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Abstract

Despite the popularity of transformers in practice,
their architectures are empirically designed and
neither mathematically justified nor interpretable.
Moreover, as indicated by many empirical studies,
some components of transformer architectures
may be redundant. To derive a fully interpretable
transformer architecture with only necessary com-
ponents, we contend that the goal of representa-
tion learning is to compress a set of noisy initial
token representations towards a mixture of low-
dimensional subspaces. To compress these noisy
token representations, an associated denoising op-
eration naturally takes the form of a multi-head
(subspace) self-attention. By unrolling such iter-
ative denoising operations into a deep network,
we arrive at a highly compact architecture that
consists of only self-attention operators with skip
connections at each layer. Moreover, we show
that each layer performs highly efficient denois-
ing: it improves the signal-to-noise ratio of token
representations at a linear rate with respect to
the number of layers. Despite its simplicity, ex-
tensive experiments on vision and language tasks
demonstrate that such a transformer achieves per-
formance close to that of standard transformer
architectures such as GPT-2 and CRATE.

1. Introduction
Over the past decade, transformers (Vaswani et al., 2017)
have achieved remarkable empirical success across various
modern machine learning applications, including large lan-
guage models (LLMs) (Brown et al., 2020; Devlin, 2018), vi-
sion generative models (Bao et al., 2023; Chen et al., 2020),
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and reinforcement learning (Chen et al., 2021). Transformer
architectures are generally constructed by stacking mul-
tiple identical layers designed to process and learn from
data. Each layer is composed of several interacting com-
ponents arranged in a specific sequence, including multi-
head self-attention operators, layer normalization, multi-
layer perceptron (MLP) networks, and skip connections. In
practice, transformers, such as BERT (Devlin, 2018) and
GPT-4 (Achiam et al., 2023), are highly deep, often with
dozens or even hundreds of layers, and significantly over-
parameterized, containing millions or even billions of param-
eters. This considerable depth and over-parameterization
endow transformers with impressive learning capabilities,
allowing them to capture complex patterns and relationships.

Despite the remarkable success of transformers, their deep
and over-parameterized architecture renders them “black
boxes”, hindering an understanding of their inner mecha-
nism. To address this challenge, a common approach in-
volves systematically removing or modifying certain com-
ponents in transformers to simplify the architecture; see,
e.g., Dong et al. (2021); Alcalde et al. (2024); Noci et al.
(2024); Geshkovski et al. (2023a); Geva et al. (2020); Guo
et al. (2024). For example, Alcalde et al. (2024) studied
pure-attention hard-max transformers with skip connections
and showed that the output converges to a clustered equi-
librium as the number of layers goes to infinity. Noci et al.
(2024) analyzed a modified softmax-based attention model
with skip connections, demonstrating that the limiting distri-
bution can be described by a stochastic differential equation.
These studies indicate that the most basic components of
transformers are self-attention layers and skip connections.
Although existing studies have provided valuable insights
into different components of transformers, few of them elu-
cidate the underlying mechanisms by which transformers
process and transform input into output across layers.

Existing empirical studies suggest that some components
of transformers may not be essential and can be removed
or modified without compromising performance. For ex-
ample, He & Hofmann (2024) empirically demonstrated
that transformer architecture can be simplified by removing
components such as skip connections, value matrix, and
normalization layers without degrading performance. Addi-
tionally, Sukhbaatar et al. (2019) investigated the effects of
removing MLP blocks from transformers and augmenting
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the self-attention layers to play a similar role to MLP blocks,
showing that performance can be preserved. Similarly, Pires
et al. (2023) examined the potential for reducing the fre-
quency of MLP layers in transformers. Other works also
studied other simplifications of transformers, such as linear
attentions (Katharopoulos et al., 2020) and shared-QK at-
tentions (Kitaev et al., 2020). Based on these discussions,
this work focuses on addressing the following question:

Can we design a minimalistic transformer architecture
consisting of fully interpretable layers that achieves
performance close to that of standard transformers?

1.1. Related Works

Figure 1. Each layer of
our proposed trans-
former architecture.

Existing studies of self-
attention mechanisms. One
main factor of the power of
transformers is the self-attention
layers, which enable the model
to capture long-range dependen-
cies and contextual relationships
between tokens by weighing
token relationships across
the input sequence (Vaswani
et al., 2017). To explore the
mechanism behind self-attention,
numerous studies have inves-
tigated the performance of
pure self-attention networks,
often incorporating only one
additional component to prevent rank collapse and maintain
expressiveness; see, e.g., Dong et al. (2021); Geshkovski
et al. (2023a;b); Wu et al. (2024). We refer the reader to
Appendix A for more discussions.

Network architecture design via unrolled optimization.
Several lines of work have proposed that the success of
modern deep networks largely stems from their ability to
transform the raw data into compact and structured repre-
sentations, which facilitates downstream tasks (Chan et al.,
2022; Chen et al., 2023; Ma et al., 2022; Yu et al., 2024;
Huh et al., 2024). A principled and interpretable approach to
learning such representations is to construct an architecture
that incrementally transforms tokens into these representa-
tions via unrolling optimization steps as layers of a deep
network (Chan et al., 2022; Monga et al., 2021; Wang et al.,
2016; Yu et al., 2024; Zhang & Ghanem, 2018). Appendix A
contains more discussion on this point.

Linear representation and superposition hypotheses.
Recent empirical studies of language tasks have raised the
“linear representation hypothesis”, which posits that token
representations can be linearly encoded as one-dimensional
feature vectors in the activation space of LLMs (Jiang et al.,
2024; Park et al., 2024b), and “superposition hypothesis”,
which further hypothesizes that token representations are a

sparse linear combination of these feature vectors (Elhage
et al., 2022; Yun et al., 2021). Building on these hypothe-
ses, various approaches have been proposed to understand
and utilize token representations. For example, Templeton
(2024) employed sparse autoencoders to decompose the
token representations of Claude 3 Sonnet into more inter-
pretable components. Luo et al. (2024) leveraged sparse
dictionary learning to explore token representations, de-
composing them into interpretable components based on a
concept dictionary. Recently, Engels et al. (2025) conjec-
tured that token representations in LLMs are the sum of
many sparse multi-dimensional features. This conjecture
is supported by their experiments on GPT-2 and Mistral
7B, where they used sparse autoencoders to identify multi-
dimensional features. Notably, all of these empirical studies
conclude that the token representations lie on a union of
(possibly many) low-dimensional subspaces.

1.2. Our Contributions

Based on the above discussions and motivated by referenced
empirical findings, we propose a simple yet evocative model
for the structure of token representations in trained trans-
formers. Specifically, we model the underlying distribution
of token representations as a mixture of low-rank Gaussians,
each supported on a subspace and corrupted by noise (see
Definition 2.1). Then, the goal of representation learning
is to denoise a set of noisy initial token representations to-
wards the corresponding subspaces. Our contributions are
summarized as follows:

• Attention-only transformer via unrolled optimization.
Under the mixture of low-rank Gaussian model, we inter-
pret multi-head (subspace) self-attention as a denoising
operator, which compresses noisy token representations
into their corresponding supporting subspaces. By itera-
tively unrolling the multi-head (subspace) self-attention
operator, we construct a new transformer architecture with
a streamlined design, consisting of only self-attention lay-
ers with skip connections (see Figure 1).1 This design is
much simpler compared to standard transformers.

