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Abstract

Conventional recommender systems enhance user
engagement through personalized content. How-
ever, personalization usually induces significant
side effects on opinion formation, such as polar-
ization and echo chambers that need to be pre-
vented. With this motivation, we design a rec-
ommender system algorithm that addresses user
engagement maximization and opinion polariza-
tion mitigation by operating in feedback with the
social platform. The recommender is agnostic
about real-time opinions, network topology, and
users’ clicking behaviour, all estimated online.
We numerically verify the efficacy of the designed
recommender on synthetic data. We show that by
providing network-aware recommendations to the
users as opposed to users’ tailored content, we
significantly reduce polarization effects without
sacrificing user engagement.

1. Motivation

Online social platforms use recommender systems to pro-
vide users with tailored content to maximize engagement
over the platform. The state-of-the-art algorithms for rec-
ommender systems exploit methods, such as content-based
filtering (Bansal et al., 2015) and collaborative filtering (Eiri-
naki et al., 2014), that combine information personalization,
popularity and similarity of interests with other users to
provide a set of media feed that attracts users’ interests.
However, it is a well established fact that content personal-
ization leads to undesired effects over users opinions such
as echo chambers formation and polarization (Lazer, 2015;
Bakshy et al., 2015). By drawing on Online Feedback Op-
timization (OFO) (Hauswirth et al., 2024), we design a
recommender system algorithm in feedback with the so-
cial platform whose aim is to maximize users’ engagement
while penalizing opinion polarization (see Fig.1). We show
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Figure 1. Illustration of the closed-loop between social network
and recommender system.

that, by considering the network topology of social interac-
tions over the platform, something that traditional machine
learning algorithms usually do not, we are able to reduce po-
larization in opinions without sacrificing users’ engagement.
The dynamics of opinions, the agent’s clicking behaviour
and the topology of interactions are all assumed to be un-
known and inferred online.

2. Problem Setting

We consider the problem of designing a recommender sys-
tem for a social network consisting of n users (Fig. 1),
indexed by i € [n]. User opinions are collected into a vector
x € [—1,1]™, with z; being the opinion of the i-th user. The
temporal evolution of the users’ opinions is dictated by

af L = f(ak, pk ), (D

where p € [—1, 1]™ is the position vector of the recom-
mendations, d € [—1, 1]™ represents an external influence
to the platform and f : ([-1, 1]*)3 — [~1, 1]® encodes
the influence of interactions among users. We assume there
is a single polarizing topic of discussion on the platform.
Therefore, a recommendation with position p = +1 (—1)
can be interpreted as a news strongly in support of (against)
the issue. We provide an example of (1) in Appendix A.2.

The following assumption ensures that the dynamics (1) are
well-posed and admit a steady-state mapping.
Assumption 1 (Well-posedness). The following hold: (i)
The dynamics (1) are forward invariant in [—1, 1], i.e.,

2%, p%,d e [-1, 1]" = 2F € [-1, 1]", Vk € N,.
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(i) The dynamics (1) is uniformly exponentially stable
and admit a unique steady-state map h : ([—1, 1]")2 —

[—1, 1]™ satisfying
h(p7d) = f(h(p7 d)7p7d)7

(iii) The map h(p,d) is continuously-differentiable and
L—Lipschitz (Nesterov, 2014) with respect to p. U

Vp,d € [-1, 1]".

Engagement of the users over the platform is measured
in terms of the clicking ratio on the provided news arti-
cles. For a user 7, we model the probability of clicking on
a recommendation as a random variable ¢; drawn from a
Bernoulli distribution with unknown argument g; (p;, ;), i.e.
B(gi(pi,x;)). The argument g;(p;, z;) € [0, 1], represents
the probability that the user ¢, with opinion x; clicks on a
news expressing the position p;. We will refer to g;(p;, x;)
as the clicking behaviour of user 1. We provide an example
of a clicking behaviour in Appendix A.3

3. Problem Formulation

The goal of the recommender system is to provide rec-
ommendations that optimize a specific metric, denoted as
»(p,x). We consider a multi-objective cost function that
combines engagement maximization and polarization miti-
gation as

p(p,x) = o™ (p ) + 9™(2), @

The engagement-related term in the cost (2) is defined as

QDClk(p7x) = - Z Eciwl’j’(gi(ziﬁpi))[ci]z
i€[n]

where E.,.5(g,(z:,p;))[Ci] 18 the expectation of user i’s
clicking, given their opinion x; and a recommendation
with position p;. The second term in (2) is given by
Pl (z) 1= >_ic[n) Si(®), where s; is a soft penalty function
defined as

(l‘i — 61)2 r; < €1
si(zi) =40 €1 <z <eg.
(62 — IZ')2 T; > €9

The parameters €; < €5 are used to control the degree of
penalty towards extreme opinions. Specifically, a smaller
positive (negative) choice for €2 (€1) indicates a higher
penalty on extreme positive (negative) opinions.

The recommender aims at regulating the system (1) to the
solution of the following steady-state optimization problem:

minimize (p,x) (3a)
P, T

st x=h(pd) (3b)

p € [_la 1]n (3C)

Problem (3) is, in principle, non-convex, since both the
steady-state mapping in (3b) and clicking behaviour in (3a)
are, in general, unknown. If the dynamics of opinions (f),
the opinions (z;) in (1) and the clicking behavior (g;) were
known, and an accurate prediction of external influences d
were available, then we could solve (3) offline. However,
in practice, none of these information is readily available.
Instead, the recommender system only has access to the
users’ online feedback in the forms of clicks {c¥} on the
provided recommendations. Thus, the only measurements
we collect from the users is the observed clicking ratio
Yk = Zf:ka ¢ /(T+1),Y k > T, for some time window
T'. Our feedback control problem is formally stated as:
Problem 1. Design a feedback controller so that (1) tracks
a solution (p*, x*) of the optimization problem (3), by as-
suming only clicks c¥ are available.

4. Problem Solution

We approach Problem 1 by designing a dynamic feedback
controller inspired by the projected-gradient descent algo-
rithm in (Belgioioso et al., 2021). The resulting recom-
mender dynamically generates positions as

P =Py [pF —n@(F, 2],

where P[_; 1= [2] represents the Euclidean projection of
some z € R™ onto [—1, 1]™, n is the step-size, and

D(p, ) := Vpp(p, ) + Vph(p,d) Vap(p, ) (5)

represents the gradient obtained by applying the chain-rule
of differentiation to the cost ¢(p, z) in (3), with opinions at
steady state, i.e. z = h(p, d).

