
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Recommender System Design via Online Feedback Optimization

Anonymous Authors1

Abstract
Conventional recommender systems enhance user
engagement through personalized content. How-
ever, personalization usually induces significant
side effects on opinion formation, such as polar-
ization and echo chambers that need to be pre-
vented. With this motivation, we design a rec-
ommender system algorithm that addresses user
engagement maximization and opinion polariza-
tion mitigation by operating in feedback with the
social platform. The recommender is agnostic
about real-time opinions, network topology, and
users’ clicking behaviour, all estimated online.
We numerically verify the efficacy of the designed
recommender on synthetic data. We show that by
providing network-aware recommendations to the
users as opposed to users’ tailored content, we
significantly reduce polarization effects without
sacrificing user engagement.

1. Motivation
Online social platforms use recommender systems to pro-
vide users with tailored content to maximize engagement
over the platform. The state-of-the-art algorithms for rec-
ommender systems exploit methods, such as content-based
filtering (Bansal et al., 2015) and collaborative filtering (Eiri-
naki et al., 2014), that combine information personalization,
popularity and similarity of interests with other users to
provide a set of media feed that attracts users’ interests.
However, it is a well established fact that content personal-
ization leads to undesired effects over users opinions such
as echo chambers formation and polarization (Lazer, 2015;
Bakshy et al., 2015). By drawing on Online Feedback Op-
timization (OFO) (Hauswirth et al., 2024), we design a
recommender system algorithm in feedback with the so-
cial platform whose aim is to maximize users’ engagement
while penalizing opinion polarization (see Fig.1). We show
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Social network
x+ = f(x, p, d)

ci ∼ B(gi(pi, xi))
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Figure 1. Illustration of the closed-loop between social network
and recommender system.

that, by considering the network topology of social interac-
tions over the platform, something that traditional machine
learning algorithms usually do not, we are able to reduce po-
larization in opinions without sacrificing users’ engagement.
The dynamics of opinions, the agent’s clicking behaviour
and the topology of interactions are all assumed to be un-
known and inferred online.

2. Problem Setting
We consider the problem of designing a recommender sys-
tem for a social network consisting of n users (Fig. 1),
indexed by i ∈ [n]. User opinions are collected into a vector
x ∈ [−1, 1]n, with xi being the opinion of the i-th user. The
temporal evolution of the users’ opinions is dictated by

xk+1 = f(xk, pk, d), (1)

where p ∈ [−1, 1]n is the position vector of the recom-
mendations, d ∈ [−1, 1]n represents an external influence
to the platform and f : ([−1, 1]n)3 → [−1, 1]n encodes
the influence of interactions among users. We assume there
is a single polarizing topic of discussion on the platform.
Therefore, a recommendation with position p = +1 (−1)
can be interpreted as a news strongly in support of (against)
the issue. We provide an example of (1) in Appendix A.2.

The following assumption ensures that the dynamics (1) are
well-posed and admit a steady-state mapping.

Assumption 1 (Well-posedness). The following hold: (i)
The dynamics (1) are forward invariant in [−1, 1]n, i.e.,

x0, p0, d ∈ [−1, 1]n ⇒ xk ∈ [−1, 1]n, ∀k ∈ N0.

1
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(ii) The dynamics (1) is uniformly exponentially stable
and admit a unique steady-state map h :

(
[−1, 1]n

)2 →
[−1, 1]n satisfying

h(p, d) = f(h(p, d), p, d), ∀p, d ∈ [−1, 1]n.

(iii) The map h(p, d) is continuously-differentiable and
L−Lipschitz (Nesterov, 2014) with respect to p. □

Engagement of the users over the platform is measured
in terms of the clicking ratio on the provided news arti-
cles. For a user i, we model the probability of clicking on
a recommendation as a random variable ci drawn from a
Bernoulli distribution with unknown argument gi(pi, xi), i.e.
B(gi(pi, xi)). The argument gi(pi, xi) ∈ [0, 1], represents
the probability that the user i, with opinion xi clicks on a
news expressing the position pi. We will refer to gi(pi, xi)
as the clicking behaviour of user i. We provide an example
of a clicking behaviour in Appendix A.3

3. Problem Formulation
The goal of the recommender system is to provide rec-
ommendations that optimize a specific metric, denoted as
φ(p, x). We consider a multi-objective cost function that
combines engagement maximization and polarization miti-
gation as

φ(p, x) = φclk(p, x) + φpol(x), (2)

The engagement-related term in the cost (2) is defined as

φclk(p, x) = −
∑
i∈[n]

Eci∼B(gi(xi,pi))[ ci ],

where Eci∼B(gi(xi,pi))[ ci ] is the expectation of user i’s
clicking, given their opinion xi and a recommendation
with position pi. The second term in (2) is given by
φpol(x) :=

∑
i∈[n] si(x), where si is a soft penalty function

defined as

si(xi) =


(xi − ϵ1)

2 xi < ϵ1

0 ϵ1 ≤ xi ≤ ϵ2

(ϵ2 − xi)
2 xi > ϵ2

.

The parameters ϵ1 ≤ ϵ2 are used to control the degree of
penalty towards extreme opinions. Specifically, a smaller
positive (negative) choice for ϵ2 (ϵ1) indicates a higher
penalty on extreme positive (negative) opinions.

The recommender aims at regulating the system (1) to the
solution of the following steady-state optimization problem:

minimize
p, x

φ(p, x) (3a)

s.t x = h(p, d) (3b)
p ∈ [−1, 1]n (3c)

Problem (3) is, in principle, non-convex, since both the
steady-state mapping in (3b) and clicking behaviour in (3a)
are, in general, unknown. If the dynamics of opinions (f ),
the opinions (xi) in (1) and the clicking behavior (gi) were
known, and an accurate prediction of external influences d
were available, then we could solve (3) offline. However,
in practice, none of these information is readily available.
Instead, the recommender system only has access to the
users’ online feedback in the forms of clicks {cki } on the
provided recommendations. Thus, the only measurements
we collect from the users is the observed clicking ratio
yk :=

∑k
t=k−T ct/(T+1),∀ k ≥ T , for some time window

T . Our feedback control problem is formally stated as:
Problem 1. Design a feedback controller so that (1) tracks
a solution (p∗, x∗) of the optimization problem (3), by as-
suming only clicks cki are available.

4. Problem Solution
We approach Problem 1 by designing a dynamic feedback
controller inspired by the projected-gradient descent algo-
rithm in (Belgioioso et al., 2021). The resulting recom-
mender dynamically generates positions as

pk+1 = P[−1,1]n
[
pk − ηΦ(pk, xk+1)

]
, ∀k ∈ N (4)

where P[−1,1]n [z] represents the Euclidean projection of
some z ∈ Rn onto [−1, 1]n, η is the step-size, and

Φ(p, x) := ∇pφ(p, x) +∇ph(p, d)
⊤∇xφ(p, x) (5)

represents the gradient obtained by applying the chain-rule
of differentiation to the cost φ(p, x) in (3), with opinions at
steady state, i.e. x = h(p, d).

In practice, evaluating the gradient (5) at each sampling in-
stant requires access to: (i) Real-time users’ opinions xk; (ii)
Sensitivity mapping ∇ph(p, d); (iii) Gradients ∇pφ(p, x)
and ∇xφ(p, x). None of these information is readily avail-
able, making a direct implementation of the recommender
design (4) impractical.

