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Abstract

A major goal of computational genomics is to understand how sequence patterns,
called motifs, interact to regulate gene expression. In principle, convolution-
attention networks (CANSs) should provide an inductive bias to infer motif interac-
tions; convolutions can capture motifs while self-attention learns their interactions.
However, it is unclear the extent to which this is true in practice. Here we perform
an empirical study on synthetic data to test the efficacy of uncovering motif in-
teractions in CANs. We find that irrespective of design choice, interpreting local
attention (i.e. on an individual sequence basis) is noisy, leading to many false
positive motif interactions. To address this issue, we propose Global Interactions
via Filter Activity Correlations (GLIFAC). GLIFAC robustly uncovers motif inter-
actions across a wide spectrum of model choices. This work provides guidance on
design choices for CANS that lead to better interpretability for regulatory genomics
without sacrificing generalization performance.

1 Introduction

Model interpretability is key to translating the powerful prediction performance of deep neural
networks (DNN5s) into scientific discovery. However, due to the enormous numbers of parameters
in modern DNNgs, individual parameters are often not meaningful on their own. It remains unclear
which design choices provide the right inductive biases to learn robust and interpretable features. For
regulatory genomics, the goal often is to use a machine learning model to take DNA sequences as
input and predict a regulatory function, such as transcription factor binding [[L], which are typically
measured experimentally via high-throughput experiments.

Deep convolutional neural networks (CNNs) have indeed demonstrated state-of-the-art performance at
these kinds of tasks [2} [3]]. Post hoc interpretation via visualizing first layer filters and attribution maps
have demonstrated that CNNs make decisions based on learning biologically meaningful sequence
patterns [4} 5, 16]], called motifs. However, attribution maps provide an anecdotal glimpse into the
decision making process but can be quite noisy [[7]], making it a challenge to discover generalizable
patterns beyond a first-order approximation, i.e. single nucleotide perturbations. On the other hand,
first layer filters can also learn to detect motifs, though the extent that they do depends strongly on the
design choices, such as the activation function [8]] or the max-pooling after the first layer [9]. Many
simpler, traditional computational methods can also discover similar motifs; so it remains a mystery
as to why CNNs make better predictions? One hypothesis is that they are able to not only learn motifs
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but also how they interact, the so-called regulatory code [10]. Uncovering motif interactions is a
major goal in regulatory genomics as it has a direct impact on understanding mechanisms of gene
regulation and can help to design functional regulatory sequences.

In principle, motif interactions would be encoded in deeper layers of a CNN, but it remains difficult
to interpret deeper layer filters because their activations are complex — we don’t know whether a
filter that captures a motif is ‘active’ and motif interactions occur at different scales, information that
is spread across different layers of a CNN. By contrast, self-attention, which is a key component
of the transformer [11], provides a strong inductive bias to learn long-range interactions. Thus, it
offers a natural avenue to efficiently capture elusive motif-motif interactions at any scale within a
single layer. Indeed, previous convolution-attention hybrid networks have demonstrated improved
performance versus pure CNNs at regulatory genomic prediction tasks [[12) [13]]. While there has
been effort previously at interpreting the attention maps to identify motif interactions [[12], it remains
unclear whether there exists design principles that result in more interpretable attention maps.

Here, we perform a systematic, empirical study to investigate how design choices of convolution-
attention networks impact the interpretability of attention maps. As part of this study, we propose
a new method to interpret motif interactions, significantly improving upon previous efforts. This
work provides an avenue to narrow the infinite spectrum of architecture choices when designing
interpretable convolution-attention hybrid networks for discovery of motifs and their interactions,
and it proposes a new computational approach to extract this information from them.

2 Experimental overview

To assess the ability to recover motif-motif interactions, we generated synthetic dataset that comprises
a multi-task binary classification. Briefly, 100,000 synthetic sequences embedded with 1 to 5 non-
overlapping binding sites, selected with replacement from a pool of 12 known motifs, each of which
represents a different task; the labels of some motifs encode complex regulatory logic consisting of
positive and negative interactions (see Appendix [A). The sequences were split into training, validation,
and testing sets, with a 0.7, 0.1, 0.2 distribution, respectively. Thus, a model must learn to recognize
TF binding site motifs as well as their interactions (if any) to be successful at this task.