VkeN 4)

In practice, evaluating the gradient (5) at each sampling in-
stant requires access to: (i) Real-time users’ opinions ¥ (ii)
Sensitivity mapping V,h(p, d); (iii) Gradients V,¢(p, x)
and V¢ (p, x). None of these information is readily avail-
able, making a direct implementation of the recommender
design (4) impractical.

To cope with these challenges, we augment the controller
(4) with three auxiliary levels that estimate users’ opinions,
sensitivity, and clicking behaviour online, as illustrated in
Fig. 2. Specifically, we structure the design on three levels:
Level 1: Real-time opinions and users’ clicking behaviour
estimation via supervised learning; Level 2: Online sensi-
tivity learning via Kalman filtering; Level 3: Gradient esti-
mation via a forward difference method. In the following
three sections, we briefly describe each layer and analyze
the stability properties of the feedback interconnection.

4.1. Level 1: Opinion & Clicking Behaviour Estimation

The steady-state opinion and clicking behaviour are esti-
mated using an Artificial Neural Network (ANN). Note that



FoRLaC 2024 Template

Training data

External influence d
{ X, Xa, Xy}

Observed clicking
ratio y

Social network
I+ = f(x:pv d)
¢ ~ B(gi(pi, x;))

Neural network

: Level-II
Opinion estimate 1 : ¢ Az
Clicking behaviour : Sensitivity estimation Sensitivity estimate
estimate § Vph
Ap Kalman Filter

{ Level-III

Zeroffirst-order gradient estimation
Vpgbdk (1)7 ./i‘+ ) , VT @clk

(p,&%)
VPOl (87F)

L

Positions p

Projected gradient descent
pt =P

1,1]n [p — n®(p, i+)]

Figure 2. Block diagram of the proposed recommender system design with the three levels. Level 1: Opinion and clicking behaviour
estimation, Level 2: Sensitivity estimation, Level 3: Gradient estimation and Optimization.

the use of the ANN allows us take into account for the
dynamics of opinions thus circumventing the problem of
getting access to online state measurements.

To bound the resulting opinions and clicking behaviour
estimation error, we work under the following regularity
assumptions (Cothren et al., 2023; Dean & Recht, 2021).

Assumption 2 (Clicking behaviour). The clicking be-
haviour g(p, z) is M,-Lipschitz with respect to z, and L,-
and L,-smooth with respect to p and x, respectively. [

Assumption 3 (Artificial Neural Network). It holds that

1. The image ¢(P,X) is compact for any X, P C
[—1,1]".

2. There exist a continuous mapping S : [0,1]" X
[-1,1]" — [—1,1]" such that 5(y,p) = = + 0(z),
with ||0(x)]| < O, forall z € X, and 0, < oo.
Moreover, the image 3(),P) is compact for any
yc [Ov 1]n7P - [*13 1]n

3. There exists a constant oy, < oo such that the com-

posite function g(p, B(y, p)) = y+ V.g(p,z) " 0(z) +
a(y), with ||a(y)|] < oy, forally € V. O

It follows by Assumptions 2-3 that the modelling errors of
the opinion map 5(y, p) and clicking behaviour g(p, =) are
upper-bounded by ¢, and o, respectively.

There are two ANNSs involved in this process: One to infer
the opinions and another one to infer the clicking behaviour.
As far as the opinion estimation is concerned, for every user

1, the ANN takes as input the clicking ratio y; and the posi-
tion vector p and gives as output the users’ opinion estimate
Z;. The reason why we take the whole position vector p as
an input is due to the network structure of the problem: The
position provided to users connected with agent ¢ will also
(indirectly) affect agent ¢’s steady-state opinion x;. Note
that, x; does not directly depend on the clicking ratios of
other users. Thus, we have n+1 input neurons (n associated
with p and one associated with y;) and 1 output neuron for
each user. Further, we use one intermediate layer compris-
ing of n + 2 neurons with a hyperbolic tangent activation
function.

For clicking behaviour estimation, for each user ¢, the ANN
takes as input the steady-state opinion x; and the position
provided to the ith user, p;, and provides as output the click-
ing behaviour estimate g;. The clicking behaviour is specific
for each user, therefore, a user’s likelihood of clicking on
the provided position is not affected by neither other users’
opinions nor other users’ positions. Thus, we have 2 in-
put neurons (p;, z;) and one output (y;) neuron for each
user. Further, we use 3 intermediate layers comprising of 5
neurons with a hyperbolic tangent activation function.

The procedure to acquire the training data is explained
in Appendix A.4. We now describe the upper-bounds
on the steady-state opinion and clicking behaviour esti-
mation errors. We define e, := h(p,d) — B(y,p) and
ey = g(p, h(p,d)) — §(p, z) as the opinion and clicking
behaviour estimation errors, respectively, where, B and g are
the opinion estimate and clicking behaviour maps learned
by the ANN.
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Lemma 1 (Opinion estimation error). Under Assumption 3,
the steady-state opinion estimation error is upper bounded
in the o-norm as ||e,|| < e, with

€)= \/ﬁ[g sup [|3(X) = B(X)||oo + 2supws, (v.)+
Xex

i€[n]

Ve SUP \vo,il} + 0y, (6)
i€[n]

where sup ||8(X)—B(X)||eo represents the maximum opin-
Xex

ion estimation error during training of the ANN, wg, (7z)
denotes the minimum modulus of continuity of B; on the
training set X (see Definition 4, Appendix A.1) and vy ;
represents the bias from the hidden layer to the output layer
of the ANN on user 1.

Proof. Refer to Appendix A.S. O

Lemma 2 (Clicking behaviour estimation error). Under
Assumptions 2-3, the clicking behaviour estimation error is
upper-bounded in the ly-norm as ||e,|| < €4, with

o < VA[3sup [l9(Y) = 41 lc + 25wy, (39)
S

i€[n]

Yy 5D [l | + Moes + @
1€[n]

where sup||g(Y) — §(Y)|co is the maximum estimation
Yey

error during ANN training, wg, () denotes the minimum
modulus of continuity of g; on the training set Y and wo ;
represents the estimated bias weight from the hidden layer
to the output layer of the ANN on user 1.

