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Abstract
Existing controllable dialogue generation work001
focuses on the single-attribute control and lacks002
generalization capability to out-of-distribution003
multiple attribute combinations. In this paper,004
we explore the compositional generalization for005
multi-attribute controllable dialogue generation006
where a model can learn from seen attribute007
values and generalize to unseen combinations.008
We propose a prompt-based disentangled con-009
trollable dialogue generation model, DCG. It010
learns attribute concept composition by gener-011
ating attribute-oriented prompt vectors and uses012
a disentanglement loss to disentangle different013
attributes for better generalization. Besides,014
we design a unified reference-free evaluation015
framework for multiple attributes with different016
levels of granularities. Experiment results on017
two benchmarks prove the effectiveness of our018
method and the evaluation metric.019

1 Introduction020

Recently, large pre-trained language models021

(PLMs) like DialoGPT (Zhang et al., 2020),022

BlenderBot (Roller et al., 2020) and Meena (Adi-023

wardana et al., 2020) can product fluent and rel-024

evant responses for dialogue contexts. However,025

the generated responses are often uninformative026

and factual inconsistent. Hence, controllable dia-027

logue generation (CDG) is proposed to guide di-028

alogue generation towards the desired attributes029

such as emotions (Zhou et al., 2017), acts (Li et al.,030

2017), and personas (Zhang et al., 2018). Previous031

work focused on directly fine-tuning the large-scale032

PLMs (Keskar et al., 2019) or using an extra at-033

tribute discriminator (Krause et al., 2021; Dathathri034

et al., 2020) to guide generation. The former is ex-035

pensive and requires extensive annotated attribute036

labels. The decoding of the latter is computation-037

ally intensive, reducing the response fluency and038

generation speed.039

Although these methods have made some040

progress in CDG, most of them focus on single-041
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Figure 1: The difference of controllability scores on
seen and unseen multi-attribute combinations of CTRL
(Keskar et al., 2019). E-ACC and A-ACC denote emo-
tion accuracy and act accuracy.

attribute generation where there is only one at- 042

tribute label like happiness in emotion and pay less 043

attention to the multi-attribute generation, which is 044

a more practical setting. Therefore, we are commit- 045

ted to filling this gap in CDG. Noted that different 046

from single-attribute, the control signal of the multi- 047

attribute generation is a combination of multiple 048

values from different attributes, which faces the 049

challenge of lacking sufficient annotated attribute- 050

specific data. We also find state-of-the-art meth- 051

ods for multi-attribute controllable text generation 052

(Yang et al., 2022; Qian et al., 2022), which com- 053

bine controllers learned from single-attribute, only 054

suitable for discrete attributes with specific labels 055

(Li et al., 2017) but not for continuous attributes 056

(Zhang et al., 2018). More importantly, we further 057

show directly applying all existing models achieves 058

superior attribute accuracy on seen attribute combi- 059

nations but drops significantly on unseen combina- 060

tions, as shown in Figure 1. It proves that previous 061

work lacks compositional generalization capability 062

from seen attribute values to unseen combinations. 063

Besides, the evaluation of controllability in CDG 064

is severely limited by attribute types and annotated 065

attribute data (Du and Ji, 2021), which is not ap- 066

plicable to all cases. Therefore, it is valuable to 067

explore a unified and efficient evaluation metric. 068

In this paper, we try to explore the composi- 069
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My favorite food is pizza. 
 I prefer winter.

 I love the rain.

 I drive a van.

My mom is a nurse.  

 I don’t drive. 

 I work at a bookstore. 

 I never knew my dad.

My mom is a nurse.   
 I prefer winter.

 I love the rain.

 I never knew my dad.

sadness, inform

surprise, question

surprise, inform

Discrete attribute of DailyDialog

Continuous attribute of Convai2

Seen

combinations
Unseen

Combination

Figure 2: Examples of the compositional generalization
for coarse-grained discrete attributes and fine-grained
continuous attributes.
tional generalization for multi-attribute control-070