Attention maps are only intrinsically interpretable if the convolutional layer learns robust and
interpretable motif representations. The extent that first layer filters learn motif representations
was previously explored for various convolutional-hybrid models, including those that incorporate
self-attention [14]]. Building upon this work, we designed a baseline architecture with minimal
components: convolutional layer, max-pooling, multi-head attention (MHA), dense layer, and output
layer. We explored variations of this baseline model, using a nomenclature that corresponds to
design choices. For instance, CNN4-ReLU-norm represents a baseline CNN with a max-pool of
4, ReLLU activations in first layer filters, and normalization, which includes batch normalization in
the convolutional layer and layer normalization prior to MHA. Additionally, we trained the model
proposed as part of SATORI [[12]], a model and methodology to extract motif interactions from local
attention maps. We trained each model on the synthetic dataset with 10 different random inializations.
See Appendix [A]for details of models and training procedure.

3 Local attention is noisy, leading to many false positive interactions

The 3 main challenges to using attention maps for model interpretability in genomics are: (1) motif
representations must be identifiable for each filter, (2) interacting position pairs must be identifiable
from an attention map, and (3) the active filter(s) within each attended position must be identifiable.
Classification performance for all tested models was high (AUPR of 0.95-0.97) and they all yielded
high coverage of ground truth motifs in first layer filters. Here, we focus on issues (2) and (3).

Identifiability of significant attention. To test the efficacy of extracting learned motif interactions
from attention maps, we must first identify which values in the attention map constitute a significant
interaction; the attention map is considered the softmax of the key-query matrix products, an L x L
matrix that corresponds to position-position interactions. Previously, a method called SATORI
employed a threshold of 0.1 [12]], above which is considered to represent a significant attention value.
By visualizing the attention distributions for each test sequence, we found that the distributions can be
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Figure 1: Local attention analysis. Distributions of MHA attention matrix values across (a) test sequences
and (b) dinucleotide shuffled sequences (i.e. null distribution). The 0.1 threshold is shown as a dashed black
line in (a) and the 0.05 significance cutoffs are shown in (b) with colors corresponding to the model. (¢) True
positive rate and (d) positive predictive value of filter interactions extracted using local attention. Green and blue
box-plots represent models with exponential and ReLU first layer activations, respectively.

quite variable from model to model. Moreover, while the distributions largely appear bi-modal, there
is a positive tail, which makes it hard to manually select a suitable threshold. One solution to automate
this choice is to establish a statistical test, where the significance of attention values can be compared
to a null distribution. We define a null distribution by shuffling sequences to break coherent motifs
while maintaining the same (di-)nucleotide frequencies. Surprisingly, the attention distributions for
shuffled sequences are only slightly shifted from the distributions for actual sequences. Thus, if we
were to establish a threshold based on an empirical p-value cutoff, we may unintentionally miss many
motif interactions. Together, this highlights the difficulty of defining an optimal threshold to identify
attended position pairs. Even though it remains a challenge to define an “optimal” threshold, it may
turn out that identifying motif-motif interactions is robust to the choice of threshold.

Identifiability of active filters. Assuming that the attention maps can identify interacting positions,
the next challenge is identifying which filters within the feature maps at those attended positions are
interacting. Previously, Satori asserted that all combinations of “active” filters at attended positions
are interactions; a filter is deemed to be active if its activity is greater than 50% of the filter’s maximum
possible activation. This definition of filter activity follows from the standard approach to identify
which (sub-)sequences to include in an activation-based alignment for filter visualization [[15}[16].

To determine the efficacy of the full pipeline to uncover filter-filter interactions from local attention
maps, we conducted a series of experiments assuming significant attention is above a threshold of 0.1
and filter-filter interactions pairs identified through filter ‘activity’, i.e. Satori’s method. The true-
positive rate (TPR), which measures the proportion of ground truth interactions that were identified,
was near perfect in most models, indicating each ground truth interaction was extracted at least once.
However, the average positive predictive value (PPV), which measures the proportion of correct
interactions identified, was quite low across all models (Fig. [I). Upon further inspection, we found
that one major source of false positives can be explained by seemingly “noisy” filters that have a
statistically significant match to a motif in a database of known motifs using Tomtom [17], a motif
comparison search tool, but not to any ground truth motif; we call this a random hit. This issue
with Tomtom has been documented previously [9} [12]. Filters that don’t learn ground truth motifs,
but have significant Tomtom matches, are frequently "active", thus causing false positives when
position interactions are converted to filter interactions. Deciphering random hits by Tomtom is not
straightforward in practice due to a lack of ground truth with in vivo data.

