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Abstract

As instruction-tuned large language models001
(LLMs) gain global adoption, their ability002
to follow instructions in multiple languages003
becomes increasingly crucial. In this work,004
we investigate how multilinguality during in-005
struction tuning of a multilingual LLM af-006
fects instruction-following across languages007
from the pre-training corpus. We first show008
that many languages transfer some instruction-009
following capabilities to other languages from010
even monolingual tuning. Furthermore, we find011
that only 40 multilingual examples integrated012
in an English tuning set substantially improve013
multilingual instruction-following, both in seen014
and unseen languages during tuning. In gen-015
eral, we observe that models tuned on multilin-016
gual mixtures exhibit comparable or superior017
performance in multiple languages compared018
to monolingually tuned models, despite train-019
ing on 10x fewer examples in those languages.020
Finally, we find that diversifying the instruc-021
tion tuning set with even just 2-4 languages022
significantly improves cross-lingual generaliza-023
tion. Our results suggest that building mas-024
sively multilingual instruction-tuned models025
can be done with only a very small set of multi-026
lingual instruction-responses.027

1 Introduction028

Instruction tuning is a fundamental aspect of build-029

ing modern general-purpose large language mod-030

els (LLMs), involving fine-tuning a pre-trained031

model on pairs of instructions and corresponding032

responses (Mishra et al., 2022; Wei et al., 2022;033

Sanh et al., 2022; Ouyang et al., 2022). For these034

models to be globally applicable, they must op-035

erate on a wide range of languages, yet, most in-036

struction tuning datasets are typically limited to037

English. While curating naturally occurring in-038

structions and responses for every language is chal-039

lenging, cross-lingual transfer has emerged as a040

promising approach, in which a model is fine-tuned041

using one language, and acquiring similar abili- 042

ties in another (Pires et al., 2019; Wu and Dredze, 043

2019; Artetxe and Schwenk, 2019; K et al., 2020; 044

Conneau et al., 2020a,b). The ability to follow in- 045

structions for languages seen only at pre-training 046

can significantly expand the applicability of LLMs, 047

allowing them to be used by more people world- 048

wide. In this work, we show that instruction-tuning 049

of multilingual LLMs transfers across languages 050

better than previously known, and that even mini- 051

mal language diversity in the tuning set can further 052

unlock instruction-following generalization to lan- 053

guages that are unseen during instruction tuning. 054

We investigate the effect of multilingual data 055

on instruction-following across languages using an 056

LLM pre-trained on hundreds of languages (Anil 057

et al., 2023), and high-quality, open-ended instruc- 058

tions and responses (Zhou et al., 2023; Köpf et al., 059

2023) translated into 11 languages, across different 060

families and writing systems. Initially, we examine 061

the transferability of monolingual instruction tun- 062

ing across different languages. Naturally, tuning 063

using each language individually enhances perfor- 064

mance within that language. Notably, we find that 065

this also translates into instruction-following capa- 066

bilities across other languages, and that tuning with 067

English, Italian, or Spanish yields the best average 068

multilingual performance. 069

Inspired by this result, we turn to ask how much 070

multilingual data is required to improve multilin- 071

gual instruction-following, while preserving En- 072

glish performance. We find that replacing even 073

just 40 English training examples with multilin- 074

gual examples, significantly improves instruction- 075

following in those languages. Surprisingly, this 076

small amount of language-diverse examples also 077

improves performance for languages that are only 078

seen during pre-training and are not represented in 079

the instruction tuning set at all. 080

The next question we tackle is whether increas- 081

ing the number of languages in the tuning set can 082
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enhance generalization to new languages from the083