• Theoretical guarantees for the proposed transformer.
To quantify the denoising performance of the proposed
transformer, we introduce a signal-to-noise (SNR) metric
(see Eq. (8)) for the token representations. We prove
that each layer of the proposed transformer improves the
SNR at a linear rate when the initial token representations
are sampled from a noisy mixture of low-rank Gaussians
(see Theorem 3.1). This indicates that the multi-head
(subspace) self-attention operator is highly effective in de-
noising token representations towards their corresponding
subspaces.

1In practice, LayerNorm layers may be added to enhance per-
formance.
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Figure 2. Layers of a transformer gradually denoise token representations Z(l) towards their corresponding subspaces.

• Understanding the roles of self-attention and MLP
layers. Notably, the proposed transformer is a valuable
model for understanding the mechanism of attention, as it
ablates the effect of MLP layers. Moreover, comparing the
proposed transformer to standard transformers provides
insights into the specific role and empirical benefits of
the MLP layers in different tasks, such as for images and
texts (see experiments in Section 4).

Finally, we conduct extensive experiments on both vision
and language tasks, including supervised image classifica-
tion, causal language modeling, and in-context learning, to
complement our theory and demonstrate the potential of our
proposed transformer architecture. We emphasize that the
goal of our experiments is not to strive for state-of-the-art
performance for these tasks. Instead, they are intended to
validate our theory about the components of the transformer.

Notation. Given an integer n, we denote by [n] the set
{1, . . . , n}. Given a vector a, let ∥a∥ denote the Euclidean
norm of a and diag(a) denote the diagonal matrix with
a as its diagonal. Given a matrix A, let ∥A∥ denote the
spectral norm of A, ∥A∥F denote the Frobenius norm, and
aij denote the (i, j)-th element. For sequences of positive
numbers {an} and {bn}, we write an ≲ bn or bn ≳ an if
there exists an absolute constant C > 0 such that an ≤ Cbn.
Given a constant τ > 0, we define I(x > τ) = 1 if x > τ
and I(x > τ) = 0 otherwise. We use On×d to denote the
set of all n× d matrices that have orthonormal columns.

2. Technical Approach and Justification
In this section, we introduce the basic setup of transformers
for learning representations from real-world data. Real-
world data, such as images, videos, and text, are often mod-
eled as random samples drawn from a high-dimensional
probability distribution with low-dimensional intrinsic struc-
tures (Wright & Ma, 2022). Instead of directly inputting
raw data samples into transformers, a common prepro-
cessing step is to convert each sample into a sequence
of tokens, where each token represents a localized seg-
ment of the data, such as an image patch, a snippet of
text, or a frame in a video. Consequently, the input to

transformers is typically a sequence of tokens denoted as
X = [x1, . . . ,xN ] ∈ RD×N . Then, the goal of transform-
ers is to learn a map f that transforms these tokens into
structured and compact token representations that facilitate
downstream tasks, such as classification (Dosovitskiy et al.,
2021) and generation (Saharia et al., 2022), by capturing the
underlying patterns in the data.

2.1. Unrolled Optimization for Token Representations

In this subsection, we introduce how to learn token repre-
sentations using the approach of unrolling optimization al-
gorithms (Chan et al., 2022; Gregor & LeCun, 2010; Monga
et al., 2021; Sun et al., 2019; Wang et al., 2016; Yu et al.,
2024; Zhang & Ghanem, 2018). Specifically, this approach
constructs each layer of a neural network according to a step
of an iterative optimization algorithm. That is, the network’s
architecture is designed to implement a specific optimization
algorithm, where each layer corresponds to a single iterative
step. By unrolling the algorithm, we construct a “white-box”
transformer architecture as a multi-layer neural network
that incrementally transforms input tokens into structured
and compact representations. This iterative process can be
described as follows:

f : X
f0

−→ Z(0) f1

−→· · · f l

−→ Z(l) f l+1

−→· · · fL

−→ Z(L) =: Z,

where f0 : RD×N → Rd×N is a pre-processing mapping
(e.g., positional encoding, token embedding) that transforms
input tokens X ∈ RD×N to initial token representations
Z(0) ∈ Rd×N , f l : Rd×N → Rd×N denotes an iterative
step or layer, and Z(l) denotes the token representations at
the l-th layer for each l ∈ [L]. Then, a key question is how
to design the operator f l at each layer to learn meaningful
token representations in a principled manner.

2.2. A Model for Token Representations

Before we design such an operator f l, we model the struc-
ture of token representations in pretrained LLMs. Notably,
extensive works (Templeton, 2024; Luo et al., 2024; Engels
et al., 2025) have empirically demonstrated that token rep-
resentations in trained LLMs usually approximately lie in
a union of low-dimensional subspaces. These subspaces
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encode distinct semantic meanings, capturing various lin-
guistic or contextual features that contribute to the model’s
overall understanding and performance. This motivates us
to model the token representations as follows:

Definition 2.1. Let C1, . . . , CK be a partition of the index
set [N ] and Uk ∈ Od×pk denote the orthonormal basis
of the k-th subspace for each k ∈ [K]. We say that the
token representations {zi}Ni=1 ⊆ Rd are sampled from a
mixture of noisy low-rank Gaussian distributions if for each
k ∈ [K],

zi = Ukai︸ ︷︷ ︸
signal

+

K∑
j ̸=k

Ujei,j︸ ︷︷ ︸
noise

, ∀i ∈ Ck, (1)

where ai
i.i.d.∼ N (0, Ipk

) and ei,j
i.i.d.∼ N (0, δ2Ipj ) for

all i ∈ Ck and k ∈ [K], {ai} and {ei,j} are respectively
mutually independent, and {ai} is independent of {ei,j}.

Before we proceed, let us make some remarks on this model.

• An idealized model for token representations. This
model serves as an idealized framework for approximat-
ing token representations in real-world pretrained LLMs.
It assumes that the token representations are sampled from
a mixture of multiple low-rank Gaussian distributions
with noise. Under this model, the goal of representation
learning is to compress a set of noisy initial token presen-
tations into the corresponding subspace. We should point
out that in real-world applications, where token represen-
tations exhibit more complicated structures, the goal of
representation learning is to find a compact and structured
representation via compressing token sets, as argued in Yu
et al. (2024). In addition, this model has been widely used
in other machine learning problems, such as subspace
clustering (Wang et al., 2022; Elhamifar & Vidal, 2013)
and diffusion models (Wang et al., 2024).