To cope with these challenges, we augment the controller
(4) with three auxiliary levels that estimate users’ opinions,
sensitivity, and clicking behaviour online, as illustrated in
Fig. 2. Specifically, we structure the design on three levels:
Level 1: Real-time opinions and users’ clicking behaviour
estimation via supervised learning; Level 2: Online sensi-
tivity learning via Kalman filtering; Level 3: Gradient esti-
mation via a forward difference method. In the following
three sections, we briefly describe each layer and analyze
the stability properties of the feedback interconnection.

4.1. Level 1: Opinion & Clicking Behaviour Estimation

The steady-state opinion and clicking behaviour are esti-
mated using an Artificial Neural Network (ANN). Note that

2
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Training data{
Xp,Xx,Xy

}

Neural network
Opinion estimate x̂+

Clicking behaviour
estimate ĝ

ζ
∆x̂

∆p

Sensitivity estimation

Kalman Filter

∇pĥ

Sensitivity estimate

∇pφ̂
clk(p, x̂+),∇xφ̂

clk(p, x̂+)

∇xφ
pol(x̂+)

Zero/first-order gradient estimation

Projected gradient descent
p+ = P[−1,1]n [p− ηΦ̂(p, x̂+)]

Positions p

Social network
x+ = f(x, p, d)

ci ∼ B(gi(pi, xi))

Observed clicking
ratio y

External influence d

Level-I

Level-II

Level-III

Figure 2. Block diagram of the proposed recommender system design with the three levels. Level 1: Opinion and clicking behaviour
estimation, Level 2: Sensitivity estimation, Level 3: Gradient estimation and Optimization.

the use of the ANN allows us take into account for the
dynamics of opinions thus circumventing the problem of
getting access to online state measurements.

To bound the resulting opinions and clicking behaviour
estimation error, we work under the following regularity
assumptions (Cothren et al., 2023; Dean & Recht, 2021).

Assumption 2 (Clicking behaviour). The clicking be-
haviour g(p, x) is Mx-Lipschitz with respect to x, and Lp-
and Lx-smooth with respect to p and x, respectively. □

Assumption 3 (Artificial Neural Network). It holds that

1. The image g(P,X ) is compact for any X ,P ⊆
[−1, 1]n.

2. There exist a continuous mapping β : [0, 1]n ×
[−1, 1]n → [−1, 1]n such that β(y, p) = x + θ(x),
with ∥θ(x)∥ ≤ θx, for all x ∈ X , and θx < ∞.
Moreover, the image β(Y,P) is compact for any
Y ⊆ [0, 1]n,P ⊆ [−1, 1]n.

3. There exists a constant αy < ∞ such that the com-
posite function g(p, β(y, p)) = y+∇xg(p, x)

⊤θ(x)+
α(y), with ∥α(y)∥ ≤ αy , for all y ∈ Y . □

It follows by Assumptions 2–3 that the modelling errors of
the opinion map β(y, p) and clicking behaviour g(p, x) are
upper-bounded by θx and αy , respectively.

There are two ANNs involved in this process: One to infer
the opinions and another one to infer the clicking behaviour.
As far as the opinion estimation is concerned, for every user

i, the ANN takes as input the clicking ratio yi and the posi-
tion vector p and gives as output the users’ opinion estimate
x̂i. The reason why we take the whole position vector p as
an input is due to the network structure of the problem: The
position provided to users connected with agent i will also
(indirectly) affect agent i’s steady-state opinion xi. Note
that, xi does not directly depend on the clicking ratios of
other users. Thus, we have n+1 input neurons (n associated
with p and one associated with yi) and 1 output neuron for
each user. Further, we use one intermediate layer compris-
ing of n + 2 neurons with a hyperbolic tangent activation
function.

For clicking behaviour estimation, for each user i, the ANN
takes as input the steady-state opinion xi and the position
provided to the ith user, pi, and provides as output the click-
ing behaviour estimate ĝi. The clicking behaviour is specific
for each user, therefore, a user’s likelihood of clicking on
the provided position is not affected by neither other users’
opinions nor other users’ positions. Thus, we have 2 in-
put neurons (pi, xi) and one output (yi) neuron for each
user. Further, we use 3 intermediate layers comprising of 5
neurons with a hyperbolic tangent activation function.

The procedure to acquire the training data is explained
in Appendix A.4. We now describe the upper-bounds
on the steady-state opinion and clicking behaviour esti-
mation errors. We define ex := h(p, d) − β̂(y, p) and
ey := g(p, h(p, d)) − ĝ(p, x) as the opinion and clicking
behaviour estimation errors, respectively, where, β̂ and ĝ are
the opinion estimate and clicking behaviour maps learned
by the ANN.

3
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Lemma 1 (Opinion estimation error). Under Assumption 3,
the steady-state opinion estimation error is upper bounded
in the ℓ2-norm as ∥ex∥ ≤ ϵx, with

ϵx :=
√
n
[
3 sup
X∈X
∥β(X)− β̂(X)∥∞ + 2sup

i∈[n]

ωβi
(γx)+

γx sup
i∈[n]

|v0,i|
]
+ θx, (6)

where sup
X∈X
∥β(X)−β̂(X)∥∞ represents the maximum opin-

ion estimation error during training of the ANN, ωβi
(γx)

denotes the minimum modulus of continuity of βi on the
training set X (see Definition 4, Appendix A.1) and v0,i
represents the bias from the hidden layer to the output layer
of the ANN on user i.

Proof. Refer to Appendix A.5.

Lemma 2 (Clicking behaviour estimation error). Under
Assumptions 2–3, the clicking behaviour estimation error is
upper-bounded in the ℓ2-norm as ∥ey∥ ≤ ϵg , with

ϵg ≤
√
n
[
3 sup
Y ∈Y
∥g(Y )− ĝ(Y )∥∞ + 2sup

i∈[n]

ωgi(γy)+

γy sup
i∈[n]

|w0,i|
]
+Mxϵx + αy, (7)

where sup
Y ∈Y
∥g(Y ) − ĝ(Y )∥∞ is the maximum estimation

error during ANN training, ωgi(γy) denotes the minimum
modulus of continuity of gi on the training set Y and w0,i

represents the estimated bias weight from the hidden layer
to the output layer of the ANN on user i.

Proof. Refer to Appendix A.6

4.2. Level 2: Online Sensitivity Learning

In order to estimate the sensitivity ∇ph(p, d) in (5) in
real time, similar to (Picallo et al., 2022), we adopt a
Kalman filter based approach. We denote by ℓ ∈ Rn2

the vectorized sensitivity ∇ph(p, d) ∈ Rn×n, namely,
ℓ := vec(∇ph(p, d)), and model the sensitivity dynamics
as a random walk

ℓk = ℓk−1 + wk−1,

where, wk ∼ N (0n2 , Qk) is the process noise, with Qk

as its corresponding covariance matrix. The measurement
model is described by

∆xk+1,k
ss = ∆p̃k,k−1ℓk + vk,

where ∆xk+1,k
ss := h(pk, d) − h(pk−1, d) is the change

in the steady-state opinions for a corresponding change
in positions ∆pk,k−1 := pk − pk−1. Further, ∆p̃l,m :=

∆(pl,m)⊤ ⊗ In ∈ Rn×n2

, where ⊗ indicates the Kro-
necker product. The measurement noise is described by
vk ∼ N (0n, R

k), where Rk is its corresponding covari-
ance matrix. This noise accounts for the contribution of the
external influence d to the change of opinions ∆x.