pre-training corpus. We find that tuning using a084

few languages enables better performance for lan-085

guages unseen during tuning, compared to mono-086

lingual tuning with the same number of examples.087

Finally, we test two potential factors that might088

influence the degree of cross-lingual transfer: lan-089

guage similarity and the amount of language-090

specific pre-training data, but find no signifi-091

cant correlations. Overall, our results provide092

recipes for multilingual instruction tuning that im-093

proves cross-lingual generalization, while preserv-094

ing performance on English, under a fixed bud-095

get. In particular, we find that capable multilingual096

instruction-following models can be tuned even097

with a minimal amount of multilingual data.098

2 Measuring Multilingual099

Instruction-Following100

Our objective is to discover how multilinguality101

during instruction tuning affects general-purpose102

instruction-following across languages. We break103

this down to multiple questions, including how well104

can monolingual instruction tuning transfer to other105

languages, how many multilingual examples can106

enhance multilingual instruction-following while107

preserving English performance, and whether in-108

creasing the number of languages can result in im-109

proved cross-lingual generalization. In this section110

we elaborate on the data, evaluation protocol, mod-111

els we use, and the human annotation process to112

ensure the models quality.113

Data We use datasets of high-quality open-ended114

instructions and responses, rather than classic task-115

specific datasets. Our training data contains 1,000116

English instructions and responses from LIMA117

(Zhou et al., 2023) and 3,640 from OpenAssistant1118

(Köpf et al., 2023). These examples resemble real119

world scenarios of users interacting with chatbots,120

with queries like "Can you explain Fermat’s Last121

Theorem?" and "How to keep a dog hydrated?",122

that enable efficient tuning even with a small train-123

ing set (Zhou et al., 2023). For evaluation, we use124

617 instructions from AlpacaFarm (Dubois et al.,125

2023), originated from Self-Instruct (Wang et al.,126

2023), Vicuna (Chiang et al., 2023), Koala (Geng127

1We focus on single-instruction/single-response interac-
tions so we keep only the first prompt and response from
conversations in OpenAssistant similarly to Li et al. (2023).

et al., 2023), and hh-rlhf (Bai et al., 2022).2 128

We use the Google Translate API3 to translate 129

the instruction-response pairs of the training set 130

and the instructions of the evaluation set to 11 lan- 131

guages, creating parallel training and evaluation 132

sets in Arabic, Chinese, Czech, English, Estonian, 133

Finnish, Hebrew, Hindi, Italian, Russian, Spanish, 134

and Swahili.4 While translated data is different 135

from naturally sourced data per language, it allows 136

for more control as the data size and semantics are 137

similar for all languages. A overview of the lan- 138

guages, their language codes, families and scripts 139

is described in Table 2 in Appendix A. 140

Evaluation We conduct a side-by-side automatic 141

evaluation protocol (Bubeck et al., 2023; Dubois 142

et al., 2023; Dettmers et al., 2023; Gudibande et al., 143

2023; Zheng et al., 2023), in which an LLM as- 144

sesses two responses for the same instruction, with 145

the goal of identifying the superior one. We follow 146

the common practice of presenting both responses 147

to the model twice, alternating the order of the two 148

responses (Zheng et al., 2023; Zhang et al., 2023). 149

The exact prompt we use is shown in Figure 9 in 150

Appendix B. We define a “win" for a certain re- 151

sponse if the judge selects it twice irrespective of 152

the order, and a “tie" if the model selects a different 153

response for each order. We use a discounted-tie 154

(Zhou et al., 2023) scoring method, in which a 155

model receives a score of 1 for a win, 0.5 for a 156

tie, and 0 for a loss. We average the scores of 157

individual instructions to get the score over the 158

evaluation set and present it in percentages. To 159

validate that the LLM judge decisions align with 160

human preferences across languages, we conduct a 161

human annotation study and find good aggregated 162

agreement scores of 79.5% for English, 77% for 163

Spanish, and 76.5%, and 75% for Russian and He- 164

brew, receptively. Further details on validating the 165

LLM judge are provided in Appendix D. 166

Instruction-Following Score Per Language
Throughout this work we measure instruction-
following per language by comparing the perfor-
mance of a model that was tuned on some training
set D, to a model that was monolingually tuned
on the target language L, by using the full training

2We exclude AlpacaFarm’s evaluation instructions from
OpenAssistant, as we tune using its training set.