• Connections to hypotheses on token representations.
This model aligns well with two well-established hy-
potheses about the structure of token representations in
pretrained LLMS: the “linear representation hypothesis”
(Jiang et al., 2024; Park et al., 2024b) and the “superpo-
sition hypothesis” (Elhage et al., 2022; Yun et al., 2021;
Arora et al., 2018). The linear representation hypothe-
sis posits that token representations in LLMs lie in low-
dimensional linear subspaces that encode semantic fea-
tures. Similarly, the superposition hypothesis suggests
that these representations can be approximately expressed
as a sparse linear combination of these feature vectors. In
the context of our model, each basis Uk of the subspaces
can be interpreted as a set of semantic features, where
each feature corresponds to a specific aspect of the token’s
meaning. Token representations are then approximately

expressed as sparse linear combinations of these subspace
bases, capturing the essential semantic components of the
token while ignoring irrelevant dimensions.

2.3. Denoising Operator for Token Representations

Now, we introduce a denoising operator to compress token
representations into the corresponding subspace when the
initial token representations Z(0) is generated according to
Definition 2.1. To simplify our development, we assume
that the subspaces in Definition 2.1 are orthogonal to each
other, i.e., UT

k Uj = 0 for all k ̸= j. Note this assumption is
not restrictive, as in high-dimensional spaces, random low-
dimensional subspaces are incoherent to each other with
high probability, i.e., UT

k Uj ≈ 0 (Wright & Ma, 2022).2

Multi-head subspace self-attention. Without loss of gen-
erality, we rearrange the initial token representations Z(0)

such that those from the same subspace are concatenated
together, i.e., Z(0) = [Z

(0)
1 , . . . , Z

(0)
K ] with

Z
(0)
k = UkAk +

∑
j ̸=k

UjEk,j , ∀k ∈ [K].

Here, the columns of Z(0)
k denote the token representations

from the k-th subspace for each k ∈ [K], the columns of
Ak ∈ Rpk×Nk consists of {ai}i∈Ck

, and the columns of
Ek,j ∈ Rpj×Nk consists of {ei,j}i∈Ck

for each k ∈ [K]
with Nk = |Ck| for each k ∈ [K]. Obviously, projecting
token representations onto their corresponding subspace
helps to separate the signal from the noise components using
UT

k Uj = 0 for all k ̸= j, i.e.,

UkU
T
k Z

(0)
ℓ =

{
UkAk, if ℓ = k,

UkEℓ,k, if ℓ ̸= k.
(2)

To denoise the token representations from k-th subspace, we
compute the similarity of projected token representations
via (UT

k Z)T (UT
k Z) and verify that the similarity between

projected token representations from the k-th subspace is
high, while the similarity between other pairs of projected
token representations is low when δ < 1. Then, we convert
it to a distribution of membership with function φ, such as
hard-thresholding or soft-max functions, and denoise the
token representations towards to the corresponding subspace
using this membership. Now, we formalize the considered
operator as follows: for each l = 0, 1, . . . , L− 1,

Z(l+1) = Z(l) + ηMSSA(Z(l)), (3)

where η > 0 is the denoising step size, φ(·) : Rd×N →
Rd×N is an operator applied column-wise, and

MSSA(Z) =

K∑
k=1

UkU
T
k Zφ

(
ZTUkU

T
k Z

)
. (4)

2One may straightforwardly generalize our results to non-
orthogonal subspaces, with slightly more sophisticated analysis.
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Figure 3. The attention-only transformer (AoT) architecture. Each layer consists of the MSSA operator and a skip connection.
Additionally, LayerNorm can be incorporated to enhance performance. In practice, backpropagation is applied to train the model
parameters.

Notably, the operator in (4), referred to as the multi-head
subspace self-attention (MSSA), is first proposed by (Yu
et al., 2024; 2023) to approximately optimize the compres-
sion term of the sparse rate reduction objective for construct-
ing a transformer-like architecture. It is worth noting that
Yu et al. (2023); Pai et al. (2023) showed that the negative
compression gradient of the objective points from the to-
ken representation to the corresponding subspace. However,
they did not study the quantitative denoising efficiency of
the MSSA operator (4).

Connections to multi-head self-attention. Notably, the
denoising operator (4) is essentially a special instance of
multi-head self-attention (MHSA) implemented with a skip
connection in transformers. Specially, the multi-head self-
attention is of the following form:

MHSA(Z) = WO

head1
...

headK

 (5)

where WQ
k ,WK

k ,W V
k are learnable weight matrices for

queries, keys, and values for head k, WO is another learn-
able weight matrix, and

headk = (W V
k )TZφ(ZTWQ

k (WK
k )TZ).

Comparing the MHSA operator with the MSSA opera-
tor in (4), by setting WQ

k = WK
k = W V

k = Uk and
WO = [U1, . . . ,UK ] in (5), we can obtain the MSSA op-
erator in (4). In this special case, MHSA can be interpreted
as a denoising operation onto different subspaces. How-
ever, token representations in state-of-the-art large models
are inherently more complex than the simplified structures
assumed in Definition 2.1. In practice, these token repre-
sentations are subject to a variety of factors such as noise,
context dependence, and intricate dependencies that make
their structure more dynamic and multifaceted. In this con-
text, using the more flexible MHSA mechanism may provide

a better way to denoise these complex token representations.
To sum up, while state-of-the-art models necessitate the use
of more advanced mechanisms like MHSA to effectively
denoise and optimize token representations, the model in
Definition 2.1 offers a useful framework for understanding
token representations in an idealized yet evocative setting.

3. Main Results
In this section, we formally present an attention-only trans-
former architecture using unrolled optimization and provide
a theoretical guarantee on its denoising performance.

3.1. Attention-Only Transformer

Armed with the setup in Section 2, we formally introduce
the proposed attention-only transformer architecture. Specif-
ically, by unrolling the iterative optimization steps (3) as
layers of a deep network, we construct a transformer archi-
tecture in Figure 3. Each layer of the proposed architecture
consists only of the MSSA operator and a skip connection.
To enhance the model’s performance, we may addition-
ally incorporate LayerNorm before the MSSA operator to
improve performance in practice. The complete architec-
ture is built by stacking such layers, along with essential
task-specific pre-processing and post-processing steps, such
as positional encoding, token embedding, and a final task-
specific head to adapt to different applications. Notably, if
we apply the same procedure to (5), we obtain an attention-
only transformer that only consists of the MHSA operator.

Comparison to standard transformers. Generally speak-
ing, the standard decoder-only transformer architecture
is composed of the following key components (Brown
et al., 2020; Radford et al., 2019): (1) positional encoding,
(2) multi-head QKV self-attention mechanisms, (3) feed-
forward MLP networks, (4) layer normalization, and (5)
residual connections. In contrast, our proposed transformer
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Figure 4. Denoising performance of the attention-only transformer. Here, we sample initial token representations from a mixture of
low-rank Gaussians in Definition 2.1. Then, we apply (4) to update token representations and report the SNR at each layer. Left: noise
level δ = 0.2. Right: noise level δ = 0.5.

architecture adopts a streamlined design by incorporating
several key simplications. Specifically, it employs shared-
QKV subspace self-attention mechanisms, excludes MLP
layers, and reduces the frequency of LayerNorm.