Proof. Refer to Appendix A.6 O

4.2. Level 2: Online Sensitivity Learning

In order to estimate the sensitivity V,h(p,d) in (5) in
real time, similar to (Picallo et al., 2022), we adopt a
Kalman filter based approach. We denote by ¢ &€ R
the vectorized sensitivity V,h(p,d) € R™ ™, namely,
¢ := vec(Vph(p, d)), and model the sensitivity dynamics
as a random walk

Kk — fk_l + wk—l

where, w* ~ N(0,,2, Q%) is the process noise, with Q"
as its corresponding covariance matrix. The measurement
model is described by

Amf:—l,k — AFFLR P,

where Azktlk .= n(pk d) — h(p*~1,d) is the change
in the steady-state opinions for a corresponding change

in positions ApFF=1 := p¥ — pF=1 Further, Aph™ :=

Alpb™T @ I, € R™"” | where ® indicates the Kro-
necker product. The measurement noise is described by
v* ~ N(0,, R¥), where R* is its corresponding covari-
ance matrix. This noise accounts for the contribution of the
external influence d to the change of opinions Ax.

Similar to. (Picallo et al., 2022), the posterior update of
estimates /* and covariance ¥* are given by

gk _ gk—l + CkKk—l(Ai.k-&-LTi—i-l _ Aﬁkﬁiék—l)
Ek _ Ek—l + <k (Qk _ Kk—lAﬁk,nEk—l)’ ®)

where ( enforces an auxiliary trigger mechanism, with
¢* = 1 for k being integer multiples of the time period
T'. Further, we refer to 7 as the set of trigger time instances
and 7; being the latest trigger time instant before k. The
trigger mechanism is introduced to enforce time-scale sepa-
ration between the plant dynamics and the controller updates
(Hauswirth et al., 2021) and to allow a sufficient number
of clicks to ensure a proper estimate of the clicking ratio,
which is needed for opinion estimation.

Note that the sensitivity learning is based on the opinion
estimates Z, introduced in Section 4.1, rather than the real
opinions. Finally, the Kalman filter gain K in (8) is given
by

Kk — Ek(Aﬁk,ﬂ)T(Rk 4 Aﬁk,‘rizk‘(Ai)k‘,ﬂ)T)fl.

Next, we postulate some regularity assumptions for the
process and measurement models.

Assumption 4 (Gaussian noise). The process and mea-
surement noise w, v are white Gaussian. Moreover, the

steady-state opinion estimation error e, = h(p, d) — 5(y, p)
is uncorrelated with w and v.

The assumption of white noise for the process model is
standard in the context of sensitivity learning in feedback
optimization (Picallo et al., 2022). Intuitively, the process
perturbation determines the degree of trust one puts on the
sensitivity estimates. It is also reasonable to assume that
the external influence is uncorrelated among users in certain
cases, for example the extended FJ model in Appendix A.2
where d = x¢. We also note that since Z is estimated
using the ANN, the steady-state estimation error e, is not
correlated with the process or measurement noise in (4.2).
Under Assumption 4, the covariances simplify as QF =
(0F)2I,2 and R* = (o)1, for some o4, o > 0.

To ensure that the sensitivity matrix is correctly inferred, we
must guarantee that the input positions Ap are persistently
exciting (Willems et al., 2005) (see Definition 3). This is
carried out by introducing a dither signal in (4).

4.3. Level 3: Gradient Estimation & Optimization

In order to estimate the gradient of the engagement max-
imization cost ¢°X, we use the finite forward difference
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method as in (Scheinberg, 2022), yielding

~clk ~clk
~cC p, T+ pe;) — p,x
Vo, z) = ( uu) P g,
~clk X _ »clk
Vg (p.) = PR D Z TR g,
1
where V;¢¢ j € {p, 2} denotes the i'" entry of the gra-

dient, e; € R refers to the i*" vector of the canonical
basis of R™ and p is a smoothing parameter. The cost
¢™(p, ) = —1] §(p, ) is evaluated as described in Sec-
tion 4.1. The smoothing parameter 1 is chosen small enough
so that the gradient estimate provides a good approxima-
tion of the true value. However, having y in (9)-(10) too
small can lead to numerical instability, as formalized in the

following:

Lemma 3 (Gradient estimation error). Under Assumptions
2-3, the gradient estimation error is upper bounded as

V¢ — V|| < 2n3/%\/e,L;,  j € {z,p}.

Moreover, the upper bound is tight and reached in corre-
spondence of p* = 2n'/*\ /e, [L;, with j € {z,p}.

Proof. Refer to Appendix A.7. [

We now present the projected-gradient update rule in (4)
augmented with sensitivity, state, and gradient estimations,
and state stationarity bounds with respect to the positions
p*. The augmented update reads compactly as

P =P [ - deh)). A

where the gradient surrogate i)(pk) is constructed by com-
bining sensitivity, opinion, and gradient estimates as

Bt) =V, 8 + (4 TV, g, )
+y(HP) TV 0P (3R ) — wh, /n,

where, & is the opinion estimate, H* := V,h(p*, d) is the
sensitivity estimate at time k. The additional term w’;e ~
N (0, ageln ) is a dither signal that ensures persistency of
excitation of the inputs.

In Algorithm 1, we provide the pseudo-code of the proposed
recommender system design. In the offline phase, training
of the neural network is carried out for opinion and clicking
behaviour estimation. In the online phase a new sensitivity
estimate is generated and new positions are provided to the
users periodically, every T time steps. The recommenda-
tions are provided for IV time instances in total.

Algorithm 1 [y*, p*] = Recommender[V, T', n]

Initialization
Collect training data
Opinion and clicking behaviour map estimation (B ,0)
Optimization phase
for k € [0, N] do
Collect clicks c* from users

S = (i—-1)T <k

Clicking ratio yk —

if (¥ = 1 then
T < append|k]
Opinion estimate: i"f“ — Bi(yf, )
Sensitivity estimate: H* using (8)
Gradient estimate: Using g,  for (9)-(10)
Obtain p**! with OFO using (11)

else
HF « HF1
PR ph

end if

end for[y*, p*] « [y*,p"*]

4.4. Closed-loop Convergence Guarantees

In this section, we provide convergence guarantees for the
sensitivity estimation process (8) and for the closed-loop in-
terconnection between the opinions and recommendations.