3https://cloud.google.com/translate/docs/reference/api-
overview

4Languages are selected from Table 21 in Anil et al. (2023),
describing the top-50 languages the model (§2) was pre-
trained on.
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Figure 1: Per language instruction-following scores of models instruction-tuned on monolingual data. Each row
represents a model tuned using a different language, and each column is an individual heatmap of the scores of all
models on the same evaluation language. Scores are the discounted-ties weighted average of the side-by-side scores
against the model tuned on the evaluation language. The scores along the diagonal are 50 as they are the result of
comparing generations to themselves, and are excluded from the heatmap coloring.
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Figure 2: Human annotators rating distributions of mod-
els responses across languages. Each row describes
evaluation in its corresponding language of the model
tuned monolingually using that language. Numbers in
the first row are reported by Zhou et al. (2023).

set in this language, DL. Formally, we define our
instruction-following (IF ) metric for language L:

IFL(MD) = S×S(MDL ,MD)

Where S×S(·, ·) is the side-by-side protocol ap-167

plied on MDL and MD, which are the models168

instruction-tuned on DL and D, respectively. A169

score of 0% means that MD loses on all L instruc-170

tions, and 50% means the performance of MD and171

MDL in L are indistinguishable when aggregated172

over the evaluation set.173

Model We use the PaLM 2 model family of174

Transformer-based (Vaswani et al., 2017) LLMs175

that were pre-trained on hundreds of languages 176

(Anil et al., 2023). We use PaLM 2-S as our pre- 177

trained model for all the instruction tuning experi- 178

ments, and an instruction-tuned PaLM 2-L as the 179

judge for the side-by-side evaluation. The train- 180

ing and inference hyperparameters we use are de- 181

scribed in Appendix C. 182

Human Validation Our evaluation protocol re- 183

lies on the quality of our monolingually tuned mod- 184

els. To validate their usage as high bar baselines 185

in their respective languages, we conduct a human 186

annotation study in 4 languages: English, Span- 187

ish, Russian and Hebrew. Namely, we sample 50 188

random instructions per language, and ask 2 na- 189

tive speakers to assign a score of excellent, pass, 190

or fail (Zhou et al., 2023) to the responses gener- 191

ated by the model that was monolingually tuned 192

using that language. Results in Figure 2 show 193

that our tuned models indeed demonstrate strong 194

instruction-following abilities. Notably, the scores 195

across languages are similar or better than the re- 196

ported numbers by Zhou et al. (2023) in English.5 197

5The differences can be attributed both to the pre-trained
model and to the size of the instruction tuning dataset.
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Figure 3: Instruction-following scores of models trained using when P% of the training set is distributed uniformly
across 12 languages and an (100− P )% is English only. Each X axis tick represents a tuning mixture, scores over
individual non-English languages are in blue, and their averages are in red. English scores are in orange.

