (hon — ra)
In centralized setting, the best empirical arm set of each player is the same, so we have M, =
M{, = Mé, Vj € [M],¢ € [M],j # L. Since there is no communication phase and players update
M, at every time, we change our notation into M, which denotes the selected arm set by players at
t. Define X;(k) ~ Bernoulli(d) as the delay choice from the selected arm k at time ¢. We consider
Algorithm 8 which is a variant of Lancewicki et al. (2021).

Algorithm 8 Simulate Delay for Centralized MMAB
Input: 0, T ‘
1: Initialize j (the ID of the player), T,, = |T'(1 — 6/4)], X (k) =0, S7(t) =
2: fort < T, do
3: Player j in ALG?'%Y selects arm k € M,

4 Environment generates X; (k) ~ Bernoulli(9)

50 SI(t) « SI(t) + Xy (k)

6:  if X/ =1 then

7: Player § in ALG™™ selects arm k and gets a reward 77 (¢)
8: Player j in ALG™™ updates 77 (t)

9: end if

10:  ift =T, && S/(t) < Z then

11: T, T

12: end if

13: end for

Algorithm 8 is from the view of player j in centralized MMAB. Since players can freely communi-
cate with others, no collision will occur. Define

LT(1-6/4))
aMT
T:={t>1] Z > {nl =k} Xu(k) <

JeM]
We have the following lemma.

Lemma 11 For 6 € (0,1], any M, T, P(Z) < exp(— %T).

Proof Defineer :=1— m. Since X, (k) ~ Bernoulli(6), E[Zgglfwm > je[m) 1{n) =
k}X:(k)] = 6MT(1 —6/4). By Chernoff bound,

P(r) < e (~Foura- )

2
< eXp(* WJ)?
- 16
where the last inequality is due to 1 — 6/4 > 1/2. O

Note that ALG™™ only runs when Xf = 1. Therefore, we only account for the regret Rinf%ﬁ ,
4

where LiT@J denotes the total time ALG™™ is active, rather than referring to the time interval
from 1 to [ 17°6]. The regret of ALG™™ is bounded by

RanT%l] <E ST {Xu(k) = 1}{k € M A,

t<T(1-6/4) k>M

+E|HZY > > 1{ke MJA,
t>T(1—6/4) k>M
< Y D ER{X(k) = 1HE[1{k € M }AL] + QM—TP(I)

t<T(1—0/4) k>M
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Since X (k) ~ Bernoulli(#), we have E[1{X,(k) = 1}] = 0 for V¢ < T, k € [K] and it holds that

R, <OE | > > ke MJAx| +4
[t<T(1-0/4) k>M

SOE D> M{ke MA| +4
[{<T k>M

< ORI 4 4,

Plugging (20), the regret of centralized MMAB with delay can be bounded as

delay 1 — 0( )) IOg( ) é
R > Z GA, 5 (21)
k>M

Consider a fixed delay distribution with expectation E[d] and variance o3:

. 0 z=E[d] + 041/ 52
P(d] = z) = 00y Nt < T,je[M].

1-0 z=E[d]—oa/1%

The algorithm does not receive feedback for at least the first (E[d] — 044/60/1 — 0) rounds and the
probability of selecting a sub-optimal arm is &' — M /K. Thus, the regret can also be bounded as

(Eld)—~041/0/1-0)
R > | Z > 1{k € M}A,
k>M
0 \K—M_ > Ak
> _
= (E[d] gd 1-9) x M
[0 \ M
k>M

Combining this term with (21) and we have

(1 —o0(1))log(T) 0 M 2
delay g o s e _“
> Z 20Ak +<E[d] oa 1_0> QKZAk 5

k>M
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