Similar to (Picallo et al., 2022), the posterior update of
estimates ℓ̂k and covariance Σk are given by

ℓ̂k = ℓ̂k−1 + ζkKk−1
(
∆x̂k+1,τi+1 −∆p̃k,τi ℓ̂k−1

)
Σk = Σk−1 + ζk

(
Qk −Kk−1∆p̃k,τiΣk−1

)
, (8)

where ζ enforces an auxiliary trigger mechanism, with
ζk = 1 for k being integer multiples of the time period
T . Further, we refer to T as the set of trigger time instances
and τi being the latest trigger time instant before k. The
trigger mechanism is introduced to enforce time-scale sepa-
ration between the plant dynamics and the controller updates
(Hauswirth et al., 2021) and to allow a sufficient number
of clicks to ensure a proper estimate of the clicking ratio,
which is needed for opinion estimation.

Note that the sensitivity learning is based on the opinion
estimates x̂, introduced in Section 4.1, rather than the real
opinions. Finally, the Kalman filter gain Kk in (8) is given
by

Kk = Σk(∆p̃k,τi)⊤(Rk +∆p̃k,τiΣk(∆p̃k,τi)⊤)−1.

Next, we postulate some regularity assumptions for the
process and measurement models.
Assumption 4 (Gaussian noise). The process and mea-
surement noise w, v are white Gaussian. Moreover, the
steady-state opinion estimation error ex = h(p, d)− β̂(y, p)
is uncorrelated with w and v. □

The assumption of white noise for the process model is
standard in the context of sensitivity learning in feedback
optimization (Picallo et al., 2022). Intuitively, the process
perturbation determines the degree of trust one puts on the
sensitivity estimates. It is also reasonable to assume that
the external influence is uncorrelated among users in certain
cases, for example the extended FJ model in Appendix A.2
where d ≡ x0. We also note that since x̂ is estimated
using the ANN, the steady-state estimation error ex is not
correlated with the process or measurement noise in (4.2).
Under Assumption 4, the covariances simplify as Qk =
(σk

q )
2In2 and Rk = (σk

r )
2In, for some σq , σr > 0.

To ensure that the sensitivity matrix is correctly inferred, we
must guarantee that the input positions ∆p are persistently
exciting (Willems et al., 2005) (see Definition 3). This is
carried out by introducing a dither signal in (4).

4.3. Level 3: Gradient Estimation & Optimization

In order to estimate the gradient of the engagement max-
imization cost φclk, we use the finite forward difference

4
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method as in (Scheinberg, 2022), yielding

∇xφ̂
clk
i (p, x) =

φ̂clk(p, x+ µei)− φ̂clk(p, x)

µ
(9)

∇pφ̂
clk
i (p, x) =

φ̂clk(p+ µei, x)− φ̂clk(p, x)

µ
, (10)

where ∇jφ̂
clk
i , j ∈ {p, x} denotes the ith entry of the gra-

dient, ei ∈ Rn refers to the ith vector of the canonical
basis of Rn and µ is a smoothing parameter. The cost
φ̂clk(p, x) = −1⊤n ĝ(p, x) is evaluated as described in Sec-
tion 4.1. The smoothing parameter µ is chosen small enough
so that the gradient estimate provides a good approxima-
tion of the true value. However, having µ in (9)-(10) too
small can lead to numerical instability, as formalized in the
following:

Lemma 3 (Gradient estimation error). Under Assumptions
2–3, the gradient estimation error is upper bounded as

∥∇jφ̂
clk −∇jφ

clk∥ ≤ 2n3/4
√

ϵgLj , j ∈ {x, p}.

Moreover, the upper bound is tight and reached in corre-
spondence of µ∗ = 2n1/4

√
ϵg/Lj , with j ∈ {x, p}.

Proof. Refer to Appendix A.7.

We now present the projected-gradient update rule in (4)
augmented with sensitivity, state, and gradient estimations,
and state stationarity bounds with respect to the positions
pk. The augmented update reads compactly as

pk+1 = P[−1,1]n

[
pk − ζkη Φ̂(pk)

]
, (11)

where the gradient surrogate Φ̂(pk) is constructed by com-
bining sensitivity, opinion, and gradient estimates as

Φ̂(pk) =∇pφ̂
clk(pk, x̂k+1) + (Ĥk)⊤∇xφ̂

clk(pk, x̂k+1)

+ γ(Ĥk)⊤∇xφ
pol(x̂k+1)− wk

pe/η,

where, x̂ is the opinion estimate, Ĥk := ∇pĥ(p
k, d) is the

sensitivity estimate at time k. The additional term wk
pe ∼

N (0n, σ
2
peIn) is a dither signal that ensures persistency of

excitation of the inputs.

In Algorithm 1, we provide the pseudo-code of the proposed
recommender system design. In the offline phase, training
of the neural network is carried out for opinion and clicking
behaviour estimation. In the online phase a new sensitivity
estimate is generated and new positions are provided to the
users periodically, every T time steps. The recommenda-
tions are provided for N time instances in total.

Algorithm 1 [y∗, p∗] = Recommender[N,T, n]

Initialization
Collect training data
Opinion and clicking behaviour map estimation (β̂, ĝ)
Optimization phase
for k ∈ [0, N ] do

Collect clicks ck from users
Clicking ratio yk ←

∑k
t=τi

ct

k−τi+1 , τi = (i− 1)T < k

if ζk = 1 then
T ← append[k]
Opinion estimate: x̂k+1

i ← β̂i(y
k
i , p

k)

Sensitivity estimate: Ĥk using (8)
Gradient estimate: Using ĝ, x̂ for (9)-(10)
Obtain pk+1 with OFO using (11)

else
Ĥk ← Ĥk−1

pk+1 ← pk

end if
end for[y∗, p∗]← [yk, pk+1]

4.4. Closed-loop Convergence Guarantees

In this section, we provide convergence guarantees for the
sensitivity estimation process (8) and for the closed-loop in-
terconnection between the opinions and recommendations.

Now, we state the main convergence result with respect to
the sensitivity estimation error.
Theorem 1 (Sensitivity estimate convergence). Under As-
sumptions 1, 4 and persistently exciting inputs ∆p (Defini-
tion 3), the sensitivity estimation error ek := ℓk − ℓ̂k has its
variance bounded in norm, i.e., there exist positive constants
c1, c2, Cf <∞ and ξ ∈ (0, 1) such that

E
[
∥ek∥2

]
≤ Cf + (c1ξ

c2T )2|T |E
[
∥e0∥2

]
where Cf = 1

1−(c1ξc2T )2

[
(T − 1)σ2

q + K2
m

(
σ2
r + 2ϵ2x

)]
with σq = sup

k∈N0

σk
q , σr = sup

k∈N0

σk
r , Km = sup

k∈N0

∥Kk∥, with

c1ξ
c2T < 1.

Proof. Refer to Appendix A.8.

Note that the variance upper bounds depend on the opinion
estimation error ϵx. Further, note that increasing the sam-
pling period T reduces the bias and variance error through
the term 1−c1ξc2T . This is expected as increasing T guaran-
tees greater time-scale separation between opinion dynamics
and recommendations. Finally, the upper bound on the sen-
sitivity error variance is proportional to the noise variance
of the opinions through the term σ2

r .