Now, we state the main convergence result with respect to
the sensitivity estimation error.

Theorem 1 (Sensitivity estimate convergence). Under As-
sumptions 1, 4 and persistently exciting inputs Ap (Defini-
tion 3), the sensitivity estimation error ek = 0k — % has its
variance bounded in norm, i.e., there exist positive constants
c1,¢2,Cp < ooand € € (0,1) such that

E[lle"]2] < €y + (=™ TIE ")

where Cy = W (T — 1)72 + K2 (77 + 2€¢2)]

with &, = sup 05, G, = supo¥, K,, = sup ||K*|, with
keNy keNg keNg

61562T < L

Proof. Refer to Appendix A.8. O

Note that the variance upper bounds depend on the opinion
estimation error €,. Further, note that increasing the sam-
pling period 7" reduces the bias and variance error through
the term 1—c;£°27. This is expected as increasing T guaran-
tees greater time-scale separation between opinion dynamics
and recommendations. Finally, the upper bound on the sen-
sitivity error variance is proportional to the noise variance
of the opinions through the term 72

re

To quantify performance on the recommendations, we use
the fixed-point residual mapping (Eq. (5), (J. Reddi et al.,
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2016)):

G(p) = = (p — P15 [p — n®(p, h(p, d))]), (12)

Ui

The fixed-point residual mapping is zero at a critical point
of (3), and is a common metric to quantify convergence of
iterative algorithms in non-convex regimes (Nesterov, 2014).
We are now ready to state the main convergence result.
Given that opinions are directly estimated at steady-state,
we circumvent the need to separately prove convergence
on the opinion dynamics. The following theorem proves
convergence of the closed-loop system.

Theorem 2 (Closed-loop scheme convergence). Let As-
sumptions 1-4 hold. ~ For n € (0,55), p* =

20/ \/eg[L;,j € {p,}, the sequence {p*}ren gener-
ated by (11) satisfies

1
— ZE[Hg(pl)HQ} <Ky, Vk>T  (13)
|T| leT
1<k
where K1 is given by
6 50(1707}1(]?0:51)) —¢" Uge 272 2
K = — 44 L
' 1—217L’{ 3n|T o et
K2
| S Ell
n3/2e(Ly+L? L) 42(2ny*+M2+4n> ¢, L) l§k|T}
—— ———
K3
with L' = L, + L?*(L, + 2) denoting the Lips-
chitz constant of the gradient ®(-,h(-,d)), and
a— inf  o(p,h(p,d)) > — n the cost
pE[-L,1]"
function value at a locally optimal solution.
Proof. Refer to Appendix A.9. O

The bound K; shows that achieving an accurate solution
of (3), i.e., a local minima (p*, h(p*,d)), is limited by the
deviation of the initial cost at (p°, h(p°, d)) from the optimal
one p* (i.e. term k1), the polarization and engagement
gradient estimation errors (i.e. terms kg, k3, respectively)
including both opinion and clicking behaviour estimation
errors, the variance of the dither signal, and the sensitivity
estimation error variance E[||e!||2].

5. Numerical Results

We briefly discuss the results obtained in simulation with
the proposed recommendation algorithm. We then make a
performance comparison between our algorithm and other
OFO algorithms that benefit of more information. We also

Table 1. Methods for comparison

Method ‘ Sensitivity ‘ Opinions ‘ Clicking behaviour
M; (Oracle) | +/ vV Vv
My X v v
M; X X 4
My (Alg. 1) | x X X

discuss the effects of personalization and show the benefits
of network awareness as opposed to decoupled recommen-
dations.

5.1. Experimental Setting

For the simulations, we consider synthetic data withn = 15
users in a social network graph with the user’s opinions
evolving based on an extended Friedkin-Johnsen model,
representing the networked version of the one in (Rossi
et al., 2022):

2" = (I, - T, — Tg)Az* + T p* + Tyd,

where I'y, I, are positive diagonal matrices such that I"), 4
I'y = I, and describe the impact of d and p over the
opinions, respectively, and A is a row-stochastic adjacency
matrix encoding the social interconnections of the users.
The external influence is modelled as a prejudice term, the

initial opinion z°.

We consider the following two different clicking behaviours:

1 1
Cy:=cf ~B (2 + 2:z:fpf> ,

1 1 k_ k2

Cp :=cF ~ B(i + 5674(% —Pi) )
Clicking behaviour C'4 represents confirmation bias over
extreme positions (Rossi et al., 2022), and C'z models con-
firmation bias towards any position p; € [—1, 1]. To incor-
porate diversity in clicking behaviours, we randomly assign
8 users to follow clicking behaviour C'4 and the remaining
ones are attributed C'g.

For the polarization cost ¢P°!(z) in (2), we set e = —0.5
and e = 0.5. Thus, opinions lying outside the region
[—0.5,0.5]™ are penalized. Further, we set v = 1 in (2),
thus giving equal importance to engagement maximization
and polarization reduction.

5.2. Performance Comparisons

We make a comparison of our algorithm, referred in Table 1
as M, with other OFO approaches (M; — M3) benefiting
from more information. Table 1 summarizes the methods
used for comparison and their attributes. For the oracle
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(method M3), we employ the standard projected-gradient
controller (4), wherein opinions can be directly measured,
and the sensitivity and users’ clicking behavior is known.
Method M5 requires online sensitivity estimation using a
Kalman filter. Method M3 requires opinion estimation using
supervised learning in addition to sensitivity estimation.
Finally, method M} is our algorithm, combining sensitivity,
opinion, clicking behaviour and gradient estimation. It must
be noted that the comparisons are not carried over a level-
playing field. The methods M; — M3 carry a significant
advantage over My. In fact, o°(p, z) can be perfectly
computed in M; — M3, given that an analytic expression
for the users’ clicking behaviours is available.

To analyze the convergence of our algorithm and compare
it with other OFO methods, we consider the fixed-point
residual mapping norm ||G(p*)||? (Fig. 3). It can be ob-
served that convergence is empirically established in all the
proposed methods with this metric. Although our proposed
method manifests slightly inferior performances, we empha-
size that the clicking behaviour estimation we perform is
completely data-driven and online. The availability of an an-
alytical form for the clicking behaviour g(p, x), from which
the other methods benefit, would be too ideal for real-life
settings.