Differences from previous works on attention-only trans-
formers. In the literature, some theoretical works have
studied attention-only transformers. For example, Dong
et al. (2021); Wu et al. (2024) showed that pure-attention
transformers with skip connections or LayerNorm can pre-
vent rank collapse. Additionally, Alcalde et al. (2024) stud-
ied the clustering behavior of attention-only hardmax trans-
formers. While these studies contribute significantly to our
understanding of the role of self-attention in transformers,
they lack empirical validation and practical implications. In
contrast to these works, we not only show that each layer of
the proposed attention-only transformer can denoise token
representations but also conduct experiments on real-world
language and vision tasks to demonstrate the potential.

The role of backward propagation. Notably, our ap-
proach constructs a transformer architecture in the for-
ward pass by interpreting each layer as a denoising op-
erator, conditioned on the assumption that the subspace
bases {Uk}Kk=1 are known. However, in practice, these
subspace bases are unknown and need to be learned grad-
ually via backpropagation. Hence, the forward denoising
operator (4) at the l-th layer becomes as follows: For each
l = 0, 1, . . . , L− 1,

Z(l+1) = Z(l) + η

K∑
k=1

U
(l)
k U

(l)T

k Z(l)

φ
(
Z(l)TU

(l)
k U

(l)T

k Z(l)
)
.

Now, the parameters {U (l)
k } depend on the layer index l and

may be different across layers. These matrices are learned
through end-to-end training via backpropagation.

3.2. Denoising via Attention-Only Transformer

In this subsection, we study the denoising performance of
the proposed transformer when the initial token represen-
tations are sampled from a mixture of low-rank Gaussians
as introduced in Definition 2.1. To quantify the denoising
performance, we define the signal-to-noise ratio (SNR) for
each cluster of the token representations at the l-th layer as

SNR(Z
(l)
k ) :=

∥UkU
T
k Z

(l)
k ∥F

∥(I −UkUT
k )Z

(l)
k ∥F

, ∀k ∈ [K]. (6)

To simplify our analysis, we assume that p = p1 = · · · =
pK , N1 = · · · = NK = N/K, and[

U1 · · · UK

]
∈ Od×Kp. (7)

With the above setup, we now prove the following theorem.

Theorem 3.1. Let Z(0) be generated according to Defini-
tion 2.1 and Z(l) be generated according to (3) for each
l ∈ [L]. Here, φ(x) = h (σ(x)), σ : RN → RN is the
soft-max function, and h : RN → RN is an element-wise
thresholding function with h(x) = τI {x > τ} for each
i ∈ [N ]. Suppose that p ≳ logN , δ ≲

√
logN/

√
p, and

τ ∈
(
1

2
,

1

1 +N exp(−9p/32)

]
.

For sufficiently large N , it holds with probability at least
1−KLN−Ω(1) that for each l ∈ [L− 1],

SNR
(
Z

(l+1)
k

)
= (1 + ητ)SNR

(
Z

(l)
k

)
, ∀k ∈ [K]. (8)

The proof is deferred to Appendix B. Here we comment on
the significance of this theorem:

• Linear denoising performance of the attention-only
transformer. When the initial token representations are
sampled from a mixture of low-rank Gaussian distribu-
tions with a noise level O(

√
logN/

√
p), we show that
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each layer of the proposed transformer denoises token
representations at a linear rate. This indicates the MSSA
operator’s efficiency in reducing noise across layers. No-
tably, our theoretical results are well-supported by experi-
mental observations in Figure 4, which further validate the
practical denoising capability of the proposed transformer.

• Difficulties in analyzing the dynamics of the update (3).
Note that the update (3) is highly nonlinear and compli-
cated. These characteristics lead to intricate interactions
among consecutive updates that complicate the analysis
of the learning dynamics. Compared to the existing works
(Ahn et al., 2023; Zhang et al., 2024; Schlag et al., 2021)
that mainly focus on linear self-attention with φ(·) being
the identify function, our analysis provides more pertinent
results for understanding the denoising performance and
learning dynamics of attention mechanisms, capturing
the nonlinear interactions and transformations across the
layers of modern transformer architectures.

4. Experimental Verification
In this section, we evaluate our proposed attention-only
transformer (AoT) architecture using the MSSA (denoted
by AoT-MSSA) and MHSA (denoted by AoT-MHSA) op-
erators on both vision and language tasks. Since the model
configurations on vision and language tasks are different,
we use AoT-MSSA-V and AoT-MHSA-V to denote the
models applied to vision tasks, and AoT-MSSA-L and AoT-
MHSA-L for those applied to language tasks. Due to lim-
ited computing resources, the goal of our experiments is
not to outperform state-of-the-art transformers but to verify
that AoT can achieve comparable performance on both lan-
guage and vision tasks. In our implementations, we set the
operator φ(·) in Eq. (4) to be the softmax function.

Table 1. Top-1 accuracy on ImageNet: Evaluation of AoT-MSSA-
V and comparison to CRATE.

Models Accuracy # of Parameters

AoT-MSSA-V 71.7% 22M
CRATE 79.5% 39M

4.1. Vision Transformers for Image Classification

In this subsection, we evaluate the performance of AoT as
a backbone architecture for supervised image classification
on ImageNet and compare it against several state-of-the-
art models. To construct the AoT-based model, we adopt
the same preprocessing pipeline and classification head as
defined in (Yu et al., 2024, Section 4.1.1).

Comparison between MSSA and CRATE. We consider
the AoT-MSSA-V model and compare it against the CRATE
model in Yu et al. (2024). We employ Lion optimizer

Table 2. Top-1 accuracy on ImageNet: Evaluation of AoT-MHSA-
V and comparison to ViT.

Models Accuracy # of Parameters

AoT-MHSA-V 69.5% 15M
ViT 72.4 % 22M

(Chen et al., 2024) to pre-train the AoT-MSSA-V trans-
former on ImageNet-21K for 90 epochs and to fine-tune
it on ImageNet-1K (Deng et al., 2009) for 50 epochs by
minimizing the cross-entropy (CE) loss. We use different
hyperparameters for pre-training and fine-tuning. During
pre-training, we use a learning rate of 2 × 10−4, weight
decay of 0.7, label smoothing with a parameter of 0.2, and
a batch size of 4096. For fine-tuning, the corresponding val-
ues are 5× 10−4, 0.3, 0.1, and 2048, respectively. Standard
data augmentation techniques, including random cropping,
random horizontal flipping, and random augmentation, are
used in our implementation, following the same setup as
in Yu et al. (2023).

Comparison between MHSA and ViT. We next train
AoT-MHSA-V from scratch on ImageNet-1K for 150
epochs and compare its performance with ViT (Dosovitskiy
et al., 2021). The training setup follows the same configu-
ration as above: we use the Lion optimizer with a learning
rate of 5 × 10−4, a weight decay of 0.1, label smoothing
with a smoothing parameter of 0.1, a batch size of 2048,
and identical data augmentation strategies.

Based on the above experimental setup, we report the top-1
accuracy of AoT-MSSA-V and CRATE in Table 1, and that
of AoT-MHSA-V and ViT in Table 2. Due to the absence
of MLP layers in AoT, AoT-based models achieve slightly
worse performance comparable to CRATE and ViT while
using only nearly half the number of parameters. This result
shows the effectiveness of the attention-only architecture.
We provide visualization for the self-attention heatmaps
of AoT-MSSA-V trained on ImageNet-1K in Figure 7 in
Appendix C.3. We observe that each head captures similar
semantic meanings across different images, demonstrating
the interpretability of our proposed architecture in practice.