3 How Much Multilinguality Is Needed198

For Multilingual Instruction Tuning?199

We now describe our controlled experiments, de-200

signed to quantify the effect of multilingual data201

during instruction tuning of multilingual LLMs,202

following the research questions defined in §2.203

3.1 Monolingual Instruction Tuning Yields204

Multilingual Abilities205

To explore zero-shot cross-lingual transfer of in-206

struction tuning in multilingual LLMs, we tune207

models on a single language and evaluate them208

on all of the rest. We find that all of those mod-209

els are able to transfer non-negligible instruction-210

following abilities to other languages.211

Setup We instruction-tune 12 models, each one212

using the full train set in a different language. We213

generate responses using every such model to the214

evaluation instructions in all other languages. Fi-215

nally, we calculate their per language scores as216

described in §2.217

Results Figure 1 shows the results, where rows218

represent training languages and every column is219

an independent heatmap of the results over a sin-220

gle evaluation language. Most importantly, tuning221

using each single language yields a model with222

some multilingual instruction-following capabili-223

ties across languages. For context, even the model224

with the lowest average score, the one tuned on225

Hindi, achieves a score of over 30% in 9 out of 11226

cases.6 The model with the best average score is 227

the one tuned on English, when Italian and Spanish 228

also enable consistently high scores. 229

Notably, we manually inspect the generations 230

and find that our tuned models consistently re- 231

spond in the same language as their instruction, 232

regardless of the language they were instruction- 233

tuned on, in contrast with findings in previous 234

work (Touvron et al., 2023a; Chen et al., 2023). 235

We hypothesize that this comes from the multilin- 236

gual nature of PaLM 2s’ pre-training, compared to 237

the more English-centric LLaMA (Touvron et al., 238

2023a), further details are in Appendix E. In ad- 239

dition to our main setup, we also compare the 240

generations of these models to the ones of the 241

pre-trained model that was not instruction-tuned. 242

Results shown in Figure 10 in Appendix F fur- 243

ther demonstrate that instruction tuning in every 244

language separately, greatly improves instruction- 245

following abilities across different languages. 246

3.2 A Few Dozen Examples Improve 247

Multilingual Instruction-following 248

Naturally, multilingual tuning, as opposed to 249

English-exclusive tuning under a fixed training ex- 250

amples budget, should result in better downstream 251

performance for non-English languages, and might 252

hurt performance on English. Therefore, we ask 253

how many multilingual examples can improve the 254

instruction-following abilities across languages, 255

6For example, a score of 30% can be obtained by wining
30% of the instructions and losing 70%, or by achieving a tie
on 60% of the instructions and losing 40%.
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Figure 4: Instruction-following scores of models tuned when P% of the training set is distributed uniformly across 6
languages and an (100− P )% is English only. Each X axis tick represents such a tuning set, scores over individual
non-English languages are in blue and English scores are in orange. Average scores of the 5 non-English languages
in the tuning set are in red, and the average scores of the 6 languages not seen during tuning are in green.

while preserving English performance. To that end,256

we tune models on subsets of the English examples257

combined with subsets of multilingual examples in258

different ratios. We find a significant boost in mul-259

tilingual instruction-following abilities even when260

using just a few dozen multilingual examples.261

Setup We create data mixtures with P% exam-262

ples that are evenly split among all 12 languages,263

and the rest (100 − P )% English examples.7 We264

create such a train set for every P from 10 to 100,265

incremented by tens, and also for P = 1, for which266

only 40 multilingual examples are included from267

across all 11 non-English languages, and the rest268

are English examples. Finally, we evaluate every269

tuned model on every one of the 12 languages as270

defined in §2.271

Results Figure 3 visualizes the results. As ex-272

pected, multilingual examples in the train set im-273

prove the score on their languages (Red), and dilut-274

ing the number of English examples hurts the per-275

formance in English (Green). Notably, the signifi-276

cant multilingual improvement comes from replac-277

ing only 1% of the English examples by multilin-278

gual ones, which translates to 40 examples evenly279

distributed across the training languages. These280

results on the effect of such a small amount of281

language-diversity extend findings regarding task-282

diversity by Zhou et al. (2023), which demonstrated283

that a capable monolingual instruction-following284

7Every example appears exactly once in every mixture, in
a single language.

model can be tuned using only 1,000 high-quality 285

examples. A second trend is that these models often 286

outperform their monolingually-tuned counterparts 287

on the very language the latter were exclusively 288

tuned on (blue markers above the 50 line). For 289

example, the model tuned using the uniform set 290

(P = 100) preforms similarly or better than the 291

individual monolingually-tuned models in 8 of 12 292

languages, despite being trained on 12 times less 293

instruction-response pairs for each language. This 294

suggests that for some languages, multilingual tun- 295

ing can enable better instruction-following abilities 296

compared to a traditional monolingual tuning with 297

the same number of examples. 298

3.3 A Few Dozen Examples Improve 299

Cross-lingual Generalization 300

Combining the lessons on cross-lingual generaliza- 301

tion from monolingual tuning and the effect of a 302

small amount of multilingual examples from previ- 303

ous sections, we turn to examine how multilingual 304

examples in the tuning set affect language general- 305

ization. Specifically, we conduct a similar experi- 306

ment to the one in §3.2, this time using only half of 307

the languages for tuning while the rest of languages 308

are unseen. In line with the results from §3.2, we 309

find that a very small amount of multilingual exam- 310

ples also improve performance on languages that 311

were not in the tuning set. 312

Setup We repeat the setup from §3.2, this time 313

with only English and 5 more languages: Arabic, 314
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Figure 5: Instruction-following scores in Czech, Es-
tonian, Hebrew, Hindi, Spanish, and Chinese of mod-
els instruction-tuned using various subsets of Arabic,
English, Finnish, Italian, Russian, and Swahili. Blue
markers are the average scores per evaluation languages
across models tuned with the same number of languages.
The averages of those individual languages scores are
in green.