To test how sensitive these results are to the choice of attention threshold, we systematically varied
the threshold from 0.0 to 0.9 (see Appendix [B)). We observed that while PPV may increase with a
higher threshold, it is accompanied by a decrease in TPR; as the specificity increased, false positives
decreased, but ground truth interactions were also lost. Moreover, a variable threshold based on
statistical significance from an empirical null distribution also proved ineffective (see Appendix [B.
Together, this suggests that the core problem with interpreting local attention maps is not the attention
threshold, but rather the conversion from position interactions to filter interactions.
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Figure 2: Comparing GLIFAC to aggregated local attention. Example interaction maps generated by CNN40-
ReLU using (a) aggregated local attention (b) and GLIFAC; the upper triangle of each interaction map represents
ground truth interactions. Comparison of attention (¢) AUPR, (d) AUROC, and (e) SNR in aggregated local
attention and GLIFAC generated interaction maps.

4 Global attention yields robust interaction maps

To resolve the limitations of local attention maps, we propose Global Interactions via Filter Activity
Correlations (GLIFAC). GLIFAC leverages the fact that attended position pairs should share similar
activation patterns across sequences for interacting filters while other non-active filters will be more-
or-less random. GLIFAC seeks to exploit the correlations in filter activity, and as a result, it does
not require an arbitrary definition of filter activity. By design, GLIFAC should be less susceptible to
spurious filter activations compared to local attention. For more details of GLIFAC, see Appendix [C]

An alternative strategy to increase the accuracy of local attention is to directly aggregate the extracted
filter interactions into a global summary (Fig. 2h). A visual comparison of this summary for local
attention and GLIFAC demonstrates that local attention-based interactions have now become more
identifiable, though there still remains a high background level of false positive interactions. Moreover,
correlations are an effective strategy to find motif interactions (Fig. 2b).

To benchmark the efficacy of GLIFAC, we created 2 distributions of the motif interaction scores
(counts for aggregated local attention and correlation value for GLIFAC) — a distribution for ground
truth motif interactions (positive) and another for all other motif pairs (negative) — and quantified their
separation using the AUROC, AUPR, and signal-to-noise ratio (SNR), which is defined as the ratio
between the averaged distributions. Strikingly, we find that GLIFAC consistently leads to a better
characterization of motif interactions, with less false positives compared to local attention (Fig. [Zk-e).
Interestingly, a global view of local attention-based interactions can capture motif interactions better
than the noisy interactions proposed by individual sequences — though SNR remains low as a result
of the high rate of false positive interactions from local attention. To test the robustness of GLIFAC
on the choice of threshold used to identify significant attention values, we performed a sensitivity
analysis in Appendix [D} We found that indeed GLIFAC provides a global view of filter interactions
that is statistically robust. We also explored different architectural choices that improve GLIFAC in

Appendix [E]

5 Conclusion

By exploring methods to uncover motif interactions from convolution-attention networks, we found
that local attention maps are noisy, leading to many false positive interactions. Thus, local attention



with current model designs remain unreliable for use with in vivo data. The efficacy and robustness of
identifying motif interactions can be improved by aggregating information across local attention maps
and further gains can be achieved through statistical relationships like correlation as was demonstrated
with GLIFAC. Indeed, other global interpretability methods have found success in genomics, such as
clustering attribution maps [18]] and via in silico experiments [19} |5]; here we demonstrate its utility
with attention maps. While global interactions are very informative, it comes with a trade-off of losing
information about specific motif interactions within a given sequence, which may be important to
dissect mechanisms of cis-regulation as it is often context dependent. Nevertheless, this work provides
a significant advance towards highly expressive, interpretable models for regulatory genomics.
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A Experiment details