4.2. Decoder-Only Transformers for Language Tasks

To study the performance of our architecture on language
tasks, we consider the widely used Generative Pre-Training
(GPT) task (Radford et al., 2019). In the context of causal
language modeling, the goal is to predit the next token
in a sequence based on the preceding context. To adapt
to this task, we modify the AoT architecture by changing
the MSSA (resp., MHSA) operator to a causally masked
MSSA (resp., MHSA) operator. We follow the same pre-
processing and post-processing steps in (Yu et al., 2024,

7
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Figure 5. Evaluating models on language tasks. We plot the training loss (left) and validation loss (right) of the AoT and GPT-2 models
pretrained on OpenWebText.

Table 3. Zero-shot results on several language benchmark datasets and tasks: Evaluation of different sizes of AoT with the MSSA and
MHSA operators and comparison to the GPT2 model.

Models LAMBADA PTB WikiText LAMBADA CBT CN CBT NE
# of parameters (val loss) ↓ (val loss) ↓ (val loss) ↓ (acc) ↑ (acc) ↑ (acc) ↑
AoT-MSSA-L Base (102M) 4.70 6.03 4.65 0.25 0.80 0.74
AoT-MSSA-L Medium (182M) 4.47 5.08 4.22 0.29 0.84 0.77
AoT-MHSA-L Base (122M) 4.42 5.52 4.19 0.38 0.86 0.82
GPT-2 Base (124M) 4.32 5.75 4.13 0.40 0.87 0.84

Section 4.1.4). Our implementation of the GPT-2 type trans-
formers and training pipeline is based on the framework
outlined in (Karpathy, 2022).3

4.2.1. LANGUAGE MODELING

Pre-training language models. We pre-train the AoT-
MSSA-L and AoT-MHSA-L models of different sizes, along
with GPT-2 (see Table 3 for model sizes), on OpenWeb-
Text (Gokaslan & Cohen, 2019). We defer the details of
the model architectures to Table 4. Here, we train these
models over a 1024-token context using the AdamW opti-
mizer (Loshchilov & Hutter, 2019). We plot the training
loss and validation loss against the number of training it-
erations in Figure 5(a) and (b), respectively. We observe
that medium- and large-sized AoT-based models achieve
training and validation losses comparable to those of the
GPT-2 base model. In addition, compared to the GPT-2
base model, the AoT-MHSA-L model is identical to the
GPT-2 base model, except for the absence of MLP layers in
the architecture. As shown in Figure 5, incorporating MLP
layers can accelerate the training process.

Zero-shot evaluation. Using the above pre-trained mod-
els, we compute the cross-entropy validation loss without
training on datasets WikiText (Merity et al., 2017)4, LAM-

3https://github.com/karpathy/nanoGPT.git
4For WikiText2 and WikiText103 (Merity et al., 2017), the test

splits are the same, so we merge them as a single dataset referred

BADA (Paperno et al., 2016)5, and PTB (Marcus et al.,
1993) in Table 3. In addition, we report zero-shot accu-
racy in Table 3 on LAMBADA for predicting the final
word of sentences, as well as on the Children’s Book Test
(CBT) (Hill et al., 2015), where the task is to choose either
common nouns (CN) or named entities (NE) from 10 possi-
ble options for an omitted word in a paragraph. We observe
that the AoT models with medium and large parameter sizes
can achieve comparable performance to the GPT-2 base
model. Moreover, we found that adding MLP layers to AoT
does not improve the zero-shot performance. These results
highlight the potential of attention-only models to achieve
competitive results while maintaining interpretability.

4.2.2. IN-CONTEXT LEARNING

In-context learning (ICL) refers to the ability of modern
language models to perform tasks by using examples pro-
vided in the input prompt, along with a new query input,
generating outputs without updating the parameters (Brown
et al., 2020; Garg et al., 2022; Park et al., 2024a). We eval-
uate the ICL capabilities of our AoT models and compare
their performance with that of GPT-2 (Radford et al., 2019).
Each model is trained from scratch on specific tasks, in-
cluding linear and sparse linear regressions. We mainly
follow the setup in (Garg et al., 2022) to train models to

to as WikiText.
5To obtain the accuracy on LAMBADA dataset, we use greedy

decoding.
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Figure 6. Evaluating models on in-context learning tasks. We plot the normalized squared error as a function of the number of in-context
examples for linear regression (left) and sparse linear regression (right) tasks.

learn linear functions in context. Specifically, for a spe-
cific function class G, we generate random prompts by sam-
pling a function g ∈ G from distribution DG over func-
tions random inputs x1, . . . ,xN ∈ Rd i.i.d. from DX over
inputs. To evaluate the inputs on g, we create a prompt
P = (x1, g(x1), . . . ,xN , g(xN )). We train the model
fθ(·) to minimize the expected loss over all prompts pre-
fixes:

min
θ

EP

[
1

N

N−1∑
i=1

(
fθ(P

i)− g(xi)
)2]

, (9)

where P i is the prompt prefix up to the input i-th in-context
example P = (x1, g(x1), . . . ,xi).

Tasks. We consider both linear functions and sparse linear
functions with dimension d = 20. The in-context examples
xi are sampled from the isotropic Gaussian distribution. For
linear functions, we define G = {g : g(x) = wTx}, where
x is sampled from the isotropic Gaussian distribution as
well. For sparse linear functions, the setup is similar, but
with a modification: only 3 coordinates in the vector w are
set as non-zero, while the remaining ones are set to be zero.

Training and evaluation. For all experiments, we set the
number of heads to 8 and the embedding size to 128. We
present the model configurations in Table 5 in Appendix C.
To train the model, we sample a batch of random prompts
with size 64 and train the models for 50,000 iterations using
Adam optimizer (Kingma & Ba, 2014). We evaluate models
using same DG and DX to sample 1280 prompts. We refer
the reader to (Park et al., 2024a) for more details. We plot
the estimation error against the in-context samples in Fig-
ure 6. We observe that our AoT architecture can in-context
learn linear functions and sparse linear functions, achieving
performance close to that of the GPT-2 transformer.

5. Conclusion
In this work, we proposed a new and minimalistic trans-
former architecture by interpreting each layer as a subspace

denoising operator to token representations, where these rep-
resentations are assumed to be sampled from a mixture of
low-rank Gaussians. Remarkably, this simple architecture
consists of multi-head (subspace) self-attention and skip
connections at each layer, without MLP layers at all. We
have rigorously proven that each such layer improves the
signal-to-noise ratio of token representations at a linear rate
with respect to the number of layers. Extensive experiments
on both language and vision tasks demonstrate that this
simplified architecture achieves performance comparable to
that of standard transformers. Our theoretical and empirical
findings suggest that subspace denoising via attention heads
is the core mechanism underlying transformer effectiveness,
with MLP layers contributing only marginal performance
gains. We believe this work lays a foundation for future
exploration of more efficient and principled architectural
designs.
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To simplify our development, we introduce some further notations. We use BlkDiag(X1, . . . ,XK) to denote a block
diagonal matrix whose diagonal blocks are X1, . . . ,XK .