2
—M
M,
— M3
= My
%
S
0 ] t
0 5000 10000 15000
Iterations

Figure 3. Evolution of the fixed-point residuals ||G(p"*)||? for the
algorithms in Table 1. The bold lines represent the mean and the
shaded region are the 1 standard deviation across the 50 Monte-
Carlo trials.

5.3. Benefits of Network Awareness

We show the advantages of providing network-aware recom-
mendations to the users, as opposed to individual decoupled
recommendations. We compare our approach with two
methods: the recommender from (Rossi et al., 2022) and
a naive OFO algorithm both accounting for each user as
isolated from the network. For the naive method, we make
two significant changes from our proposed OFO approach in
Algorithm 1. Since the social network is not considered, for

-
3
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Figure 4. Steady-state mean clicking ratio (left) and polarization
(right) obtained by Algorithm 1 (OFO), its network-agnostic ver-
sion (Naive OFO), and the recommender design in (Rossi et al.,
2022). The black lines represent the initial ideal mean clicking
ratio (left) and the initial polarization (right).
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Figure 5. Evolution of the fixed-point residuals |G (p"*)||? obtained
by applying Algorithm 1 (OFO) and its network-agnostic version
(Naive OFO). The solid lines represent the mean and the shaded
region (£1 standard deviation) the range of changes across the 50
Monte Carlo trials.

each user ¢ € [n], we train the neural network for opinion
estimation using only their own positions and acceptance
ratio, i.e. &; = Bi(yi, p;) rather than Bl(yl, p). Further, we
do not carry out sensitivity estimation and instead provide a
random constant diagonal sensitivity with entries in [0, 0.5]
in each Monte-Carlo simulation, thus considering each user
as isolated.

The intuition behind the proposed naive method is that if
the network did not contribute to engagement maximization
and/ or polarization minimization, an educated guess for the
sensitivity estimate H would lead to the same performance
as our approach. An advantage of the naive OFO would
be a massive reduction in the computational burden, as the
online sensitivity estimation using the Kalman filter, which
is computationally expensive, would no longer be required.

We observe from Fig. 4 that although our proposed algo-
rithm returns a similar engagement when compared to the
naive OFO algorithm, it returns a much lower polarization
cost. Therefore, we conclude that network-aware recom-
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mendations lead to a significant reduction in polarization
without sacrificing much in terms of users’ engagement.
Moreover, the choice of a random diagonal sensitivity ma-
trix in the naive OFO method lowers the performance of the
overall optimization problem (3), as seen from Fig. 5. We
also observe a larger overshoot in |G (p*)||? with the naive
OFO method.

6. Conclusion

Our aim is to improve the understanding of real-world phe-
nomena using a simplified yet insightful model. We de-
signed a recommender system that simultaneously maxi-
mizes user engagement and mitigates polarization. Our
recommender system solely relies on clicks and does not
require any prior knowledge about opinion dynamics and
users’ clicking behavior. We provided theoretical optimality
and closed-loop guarantees for the resulting recommender-
social network interconnection. Finally, our simulations
demonstrated that our recommender performs favorably
against other approaches that do not leverage information
about users’ interconnections. We provide evidence that po-
larization risk should be considered at the recommendation
level.

Future research directions include relaxing the smoothness
assumptions on the clicking behaviour and incorporate other
interest attractors towards recommendation other than con-
firmation bias, e.g. repulsion. Finally, we aim for our
network-centered perspective to enhance the existing litera-
ture on opinion polarization caused by algorithmic systems
and inspire effective mitigation strategies.
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A. Appendix
A.1. Notations & Preliminaries

We let the symbols R(R ), Ny denote the set of (positive)
real numbers and non-negative integers, respectively. The
set of integers {1,2,...,n} is denoted by [n]. For a vector
y € R™, we let the symbol |y| denote the vector whose i-th
entry, |y|;, is the é-th component of y in modulus, |y;|. The
symbol (-, -) : R” x R™ — R denotes the standard inner
product on R™. The symbol 1, (0,,), denotes the all ones
(zeros) vector of size n. The symbols I,, and O,,, denote the
n-dimensional identity and zero matrix, respectively. Given
a matrix A € R™*" the matrix is positive (non-negative)
if all its elements are greater (or equal) than zero and we
denote it as A > 0 (A > 0). We let vec(A) denote the
vectorized version of A, i.e., if A = [a; as ... ay], with
aj € R™,j € [n], then vec(A) = [a{aj ...a,]". Let
matrix A € R™ ", we denote by det[A] its determinant;
A is row-stochastic if A > 0 and Al,, = 1,. The sym-
bol Dy C R denotes the set of n-dimensional diagonal
matrix with entries in &/. The symbol diag[z] denotes the
diagonal matrix with x; on its ¢-th diagonal entry. Given
C C R™and z € R"™, we let P¢[x] denote the euclidean pro-
jection of x over C. The normal distribution is denoted by
N (u, %), with p, ¥ representing the mean and variance, and
the uniform distribution in the interval [a, b], with a, b, € R
is represented by Ua, b].

We now state some preliminary lemmas and definitions that
are recurrently used in this work.

Definition 1 (L-Lipschitzness (Nesterov, 2014)). A func-
tion h : R™ — R™ is L-Lipschitz if for all z1,z5 € R, it
holds ||h(z1) — h(z2)|| < L||z1 — 22|

Lemma 4 (Gradient boundedness (Nesterov, 2014)). Con-
sider a continuously differentiable, L-Lipschitz map h :
R™ — R, then the Lipschitz constant provides a bound for
the 2-norm of its gradient, i.e. |Vh|| < L.

Definition 2 (Global 5-smoothness (Nesterov, 2014)). A
continuously differentiable map ® : R™ — R is globally
B-smooth if its gradient V& is S-Lipschitz.

Lemma 5 (Properties of S-smooth functions (Nesterov,
2014)). Given a globally 3-smooth map ® : R® — R, then
D(x1) — ®(z2) — VO (22) (21 — 22) < 3Blz1 — aa”
Moreover, if ® is twice continuously-differentiable, then
V2| < 8.