lable dialogue generation where a model could071

learn from seen attribute values and generalize to072

unseen combinations. Figure 2 shows two granu-073

larities of multi-attribute compositional generaliza-074

tion, where the token-level attribute labels are re-075

garded as coarse-grained discrete attributes and the076

sentence-level attribute descriptions are regarded as077

fine-grained continuous attributes. Specifically, we078

propose a Disentangled Controllable Generation079

model (DCG), for compositional generalization080

in multi-attribute controllable dialogue generation.081

Inspired by prompt learning (Lester et al., 2021),082

we adopt the attribute values in a combination as083

attribute-oriented prompts to elicit knowledge from084

PLMs where the prompts for all instances learn085

a shared transformation layer, instead of learning086

an independent prompt representation for each at-087

tribute value (Clive et al., 2021; Qian et al., 2022;088

Yang et al., 2022). Our method helps transfer at-089

tribute concepts from seen values to unseen combi-090

nations by learning different prompt embeddings091

and is easily applied to attribute combination with a092

huge number of discrete or continuous attribute val-093

ues. To further disentangle different attribute val-094

ues, we construct a set of pseudo combinations and095

design a novel objective of controllable attribute096

combinations for prompt-tuning, which separates097

desired attribute combination from others.098

Furthermore, to unify the evaluation of differ-099

ent granularity attributes, we design a novel and100

general reference-free evaluation framework, i.e.101

Multiple Attribute Evaluation (MAE) , to mea-102

sure the consistency between desired seen/unseen103

attribute combinations and generated responses.104

Specifically, the evaluation of each attribute is con-105

verted to a text-to-text generation task based on106

T5 (Raffel et al., 2020) with handcrafted templates,107

and the generated probability of "yes" is regarded108

as the controllability score. To mitigate the poten- 109

tial bias of different handcrafted modalities (Zhao 110

et al., 2019; Ke et al., 2022), we add a trainable 111

continuous prompt to improve stability and robust- 112

ness. Through human evaluation, we show that 113

our proposed evaluation metric can handle both 114

coarse-grained discrete attributes and fine-grained 115

continuous attributes well. 116

Our contributions are as follows: (1) To the 117

best of our knowledge, we are the first to explore 118

the compositional generalization for multi-attribute 119

controllable dialogue generation and find exist- 120

ing models lack generalization capability to out- 121

of-distribution multi-attribute combinations. (2) 122

We propose a disentangled controllable genera- 123

tion, DCG, which learns attribute concepts from 124

seen values to unseen combinations via a shared 125

mapping of attribute-oriented prompts and uses a 126

disentanglement loss to disentangle different at- 127

tribute combinations. (3) We introduce a unified 128

reference-free evaluation framework, MAE, for dif- 129

ferent granularities of attributes. Two benchmarks 130

are established and sufficient experiment results 131

prove the effectiveness of our method and evalua- 132

tion metric. 133

2 Related Work 134

Controllable Dialogue Generation Currently, 135

there have existed many studies on CDG (Zhou 136

et al., 2017; Li et al., 2017; Zhang et al., 2018). 137

CTRL (Keskar et al., 2019) used 55 kinds of at- 138

tribute control codes to finetune an LM which is ex- 139

pensive and requires extensive annotated attribute 140

labels. Krause et al. (2021); Dathathri et al. (2020); 141

Yang and Klein (2021); Lin and Riedl (2021) ad- 142

dressed these limitations by employing an attribute 143

discriminator to update the hidden activations or 144

re-weight the next token distributions, resulting in 145

a slow inference speed. Despite the progress, these 146

models all focus on the single-attribute CDG where 147

the attribute only contains coarse-grained discrete 148

values, such as happiness in emotion-controlled 149

generation. It is also vital to explore multi-attribute 150

CDG with multi-granularity attributes. Recently, 151

some works (Yang et al., 2022; Qian et al., 2022) 152

extend to multi-attribute controllable text genera- 153

tion by simply concatenating the prefixes trained 154

for single attribute. However, they are only suit- 155

able for discrete attributes but not for fine-grained 156

continuous attributes like personas (Zhang et al., 157

2018). Besides, we find all these methods have a 158

large performance drop from seen attribute values 159
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to unseen combinations. Therefore, in this paper,160

we are the first to explore the compositional gen-161

eralization for multi-attribute CDG where a model162

could learn from seen attributes and generalize to163

out-of-distribution (OOD) combinations.164

Compositional Generalization in NLP Compo-165

sitional generalization has gradually attracted the166

interest of NLP researchers. The main application167

is in semantic parsing, involving grammar-based168

approaches (Herzig and Berant, 2021), data aug-169

mentation strategies (Oren et al., 2020), disentan-170

gled representations (Zheng and Lapata, 2022), etc.171

Recently, a large-scale benchmark, STYLEPTB, is172

constructed to advance the development of com-173

positional style transfer (Lyu et al., 2021), and174

a template-based input representation is also per-175

formed on the data-to-text task (Mehta et al., 2022).176

Overall, the application of compositional general-177

ization in NLP tasks is not widespread and there is178

no related work on CDG at all.179

Prompt Learning Prompt-based methods have180

achieved significant success in many NLP fields181

(Lester et al., 2021; Schick and Schütze, 2021). Li182

and Liang (2021) proposed the task-specific con-183

tinuous prompts to finetune a NLG model. For184

controllable generation, Clive et al. (2021); Qian185

et al. (2022); Yang et al. (2022) applied the prompt186

learning to represent each attribute value as an in-187

dependent prefix. However, those methods are im-188

practical for fine-grained attributes with a large189

value set. In contrast, we use the control codes190

to generate attribute-oriented prompts to guide the191

generation via a shared MLP layer.192

3 Promblem Formulation193

Given a predefined set of attributes X =194

{A,B,C, ...}, each attribute contains various val-195

ues A = {a1, ..., ak} and k is the number of val-196

ues of attribute A. Multi-attribute controlled di-197

alogue response generation aims to generate re-198

sponses r that satisfy multiple desirable attributes199

c = (a1, b2, ...) conditioned on the dialogue history200

d, where a1 and b2 are one value of the attribute201

A and B, and c ∈ Cv is a combination of attribute202

values. It can be symbolized as p(r|d, a1, b2, ...),203

(a1 ∈ A, b2 ∈ B, ...).204

In this paper, we further focus on the multi-205

attribute compositional generalization, where the206

combinations of multiple attribute values for the207

training set and the test set are disjoint, i.e.,208

Cv,train ∩ Cv,test = ∅.209

(surprise, inform) dialogue context randomly initialized tokens

Embedding Embedding Embedding

DialoGPT
(anger, inform )

(anger, question)

(sadness, inform)

response 4response 3response 2response 1

PLML

Pseudo 

Combinations

MLP

… …

DL

Figure 3: Overall architecture of our DCG model.
4 Methodology 210

As shown in Figure 3, our model is on the basis of 211

the framework of DialoGPT (Zhang et al., 2020) 212

with the compositional prompt module. 213

4.1 Compositional Prompt 214

4.1.1 Prompt Design 215

To better use the control signals, we design two 216

types of prompts to elicit the attribute-related infor- 217

mation from the PLM: 218

Attribute-oriented Prompt We use the combina- 219

tion of controlled attribute values corresponding 220

to each instance as prompts to guide the model to 221

focus on the controlled information in the dialogue. 222

Here, the controlled attribute values are discrete 223

attribute labels in DailyDialog or continuous at- 224

tribute descriptions in ConvAI2. The multiple at- 225

tribute values ai,· in the corresponding combination 226

c are simply concatenated as an attribute-oriented 227

prompt sequence, i.e., patt = [a1, b2, ...]. We en- 228

code the prompt tokens using the word embedding 229

layer of a pre-trained DialogGPT and then employ 230

a shared MLPθ1 to generate the embeddings Eatt 231

of the attribute-oriented prompts. Note that we 232

don’t require independent parameters for each at- 233

tribute value like Clive et al. (2021); Qian et al. 234

(2022); Yang et al. (2022), but only a shared trans- 235

formation MLP layer. 236

Task-oriented Prompt Although attribute-oriented 237

prompts capture the instance-specific control sig- 238

nals, the dialogue response generation task also is 239

guided by the instance-independent global features. 240

Following Lester et al. (2021), we adopt a series 241

of randomly initialized tokens as the task-oriented 242

prompt, i.e., ptask = [p1, ..., pm], where m is the 243

length of the task-oriented prompt sequence. We 244

look up this prompt sequence in the randomly ini- 245

tialized embedding table Mθ2 and get the prompt 246

embeddings Etask. 247

Finally, we concatenate the two prompt em- 248

beddings as the whole prompt embeddings, i.e., 249

Ep = [Eatt;Etask]. 250
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Split DailyDialog-CG ConvAI2-CG
Size Turn.num Att_com.num Dial.len Res.len Size Turn.num Att_com.num Dial.len Res.len

Train 12,504 6.8 18 77.6 12.9 18,000 5.0 11,566 46.5 11.7
Validation 1,390 6.5 18 75.0 13.0 2,000 5.0 1,883 46.8 11.6
Test 1970 6.0 6 69.6 13.9 2,000 5.0 873 46.1 11.6