Synthetic dataset with motif regulatory grammars. 100,000 randomly generated 200-nt DNA
sequences were embedded with 1 to 5 non-overlapping binding sites, selected with replacement
from a pool of 12 known motifs (CEBPB, ELF1, ESR1, FOXN3, GATA1, IRF1, NFIB, SIX3, SP1,
TAL1, TEADI, YY1). A spacing of at least 1-nt was maintained between all embedded motifs and
sequence ends. The labels of some motifs encoded complex regulatory logic consisting of positive
and negative interactions. Positively interacting TFs can only bind if both motifs in the interaction
pair are present (i.e. an “and” gate); on the other hand, negatively interacting TFs bind normally,
but are inhibited if both motifs are present (i.e. an “xor” gate). The motif pairs, ELF1/SIX3 and
TAL1/GATAL, exhibited positive interactions, and the motif pairs, ESR1/FOXN3 and IRF1/SP1,
exhibited negative interactions. All other TFs (CEBPB, NFIB, TEAD, and YY) bound to their
motifs independently. These regulatory prediction tasks are typically framed as a binary classification
with one-hot encoded DNA as inputs and binary labels indicative of a regulatory function as targets;
here, each output label signifies the binding of a ground truth motif.

Models. All models follow the base architecture: a convolutional layer with activation and pooling,
dropout with a rate 0.1, a multi-head self-attention layer, a dense layer, dropout with a rate of 0.5,
followed by an output layer. Batch normalization (BN) was optionally included before convolutional
activations, and layer normalization was optionally incorporated before (LN) / after (LN2) the MHA
layer. Unless otherwise specified, all models employed 32 filters (19 kernel size), 8 attention heads,
32 attention vector size, and 512 dense layer units. The base models used in GLIFAC and SATORI
comparisons were designed as such:

* CNN4-ReLU: Conv, ReL.U activation, pool size 4, MHA, Dense

* CNN4-ReLU-Norm: Conv, BN, ReLLU activation, pool size 4, LN, MHA, Dense

* CNN4-Exp: Conv, exponential activation, pool size 4, MHA, Dense

* CNN4-Exp-Norm: Conv, BN, exponential activation, pool size 4, LN, MHA, Dense

¢ CNN20-ReLU: Conv, ReLLU activation, pool size 20, MHA, Dense

* CNN20-ReLU-Norm: Conv, BN, ReL.U activation, pool size 20, LN, MHA, Dense

* CNN20-Exp: Conv, exponential activation, pool size 20, MHA, Dense

* CNN20-Exp-Norm: Conv, BN, exponential activation, pool size 20, LN, MHA, Dense
* SATORI: Conv, BN, softplus activation, pool size 6, MHA, LN2, Dense

Training. We uniformly trained each model by minimizing the binary cross-entropy loss function
with mini-batch stochastic gradient descent (100 sequences) for 100 epochs with Adam updates using
default parameters [20]. We decayed the learning rate which started at 0.001, and when the area
under the precision recall curve did not improve for 5 epochs, the learning rate was decayed by a
factor 0.3. All reported performance metrics are drawn from the test set using the model parameters
which yielded the highest performance AUPR on the validation set. Each model was trained 10 times
with different random initializations according to Ref. [21].



B Sensitivity analysis of local attention to attention threshold
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Figure 3: Sensitivity analysis of local attention. (a) Plots of true positive rate (TPR, left) and positive predictive
value (PPV, right) of motif interactions determined by local attention, at varying thresholds. (b) Box plots of the
observed threshold at the 0.05 significance p-value of the empirically determine null distribution (/eft); PPV
(middle) and TPR (right) of local attention at these significance-based thresholds. Green and blue box-plots
represent models with exponential and ReL U first layer activations, respectively.

We performed a sensitivity analysis on local attention to determine how choice of attention threshold
impacts the quality of interactions extracted. After training, SATORI’s local attention technique was
applied with thresholds ranging from 0.0 to 0.9, with 0.1 increments. Most models had similar PPVs
and TPRs for all thresholds (Fig. [3). We observed a noticeable increase in PPV for CNN20-ReLU
and CNN4-ReLU for higher thresholds, however the TPR also dropped, portraying the trade-off
between accuracy and coverage, which are arguably of equal importance. We also perform the same
analysis as illustrated in Fig. [Tc-d, however with an attention distribution determined by using the

0.05 p-value of the empirical null distribution; we observe no noticeable improvements in PPV or
TPR.
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Figure 4: Attention-based interpretability methods. (a) Architecture of the convolution-attention network;
one-hot encoded sequences are processed through a convolutional layer; the resulting feature maps are pooled
and passed through a multi-head self-attention layer, followed by a dense and output layer. (b) SATORI’s local
attention method; position interactions are obtained by computing attention matrices for all test sequences, and
isolating attention values greater than 0.1; all combinations of active filters at attended positions are considered
statistically significant filter interactions. (¢) Our proposed Global Interactions via Filter Activity Correlations;
after feature map (position) interactions are isolated, the interactivity between all combinations of filters is
determined by computing the correlation between each filter’s activations at all attended positions.