Definition 3 (Persistently exciting input (Willems et al.,
2005)). Given an input/output system, an input v € R"
is persistently exciting for the system if the corresponding
Henkel matrix has full rank, i.e., there exists S € N such
that

Rank[Aut_S_l*t_s_Q, Ayt=St=9=1 Aut’t_l] =n,

where Aultt2 .= ytr — yt2,

Definition 4 (Minimal modulus of continuity(Breneis,
2020)). Let h : X — R be a continuous function over
a bounded set X'. The minimal modulus of continuity of h
on X is defined as

wn() 1= sup{ () ~ h(y)| : 2.9 € X, |~ ylloo < 7.

A.2. Opinion dynamics example: Friedkin-Johnsen
model

The opinions in a Friedkin-Johnsen model evolve according
to

l‘kJrl = (In - Fp - Fd)AIk =+ Fppk + Fddv (14)

where I'q,I', are positive diagonal matrices such that
I', +T'q X I,,, and describe the impact of d and p over the
opinions, and A is a row-stochastic adjacency matrix encod-
ing the social interconnections of the users. The dynamics
(14) is forward-invariant in [—1, 1], since the opinions are
a convex combination of z,p,d € [—1, 1]™.

Further, the steady-state mapping is single-valued, affine
(hence, continuously differentiable) and reads as

h(p, d) = (In - (In - Fp - Fd)A)il(Fpp + Fdd).

Finally, we note that by taking d = z° and '), = O,,, the
dynamics (14) boil down to the standard FJ model (Friedkin
& Johnsen, 1990). A

A.3. Clicking behaviour example: Extremity
confirmation bias

A user ¢ € [n], holding opinion z;, affected by extremity
confirmation bias (Rossi et al., 2022) clicks on a recommen-
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dation p; with probability

1 1
¢~ B (2 + 2%‘1%’) ;

where the clicking behaviour g;(p;, x;) % + %xip,» mod-
els confirmation bias towards extreme recommendations.
In fact, if the opinion x; =~ =£1 and the position p; ~ £1
(1), then the probability of clicking is almost 1 (0). The
clicking probability becomes random (0.5) as the user po-
sition approaches the neutral stance p; ~ 0, highlighting
diminished engagement for less polarized content or when
recommendations directly counter the user’s stance on the

issue.

A 4. Acquiring training data

The training of the neural network is carried out offline via
feed-forward and back-propagation. Algorithm 2, provides
the pseudo-code to acquire the training data.

Algorithm 2 [X),, X, X;] = Training[N, T', m]

for j =1tomdo
P~ U1, 1)
xk+1 = f(xkvﬁadk)’k € {0717"'7N7 1}7
¥ = B(gi(p;, 2F)), Vi € [n], k € {0,1,...,N — 1}
Obtain final opinion from users x
Clicking ratio y" = 75 ZkN:NiT c
Positions set X, <— append|[p]
Steady-state opinions set X, <— append[z”]
Clicking ratio set X, +— append[y”]

end for

k

For each training sample k € [m], we provide news express-
ing a fixed random position P to the users for a period of N
time steps. The term 7 is a design parameter, with (N — T')
representing a time instant at which opinions have reached
a steady-state. After N steps, we obtain the users’ opinion
2™ and compute their clicking ratio for the position 7 based
on the last 7" time steps. This process is carried out over m
Monte Carlo trials, thus collecting m training data points.

A.5. Proof of Lemma 1

The proof follows from (Corollary 5.2, (Tabuada & Ghare-
sifard, 2023)) with the continuous function [ playing the
same role as f in (Tabuada & Gharesifard, 2023).

In order to provide an explicit upper-bound for e, we point
out that the neural network makes use of the injection layer,
whose map is represented by v : R®+! — R"*2, the hidden
layer whose map is represented by z : R**2 — R"*+2 and
the output layer, whose map is represented by v : R"+2 —
R, with v(z) = vz 4+ vy. Given that the input and out-
put layers are linear maps, we can directly make use of

10

(Theorem 7, (Marchi et al., 2021)) to state the following
upper-bound Vi € [n]:

18:(X)—=Bi(X)| < 3;1é§(|ﬂi(X)*3i(X)|+2wm (y2)+vo,i[ vz

where sup |8;(X)— 3;(X)] refers to the maximum training
Xex

error on each user 7, wg, (7, ) refers to the minimum modulus
of continuity of 3; on X, vy ; represents the estimated bias
weight vy from the hidden layer to the output layer of the
neural network for user ¢. By replacing the modelling error
0, of B from Assumption 3, it is now possible to state the
following:

llex|l < \/5{3 sup | B(X) = B(X)l|oo + 25upws, (72)+
Xex

i€ [n]

Va SUP Ivo,z-\] +0,.
i€[n]

A.6. Proof of Lemma 2

Before making use of (Corollary 5.2, (Tabuada & Ghare-
sifard, 2023)) to prove the upper-bound on e, it is to
be noted that the arguments of g and ¢ in the defini-
tion of ey, are different. Thus, we re-write e, as e, =

g(p; ) — g(p, ) + g(p, &) — g(p, h(p, d)) and note the fol-
lowing:

lleyll (S)Hg(p, h(p,d) + ex) — g(p, h(p, d))|+

E19(:2) = 9 2) + 1 Vag " (b hlp: d))ecll + v

(S)HQ(I% &) = 9(p, 2| + Mzes + ay.
In (a), we make use of the identity & = = + e, with the
state estimation error e, defined in Lemma 1. In (), we
use the Taylor series expansion on g(p,x + e,) around
z. In addition, the higher-order terms in the expansion of
9(p, x + e,,) are upper-bounded by the modelling error on
the clicking behaviour, i.e. ||[O(g(p, x))||< ay. In (c), we
use Assumption 2, i.e. g(p, x) is M,-Lipshitz with respect
to = and the fact that the opinion estimation error is upper-
bounded with ||e,|| < €, from Lemma 1.