Table 1: Statistics of DailyDialog-CG and ConvAI2-CG ("CG" means compositional generalization). "Size" and
"Att_com.num"denote the numbers of examples and attribute combinations. "Turn.num" are the average number
turns per example. "Dial.len" and "Res.len" are the average lengths of dialogue history and response.
4.1.2 Disentanglement Learning251

Given an instance (d, c), d is the dialogue history252

and c is the combination of controllable attribute253

values. To force the model to distinguish differ-254

ent combinations of multiple attribute values, we255

design some pseudo combinations to enhance the256

diversity of the prompts, which improves the gen-257

eralization ability of our model. A disentangle-258

ment loss LD is further introduced to disentangle259

the combination representations and train multiple260

compositional prompts simultaneously:261

LD = −log
P (r|d, c)

P (r|d, c) +
∑

c′∈Cpse
P (r|d, c′)

(1)262

where Cpse is the set of pseudo combinations and263

at least one value in the combination c
′

is differ-264

ent from the corresponding value in the golden265

combination.1 Here, we maximize the gener-266

ated likelihood of the desirable positive combina-267

tion P (r|d, c) against the generated likelihood of268

pseudo combinations P (r|d, c′) to generate more269

controllable responses relevant to given attributes.270

4.2 Training Strategy271
We use DialoGPT (Zhang et al., 2020) as the back-272

bone of our model. Given the dialogue history d,273

the embedding Ed is obtained by DialoGPT. Then,274

the embeddings of the prompt sequence Ep are275

prepended to the Ed as a whole input embedding276

matrix. Overall, the PLM loss is calculated as:277

LPLM = −
T∑
t=1

log pθ1,θ2,φ(yt|y<t, d, patt, ptask)

(2)278

where T is the length of generated sequence, i.e.,279

the dialogue history and response. φ is the pa-280

rameter of the PLM and is fixed. The parameters281

of two prompts, θ1 and θ2, are the only updated282

parameters. Therefore, the training loss L is the283

weighted sum of the disentanglement loss and the284

PLM loss:285

L = αLD + (1− α)LPLM (3)286

1We find constructing pseudo combinations with at least
one different attribute value is slightly better than with all
different attributes in the experiments.

Prompt Tokens Response

Prompt Tokens Attribute Value The [attribute]…[MASK]

Encoder

Decoder

yes

...

Mh

Me

day
Probability 

(Controllable Score)

Figure 4: Overview of our evaluation model, MAE.

When the training is completed, we save all pa- 287

rameters of the prompt module. During the infer- 288

ence, the data from the test set is mapped to the 289

representations of prompts only via the embedding 290

matrics, where the features of the attributes seen 291

in the training set can be transferred to the unseen 292

combinations. 293

5 Method of MAE 294

To fill the gap in metrics for multi-attribute con- 295

trollable dialogue generation, we propose a unified 296

and efficient evaluation framework without addi- 297

tional large-scale labeled data, as shown in Figure 298

4, which converts the evaluation of each attribute to 299

a unified text-to-text generation task, just like Gu 300

et al. (2022). T5 (Raffel et al., 2020) is used as the 301

base model for our work. A template is designed 302

as discrete prompts, i.e., "The emotion/act/persona 303

controls the response [MASK]". To alleviate the 304

potential bias of different handcrafted patterns (Ke 305

et al., 2022), we further add a trainable continu- 306

ous task-oriented prompt to improve stability and 307

robustness. 308

Specifically, the continuous prompt sequence is 309

prepended to the response as a prefix, which makes 310

up the input of the encoder. Another continuous 311

prompt sequence, the attribute values, and the tem- 312

plate are concatenated and fed to the decoder. We 313

take the probability of generating "yes" correspond- 314

ing to [MASK] token as the controllability score. 315

In training process, only embeddings of continuous 316
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prompts are updated and the parameters of T5 are317

fixed. Note that our model-based evaluation ap-318

proach gets rid of the reliance on golden response319

when tested and can be uniformly applied to vari-320

ous granularities of attributes.321

6 Experiments322

6.1 Datasets323

We construct two datasets based on DailyDialog324

(Li et al., 2017) and ConvAI2 (Dinan et al., 2020)325

for compositional generalization in multi-attribute326

controllable dialogue response generation.327

DailyDialog-CG DailyDialog is an open-domain328

dialogue dataset with two controllable attributes:329

emotion and act. Here, we treat the labels of the330

two attributes as an attribute combination, e.g., (sur-331

prise, inform). For dialogues, each utterance with332

two attribute labels is regarded as the response and333

all preceding texts of this utterance are considered334

as the corresponding dialogue history. In this way,335

we get 14,879 examples. We count the attribute336

combinations labeled in all examples, 18 of which337

are selected as Cv,train and the other 6 are Cv,test.338

Then, the examples are divided into the training set339

and test set according to the combination set. We340

also extract 10% samples from the training set as341

the validation set.342

ConvAI2-CG ConvAI2 is a persona-based dia-343

logue dataset in which the persona profile of each344

dialogue is consisting of 4 or 5 personalized sen-345

tences. We treat each sentence as an attribute value346

and the sentences in the same position belong to347

the same attribute. The persona profile is regarded348

as an attribute combination, e.g., ("My mom is my349

best friend.", "I’ve four sisters.", "I believe that350

mermaids are real.", "I love iced tea."). For each351

dialogue, we choose the first 4 utterances as the352

dialogue history and the 5th utterance as the re-353

sponse. Consistent with the processing method of354

DailyDialog-CG, we select 11,566 combinations as355

Cv,train
2 and the other 873 combinations as Cv,test.356

After that, we obtain the corresponding training set,357

validation set, and test set.358

The statistics about the two datasets are shown359

in Table 1.360

6.2 Baselines361
We compare our methods with several competitive362

baselines. The common dialogue generation mod-363

els are included: (1) DialoGPT-Ori (Zhang et al.,364

2020); (2) FUDGE (Yang and Klein, 2021); (3)365

2The 1,883 combinations of the validation set are included
in the 11,566 combinations of the training set.