A. Related Literature
Existing studies on self-attention mechanisms. It is widely believed that the power of transformers primarily stems from
their self-attention layers, which enable the model to capture long-range dependencies and contextual relationships between
tokens by dynamically weighing token relationships across the input sequence (Tsai et al., 2019; Vaswani et al., 2017). To
explore the mechanism behind self-attention, numerous studies have investigated the performance of pure self-attention
networks, often incorporating only one additional component to prevent rank collapse and maintain expressiveness. For
example, Dong et al. (2021) showed that in pure-attention transformers without skip connections and MLP layers, token
representations collapse exponentially to a rank-1 matrix across layers. They also showed that self-attention networks with
skip connections prevent rank collapse. Geshkovski et al. (2023a;b) have studied the dynamics of multi-head self-attentions
and characterized clustering behaviors of learned representations. Recently, Wu et al. (2024) showed that pure self-attention
networks with LayerNorm can prevent rank collapse. While these studies have advanced the theoretical understanding of
self-attention mechanisms in simplified transformer architectures, they cannot provide any empirical validation on real-world
vision or language tasks, offering little insight into the role of self-attention in practice.

Network architecture design via unrolled optimization. It is commonly believed that the success of modern deep
networks largely stems from their ability to transform the raw data into compact and structured representations, which
facilitates downstream tasks (Chan et al., 2022; Chen et al., 2023; Ma et al., 2022; Yu et al., 2024). A principled and
interpretable approach to learning such representations with transformers is to construct an architecture that incrementally
transforms tokens into these representations via unrolling optimization steps as layers of a deep network (Chan et al., 2022;
Monga et al., 2021; Wang et al., 2016; Yu et al., 2023; Zhang & Ghanem, 2018). Notably, Monga et al. (2021) demonstrate
that such unrolled networks are more interpretable, parameter-efficient, and effective compared to generic networks. Using
this approach, each iteration of an algorithm for learning compact and structured representations is represented as one
layer of deep networks. For example, Gregor & LeCun (2010) have demonstrated that sparse coding algorithms, such as
ISTA, can be used to construct MLPs. Recently, Chan et al. (2022) constructed a “white-box” network based on an iterative
gradient descent scheme to optimize the maximal coding rate reduction objective. More recently, Yu et al. (2024) designed
a “white-box” transformer architecture by implementing an approximate alternating minimization to optimize the sparse
rate reduction objective. The proposed transformer achieves performance comparable to some popular ones such as ViT
(Dosovitskiy et al., 2021) and DINO (Caron et al., 2021).

B. Proof of Theorem 3.1
B.1. Preliminary Results

To prove Theorem 3.1, we first establish several probabilistic results about Gaussian random vectors. First, we present
a probabilistic bound on the deviation of the norm of Gaussian random vectors from its mean. This is an extension of
Vershynin (2018, Theorem 3.1.1).

Lemma B.1. Let x ∼ N (0, δ2Id) be a Gaussian random vector. It holds with probability at least 1− 2 exp
(
−t2/2δ2

)
that∣∣∣∥x∥ − δ

√
d
∣∣∣ ≤ t+ 2δ. (10)

Based on the above lemma, we can respectively estimate the norm of coefficients in the signal and noise parts, the products
between different pairs of Gaussian random vectors, and the bounds on the soft-max values of these products.

Lemma B.2. Consider the setting in Definition 2.1 with p = p1 = · · · = pK and N1 = · · · = NK = N/K. Suppose that
p ≥ 16(

√
logN + 1)2 and

N ≥ 8πK2 log3 N, δ ≤ 1

8

√
logN

p
. (11)

The following statements hold:

13
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(i) With probability at least 1− 2KN−1, we have

|∥ai∥ −
√
p| ≤ 2

(√
logN + 1

)
,∀i ∈ [N ], (12)

|∥ei,l∥ − δ
√
p| ≤ 2δ

(√
logN + 1

)
,∀i ∈ Ck, l ̸= k ∈ [K]. (13)

(ii) With probability at least 1− 4KN−2, we have

|⟨ai,aj⟩| ≤ 3
√
logN∥ai∥,∀i ̸= j ∈ Ck, k ∈ [K], (14)

|⟨ai, ej,l⟩| ≤ 3
√
logN∥ej,l∥,∀i ∈ Ck, j ∈ Cl, k ̸= l ∈ [K], (15)

|⟨ei,k, ej,k⟩| ≤ 3δ
√
logN∥ej,k∥,∀i ∈ Cl, j ∈ Cm, l,m ̸= k. (16)

(iii) With probability at least 1− 2N−1, we have

max
i∈Ck

⟨ai, ej,k⟩ ≥
√

logN∥ej,k∥,∀j ∈ Cl, l ̸= k ∈ [K]. (17)

(iv) With probability at least 1− 4KN−1, we have

exp (⟨ai, ej,k⟩)∑
i′∈Ck

exp (⟨ai′ , ej,k⟩)
≤ 1

2
,∀i ∈ Ck, j ∈ Cl, k ̸= l ∈ [K], (18)

exp (⟨ei,k, ej,k⟩)∑
i′ ̸=j,i′∈Cl

exp (⟨ei′,k, ej,k⟩)
≤ 1

2
,∀i ̸= j, i ∈ Cl, j ∈ Cm, l,m ̸= k. (19)

Proof. (i) Applying Lemma B.1 to ai ∼ N (0, Ip) with t = 2
√
logN yields

P
(
|∥ai∥ −

√
p| ≤ 2(

√
logN + 1)

)
≥ 1− 2N−2.

This, together with the union bound, yields that (12) holds for all i ∈ [N ] with probability at least 1− 2N−1. Using the
same argument, we obtain that (13) holds for all i ∈ Ck and l ̸= k ∈ [K] with probability at least 1 − 2(K − 1)N−1.
Finally, applying the union bound yields that the probability is 1− 2KN−1.

(ii) For each pair (i, j) with i ̸= j ∈ Ck and k ∈ [K], conditioned on ai, we have ⟨ai,aj⟩ ∼ N (0, ∥ai∥2). According to
the tail bound the Gaussian random variable, we have

P
(
|⟨ai,aj⟩| ≥ 3∥ai∥

√
logN

∣∣∣ai

)
≤ 2N−4.

This, together with the union bound, implies that conditioned on ai, it holds with probability at least 1 − 2N−2 that
|⟨ai,aj⟩| ≤ 2∥ai∥

√
logN for all i ̸= j ∈ Ck and k ∈ [K]. Using the same argument, we obtain (15) and (16). Finally,

applying the union bound yields the probability.

(iii) Conditioned on ej,k, we obtain that Xi := ⟨ai, ej,k⟩/∥ej,k∥ ∼ N (0, 1) for each i ∈ Ck are i.i.d. standard normal
random variables. Then, we have

P
(
max
i∈Ck

Xi ≥
√
logN

)
= 1−

(
P
(
X1 <

√
logN

))Nk

. (20)

Using the property of the standard Gaussian random variable, we have

P (X1 ≥ t) ≥
(
1

t
− 1

t3

)
1√
2π

exp

(
− t2

2

)
.