To quantify performance on the recommendations, we use
the fixed-point residual mapping (Eq. (5), (J. Reddi et al.,

5
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2016)):

G(p) := 1

η

(
p− P[−1,1]n

[
p− ηΦ(p, h(p, d))

])
, (12)

The fixed-point residual mapping is zero at a critical point
of (3), and is a common metric to quantify convergence of
iterative algorithms in non-convex regimes (Nesterov, 2014).
We are now ready to state the main convergence result.
Given that opinions are directly estimated at steady-state,
we circumvent the need to separately prove convergence
on the opinion dynamics. The following theorem proves
convergence of the closed-loop system.

Theorem 2 (Closed-loop scheme convergence). Let As-
sumptions 1-4 hold. For η ∈ (0, 1

2L′ ), µ∗ =

2n1/4
√

ϵg/Lj , j ∈ {p, x}, the sequence {pk}k∈N gener-
ated by (11) satisfies

1

|T |
∑
l∈T
l≤k

E
[
∥G(pl)∥2

]
≤ K1, ∀k ≥ T (13)

where K1 is given by

K1 =
6

1− 2ηL′

{
φ(p0, h(p0, d))− φ∗

3η|T |︸ ︷︷ ︸
κ1

+
σ2
pe

η2
+ 4

[
γ2L2ϵ2x︸ ︷︷ ︸

κ2

+

n3/2ϵg(Lp+L
2Lx)︸ ︷︷ ︸

κ3

]
+2(2nγ2+M2

x+4n
3/2ϵgLx)

∑
l∈T
l≤k

E[∥el∥2]

|T |

}
,

with L′ = Lp + L2(Lx + 2) denoting the Lips-
chitz constant of the gradient Φ(·, h(·, d)), and
φ∗ = inf

p∈[−1,1]n
φ(p, h(p, d)) > − n the cost

function value at a locally optimal solution.

Proof. Refer to Appendix A.9.

The bound K1 shows that achieving an accurate solution
of (3), i.e., a local minima (p∗, h(p∗, d)), is limited by the
deviation of the initial cost at (p0, h(p0, d)) from the optimal
one φ∗ (i.e. term κ1), the polarization and engagement
gradient estimation errors (i.e. terms κ2, κ3, respectively)
including both opinion and clicking behaviour estimation
errors, the variance of the dither signal, and the sensitivity
estimation error variance E[∥el∥2].

5. Numerical Results
We briefly discuss the results obtained in simulation with
the proposed recommendation algorithm. We then make a
performance comparison between our algorithm and other
OFO algorithms that benefit of more information. We also

Table 1. Methods for comparison

Method Sensitivity Opinions Clicking behaviour

M1 (Oracle)
√ √ √

M2 ×
√ √

M3 × ×
√

M4 (Alg. 1) × × ×

discuss the effects of personalization and show the benefits
of network awareness as opposed to decoupled recommen-
dations.

5.1. Experimental Setting

For the simulations, we consider synthetic data with n = 15
users in a social network graph with the user’s opinions
evolving based on an extended Friedkin-Johnsen model,
representing the networked version of the one in (Rossi
et al., 2022):

xk+1 = (In − Γp − Γd)Axk + Γpp
k + Γdd

k,

where Γd,Γp are positive diagonal matrices such that Γp +
Γd ⪯ In, and describe the impact of d and p over the
opinions, respectively, and A is a row-stochastic adjacency
matrix encoding the social interconnections of the users.
The external influence is modelled as a prejudice term, the
initial opinion x0.

We consider the following two different clicking behaviours:

CA :=cki ∼ B
(
1

2
+

1

2
xk
i p

k
i

)
,

CB :=cki ∼ B
(1
2
+

1

2
e−4(xk

i −pk
i )

2
)
.

Clicking behaviour CA represents confirmation bias over
extreme positions (Rossi et al., 2022), and CB models con-
firmation bias towards any position pi ∈ [−1, 1]. To incor-
porate diversity in clicking behaviours, we randomly assign
8 users to follow clicking behaviour CA and the remaining
ones are attributed CB .

For the polarization cost φpol(x) in (2), we set ϵ1 = −0.5
and ϵ2 = 0.5. Thus, opinions lying outside the region
[−0.5, 0.5]n are penalized. Further, we set γ = 1 in (2),
thus giving equal importance to engagement maximization
and polarization reduction.

5.2. Performance Comparisons

We make a comparison of our algorithm, referred in Table 1
as M4 with other OFO approaches (M1 −M3) benefiting
from more information. Table 1 summarizes the methods
used for comparison and their attributes. For the oracle

6
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(method M1), we employ the standard projected-gradient
controller (4), wherein opinions can be directly measured,
and the sensitivity and users’ clicking behavior is known.
Method M2 requires online sensitivity estimation using a
Kalman filter. Method M3 requires opinion estimation using
supervised learning in addition to sensitivity estimation.
Finally, method M4 is our algorithm, combining sensitivity,
opinion, clicking behaviour and gradient estimation. It must
be noted that the comparisons are not carried over a level-
playing field. The methods M1 −M3 carry a significant
advantage over M4. In fact, φclk(p, x) can be perfectly
computed in M1 −M3, given that an analytic expression
for the users’ clicking behaviours is available.

To analyze the convergence of our algorithm and compare
it with other OFO methods, we consider the fixed-point
residual mapping norm ∥G(pk)∥2 (Fig. 3). It can be ob-
served that convergence is empirically established in all the
proposed methods with this metric. Although our proposed
method manifests slightly inferior performances, we empha-
size that the clicking behaviour estimation we perform is
completely data-driven and online. The availability of an an-
alytical form for the clicking behaviour g(p, x), from which
the other methods benefit, would be too ideal for real-life
settings.

Figure 3. Evolution of the fixed-point residuals ∥G(pk)∥2 for the
algorithms in Table 1. The bold lines represent the mean and the
shaded region are the ±1 standard deviation across the 50 Monte-
Carlo trials.

5.3. Benefits of Network Awareness

We show the advantages of providing network-aware recom-
mendations to the users, as opposed to individual decoupled
recommendations. We compare our approach with two
methods: the recommender from (Rossi et al., 2022) and
a naive OFO algorithm both accounting for each user as
isolated from the network. For the naive method, we make
two significant changes from our proposed OFO approach in
Algorithm 1. Since the social network is not considered, for

OFO Naive OFO Rossi et. al.

Methods
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Figure 4. Steady-state mean clicking ratio (left) and polarization
(right) obtained by Algorithm 1 (OFO), its network-agnostic ver-
sion (Naive OFO), and the recommender design in (Rossi et al.,
2022). The black lines represent the initial ideal mean clicking
ratio (left) and the initial polarization (right).

Figure 5. Evolution of the fixed-point residuals ∥G(pk)∥2 obtained
by applying Algorithm 1 (OFO) and its network-agnostic version
(Naive OFO). The solid lines represent the mean and the shaded
region (±1 standard deviation) the range of changes across the 50
Monte Carlo trials.

each user i ∈ [n], we train the neural network for opinion
estimation using only their own positions and acceptance
ratio, i.e. x̂i = β̂i(yi, pi) rather than β̂i(yi, p). Further, we
do not carry out sensitivity estimation and instead provide a
random constant diagonal sensitivity with entries in [0, 0.5]
in each Monte-Carlo simulation, thus considering each user
as isolated.