Finnish, Italian, Russian, and Swahili, and evaluate315

models again on all 12 languages.316

Results Results in Figure 4 show similar trends to317

the ones in Figure 3. Specifically, the average score318

over non-English training languages (red) again im-319

proves very quickly, even with P = 1. Strikingly,320

this is also true for languages that the model has321

only seen during pre-training, and are not repre-322

sented at all in the instruction tuning dataset (or-323

ange). This suggests that very few multilingual324

examples can not only improve performance for325

the languages of those examples, but also enable326

better cross-lingual instruction-following general-327

ization.328

3.4 Even a Small Number of Languages329

Improves Cross-Lingual Generalization330

Given the results on the impact of a small num-331

ber of multilingual examples from a fixed set of332

languages, we ask whether a small number of lan-333

guages can also enhance cross-lingual generaliza-334

tion. We experiment with different numbers of lan-335

guages in the tuning set and indeed observe that the336

transfer to languages only seen during pre-training337

improves from the very first additional languages.338

Setup We instruction-tune models on a single339

language and up to 6 languages. At each step, we340

add a language to the tuning set, and split the same341

examples budget uniformly among the current set342

of languages. We use the 6 training languages343

from §3.3, and follow 3 different permutations that344
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Figure 6: Average instruction-following scores of lan-
guages not seen during instruction tuning. For example,
the top-left corner describes the scores of 3 models
instruction-tuned on 100% Spanish, 100% English, and
50% Spanish and 50% English. The Y axis of this sub-
figure is the average score across all language excluding
Spanish and English.

determine the order in which we add languages to 345

the mix. These permutations are shown in Table 4 346

in Appendix G. We evaluate every model on each of 347

the remaining 6 languages, and average scores per 348

evaluation language across models that are tuned 349

using the same number of languages. 350

Results Results on Figure 5 show that adding lan- 351

guages to the tuning set improves cross-lingual gen- 352

eralization. The average score (red) increases from 353

tuning on monolingual data to tuning on bilingual 354

data, and even more when using 3 and 4 languages, 355

where the average score gets to almost 50. At that 356

point, there is an indication for saturation, as more 357

languages does not seem to improve transfer fur- 358

ther. These findings demonstrate that diversifying 359

the instruction tuning data with only a few differ- 360

ent languages can improve cross-lingual transfer to 361

new languages, only seen during pre-training. 362

Bilingual Tuning Sets To show this holds for 363

even more combinations of languages, we ran- 364

domly split all languages to pairs, and tune models 365

using 50% of the examples in the one language and 366

50% in the other. We evaluate each of these models 367

on the remaining 10 languages, and compare their 368

score to the ones of the two models tuned using 369

the full monolingual sets. Results on Figure 6 re- 370

veal that bilingual tuning helps generalize to new 371

languages better than monolingual tuning. 372

4 Potential Factors of Transferability 373

Following the results from the previous sections, a 374

natural question arises: what factors can predict the 375
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Language Code Slavic Script Mutually
Family Intelligible

Russian ru East Cyrillic -
Serbian sr South Cyrillic Croatian
Croatian hr South Latin Serbian
Slovenian sl South Latin -

Table 1: Languages used for language similarity experi-
ment, along with their language code, subfamily, script,
and the language they are mutually intelligible with.