Taking t =
√
logN , we obtain

P
(
X1 ≥

√
logN

)
=

1√
logN

(
1− 1

logN

)
1√
2π

exp

(
− logN

2

)
≥ 1

2
√
2πN logN

, (21)

14
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where the inequality follows from N ≥ exp(2). Substituting this into (20) yields

P
(
max
i∈Ck

Xi ≥
√
logN

)
≥ 1−

(
1− 1

2
√
2πN logN

)N/K

≥ 1− exp

(
−

√
N

2K
√
2π logN

)
≥ 1−N−1,

where the second inequality uses 1− x ≤ exp (−x) for all x > 0 and the last inequality follows from N ≥ 8πK2 log3 N .
This, together with the definition of Xi, implies (17).

(iv) Conditioned on ej,k, we have Xi := ⟨ai, ej,k⟩ ∼ N (0, ∥ej,k∥2) for each i ∈ Ck are i.i.d. normal random variables.
Suppose that (13) holds for all i ∈ Ck, l ̸= k ∈ [K], which happens with probability at least 1− 2(K − 1)N−1 according
to (i). This implies for all j ∈ Ck and k ∈ [K],

∥ej,k∥ ≤ δ
(√

p+ 2
√
logN + 2

)
≤ 3

2
δ
√
p, (22)

where the last inequality follows from p ≥ 16(
√
logN + 1)2 due to (11). For ease of exposition, let

σ := ∥ej,k∥, S :=
∑
i∈Ck

exp(Xi). (23)

Obviously, showing (18) is equivalent to proving

2 exp(Xi) ≤
∑
i′∈Ck

exp (Xi′) = S, ∀i ∈ Ck. (24)

Note that Xi/σ ∼ N (0, 1) for all i ∈ Ck. Using the tail bound of the standard normal random variable, we have

P
(
|Xi|
σ

≥ 2
√

logN

)
≤ 2N−2, ∀i ∈ Ck.

This, together with the union bound, yields that it holds with probability 1− 2N−1 that |Xi| ≤ 2σ
√
logN for all i ∈ [N ].

Using this, (22), (23), and the union bound, we obtain with probability at least 1− 2KN−1,

|Xi| ≤ 3δ
√
p logN, ∀i ∈ [N ].

Therefore, we have

exp
(
−3δ

√
p logN

)
≤ exp(Xi) ≤ exp

(
3δ
√
p logN

)
, ∀i ∈ [N ]. (25)

Using this and (23), we have

S ≥ N

K
exp

(
−3δ

√
p logN

)
.

This, together with (25), implies that proving (24) is sufficient to proving

logN ≥ 6δ
√
p logN + log (2K) ,

which holds when N ≥ max
{
16K4, exp

(
64δ2p

)}
due to (11). According to the union bound, (18) holds with probability

at least 1− 2KN−1. Using the same argument, (19) holds with probability at least 1− 2KN−1.

B.2. Proof of Theorem 3.1

To simplify our development, let
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M1 :=


θ2AT

1 A1 θAT
1 E2,1 . . . θAT

1 EK,1

θET
2,1A1 ET

2,1E2,1 . . . ET
2,1EK,1

...
...

. . .
...

θET
K,1A1 ET

K,1E2,1 . . . ET
K,1EK,1

 ∈ RN×N , (26)

M2 :=


ET

1,2E1,2 θET
1,2A2 . . . ET

1,2EK,2

θAT
2 E

T
1,2 θ2AT

2 A2 . . . θAT
2 EK,2

...
...

. . .
...

ET
K,2E1,2 θET

K,2A2 . . . ET
K,2EK,2

 ∈ RN×N ,

...

MK :=


ET

1,KE1,K ET
1,KE2,K . . . θET

1,KAK

ET
2,KE1,K ET

2,KE2,K . . . θET
2,KAk

...
...

. . .
...

θAT
KE1,K θAT

KE2,K . . . θ2AT
KAK

 ∈ RN×N .

where θ ≥ 1. Recall that

Z(0) =
[
Z

(0)
1 . . . Z

(0)
K

]
=
[
U1A1 +

∑
j ̸=1 UjE1,j . . . UKAK +

∑
j ̸=K UjEK,j

]
, (27)

Lemma B.3. Consider the setting in Definition 2.1 with p = p1 = · · · = pK and N1 = · · · = NK = N/K. Let φ(·) be

φ(x) = h(σ(x)), (28)

where σ : RN → RN is the soft-max function and h : RN → RN is an element-wise thresholding function with
h(x) = τI {x > τ} for each i ∈ [N ]. Suppose that (11) holds. Suppose in addition that p ≥ 64(

√
logN + 1)2 and

τ ∈
(
1

2
,

1

1 +N exp(−9p/32)

]
(29)

The following statements hold with probability at least 1−KN−Ω(1) that ,

φ(M1) = BlkDiag(τI,0, . . . ,0), . . . , φ(MK) = BlkDiag(0,0, . . . , τI). (30)

Proof. Suppose that (12)-(19) hold, which happens with probability at least 1−KN−Ω(1) according to Lemma B.2, (11),
and the union bound. Now, we focus on studying M1 as defined in (26). For ease of exposition, we denote the i-th column
of M1 by mi ∈ RN for each i ∈ [N ]. Moreover, recall that

C1 =

{
1, 2, . . . ,

N

K

}
, . . . , CK =

{
(K − 1)N

K
+ 1,

(K − 1)N

K
+ 2, . . . , N

}
.

We now divide our proof into two cases. We first study the i-th column of M1 for each i ∈ C1, and then study the i-th
column of M1 for each i ∈ Ck with k ̸= 1.

Case 1. According to (26), we have for each i ∈ C1,

mij = θ2⟨ai,aj⟩,∀j ∈ C1, mij = θ⟨ai, ej,k⟩,∀j ∈ Ck, k ̸= 1.

For each pair (i, j) with i ̸= j ∈ C1, we compute

σi(mi)

σj(mi)
= exp (mii −mij) ≥ exp

(
θ∥ai∥

(
θ∥ai∥ − 3

√
logN

))
≥ exp

(
9θ2p

32

)
, (31)
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where the first inequality follows from (14) and the second uses (12) and
√
p ≥ 8(

√
logN + 1). Using the same argument,

for each pair (i, j) with i ∈ C1, j ∈ Ck, and k ̸= 1, we obtain

σi(mi)

σj(mi)
≥ exp

(
9θ2p

32

)
,

This, together with
∑N

j=1 σj(mi) = 1, yields
(
1 + (N − 1) exp

(
−9θ2p/32

))
σi(mi) ≥ 1. Therefore, we have for each

i ∈ C1,

σi(mi) ≥
1

1 +N exp(−9θ2p/32)
>

1

2
, σj(mi) ≤

1

2
, ∀j ̸= i, (32)

where the last inequality follows from p ≥ 64(
√
logN + 1)2. This, together with the value of τ in (29), yields for each

i ∈ C1,

σj(mi) < τ < σi(mi), ∀j ̸= i.