The intuition behind the proposed naive method is that if
the network did not contribute to engagement maximization
and/ or polarization minimization, an educated guess for the
sensitivity estimate Ĥ would lead to the same performance
as our approach. An advantage of the naive OFO would
be a massive reduction in the computational burden, as the
online sensitivity estimation using the Kalman filter, which
is computationally expensive, would no longer be required.

We observe from Fig. 4 that although our proposed algo-
rithm returns a similar engagement when compared to the
naive OFO algorithm, it returns a much lower polarization
cost. Therefore, we conclude that network-aware recom-

7
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mendations lead to a significant reduction in polarization
without sacrificing much in terms of users’ engagement.
Moreover, the choice of a random diagonal sensitivity ma-
trix in the naive OFO method lowers the performance of the
overall optimization problem (3), as seen from Fig. 5. We
also observe a larger overshoot in ∥G(pk)∥2 with the naive
OFO method.

6. Conclusion
Our aim is to improve the understanding of real-world phe-
nomena using a simplified yet insightful model. We de-
signed a recommender system that simultaneously maxi-
mizes user engagement and mitigates polarization. Our
recommender system solely relies on clicks and does not
require any prior knowledge about opinion dynamics and
users’ clicking behavior. We provided theoretical optimality
and closed-loop guarantees for the resulting recommender-
social network interconnection. Finally, our simulations
demonstrated that our recommender performs favorably
against other approaches that do not leverage information
about users’ interconnections. We provide evidence that po-
larization risk should be considered at the recommendation
level.

Future research directions include relaxing the smoothness
assumptions on the clicking behaviour and incorporate other
interest attractors towards recommendation other than con-
firmation bias, e.g. repulsion. Finally, we aim for our
network-centered perspective to enhance the existing litera-
ture on opinion polarization caused by algorithmic systems
and inspire effective mitigation strategies.
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A. Appendix
A.1. Notations & Preliminaries

We let the symbols R(R+), N0 denote the set of (positive)
real numbers and non-negative integers, respectively. The
set of integers {1, 2, . . . , n} is denoted by [n]. For a vector
y ∈ Rn, we let the symbol |y| denote the vector whose i-th
entry, |y|i, is the i-th component of y in modulus, |yi|. The
symbol ⟨·, ·⟩ : Rn × Rn → R denotes the standard inner
product on Rn. The symbol 1n, (0n), denotes the all ones
(zeros) vector of size n. The symbols In and On, denote the
n-dimensional identity and zero matrix, respectively. Given
a matrix A ∈ Rm×n, the matrix is positive (non-negative)
if all its elements are greater (or equal) than zero and we
denote it as A > 0 (A ≥ 0). We let vec(A) denote the
vectorized version of A, i.e., if A = [a1 a2 . . . an], with
aj ∈ Rm, j ∈ [n], then vec(A) = [a⊤1 a

⊤
2 . . . a⊤n ]

⊤. Let
matrix A ∈ Rn×n, we denote by det[A] its determinant;
A is row-stochastic if A ≥ 0 and A1n = 1n. The sym-
bol DU ⊆ R denotes the set of n-dimensional diagonal
matrix with entries in U . The symbol diag[x] denotes the
diagonal matrix with xi on its i-th diagonal entry. Given
C ⊂ Rn and x ∈ Rn, we let PC [x] denote the euclidean pro-
jection of x over C. The normal distribution is denoted by
N (µ,Σ), with µ,Σ representing the mean and variance, and
the uniform distribution in the interval [a, b], with a, b,∈ R
is represented by U [a, b].

We now state some preliminary lemmas and definitions that
are recurrently used in this work.

Definition 1 (L-Lipschitzness (Nesterov, 2014)). A func-
tion h : Rn → Rn is L-Lipschitz if for all x1, x2 ∈ Rn, it
holds ∥h(x1)− h(x2)∥ ≤ L∥x1 − x2∥.

Lemma 4 (Gradient boundedness (Nesterov, 2014)). Con-
sider a continuously differentiable, L-Lipschitz map h :
Rn → R, then the Lipschitz constant provides a bound for
the 2-norm of its gradient, i.e. ∥∇h∥ ≤ L.

Definition 2 (Global β-smoothness (Nesterov, 2014)). A
continuously differentiable map Φ : Rn → R is globally
β-smooth if its gradient∇Φ is β-Lipschitz.
Lemma 5 (Properties of β-smooth functions (Nesterov,
2014)). Given a globally β-smooth map Φ : Rn → R, then
Φ(x1) − Φ(x2) − ∇Φ⊤(x2)(x1 − x2) ≤ 1

2β∥x1 − x2∥2.
Moreover, if Φ is twice continuously-differentiable, then
∥∇2Φ∥ ≤ β.

Definition 3 (Persistently exciting input (Willems et al.,
2005)). Given an input/output system, an input u ∈ Rn

is persistently exciting for the system if the corresponding
Henkel matrix has full rank, i.e., there exists S ∈ N such
that

Rank[∆ut−S−1,t−S−2,∆ut−S,t−S−1, . . . ,∆ut,t−1] = n,

where ∆ut1,t2 := ut1 − ut2 .
Definition 4 (Minimal modulus of continuity(Breneis,
2020)). Let h : X → R be a continuous function over
a bounded set X . The minimal modulus of continuity of h
on X is defined as

ωh(γ) := sup
{
|h(x)−h(y)| : x, y ∈ X , ∥x− y∥∞ ≤ γ

}
.

A.2. Opinion dynamics example: Friedkin-Johnsen
model

The opinions in a Friedkin-Johnsen model evolve according
to

xk+1 = (In − Γp − Γd)Axk + Γpp
k + Γdd, (14)

where Γd,Γp are positive diagonal matrices such that
Γp + Γd ⪯ In, and describe the impact of d and p over the
opinions, and A is a row-stochastic adjacency matrix encod-
ing the social interconnections of the users. The dynamics
(14) is forward-invariant in [−1, 1]n, since the opinions are
a convex combination of x, p, d ∈ [−1, 1]n.

Further, the steady-state mapping is single-valued, affine
(hence, continuously differentiable) and reads as

h(p, d) = (In − (In − Γp − Γd)A)−1(Γpp+ Γdd).

Finally, we note that by taking d ≡ x0 and Γp = On, the
dynamics (14) boil down to the standard FJ model (Friedkin
& Johnsen, 1990). △

A.3. Clicking behaviour example: Extremity
confirmation bias

A user i ∈ [n], holding opinion xi, affected by extremity
confirmation bias (Rossi et al., 2022) clicks on a recommen-
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dation pi with probability

ci ∼ B
(
1

2
+

1

2
xipi

)
,

where the clicking behaviour gi(pi, xi) =
1
2 + 1

2xipi mod-
els confirmation bias towards extreme recommendations.
In fact, if the opinion xi ≈ ±1 and the position pi ≈ ±1
(∓1), then the probability of clicking is almost 1 (0). The
clicking probability becomes random (0.5) as the user po-
sition approaches the neutral stance pi ≈ 0, highlighting
diminished engagement for less polarized content or when
recommendations directly counter the user’s stance on the
issue.

A.4. Acquiring training data

The training of the neural network is carried out offline via
feed-forward and back-propagation. Algorithm 2, provides
the pseudo-code to acquire the training data.