15)

The proof for the existence of an upper-bound on ||§(p, &) —
g(p, &)|| is similar to the proof in Appendix A.5. The bound
can now be stated as follows, for every ¢ € [n]:

19:Y) =gs (V)| < 35up |9:(Y) = 5: (V) + 2 () Flwosilv,

16)

where sup |g;(Y) — §;(Y")] refers to the maximum training
Yey

error on each user ¢, wy, (y,) refers to the modulus of conti-
nuity of g; on Y, wo ; represents the estimated bias weight
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wy from the hidden layer to the output layer of the neural
network for user ¢. Using (16) in (15), it is now possible to
state the following:

llegll < \/ﬁ[Sggllg(Y) — §(Y)|s0 + 25upwy, (1) +

1€[n]

Yy SUP |w0’i|} + Myey + .

i€[n]

A.7. Proof of Lemma 3

Due to Assumption 2 and Lemma 5, for any p, z1,x2 € R"
it holds that

1
P 0, 1) =, 22) = (Ve o™) T (9, w2) (01 -22) < 5 Lol —a2)*.

In the above equation, we replace x1, zo with x 4+ pe; and
x, respectively, so that

1
o (p, a+pe;) =K (p, 2)— (Vo™ ) T (p, 2)e; < §Lmu2.

)

We now add and subtract 3% (p, & + pe;) and ¥ (p, )
in the above equation and we note that ¢°(p,3) =
—1'(p,2) and 0¥ (p,z) := —1] g(p,x). Using these

definitions in (17), we obtain:

clk(

¢ (p, & + pes) — ¢

. 1
+ u(Vap™ (p,)) "ei o+ 5 Lapt®,

(p. &) < 1) [ey(p, @) + ey (p, x + pe;)]

18)

where e, (p, ) is the clicking behaviour estimation error as
defined in (7). Dividing both sides by p in (18) and using
the gradient estimate definition in (9), we obtain

1
plz(ey(pa LE) + ey(p,l’ + ,U'el))

for all i € [n]. Taking the modulus on both sides, we obtain
11, (ey(p, ) + ey (p, x + pe;))| < \/ne, using the Cauchy-
Schwartz inequality and the upper-bound on the clicking
behaviour estimation error |le,|| < €, as in (7). We now
write

1 ne
(726™) 08— (Tu™) ()| < Lo 2,
from which (9) follows. Analogous reasoning is followed
for the gradient estimation error with respect to p. To obtain
the tight upper-bound, we use first-order optimality condi-
tions with respect to x4 on the term %Lz W+ 2%, thus
obtaining p* = 2n'/*,/e,/L,. Since the second-order

derivative of the term %Lz o+ 2@ is strictly positive, p*
is the smoothing parameter that provides the lowest upper-
bound on the gradient estimation error.

11

A.8. Proof of Theorem 1

The Kalman filter is uniformly asymptotically stable pro-
vided the pairs (I,2,/QF), (I, Ap* ™) are uniformly
completely controllable and observable, respectively (Theo-
rem 7.4, (Jazwinski, 1970)). Since QF is a design parameter
used to control the degree of trust in the process model, it is
possible to make Q” positive definite for all £ € Ny. Fur-
ther, persistently exciting inputs Ap that satisfy the Henkel
matrix condition in Definition 3 guarantees uniform com-
plete observability (see (Picallo et al., 2022)).

We can now derive an explicit analytical expression for
the upper-bound on the variance E[||e*||?]. By making
use of (4.2) and (8) on ¢* and ék, by adding and subtract-
ing AzkFb7i+1and by making use of (4.2) and (4.2) on
AzkHLmitl one gets

ek: _ (In2 o Ck:kalAﬁk:,Ti)(ekfl + ,wkfl) o Ckkal,Uk:
+ (PRI Aep TR (19)

Taking the expectation of the norm squared on both sides in
(19), we obtain:

B[] = Ell(Fe = ¢ K"~ A5 ) (e +u )

CkKk—l (vk n Aez;+1,r,i+1) Hz]
< Mo = AP PSP+ (7))
FICRF TP (0)? 4 262)

In (b), we expand the norm and use Assumption 4 to
state that the expectation on the cross-coupled terms are

all zero. We then use E[|jw*'[?] = (0f~')? and
E[|[v*[|?] = (¢%)2. Further, Lemma 1 allows us to state
that E[||AefT17i+1(12] < 2¢2. Considering a trigger at

time k, we have:

Efle™ 7] || e — K707t AT PE[ 7 |+
(T = V)ag + K™+ 71?37 + 2€2),
(20)

where 72 = sup (of)? and 7} = sup (0%)2. Tracing back
t€Ng

0
(20) recursively to & = 0, we obtain the following relation:

E[[le™+ %) <(er&®")* TE[||¢°||*)+

1— (Clgch)Z\Tl

1— 61£C2T [(T - 1)63 + K'r2n (5724 + 262)],

We now have the following asymptotic result on the vari-
ance:

lim E[fe™

2] <
| T =00 -

T e (T DT+ KG (00526,
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A.9. Proof of Theorem 2

Before describing the proof, we state the following support-
ing lemma and remark.

Lemma 6 (Projections with smooth functions (Reddi et al.,
2016)). Lety = Pi_y 1o [ — nu] with y, x,u € R". Then,
the following inequality holds:

r 1
Ply) <elz) +{y = 2 ®(@) —u) + [ = o[y — ol
L 1 9 1 9 "
[5 + g )l ol =5 =" vzeR

where  is the cost function to be minimized and ® its gra-
dient. Further, L' and m are the smoothness factor of p and
the step-size of the gradient descent algorithm, respectively.

Proof. The proof is given in (Lemma 2,(Reddi et al., 2016)).
O

Remark 1 (Composite gradient lipschitzness). We observe
that the Lipschitz and smoothness constant for ©P° () are
2./n and 2, respectively. Using Assumptions 1(iii), 2, the
composite gradient ®(p) is thus L’'—Lipschitz with respect
to p, where L' = Lp+L2(Lm+2). Therefore, the composite
cost function ¢(p, h(p, d)) is L' —smooth with respect to p.

We now state the following gradient update in the case where
the gradients, sensitivity and opinions are known:

=k+1
p

= ]P)[fl,l]“ [pk - U‘I)(pka h(pk7 d))L

where ®(p, h(p, d)) is the composite gradient. The above
will serve as a benchmark to investigate the stationarity of
our algorithm. We are now in the position to prove the
inequalities in (13). To do so, we use Lemma 6 with y =
Pt o = pP and u = ®(p*, h(p*,d)) is the composite
gradient. Choosing z = p* and taking the expectation on
both sides, we obtain:

L/

5 . @2

E[e)] < Eleth)+ (-1 ) I7 1P

We now define the update step with our algorithm:
PET =Py [p* — ncF "],
We use Lemma 6 with y = p*™!, z = p¥ and u = (*dF.