Using this and (28), we have for each i ∈ C1,

h (σi(mi)) = τ, h (σj(mi)) = 0, ∀j ̸= i.

Case 2. For each i ∈ Ck with k ̸= 1, it follows from (26) that

mij = θ⟨ei,1,aj⟩,∀j ∈ C1, mij = ⟨ei,1, ej,1⟩, ∀j ∈ Cl, l ̸= 1.

Consider a fixed i ∈ Ck with k ̸= 1, it follows from (17) that there exists ji ∈ C1 such that miji ≥ θ∥ei,1∥
√
logN . This

implies

σji(mi)

σi(mi)
= exp (θmiji −mii) ≥ exp

(
∥ei,1∥

(
θ
√
logN − ∥ei,1∥

))
≥ exp

(
3δθ

4

√
p logN − 25

16
δ2p

)
,

where the second inequality follows from (13). This, together with σi(mi) + σji(mi) < 1, implies

σi(mi) <
1

1 + exp
(
3δθ

√
p logN/4− 25δ2p/16

) <
1

1 + exp
(
δθ
√
p logN/2

) <
1

2
, (33)

where the second inequality uses δ
√
p ≤

√
logN/8 due to (11). On the other hand, it follows from (18) and (19) that

σj(mi) ≤
1

2
,∀j ̸= i.

This, together with (33), δ ≤ 1/8,
√
p ≥ 8(

√
logN + 1), and the value of τ by (29), yields for each i ∈ Ck with k ̸= 1,

σj(mi) < τ, ∀j ∈ [N ]. (34)

This directly implies

h (σ(mi)) = 0, ∀i ∈ Ck, k ̸= 1.

Then, we have φ(M1) =

[
τI 0
0 0

]
. Applying the same argument to M2, . . . ,MK , we obtain (30).

Armed with the above result, we are ready to prove Theorem 3.1.
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Proof of Theorem 3.1. For ease of exposition, let M (l)
k := Z(l)TUkU

T
k Z(l) for each k ∈ [K] and l ∈ [L]. Suppose that

(30) holds, which happens with probability at least 1−KN−Ω(1) according to (11), and (29), Lemma B.3. We claim that
for each l ∈ [L], we have

Z(l) =
[
(1 + ητ)

l
U1A1 +

∑
j ̸=1 UjE1,j . . . (1 + ητ)

l
UKAK +

∑
j ̸=K UjEK,j

]
. (35)

This, together with (6), yields for each k ∈ [K] and l ∈ [L],

SNR(Z
(l)
k ) =

∥UkU
T
k Z

(l)
k ∥F

∥(I −UkUT
k )Z

(l)
k ∥F

=
(1 + ητ)l∥Ak∥F
∥
∑

j ̸=k UjEk,j∥F
,

which directly implies (8) for each k ∈ [K] and l ∈ [L−1]. According to the union bound, the probability is 1−KLN−Ω(1).

The rest of the proof is devoted to proving the claim (35) using the induction method. First, we consider the base case l = 1.
According to (27) and (7), we compute

U1U
T
1 Z(0) =

[
U1A1 U1E2,1 . . . U1EK,1

]
,

M
(0)
1 = (U1U

T
1 Z(0))T (U1U

T
1 Z(0)) =


AT

1 A1 AT
1 E2,1 . . . AT

1 EK,1

ET
2,1A1 ET

2,1E2,1 . . . ET
2,1EK,1

...
...

. . .
...

ET
K,1A1 ET

K,1E2,1 . . . ET
K,1EK,1

 .

Using the same argument, we can compute M
(0)
k for each k ∈ [K]. This, together with (30) for each k ∈ [K], yields

K∑
k=1

UkU
T
k Z(0)φ(M

(0)
k ) =

[
τU1A1 τU2A2 . . . τUKAK

]
.

Using this, (27), and (4), we directly obtain that (35) holds for l = 1. Next, we consider the case l ≥ 2. Suppose that (35)
holds for some l ≥ 1. We compute

U1U
T
1 Z(l) =

[
(1 + ητ)lU1A1 U1E2,1 . . . U1EK,1

]
,

M
(l)
1 =


(1 + ητ)2lAT

1 A1 (1 + ητ)lAT
1 E2,1 . . . (1 + ητ)lAT

1 EK,1

(1 + ητ)lET
2,1A1 ET

2,1E2,1 . . . ET
2,1EK,1

...
...

. . .
...

(1 + ητ)lET
K,1A1 ET

K,1E2,1 . . . ET
K,1EK,1

 .

Using the same argument, we can compute M
(l)
k for each k ∈ [K]. This, together with (30) for each k ∈ [K], yields

K∑
k=1

UkU
T
k Z(0)φ(M

(0)
k ) =

[
(1 + ητ)lτU1A1 (1 + ητ)lτU2A2 . . . (1 + ητ)lτUKAK

]
.

Using this, (27), and (4), we directly obtain that (35) holds for l + 1. Then, we prove the claim.

Table 4. The architectures of GPT-2 and AoT models. For GPT-2, each layer consists of an attention operator and an MLP, while each
layer only has an attention operator in AoT.

Models Num. of para. Num. of layers Embedding dim. Num. of heads Attention type Has MLP

AoT-MSSA-L Base 102M 24 1024 16 MSSA No
AoT-MSSA-L Medium 182M 36 1280 20 MSSA No
AoT-MHSA-L Base 122M 24 896 14 MHSA No
GPT-2 Base 124M 12 768 12 MHSA Yes
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C. Additional Experiemental Details
C.1. Language Model Configuration

We provide details of the language model architecture in Table 4

C.2. ICL Configuration

We study decoder-only transformer models in GPT-2 family (Radford et al., 2019) and its corresponding AoT variants. As
in Park et al. (2024a), we perform the same grid search over learning rates in {10−4, 5× 10−5, 2× 10−4, 4× 10−4}, and
clipping the gradient norm in {5.0, 10.0, 50.0}.

Table 5. The detailed architectures of transformer and AoT used in ICL experiments. To ensure a fair comparison, all AoT models are
designed with a larger number of layers to match the size of the transformer.

Models Num. of para. Num. of layers Embedding dim. Num. of heads Attention type Has MLP

AoT-MSSA-L 7.5M 32 128 8 MSSA No
AoT-MHSA-L 8.55M 32 128 8 MHSA No
Transformer 9.63M 16 128 8 MHSA Yes

C.3. Emergence of Semantic Meaning

The attention heads in our models have different semantic meanings, and indeed demonstrate the interpretability of our
proposed architecture in practice. In Figure 7, we train the AoT model with the MSSA operator on ImageNet-1K and
visualize the self-attention heatmaps between the [CLS] token and other image patches. Note that the [CLS] token is the
“class token”, a trainable model parameter inserted along with other image tokens to represent the class information. We
select 5 attention heads by manual inspection and find that they capture different parts of objects, displaying different
semantic meanings.
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Figure 7. Visualization of attention heads on ImageNet-1K. We feed a trained AoT-MSSA a mini-batch of images and extract the
attention maps of different heads from the penultimate layer. We show that these heads capture certain semantic meanings across different
images.
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