Algorithm 2 [Xp,Xx,Xy] = Training[N,T,m]

for j = 1 to m do
p ∼ U [−1, 1]n
xk+1 = f(xk, p, dk), k ∈ {0, 1, . . . , N − 1},
cki = B(gi(pi, xk

i )), ∀i ∈ [n], k ∈ {0, 1, . . . , N − 1}
Obtain final opinion from users xN

Clicking ratio yN = 1
T+1

∑N
k=N−T ck

Positions set Xp ← append[p]
Steady-state opinions set Xx ← append[xN ]
Clicking ratio set Xy ← append[yN ]

end for

For each training sample k ∈ [m], we provide news express-
ing a fixed random position p to the users for a period of N
time steps. The term T is a design parameter, with (N − T )
representing a time instant at which opinions have reached
a steady-state. After N steps, we obtain the users’ opinion
xN and compute their clicking ratio for the position p based
on the last T time steps. This process is carried out over m
Monte Carlo trials, thus collecting m training data points.

A.5. Proof of Lemma 1

The proof follows from (Corollary 5.2, (Tabuada & Ghare-
sifard, 2023)) with the continuous function β playing the
same role as f in (Tabuada & Gharesifard, 2023).

In order to provide an explicit upper-bound for ex we point
out that the neural network makes use of the injection layer,
whose map is represented by u : Rn+1 → Rn+2, the hidden
layer whose map is represented by z : Rn+2 → Rn+2 and
the output layer, whose map is represented by v : Rn+2 →
R, with v(z) = v⊤z + v0. Given that the input and out-
put layers are linear maps, we can directly make use of

(Theorem 7, (Marchi et al., 2021)) to state the following
upper-bound ∀i ∈ [n]:

|βi(X)−β̂i(X)| ≤ 3 sup
X∈X

|βi(X)−β̂i(X)|+2ωβi(γx)+|v0,i|γx,

where sup
X∈X
|βi(X)−β̂i(X)| refers to the maximum training

error on each user i, ωβi(γx) refers to the minimum modulus
of continuity of βi on X , v0,i represents the estimated bias
weight v0 from the hidden layer to the output layer of the
neural network for user i. By replacing the modelling error
θx of β from Assumption 3, it is now possible to state the
following:

∥ex∥ ≤
√
n
[
3 sup
X∈X
∥β(X)− β̂(X)∥∞ + 2sup

i∈[n]

ωβi
(γx)+

γx sup
i∈[n]

|v0,i|
]
+ θx.

A.6. Proof of Lemma 2

Before making use of (Corollary 5.2, (Tabuada & Ghare-
sifard, 2023)) to prove the upper-bound on ey, it is to
be noted that the arguments of g and ĝ in the defini-
tion of ey, are different. Thus, we re-write ey as ey =
ĝ(p, x̂)− g(p, x̂) + g(p, x̂)− g(p, h(p, d)) and note the fol-
lowing:

∥ey∥ ≤
(a)
∥g(p, h(p, d) + ex)− g(p, h(p, d))∥+

∥ĝ(p, x̂)− g(p, x̂)∥
≤
(b)
∥ĝ(p, x̂)− g(p, x̂)∥+ ∥∇xg

⊤(p, h(p, d))ex∥+ αy

≤
(c)
∥ĝ(p, x̂)− g(p, x̂)∥+Mxϵx + αy. (15)

In (a), we make use of the identity x̂ = x + ex, with the
state estimation error ex defined in Lemma 1. In (b), we
use the Taylor series expansion on g(p, x + ex) around
x. In addition, the higher-order terms in the expansion of
g(p, x+ ex) are upper-bounded by the modelling error on
the clicking behaviour, i.e. ∥O(g(p, x))∥≤ αy. In (c), we
use Assumption 2, i.e. g(p, x) is Mx-Lipshitz with respect
to x and the fact that the opinion estimation error is upper-
bounded with ∥ex∥ ≤ ϵx from Lemma 1.

The proof for the existence of an upper-bound on ∥ĝ(p, x̂)−
g(p, x̂)∥ is similar to the proof in Appendix A.5. The bound
can now be stated as follows, for every i ∈ [n]:

|gi(Y )− ĝi(Y )| ≤ 3sup
Y ∈Y

|gi(Y )− ĝi(Y )|+2ωgi(γy)+ |w0,i|γy,

(16)
where sup

Y ∈Y
|gi(Y )− ĝi(Y )| refers to the maximum training

error on each user i, ωgi(γy) refers to the modulus of conti-
nuity of gi on Y , w0,i represents the estimated bias weight

10
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w0 from the hidden layer to the output layer of the neural
network for user i. Using (16) in (15), it is now possible to
state the following:

∥ey∥ ≤
√
n
[
3 sup
Y ∈Y
∥g(Y )− ĝ(Y )∥∞ + 2sup

i∈[n]

ωgi(γy)+

γy sup
i∈[n]

|w0,i|
]
+Mxϵx + αy.

A.7. Proof of Lemma 3

Due to Assumption 2 and Lemma 5, for any p, x1, x2 ∈ Rn

it holds that

φ
clk

(p, x1)−φ
clk

(p, x2)−(∇xφ
clk

)
⊤
(p, x2)(x1−x2) ≤

1

2
Lx∥x1−x2∥2

.

In the above equation, we replace x1, x2 with x+ µei and
x, respectively, so that

φclk(p, x+µei)−φclk(p, x)−µ(∇xφ
clk)⊤(p, x)ei ≤

1

2
Lxµ

2.

(17)
We now add and subtract φ̂clk(p, x̂ + µei) and φ̂clk(p, x̂)
in the above equation and we note that φ̂clk(p, x̂) :=
−1⊤n ĝ(p, x̂) and φclk(p, x) := −1⊤n g(p, x). Using these
definitions in (17), we obtain:

φ̂clk(p, x̂+ µei)− φ̂clk(p, x̂) ≤ 1⊤n [ey(p, x) + ey(p, x+ µei)]

+ µ(∇xφ
clk(p, x))⊤ei +

1

2
Lxµ

2, (18)

where ey(p, x) is the clicking behaviour estimation error as
defined in (7). Dividing both sides by µ in (18) and using
the gradient estimate definition in (9), we obtain(

∇xφ̂
clk

)
i
(p, x̂)−

(
∇xφ

clk
)
i
(p, x) ≤ Lxµ

2
+

1

µ
1⊤n (ey(p, x) + ey(p, x+ µei)).

for all i ∈ [n]. Taking the modulus on both sides, we obtain
|1⊤n (ey(p, x) + ey(p, x+µei))| ≤

√
nϵg using the Cauchy-

Schwartz inequality and the upper-bound on the clicking
behaviour estimation error ∥ey∥ ≤ ϵg as in (7). We now
write∣∣∣(∇xφ̂

clk
)
i
(p, x̂)−

(
∇xφ

clk
)
i
(p, x)

∣∣∣ ≤ 1

2
Lxµ+2

√
nϵg
µ

,

from which (9) follows. Analogous reasoning is followed
for the gradient estimation error with respect to p. To obtain
the tight upper-bound, we use first-order optimality condi-
tions with respect to µ on the term 1

2Lxµ + 2
√
nϵg
µ , thus

obtaining µ∗ = 2n1/4
√

ϵg/Lx. Since the second-order
derivative of the term 1

2Lxµ+2
√
nϵg
µ is strictly positive, µ∗

is the smoothing parameter that provides the lowest upper-
bound on the gradient estimation error.