GLIFAC Technical details. Attention maps heads are aggregated to a single attention map by
taking the maximum value across heads. Significant attention values are identified by a threshold of
0.1, above which yield a list of position pairs for each sequence. Given position pairs identified via
significant attention, we concatenate the feature maps of each position separately across the entire
test set. We also add feature maps from random position pairs, resulting in two sets of concatenated
feature maps that consists of 50% positive interactions and 50% no interactions; we found this step
necessary to ensure the Pearson correlation was able to align “activation velocities”. Using the
correlation values between each filter combination, a correlation matrix is constructed where all filters
in the first position set are correlated against all filters in the second position set (Fig. [).



D GLIFAC is robust across all attention thresholds

We perform a sensitivity analysis for GLIFAC on the choice of threshold for significant attention
values. We systematically change the attention threshold from 0.1 to 0.9 in 0.1 increments and
montiro the performance of recovering motif interactions. In general, the attention AUPR and
attention AUROC change very little with threshold, demonstrating GLIFACs robustness to choice of
threshold (Fig. [3). Although the SNR appears to change substantially, all SNR values remain above
2.0, a value above which increases contrast between significant and insignificant interactions, but the
ability to identify interactions largely remains the same.
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Figure 5: Sensitivity analysis of GLIFAC. Plots of AUROC, AUPR, and SNR of motif interactions determined
by GLIFAC, at varying attention thresholds.

E Network architecture influences the interpretability of GLIFAC
correlation maps

Using the base models CNN10-ReLU and CNN10-Exp (with layer norm), we systematically varied
several key components of the model, while keeping all other settings constant, to determine the
impact of design choices on GLIFAC. The following hyperparameters were examined:

e Batch Normalization - enabled, disabled

* Normalization - None, BN (batch normalization after CNN), LN (layer normalization before
MHA), LN2 (layer normalization after MHA), and BN+LN

Pooling Size - 2, 5, 10, 20, 40

Number of Attention Heads - 1, 2, 4, 8, 16

Query/Key Vector Depth - 32, 64, 128, 256, 512

Dense Layer Size - 64, 128, 256, 512, 1024

We uniformly train each model with 10 different random initializations, and monitored the classifica-
tion AUPR, as well as the attention AUPR, AUROC, and SNR (with an attention threshold of 0.1). We
find that in nearly all models, exponential activation-based models outperform ReLLU-based models
for all measured statistics (Fig. [6). Moreover, their performance is more consistent and generally
more robust to changes in architecture, further corroborating it as a more favorable design choice for
interpretable models in regulatory genomics [8]. We note, that the SNR is higher for ReLU in the
best models, but this is essentially negligible, as any SNR greater than 2.0 indicates that significant
interactions are already easily discernable. Pooling size was another critical factor for improving
attention interpretability, presumably from learning a slightly better motif representations [9]]. Both
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batch normalization and layer normalization were detrimental to the efficacy of GLIFAC with the
proposed baseline models. We note that they may be critical to training deeper attention models,
such as transformers [[11]]; this was not explored here. Models with few attention heads generally
had more interpretable correlation maps. We note that it may be more beneficial for in vivo data
where variations of regulatory grammars may be dependent on sequence context or across cell types.
Vector size had little to no effect on correlation matrix interpretability. Interestingly, we noticed
a slight improvement in models with smaller dense layers, but this was followed by a decrease in
classification performance.
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Figure 6: Efficacy of GLIFAC in different network architectures. Classification performance (AUPR) and
attention interpretability (AUROC, AUPR, SNR) were measured over ten trials for each design variation. Green

and blue box-plots represent models with exponential and ReL U first layer activations, respectively.
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