PPLM (Dathathri et al., 2020); (4) Cocon (Chan 366

et al., 2021); (5) Fine-tuning; (6) CTRL (Keskar 367

et al., 2019). We also implement some prompt- 368

based methods for comparison: (1) Prompt-tuning 369

(Lester et al., 2021); (2) CatPrompt (Yang et al., 370

2022). More details can be seen in Appendix B3. 371

6.3 Evaluation Metrics 372

In this work, we focus on evaluating the attribute 373

controllability and text quality for different control- 374

lable generation methods. 375

Attribute Controllability It aims to evaluate 376

whether the method can generate responses con- 377

strained by multiple attributes successfully. 378

1. For the control of coarse-grained discrete 379

attributes in DailyDialog-CG, we use the classifi- 380

cation accuracy, i.e., E-ACC and A-ACC, for each 381

attribute computed by an independently trained 382

Roberta classifier (Liu et al., 2019), respectively. 383

2. For the control of fine-grained continuous 384

attributes in ConvAI2-CG, we calculate the co- 385

sine similarity between the representations of at- 386

tribute sentences and the generated response, i.e., P- 387

SIM(Du and Ji, 2021). We also evaluate the model 388

by measuring the consistency of attribute sentences 389

with the generated response via a Roberta-based 390

Natural Language Inference (NLI) model, i.e., P- 391

NLI(Madotto et al., 2019). 392

3. We propose a unified model-based evalua- 393

tion metric, i.e., MAE, for various granularities of 394

attributes, the details can be seen in Section 5. 395

Text Quality We use the BLEUs (Papineni et al., 396

2002a) and METEOR (Banerjee and Lavie, 2005) 397

to measure the match scores between generated 398

responses and ground-truth references. 399

6.4 Main Results 400

Results on DailyDialog-CG Table 2 presents the 401

results of controllable dialogue generation about 402

unseen attribute combinations for DailyDialog- 403

CG. 4 We conduct experiments based on some 404

strong controllable dialogue generation models 405

and novel prompt-based methods. In general, our 406

DCG outperforms all other baselines in terms of 407

attribute controllability and text quality. Compared 408

to CTRL, our model improves by 1.6%, 2.7%, 4.1% 409

in BLEU-1, BLEU-2, METEOR for text quality, 410

and 3.3%, 3.1%, 5.5%, 5.5% in E-ACC, E-MAE, 411

A-ACC, A-MAE for attribute controllability. We 412

3We will release our code after blind review.
4Our DCG improves text quality and controllability. The

BLEUs seem low because we adopt the same calculation as
ParlAI (Miller et al., 2017), which is lower than results in (Li
et al., 2017) for different smooth functions.
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Controllability Text Quality
Method E-ACC ↑ E-MAE ↑ A-ACC ↑ A-MAE ↑ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

DialoGPT-Ori 50.36 60.46 27.82 31.61 11.53 1.58 9.03
FUDGE 60.10 64.29 27.21 29.21 12.24 1.13 8.67
PPLM 51.57 56.87 33.60 33.71 11.77 1.34 9.26
CoCon 52.79 59.99 29.44 34.51 6.91 0.42 11.50
Fine-tuning 62.74 66.77 35.66 37.02 21.64 10.19 19.15
CTRL 67.34 69.55 33.50 36.15 24.76 11.42 20.45
Prompt-tuning 57.06 62.78 30.36 32.53 19.71 7.36 15.13
CatPrompt 60.91 66.50 36.75 38.43 24.07 11.17 20.72
DCG (ours) 70.66 72.61 38.98 41.63 26.33 14.16 24.57
DCG w/o AOP (Prompt-tuning) 57.06 62.78 30.36 32.53 19.71 7.36 15.13
DCG w/o TOP 66.80 68.02 41.83 41.50 19.18 6.74 15.63
DCG w/o DL 60.41 64.57 38.07 39.45 22.45 9.20 19.55

Table 2: The performance of compositional generalization in multi-attribute controllable dialogue generation for
DailyDialog-CG. "E" and "A" denote controllable attributes of "Emotion" and "Act". "AOP", "TOP", and "DL"
mean attribute-oriented prompt, task-oriented prompt, and disentanglement learning. Results are averaged over
three random runs. ↑ means a higher score is better. (p < 0.01 under t-test)

Controllability Text Quality
Method P-SIM ↑ P-NLI ↑ P-MAE↑ BLEU-1↑ BLEU-2↑ METEOR↑

DialoGPT-Ori 60.16 72.47 23.12 12.33 1.54 8.95
PPLM 59.90 75.98 25.03 13.20 1.65 9.06
Fine-tuning 65.48 69.50 19.21 16.53 2.40 10.96
CTRL 65.20 77.65 26.12 18.39 3.12 12.23
Prompt-tuning 64.84 74.30 24.56 17.59 2.60 11.22
DCG (ours) 69.03 81.20 30.42 19.55 2.68 12.42
DCG w/o AOP (Prompt-tuning) 64.84 74.30 24.56 17.59 2.60 11.22
DCG w/o TOP 67.35 78.50 28.44 12.18 1.05 7.61
DCG w/o DL 68.25 79.00 28.53 18.34 2.39 11.63

Table 3: The performance of compositional generalization in multi-attribute controllable dialogue generation for
ConvAI2-CG. "P" denotes controllable attribute of "Persona". Results are averaged over three random runs. ↑
means a higher score is better. (p < 0.01 under t-test)

also find the FUDGE and PPLM, two methods413

based on the decoding strategy, perform poorly414

here, especially in text quality, which illustrates415

the incompatibility of these decoding strategies416

for combinatorial generalization. Besides, as ob-417

served, Catprompt is a relatively well-performing418

prompt-based baseline, but it is still far worse than419

our method. This is because it directly concate-420

nates all trained single-attribute prompts as the421

multi-attribute prompt for test. This inconsistency422

between training and testing stages decreases the423

performance. Different from these methods, our424

method optimizes the language modeling loss only425

based on discrete prompts for attribute combination426

and continuous task-oriented prompt, which can427

focus on the features of multiple attributes at the428

same time also during the training and achieve a429

better transfer via a learnable mapping.430

Besides, we also concern whether DCG bene-431

fits from attribute-oriented prompt, task-oriented432

prompt, and disentanglement learning. We find433

that DCG w/o AOP is the same with Prompt-tuning434

and it performs poorly in attribute controllability,435

which shows attribute-oriented prompt plays an im-436

portant role in guiding the model to focus on the437

controlled information. After removing the task- 438

oriented prompt, the DCG w/o TOP decreases to 439

19.18%, 6.74%, and 15.63% on text quality, but 440

still maintains high controllability. It proves task- 441

oriented prompt helps improve text quality. Be- 442

sides, after removing disentanglement learning, the 443

DCG w/o DL drops significantly, which shows dis- 444

entanglement learning effectively disentangles at- 445

tribute combinations and improves the ability of 446

compositional generalization. 447

Results on ConvAI2-CG Table 3 presents the re- 448

sults of generalization on unseen attribute combi- 449

nations for ConvAI2-CG. Due to the diversity of 450

attribute values and attribute combinations, it is 451

very difficult to implement CatPrompt in ConvAI2- 452

CG. Therefore, we remove this baseline. We also 453

remove FUDGE and Cocon for their poor gener- 454

ation quality and slow decoding speed, which is 455

shown in Table 2 and Table 5. We can observe that 456

the trend of overall performance is consistent with 457

that of DailyDialog-CG. Compared to CTRL, our 458

model achieves a great improvement in attribute 459

controllability and text quality, which proves the 460

generality of our methods on the coarse-grained 461

discrete attribute control and fine-grained contin- 462
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Figure 5: Comparision of performance for Fine-tuning, CTRL, and DCG on seen and unseen multi-attribute
combinations for DailyDialog-CG in terms of E-ACC, A-ACC, BLEU-1, and BLEU-2.