A.8. Proof of Theorem 1

The Kalman filter is uniformly asymptotically stable pro-
vided the pairs (In2 ,

√
Qk), (In2 ,∆p̃k,τi) are uniformly

completely controllable and observable, respectively (Theo-
rem 7.4, (Jazwinski, 1970)). Since Qk is a design parameter
used to control the degree of trust in the process model, it is
possible to make Qk positive definite for all k ∈ N0. Fur-
ther, persistently exciting inputs ∆p that satisfy the Henkel
matrix condition in Definition 3 guarantees uniform com-
plete observability (see (Picallo et al., 2022)).

We can now derive an explicit analytical expression for
the upper-bound on the variance E[∥ek∥2]. By making
use of (4.2) and (8) on ℓk and ℓ̂k, by adding and subtract-
ing ∆xk+1,τi+1

ss and by making use of (4.2) and (4.2) on
∆xk+1,τi+1

ss , one gets

ek =
(
In2 − ζkKk−1∆p̃k,τi

)
(ek−1 + wk−1)− ζkKk−1vk

+ ζkKk−1∆eτi+1,k+1
x . (19)

Taking the expectation of the norm squared on both sides in
(19), we obtain:

E[∥ek∥2] =
(a)

E[∥(In2 − ζkKk−1∆p̃k,τi)(ek−1 + wk−1)−

ζkKk−1(vk +∆ek+1,τi+1
x

)
∥2]

≤
(b)

∥In2 − ζkKk−1∆p̃k,τi∥2(E[∥ek−1∥2] + (σk−1
q )2)

+∥ζkKk−1∥2
(
(σk

r )
2 + 2ϵ2x

)
In (b), we expand the norm and use Assumption 4 to
state that the expectation on the cross-coupled terms are
all zero. We then use E[∥wk−1∥2] = (σk−1

q )2 and
E[∥vk∥2] = (σk

r )
2. Further, Lemma 1 allows us to state

that E[∥∆ek+1,τi+1
x ∥2] ≤ 2ϵ2x. Considering a trigger at

time k, we have:

E[∥eτi+1∥2] ≤∥In2 −Kτi+1−1∆p̃τi+1,τi∥2E[∥eτi∥2]+
(T − 1)σ2

q + ∥Kτi+1−1∥2
(
σ2
r + 2ϵ2x

)
,

(20)

where σ2
q = sup

t∈N0

(σt
q)

2 and σ2
r = sup

t∈N0

(σt
r)

2. Tracing back

(20) recursively to k = 0, we obtain the following relation:

E[∥eτi+1∥2] ≤(c1ξ
c2T )2|T |E[∥e0∥2]+

1− (c1ξ
c2T )2|T |

1− c1ξc2T
[
(T − 1)σ2

q +K2
m

(
σ2
r + 2ϵ2x

)]
,

We now have the following asymptotic result on the vari-
ance:

lim
|T |→∞

E[∥eτi∥2] ≤ 1

1− c1ξc2T
[
(T−1)σ2

q+K2
m

(
σ2
r+2ϵ2x

)]
,

11
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A.9. Proof of Theorem 2

Before describing the proof, we state the following support-
ing lemma and remark.

Lemma 6 (Projections with smooth functions (Reddi et al.,
2016)). Let y = P[−1,1]n [x− ηu] with y, x, u ∈ Rn. Then,
the following inequality holds:

φ(y) ≤φ(z) + ⟨y − z,Φ(x)− u⟩+
[L′

2
− 1

2η

]
∥y − x∥2+[L′

2
+

1

2η

]
∥z − x∥2 − 1

2η
∥y − z∥2, ∀z ∈ Rn

where φ is the cost function to be minimized and Φ its gra-
dient. Further, L′ and η are the smoothness factor of φ and
the step-size of the gradient descent algorithm, respectively.

Proof. The proof is given in (Lemma 2,(Reddi et al., 2016)).

Remark 1 (Composite gradient lipschitzness). We observe
that the Lipschitz and smoothness constant for φpol(x) are
2
√
n and 2, respectively. Using Assumptions 1(iii), 2, the

composite gradient Φ(p) is thus L′−Lipschitz with respect
to p, where L′ = Lp+L2(Lx+2). Therefore, the composite
cost function φ(p, h(p, d)) is L′−smooth with respect to p.

We now state the following gradient update in the case where
the gradients, sensitivity and opinions are known:

pk+1 = P[−1,1]n [p
k − ηΦ(pk, h(pk, d))],

where Φ(p, h(p, d)) is the composite gradient. The above
will serve as a benchmark to investigate the stationarity of
our algorithm. We are now in the position to prove the
inequalities in (13). To do so, we use Lemma 6 with y =
pk+1, x = pk and u = Φ(pk, h(pk, d)) is the composite
gradient. Choosing z = pk and taking the expectation on
both sides, we obtain:

E
[
φ(pk+1)

]
≤ E

[
φ(pk)+

(L′

2
− 1

η

)
∥pk+1−pk∥2

]
. (21)

We now define the update step with our algorithm:

pk+1 = P[−1,1]n [p
k − ηζkΦ̂k].

We use Lemma 6 with y = pk+1, x = pk and u = ζkΦ̂k.
Choosing z = pk+1 and taking the expectation on both
sides of the inequality, we obtain:

E
[
φ(p

k+1
)
]
≤ E

[
φ(p

k+1
) +

(L′

2
−

1

2η

)
∥pk+1 − p

k∥2
+

⟨pk+1 − p
k+1

,Φ(p
k
, h(p

k
, d)) − ζ

k
Φ̂

k⟩+ (22)(L′

2
+

1

2η

)
∥pk+1 − p

k∥2 −
1

2η
∥pk+1 − p

k+1∥2
]

We now add inequalities (21) and (22) to obtain:

E
[
φ(p

k+1
)
]
≤ E

[
φ(p

k
) +

(L′

2
−

1

2η

)
∥pk+1 − p

k∥2
+

⟨pk+1 − p
k+1

,Φ(p
k
, h(p

k
, d)) − ζ

k
Φ̂

k⟩︸ ︷︷ ︸
T1

+ (23)

(
L

′ −
1

2η

)
∥pk+1 − p

k∥2 −
1

2η
∥pk+1 − p

k+1∥2
]
.

We now focus on the term T1. Using Cauchy-Schwartz
relation and the fact that the geometric mean of two
non-negative real numbers is always less than its arith-
metic mean, we obtain the following: T1 ≤ ∥pk+1 −
pk+1∥ ∥Φ(pk, h(pk, d)) − ζkΦ̂k∥ ≤ 1

2η∥p
k+1 − pk+1∥2 +

η
2∥Φ(p

k, h(pk, d)) − ζkΦ̂k∥2. Using the above inequality
in (23), we obtain:

E
[
φ(pk+1)

]
≤ E

[
φ(pk) +

(L′

2
− 1

2η

)
∥pk+1 − pk∥2︸ ︷︷ ︸
T2

+ (24)

η

2
∥Φ(pk, h(pk, d))− ζkΦ̂k∥2 +

(
L′ − 1

2η

)
η2∥G(pk)∥2

]
.

In the above inequality, we used the definition of fixed-point
residual mapping according to (12).