Choosing z = p**! and taking the expectation on both
sides of the 1nequa11ty, we obtain:

e 1 e
Ele")] <E[eG™) +(—72—)u S
@ =P et hp" ) - ¢ @)
L' 1N kg1 kp2 Lo k41 k412
(G + g ) IP = pM 1 = ot =]

12

We now add inequalities (21) and (22) to obtain:

B[] <B[ot") + (5 5 )IotH - 51

B e (", h(p®, d)) — ¢FEF)+

T

(p (23)

(-

1 .
)r"“ el A A

We now focus on the term 7. Using Cauchy-Schwartz
relation and the fact that the geometric mean of two
non-negative real numbers is always less than its arith-
metic mean, we obtain the following: T < ||p’€+1 —
P IR(", h(p*, d)) — CFOF|| < 5 llpH = B +
2| ®(p*, h(p*,d)) — ¢*®*||2. Using the above inequality
in (23), we obtain:

TNkt kg2
L e

T

T LCRINE

Hﬂﬁ“ﬂSEP@W+C%—

Lo he", ) - &4 + (L
In the above inequality, we used the definition of fixed-point
residual mapping according to (12).

We now assume that there is a trigger at time instant &, i.e.
¢* = 1. To obtain a feasible upper-bound on E[||G(p*)||?],
we need L' — 1/2n < 0. Thus, the step-size is constrained
with n € (0, 5 L,) With this constraint, we have 75 < 0.
This leads to the following:

E[Hg(p’“)llz} < W_#%L,){E[w(pk)} —E{w(p’““)h

Te[lle ", n(e*, d)) - 4] }.

T3

(25)

We now analyze the term 75. For the sake of con-

venience, we drop the arguments of the gradient p,x

and time argument k in the gradient terms.  Thus,

we denote Vpapdk = Voo (¥ hpF,d)), Veplk =

v sOdk(pk h(p d)) V Aclk =V (pclk(p l‘k+1) and

Vytﬁ"“‘ =V ( k Ak“). Usmg the definitions of
,h(p*

24
o (p* ,d)), @F,

Ty = E[vajclk Ve 4 HF T, ok _ R Ty, el 6)

k
. . ~ . w.
VT () =y AT @ 4 2,

where H* = V,h(p¥, d) is the true sensitivity and H* is
its estimate at time k. We now analyze the upper-bound on
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Tgl

7o ' 61950 = V6K + ()T (Vo™ = Vo) +

2
g e o o -
Tp + 2 EH") T (Ve (h(p", d) — VaeP @ )) )12+

2

(PUIVae™ @I + IV ) E[IH* — A%17] }
o2,
02

®)
< 6{4n e (L, + L7La) + 224

VaePl @))%+
i*)°]}

0_2
% + 4y L || (p", d) — 2"

VIENT (Va6 (h(p", ) —
(VIT2e” @I + Vo™ 1) E[ I " -
© 3/2 2 2
< 6{4n® e (L, + L7La) + 12+
(VP IVeP? @I + 1V I E[IH - #2%)7] }
2
@ 6{4n3/2 o(Lp + L?L, )+ ° 44y 4
(V12 @)1 +|\v “lkl\z) [1E" — %]}

+ 4’72[/262-'1-

+ Voo IP)E[l)1?] }

2 3/2 2 Uge
< 6{4n* ey (Ly + L*La) + 5
(4ny® + V2™
2
g 2,2 2
% + 4y L7, +

Lo))E[lle*I17] }

o )
< 6{473/2%(1:,, +LL,) +

3/2

(4n’y +2(M + 4n 27)

To obtain (a), we added and subtracted (H*) TV, ¢k and
Y(HF)TV 0P (#%11) inside the norm in (26). We then

used the fact that IE[HZ;":l rj||2] <myL, E[Hm”ﬂ

We also make use of the fact that E[||w [|*] = o2,. In (b),
we made use of Lemma 3 for the gradient estimate accuracy
on ¢ and Assumption 1(iii) for Lipschitz condition on
h(p, d) to arrive at the term 4n3/2¢,(L, + L?L,). In (c),
we made use of Remark 1 for the smoothness condition
on ¢P°! and Assumption 1(iii) for Lipschitz condition on
h(p,d) to arrive at the term 4L?||z — Z||%. In (d), we made
use of the fact that the norm of the steady-state opinion
estimation error is upper-bounded by ¢,. In (e), we made
use of Remark 1 for the Lipschitz condition on (P°!, thus
arriving at the term 4n. We also add and subtract the term
V.¢°'%. Further, we use inequality || H* — H*|| < |H* —
H* i
and e is the sensitivity estimation error. In (f), we made
use of the fact that ||a+b[|* < 2(||a||* +|b]|?). We then use
Assumption 2 to state that ||V,¢|| < M, and Lemma 3
to state the upper-bound on ||V, — V@]

We now use the inequality (27) in (25) and add the inequali-
ties over the trigger time instances up to k, leading to tele-
scopic cancellation. Thus, we have:
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2 0 k41
z;]E[Hg m{ﬁ{v(ln )] *E[V’(P )] }+
I<k
1?';‘”{4 8/2¢ (L, +LL)+ +47L6}+
12[2n72% 4+ (M2 + 4n®/%¢,L,)] 12
D ;E[“e 7).
1<k

Since the positions do not change between two consecutive
trigger time instances, it is sufficient to investigate conver-
gence guarantees at the trigger time instances.

Using Theorem 1 for the upper-bound on E[||e¥||?], the
summation of this term over the trigger instances leads to
the following:

SE[I€1?] SITIC +E[[le)?] Y- (=)

leT leT
1<k 1<k

(28)

1— (61602T)2|T\ )

TICs +E[I 1] (=g

We start the algorithm with p° = 0,,, thus E[ga(po)}

©(0). Further, 3 ¢* < E{cp(p’“)},h’k € Ny, ie. p*isa
local optimal value. Thus, with the above formulations and
(28), we obtain (13).