Metrics
DailyDialog-CG ConvAI2-CG

Emotion Act Persona
Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

ACC 0.5242 0.4936 0.4834 0.3852 0.4077 0.4027 \ \ \
P-SIM \ \ \ \ \ \ -0.0683 0.0065 0.0098
P-NLI \ \ \ \ \ \ -0.0881 -0.0741 -0.0706
MAE 0.6821 0.7500 0.6242 0.5446 0.4661 0.3936 0.5793 0.5768 0.4418
MAE w/o Prompt 0.3665 0.4802 0.3857 -0.2832 -0.2136 -0.1789 -0.0529 0.2591 0.2062
MAE (BART) 0.6829 0.7396 0.6102 0.5478 0.4358 0.3697 0.5550 0.5848 0.4517
MAE (T1) 0.6801 0.7661 0.6382 0.5557 0.4661 0.3935 0.6037 0.6235 0.4811
MAE (T2) 0.6758 0.7070 0.5851 0.5357 0.4055 0.3458 0.5724 0.5767 0.4418
MAE w/o Prompt (T1) 0.1158 0.1053 0.0912 -0.3035 -0.2684 -0.2266 0.0835 0.0984 0.0884
MAE w/o Prompt (T2) 0.0417 -0.0257 -0.0210 -0.2680 -0.1040 -0.0835 -0.0512 -0.0199 -0.0295

Table 4: Pearson (r), Spearman (ρ), and Kendall (τ ) correlations of attribute controllability evaluation metrics on
DailyDialog-CG and ConvAI2-CG. "T1" and "T2" denote the Template 1 and Template 2.
uous attribute control. It also shows the effective-463

ness of our method when more attributes are com-464

bined. However, all BLEU scores are low, which465

is because the ConvAI2-CG has more diverse and466

complex attribute combinations and leads to the467

instability of models facing new attribute combina-468

tions. Generally, the results show that the compo-469

sitional generalization for multi-attribute control-470

lable dialogue generation is necessary and mean-471

ingful. Noted that we also conduct experiments on472

the setting with changed number of attributes from473

training to inference (See in Appendix I).474

7 Qualitative Analysis475

7.1 Comparison between Seen and Unseen476

Attribute Values477

Figure 5 displays the comparison of the perfor-478

mance on seen and unseen attribute combinations479

for DailyDialog-CG. We report the controllabil-480

ity metrics, E-ACC (emotion) and A-ACC (act),481

and the BLEUs of the Fine-tuning, CTRL, and our482

DCG. The top of each box denotes the result of seen483

attribute combinations and the bottom represents484

unseen attribute combinations. We find all meth-485

ods achieve significantly superior performance on486

seen attribute combinations than on unseen com-487

binations. For example, CTRL achieves 71.27%488

E-ACC and 43.15% A-ACC on seen attribute com-489

binations but drops to 67.34%(-3.93) and 33.50%(-490

9.65) on unseen combinations. It strongly proves 491

previous methods suffer from the difficulty of com- 492

positional generalization for the multi-attribute con- 493

trollable dialogue generation. However, we find our 494

proposed DCG can greatly alleviate this gap. The 495

DCG has a smaller drop of 0.41% and 0.11% for 496

E-ACC and A-ACC, and it also outperforms CTRL 497

on both controllability and text equality of unseen 498

attribute combinations. The results confirm the 499

effectiveness of our method for transferring seen 500

attributes to unseen combinations. We find CTRL 501

achieves a higher A-ACC on seen combinations but 502

a lower score on unseen combinations than Fine- 503

tuning, which demonstrates directly adding control 504

codes may cause overfitting to seen attribute com- 505

binations. 506

7.2 Correlation Results on Metrics 507

Following Guan and Huang (2020), we adopt Pear- 508

son (r), Spearman (ρ), and Kendall (τ ) correlation 509

coefficients between our proposed automatic met- 510

ric, MAE, and human judgments (details can be 511

seen in Appendix E) to measure the quality of dif- 512

ferent metrics. Table 4 shows the overall results 513

on the controllability of coarse-grained discrete 514

attributes, emotion and act, and the fine-grained 515

continuous attributes, persona description. We can 516

observe that our MAE outperforms classic metrics, 517

E-ACC, A-ACC, P-SIM, and P-NLI, by a large mar- 518
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Figure 6: Few-shot learning of our DCG and CTRL on
DailyDialog-CG.
gin, indicating the effectiveness of our unified met-519