We now assume that there is a trigger at time instant k, i.e.
ζk = 1. To obtain a feasible upper-bound on E[∥G(pk)∥2],
we need L′ − 1/2η < 0. Thus, the step-size is constrained
with η ∈ (0, 1

2L′ ). With this constraint, we have T2 ≤ 0.
This leads to the following:

E
[
∥G(pk)∥2

]
≤ 2

η(1− 2ηL′)

{
E
[
φ(pk)

]
− E

[
φ(pk+1)

]
+

η

2
E
[
∥Φ(pk, h(pk, d))− Φ̂k∥2

]
︸ ︷︷ ︸

T3

}
. (25)

We now analyze the term T3. For the sake of con-
venience, we drop the arguments of the gradient p, x
and time argument k in the gradient terms. Thus,
we denote ∇pφ

clk = ∇pφ
clk(pk, h(pk, d)), ∇xφ

clk =
∇xφ

clk(pk, h(pk, d)), ∇pφ̂
clk = ∇pφ̂

clk(pk, x̂k+1) and
∇xφ̂

clk = ∇xφ̂
clk(pk, x̂k+1). Using the definitions of

Φ(pk, h(pk, d)), Φ̂k, we have:

T3 = E
[
∥∇pφ

clk − ∇pφ̂
clk

+ H
k⊤∇xφ

clk − Ĥ
k⊤∇xφ̂

clk
+ (26)

γH
k⊤∇xφ

pol
(h(p

k
, d)) − γĤ

k⊤∇xφ
pol

(x̂
k+1

) +
wk

pe

η
∥2

]
,

where Hk = ∇ph(p
k, d) is the true sensitivity and Ĥk is

its estimate at time k. We now analyze the upper-bound on

12
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T3:

T3

(a)

≤ 6
{
∥∇pφ

clk − ∇pφ̂
clk∥2

+ ∥(Hk
)
⊤
(∇xφ

clk − ∇xφ̂
clk

)∥2
+

σ2
pe

η2
+ γ

2∥(Hk
)
⊤
(∇xφ

pol
(h(p

k
, d)) − ∇xφ

pol
(x̂

k+1
))∥2

+

(
γ
2∥∇xφ

pol
(x̂

k+1
)∥2

+ ∥∇xφ̂
clk∥2)E[∥Hk − Ĥ

k∥2
]}

(b)

≤ 6
{
4n

3/2
ϵg(Lp + L

2
Lx) +

σ2
pe

η2
+

γ
2∥(Hk

)
⊤
(∇xφ

pol
(h(p

k
, d)) − ∇xφ

pol
(x̂

k+1
))∥2

+(
γ
2∥∇xφ

pol
(x̂

k+1
)∥2

+ ∥∇xφ̂
clk∥2)E[∥Hk − Ĥ

k∥2
]}

(c)

≤ 6
{
4n

3/2
ϵg(Lp + L

2
Lx) +

σ2
pe

η2
+ 4γ

2
L

2∥h(pk
, d) − x̂

k+1∥2
+

(
γ
2∥∇xφ

pol
(x̂

k+1
)∥2

+ ∥∇xφ̂
clk∥2)E[∥Hk − Ĥ

k∥2
]}

(d)

≤ 6
{
4n

3/2
ϵg(Lp + L

2
Lx) +

σ2
pe

η2
+ 4γ

2
L

2
ϵ
2
x+(

γ
2∥∇xφ

pol
(x̂

k+1
)∥2

+ ∥∇xφ̂
clk∥2)E[∥Hk − Ĥ

k∥2
]}

(e)

≤ 6
{
4n

3/2
ϵg(Lp + L

2
Lx) +

σ2
pe

η2
+ 4γ

2
L

2
ϵ
2
x+(

4nγ
2
+ ∥∇xφ̂

clk ± ∇xφ
clk∥2)E[∥ek∥2

]}
(f)

≤ 6
{
4n

3/2
ϵg(Lp + L

2
Lx) +

σ2
pe

η2
+ 4γ

2
L

2
ϵ
2
x+(

4nγ
2
+ 2(M

2
x + 4n

3/2
ϵgLx)

)
E
[
∥ek∥2

]}
(27)

To obtain (a), we added and subtracted (Hk)⊤∇xφ̂
clk and

γ(Hk)⊤∇xφ
pol(x̂k+1) inside the norm in (26). We then

used the fact that E
[
∥
∑m

j=1 rj∥2
]
≤ m

∑m
j=1 E

[
∥rj∥2

]
.

We also make use of the fact that E[∥wk
pe∥2] = σ2

pe. In (b),
we made use of Lemma 3 for the gradient estimate accuracy
on φclk and Assumption 1(iii) for Lipschitz condition on
h(p, d) to arrive at the term 4n3/2ϵg(Lp + L2Lx). In (c),
we made use of Remark 1 for the smoothness condition
on φpol and Assumption 1(iii) for Lipschitz condition on
h(p, d) to arrive at the term 4L2∥x− x̂∥2. In (d), we made
use of the fact that the norm of the steady-state opinion
estimation error is upper-bounded by ϵx. In (e), we made
use of Remark 1 for the Lipschitz condition on φpol, thus
arriving at the term 4n. We also add and subtract the term
∇xφ

clk. Further, we use inequality ∥Hk − Ĥk∥ ≤ ∥Hk −
Ĥk∥F = ∥ek∥, where ∥·∥F refers to the Frobenius norm
and ek is the sensitivity estimation error. In (f), we made
use of the fact that ∥a+b∥2 ≤ 2(∥a∥2+∥b∥2). We then use
Assumption 2 to state that ∥∇xφ

clk∥ ≤Mx and Lemma 3
to state the upper-bound on ∥∇xφ

clk −∇xφ̂
clk∥.

We now use the inequality (27) in (25) and add the inequali-
ties over the trigger time instances up to k, leading to tele-
scopic cancellation. Thus, we have:

∑
l∈T
l≤k

E[∥G(pl
)∥2

] ≤
2

η(1 − 2ηL′)

{
E
[
φ(p

0
)
]
− E

[
φ(p

k+1
)
]}

+

6|T |
1 − 2ηL′

{
4n

3/2
ϵg(Lp + L

2
Lx) +

σ2
pe

η2
+ 4γ

2
L

2
ϵ
2
x

}
+

12
[
2nγ2 + (M2

x + 4n3/2ϵgLx)
]

1 − 2ηL′

∑
l∈T
l≤k

E
[
∥el∥2

]
.

Since the positions do not change between two consecutive
trigger time instances, it is sufficient to investigate conver-
gence guarantees at the trigger time instances.

Using Theorem 1 for the upper-bound on E[∥ek∥2], the
summation of this term over the trigger instances leads to
the following:∑
l∈T
l≤k

E
[
∥el∥2

]
≤|T |Cf + E

[
∥e0∥2

]∑
l∈T
l≤k

(c1ξ
c2T )2|T |

(28)

|T |Cf + E
[
∥e0∥2

](1− (c1ξ
c2T )2|T |

1− (c1ξc2T )2

)
.

We start the algorithm with p0 = 0n, thus E
[
φ(p0)

]
=

φ(0). Further, ∃ φ∗ ≤ E
[
φ(pk)

]
,∀k ∈ N0, i.e. φ∗ is a

local optimal value. Thus, with the above formulations and
(28), we obtain (13).
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