ric on different granularities. We also conducted520

experiments on some variants of MAE. After the521

removal of continuous prompts, the correlation522

scores decrease. It is because the task-oriented523

prompts are the only parameters can be fine-tuned,524

which is important for MAE. We also implement525

MAE on another PLM, BART, to demonstrate gen-526

erality for our model.527

Robustness Analysis To verify the effect of the528

bias of the handcrafted template, we design another529

two templates. The Template 1 is "The response is530

related to the emotion/act/persona [MASK]" and531

Template 2 is "The response is about the emo-532

tion/act/persona [MASK]". As shown in Table 4,533

MAE (T1) and MAE (T2) achieve similar corre-534

lation results (within 0.50%) while the results of535

MAE w/o Prompt (T1) and MAE w/o Prompt (T2)536

are quite different. It suggests the trainable continu-537

ous task-oriented prompt can alleviate the potential538

bias of different handcrafted templates and further539

improve the robustness of MAE.540

7.3 Prompt Visualization541
To show the effect of prompts for composi-542

tional generalization, we display a visualization543

of the concatenated prompt embeddings of two at-544

tributes via PCA (Jolliffe and Cadima, 2016) on545

DailyDialog-CG in Figure 7 (See in Appendix).546

For CatPrompt in Figure 7(a), all the multi-attribute547

combinations (6(emotion)× 4(act) = 24) almost548

collapse into four dots where each dot is of the549

same act attribute value but of different emotion550

values. We find directly concatenating two single-551

attribute prompts makes the model only focus on 552

the latter attribute (act), i.e., position sensitive, so 553

that the CatPrompt cannot distinguish different 554

combinations with the other attribute (emotion). 555

Therefore, it’s hard for CatPrompt to learn multi- 556

attribute compositional generalization. In Figure 557

7(b), We find that DCG w/o DL can distinguish 558

different multi-attribute combinations to some ex- 559

tent. However, the combinations of different at- 560

tribute values are tightly entangled, such as (a0, 561

b2) and (a4, b1). Figure 7(c) shows that our DCG 562

has a close distribution with prompts of the same 563

attribute value, i.e., (a0, b0), (a0, b1), (a0, b2), and 564

a sparse distribution with prompts of different at- 565

tribute values, e.g., (a0, b2) and (a4, b1). It proves 566

our DCG can disentangle attribute combinations 567

and learn relations between different attributes. Fur- 568

thermore, DCG learns generalization capability 569

from seen attributes to unseen combinations. For 570

example, (a2, b1) -> (a0, b1) (unseen path) is equal 571

to (a2, b0) -> (a0, b0) (seen path). The results con- 572

firm that our proposed attribute-oriented prompt 573

outperforms the models that learn an independent 574

prompt for each attribute value. The shared embed- 575

ding mapping helps learn attribute concepts from 576

seen values to unseen combinations. 577

7.4 Few-shot Learning 578
To study the effect of few-shot learning, we ran- 579

domly select a ratio of original training data from 580

DailyDialog-CG and show the results in Figure 6. 581

Note that we keep the original test set fixed for fair 582

comparison. As the size of training data decreases, 583

the performance of both CTRL and DCG presents 584

a drop trend and our DCG model is consistently 585

better than CTRL, which confirms our model has 586

strong capability for multi-attribute controllable 587

dialogue generation. 588

8 Conclusion 589
In this paper, we study the compositional gener- 590

alization for multi-attribute controllable dialogue 591

generation. We propose a prompt-based disentan- 592

gled controllable dialogue generation model which 593

generates attribute-specific prompt vectors from 594

control codes and uses a disentanglement loss to 595

disentangle different attributes. Further, we de- 596

velop a unified reference-free evaluation frame- 597

work, MAE, for multi-attribute generation with 598

different levels of granularities. Experiments and 599

analysis show our method achieves better text qual- 600

ity and controllability scores. Moreover, our pro- 601

posed MAE has a higher correlation with human 602

judgments for evaluation on CDG. 603
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9 Statement of Ethical Considerations604

Controllable dialogue generation(CDG) is an essen-605

tial task in Natural Language Processing (NLP) and606

has been widely studied for decades, which aims607

to guide dialogue generation toward the desired at-608

tributes such as emotions, acts, and personas. In the609

open-domain dialogue scenario, CDG can gener-610

ate emotional and diverse responses to enhance the611

user’s sense of participation. In the task-oriented di-612

alogue scenario, CDG can generate responses that613

meet the user’s needs according to the user’s intent.614

However, most previous works focus on single-615

attribute generation where there is only one at-616

tribute label like happiness in emotion and pay less617

attention to the multi-attribute generation, which618

is a more practical setting. Different from single-619

attribute, the control signal of the multi-attribute620

generation is a combination of multiple values from621

different attributes, which faces the challenge of622

lacking sufficient annotated attribute-specific data.623

Therefore, we explore the compositional gener-624

alization for multi-attribute controllable dialogue625

generation where a model could learn from seen626

attribute values and generalize to unseen combina-627

tions. We also design a novel and general reference-628

free evaluation framework to unify the evaluation629

of different granularity attributes. The experimen-630

tal results prove the effectiveness of our model and631

evaluation framework. Besides, there is no huge632

biased content in the datasets and the models. If633

the knowledge base is further used, the biased con-634

tent will be brought into the generated responses,635

just like biased content posted by content creators636

on the Web which is promoted by a search engine.637

To prevent the technology from being abused for638

disinformation, we look forward to more research639

effort being paid to fake/biased/offensive content640

detection and encourage developers to carefully641

choose the proper dataset and content to build the642

knowledge base.643
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A Prompt Visualization 887

In this section, we give the prompt visualization in 888

Figure 7. 889

B Baselines 890

DialoGPT-Ori: Proposed by (Zhang et al., 2020), 891

this model is a dialogue generative pre-trained 892

transformer. Here, we use the original DialoGPT 893

for open-domain dialogue generation. DialoGPT is 894

the backbone for all other baselines except CoCon. 895

Fine-tuning: We use dialogue history in datasets 896

to fine-tune the DialoGPT for dialogue generation. 897

CTRL: Proposed by (Keskar et al., 2019), this 898

method provides attribute control codes for a lan- 899

guage model trained from scratch. We concatenate 900

multi-attribute control codes with dialogue history 901

to fine-tune the DialoGPT. 902

CoCon: Proposed by (Chan et al., 2021), this 903

method uses a content input to control an GPT’s 904

output text at a fine-grained level. 905

PPLM: Proposed by (Dathathri et al., 2020), this 906

method is a gradient-based baseline that uses a 907

plug-and-play language model(PPLM) to guide the 908

language model. We train a joint classifier of emo- 909

tion and dialogue act which takes a single response 910

as input and predicts the attribute combination of 911

the emotion and dialogue act on DailyDialog-CG. 912

Noted that the attribute classifiers of PPLM can not 913

directly generalize to unknown attribute combina- 914

tions, so we use both training data and test data 915

to train the attribute classifiers. We use the bag- 916

of-words attribute model which encodes persona 917

profile to control the DialoGPT on ConvAI2-CG. 918

FUDGE: Proposed by (Yang and Klein, 2021), this 919

method is a weighted decoding baseline which uses 920

a future discriminator for generation(FUDGE) to 921

guide the DialoGPT. We train a joint discrimina- 922

tor that takes the dialogue history and the current 923

response as input and predicts the attribute combi- 924

nation of emotion and dialogue act on DailyDialog- 925

CG. 926
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Figure 7: Visualization of prompts from different models on DailyDialog-CG. Each dot denotes the prompt
embeddings of a multi-attribute combination (a∗, b∗)|a∗ ∈ A, b∗ ∈ B, where A is the attribute Emotion and B is
the attribute Act. The same color represents that two dots have the same value of Emotion and different shaped dots
represent seen/unseen combinations. For clarity, we leave out some outliers.

Prompt-tuning: Proposed by (Lester et al., 2021),927

this method uses continue prompts to fine-tune lan-928

guage models. We apply this method to the Di-929

aloGPT for dialogue generation.930

CatPrompt: Inspired by Yang et al. (2022); Qian931

et al. (2022), we initialize an unique prompt for932

each single attribute value and concatenate single-933

attribute prompts as the multi-attribute prompts.934

We fine-tune multi-attribute prompts for dialogue935

generation. Note that CatPrompt is only applied936

to coarse-grained discrete attributes like emotion937

and act instead of persona. Because persona has a938

large value set, resulting in numerous parameters939

(see Table 6).940

C Implementation Details941

Our implementation is based on the Hugging Face942

Transformer models5. DialoGPTSmall is used943

as a backbone and the input sequence length is944

truncated to 512 tokens. Following the Hugging-945

Face default setup, we use an AdamW optimizer946

(Loshchilov and Hutter, 2019) and a linear learn-947

ing rate scheduler with an initial rate of 7.5 · 10−5,948

and the batch size is set to 8. The prompt lengths949

are set to 50 and 150, the attribute-oriented prompt950

lengths are set to 6 and 100, the disentanglement951

loss weight is set to 0.1 and 0.03, and the num-952

ber of Pseudo Combinations is set to 8 and 6 for953

DailyDialog-CG and ConvAI2-CG, respectively.954

Our model is trained on Tesla V100 machines, tak-955

ing 24 minutes per epoch on DailyDialog-CG and956

36 minutes per epoch on ConvAI2-CG. For all ex-957

periments, we set the number of training epochs to958

30. At the decoding phase, we use a greedy search959

5https://github.com/huggingface/transformers

Method Decoding Speed ↑
DialoGPT-Ori 1.1837x
FUDGE 0.0041x
PPLM 0.0006x
CoCon 0.0044x
Fine-tuning 1.1347x
CTRL 1.1673x
Prompt-tuning 1.0000x
CatPrompt 1.0408x
DCG (ours) 1.0490x
DCG w/o DL 1.0122x

Table 5: The decoding speed of different models, which
takes the decoding speed of the model relative to the
Prompt as a metric.

and max generated tokens of 150. 960

D Inference Efficiency 961

We compare the average inference efficiency of 962

our methods with the baselines. As we can ob- 963

serve from Table 5, the inference speed of PPLM, 964

FUDGE, and CoCon is far slower than the original 965

GPT-2 model. Prompt-based methods are much 966

faster than that decoding strategy based methods. 967

The inference speed of our method is close to the 968

original DialoGPT methods. As shown in Table 969

6, with the growth of attribute combinations, the 970

trainable parameters of CatPrompt increase rapidly, 971

from 0.84M to 224M, which even exceeds the 972

117M trainable parameters of full DialoGPT. While 973

our method achieves better results with a lower 974

number of trainable parameters on DialyDialog- 975

CG and ConvAI2-CG. 976
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Model DailyDialog-CG ConvAI2-CG
Traninable Parameters Percent Trainable Traninable Parameters Percent Trainable

Fine-tuning 117M 100% 117M 100%
CTRL 117M 100% 117M 100%
Prompt-tuning 0.13M 0.11% 0.21M 0.18%
CatPrompt 0.84M 0.71% 244M 205%
DCG (ours) 0.66M 0.56% 0.66M 0.56%
DCG w/o DL 0.66M 0.56% 0.66M 0.56%

Table 6: Number of parameters used for different models. Trainable parameters is the number of parameter used for
training in models. Percent Trainable is the ratio of trainable parameters to original GPT-2.

Model
DailyDialog-CG ConvAI2-CG

Controllability Text Quality Controllability Text Quality
Emo. Act. Flu. Rel. Per. Flu. Rel.

CTRL 2.20 2.05 4.19 3.35 1.70 4.02 3.25
DCG 2.35 2.85 4.42 3.89 2.17 4.03 3.26
DCG w/o DL 1.70 2.30 4.04 3.18 1.61 4.07 3.22

Table 7: Human evaluation on controllability and text quality for DailyDialog-CG and ConvAI2-CG. Emo., Act.,
and Per. are the attributes of emotion, act, and persona. Flu. and Rel. are the fluency and context relevancy.

E Human Evaluation977

To validate the good performance of DCG, we fur-978

ther deploy a set of human evaluations to compare979

the controllability and text quality between several980

methods. We randomly sample 100 examples from981

two datasets and collect the corresponding gener-982

ated responses of CTRL, DCG, and DCG w/o DL.983

For the controllability, 5 human annotators are in-984

vited to evaluate on a scale of 1-3, where score 1985

means that the generated response is completely986

inconsistent with the expected attribute label, score987

2 denotes that the generated response has the same988

meaning as the expected attribute label, but no ex-989

plicit attribute-related words, and score 3 means990

that the generated response contains some clear991

attribute words. For the text quality, we ask the992

annotators to evaluate the fluency and context rele-993

vancy of the generated responses on a scale of 1-5,994

where a higher score indicates better quality. The995

inter-annotator agreement on the controllability and996

text quality is 0.63 and 0.61 for DailyDialog-GC,997

and 0.58 and 0.60 for ConvAI2-CG. For all metrics,998

the average score of the 5 annotators is treated as999

the final score.1000

As shown in Table 7, the text quality scores of all1001

models are high, which is because the models fine-1002

tuned on contextualized language backbones can1003

generate fluent sentences with relevant information.1004

For controllability, our DCG achieves better per-1005

formance than CTRL both on the coarse-grained1006

discrete attributes and fine-grained continuous at-1007

tributes, which suggests that our shared prompt1008

mapping can learn the attribute concepts from seen 1009

attribute values to unseen attribute combinations 1010

and is useful for diverse attributes. Besides, when 1011

removing the disentanglement learning, the scores 1012

of our DCG w/o DL drop significantly, which fur- 1013

ther shows the effectiveness of the combination 1014

disentanglement to improve the generation ability. 1015

F Effect of Model Parameters 1016

Prompt Length Figure 8 (a) displays the effect 1017

of overall prompt lengths of Ep. Since the length 1018

of attribute-oriented prompt is fixed to the number 1019

of control code, we change the length of the task- 1020

oriented prompt. We find that our DCG achieves 1021

superior performance when the prompt length is 1022

between 20 and 100, and gets the best scores when 1023

the prompt length is 50. The DCG outperforms the 1024

strong baseline CTRL by the 3.19% (averaged) for 1025

MAE and 2.16% (averaged) for BLEUs but uses 1026

only 56% trainable parameters of CTRL, which 1027

verifies the effectiveness and robustness of our 1028

method. 1029

Weight of Disentanglement Loss Figure 8 (b) 1030

shows the effect of different weight ratios α for 1031

the disentanglement loss LD. We observe that 1032

α ∈ (0.05, 0.15) achieves consistent improve- 1033

ments than CTRL and we take α = 0.10 in all 1034

experiments. 1035

Number of Pseudo Combinations Figure 8 (c) 1036

shows the effect of the number of pseudo com- 1037

binations in the disentanglement loss. We find a 1038

larger number will improve the controllability of 1039
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Figure 8: Effect of prompt length, disentanglement loss weight, and number of pseudo combinations for DailyDialog-
CG. The dotted lines denote the performance of CTRL. We report the MAE and BLEU scores for all settings.

Metrics
DailyDialog-CG ConvAI2-CG

Emotion Act Persona
Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

CTRLEval 0.6927 0.6994 0.5961 0.1232 0.3391 0.2743 0.4059 0.3622 0.2847
MAE 0.6821 0.7500 0.6242 0.5446 0.4661 0.3936 0.5793 0.5768 0.4418

Table 8: Pearson (r), Spearman (ρ), and Kendall (τ ) correlations of attribute controllability in DailyDialog-CG and
ConvAI2-CG. We use the attribute relevance of CTRLEval as the controllability score.

our model. It’s because more pseudo attribute val-1040

ues help the model to separate the desired attribute1041

combination from the others.1042

G Case Study1043

Figure 9 shows two examples from Dailydialog-1044

CG and ConvAI2-CG, respectively. For example1045

one in the DailyDialog-CG, the CTRL generates1046

the word "great", showing that the generated re-1047

sponse is emotionally controllable. However, both1048

sentences in the response are declarative sentences,1049

which does not control the act question. As ob-1050

served, the response generated by our DCG con-1051

tains the word "Wow", which strongly expresses the1052

emotion of happiness. Besides, a question sentence1053

is also generated. Example two in ConvAI2-CG1054

needs to control 5 attributes, of which the golden1055

response contains 2 attributes. The CTRL only con-1056

trols "like to skate", while our DCG controls "like1057

to write poetry and skate", which is highly consis-1058

tent with the golden response. Compared with pre-1059

vious models, our model addresses many difficult1060

issues in compositional generalization for multi-1061

attribute controllable dialogue generation. With1062

an attribute-oriented prompt and a task-oriented1063

prompt, our method learns attribute concepts from1064

seen attribute values to unseen attribute combina-1065

tions. Through a disentanglement learning, some 1066

artificial-constructed unseen pseudo combinations 1067

are injected into the training process, which greatly 1068

improves the generalization ability of our model. 1069

H Comparison with CTRLEval 1070

Automatic evaluation metrics are important for 1071

text generation tasks, including reference-based 1072

like BLEU (Papineni et al., 2002b), ROUGE 1073

(Lin, 2004), BERTScore (Zhang* et al., 2020) 1074

and unreferenced like perplexity (Brown et al., 1075

1992), discriminator scores (Dathathri et al., 2020), 1076

BARTScore (Yuan et al., 2021). To evaluate con- 1077

trollability, (Dathathri et al., 2020; Yang and Klein, 1078

2021) trained an attribute classifier to predict the 1079

probability using labeled external data, which is 1080

hard to multi-attribute controllable generation. As 1081

a concurrent work, CTRLEval (Ke et al., 2022) pro- 1082

poses an evaluation method for controllable text 1083

generation. Different from our MAE, CTRLEval 1084

uses handcrafted prompts to evaluate attribute rel- 1085

evance. However, handcrafted prompts are hard 1086

to construct for new tasks and cause generation 1087

bias. In contrast, our MAE uses a learnable soft 1088

prompt based on PLMs to enhance the generaliza- 1089

tion capability and robustness. We also provide a 1090

performance comparison in Table 8. Results show 1091
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Example one in DailyDialog

Dialogue History:
A: Smells good! What’s for breakfast? 

B: Well, since we are getting up so late, 

    I decided to make a big breakfast!” 
A: Nice! Brunch!” 
B: Kind of, I made scrambled and soft boiled  

    eggs, some French toast and buttermilk   

    pancakes!

Example two in Convai2

Dialogue History:
A: Hi! how are you doing today?

B: I am doing good and yourself?

A: I am doing alright. What are some of your  

    hobbies?

B: I love the outdoors and camping”

Controllable Attribute Combination:
(happiness, question)

Controllable Attribute Combination:
I sometimes write poetry.

My favorite color is black. 

I sing in a punk band. 

I like to skate. 

I want to visit the uk.

Golden Response

Wow! You really went all out! Did you make 

any coffee?

CTRL

That sounds like a great breakfast! I'll make 

a big omelet, toast, and buttermilk 

pancakes!

DCG (ours)

Wow! You really went all out with it! Did you 

make any coffee?

Golden Response

That sounds fun. I like to write poetry and to 

go ice stating haha.

CTRL
Just like to skate and ski.

DCG (ours)

That is cool. I like to write poetry and skate.

Figure 9: Case study for two examples from DailyDialog-CG and ConvAI2-CG. We present the dialogue history, its
corresponding controllable attribute combination, golden response, CTRL prediction, and prediction of our DCG.

our MAE shows superior correlations of attribute1092

controllability.1093

I Performance on Number of Attribute1094

To prove our model still be useful when the number1095

of attributes varies from training to inference, we1096

train CTRL and our DCG with 4 attributes and in-1097

ference with 5 attributes in ConvAI2-CG. As shown1098

in Table 9, DCG outperforms the strong baseline1099

CTRL by 3.54% , 5.99%, 4.8% in P-SIM, P-NLI1100

and P-MAE on controllability and achieves compa-1101

rable BLEU scores. It proves DCG can also handle1102

well with changed number of attributes.1103

J Limitation1104

In this paper, we study the compositional gener-1105

alization for multi-attribute controllable dialogue1106

generation and propose a contrastive controllable1107

dialogue generation model. Although our method1108

achieves satisfying performance, there are still is-1109

sues unresolved: (1) Interpretability: we need to 1110

verify why our method works and how to improve. 1111

(2) More controllable datasets: we study emo- 1112

tion, dialog act and persona as control codes. We 1113

will explore other controllable dialogue generation 1114

datasets like knowledge. (3) Unseen attributes: we 1115

study the compositional generalization of existing 1116

attributes. It’s more challenging to generalize to 1117

unseen attributes. 1118
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Model Controllability Text Quality
P-SIM ↑ P-NLI ↑ P-MAE ↑ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

CTRL 67.09 77.21 26.38 19.44 3.20 12.51
DCG 70.63 83.20 31.18 18.63 2.32 11.87

Table 9: The performance of CTRL and DCG for ConvAI2-CG when the number of attributes varies. We train
models with 4 attributes and inference with 5 attributes. Results are averaged over three random runs. ↑ means a
higher score is better. (p < 0.01 under t-test)
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