degree of cross-lingual transfer? We explore two376

immediate candidates. Initially, we examine the377

relation of various aspects of language similarity to378

transferability within language pairs. Next, we look379

into whether the proportion of language-specific380

data in the pre-training corpus correlates with the381

amount of cross-lingual transfer of instruction tun-382

ing using the given language.383

4.1 Language Similarity384

A intuitive hypothesis is that aspects of language385

similarity like the script or mutual intelligibility386

might affect the levels of instruction tuning cross-387

lingual transfer between languages. We test this388

using a case study of 4 Slavic languages, looking389

into possible effects of such aspects. However, we390

do not find a signal indicating these factors strongly391

correlate with cross-lingual transfer for this setting.392

Setup We train models on monolingual versions393

of the data in Russian, Serbian, Croatian, and394

Slovenian, and evaluate their transfer to each other.395

These languages can be divided along several lin-396

guistic lines that are summarized in Table 1. First,397

Russian is East Slavic, and the rest are South Slavic.398

Second, Russian and Serbian both use the Cyril-399

lic script, while Croatian and Slovenian use Latin.400

Moreover, Serbian and Croatian share a significant401

degree of mutual intelligibility.402

Results Results are displayed on Figure 7. As403

shown, there is no a strong signal indicating that404

any of the aspects above is correlated with better405

mutual cross-lingual transfer. Russian tend to trans-406

fer instruction-following abilities best, and even407

though Russian and Serbian both use Cyrillic, it is408

Croatian that transfers capabilities to Russian bet-409

ter in our study. Moreover, Despite being largely410

mutually intelligible, Croatian and Serbian do not411

seem to share cross-lingual abilities more than the412

others. Our results align with recent findings that413

language similarity does not impact transferability414
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Figure 7: Instruction-following scores per language of
models tuned monolingually. Each row represents a
model trained using a different language, and each col-
umn is an individual heatmap of the scores of all models
on the same evaluation language. The scores along the
diagonal are excluded from the heatmaps coloring.
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Figure 8: Weak Pearson correlation between the percent-
age of documents in the pre-training corpus (excluding
English), and the average instruction-following score
across languages for every training language. Blue area
around the line is the confidence interval.

or interference in machine translation given suf- 415

ficient data and model capacity (Fernandes et al., 416

2023; Shaham et al., 2023). 417

4.2 Fraction of Data in Pre-training 418

A second possible predictor of the degree of cross- 419

lingual transfer from a particular language is the 420

extent to which the model was exposed to it during 421

pre-training. Generally, a model’s downstream per- 422

formance on a specific language correlates with the 423

fraction of data in that language in the pre-training 424

corpus (Muennighoff et al., 2023). In contrast, Fig- 425

ure 8 suggests this is not necessarily the case for the 426

cross-lingual transfer from a specific language. We 427

find a weak Pearson correlation of 0.22 between 428

the average cross-lingual score of each language 429

and the number of documents in that language in 430

pre-training corpus (Table 21 in Anil et al. (2023)). 431
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5 Related work432

Cross-lingual Transfer The success of the pre-433

training–fine-tuning paradigm (Devlin et al., 2019)434

ignited a new line of work on cross-lingual trans-435

fer. Pires et al. (2019) and Wu and Dredze (2019)436

showed that the multilingual variant of BERT can437

be fine-tuned on a specific task in one language438

and preform this task on another language, and439

Artetxe and Schwenk (2019) reported similar find-440

ings with a Recurrent Neural Network. Conneau441

et al. (2020a) introduced XLM-R, a multilingual442

pre-trained encoder with strong cross-lingual abil-443

ities. Phang et al. (2020) showed that intermedi-444

ate training on an English task improves XLM-445

R’s transfer across languages further, and Pfeiffer446

et al. (2020) suggested an adapter-based frame-447

work to improve cross-lingual and task general-448

ization. Hu et al. (2020) proposed a benchmark449

for cross-lingual generalization consists of 40 lan-450

guages across 9 NLP tasks.451

K et al. (2020) found that the depth of the net-452

work matters for cross-lingual transfer, and Con-453

neau et al. (2020b) showed that parameter sharing454

is more important than shared vocabulary. Choenni455

et al. (2023) delved into the influence of specific ex-456

amples from the training data on the performance457

in other languages, and Malkin et al. (2022) in-458

vestigated how pre-training BERT-based models459

using different language pairs affects cross-lingual460

downstream performance. Going beyond encoder-461

only models, Xue et al. (2021) proposed mT5, a462

multilingual variant of T5 (Raffel et al., 2020), and463

showed the significance of model scaling for cross-464

lingual transfer in generation tasks. Ye et al. (2023)465

explored trasferability in English-centric models466

(Touvron et al., 2023a) using four tasks.467

In contrast to most cross-lingual transfer litera-468

ture that is focused on task-specific fine-tuning, we469

explore trends of cross-lingual generalization for470

general-purpose instruction-following LLMs.471

Multilingual Instruction Tuning Initially,472

works on instruction tuning (Mishra et al., 2022;473

Wei et al., 2022; Sanh et al., 2022) focused on474

cross-task generalization in English. Subsequently,475

a large body of work was dedicated to multilingual476

instruction tuning. Muennighoff et al. (2023)477

found that tuning models with English datasets478

enables zero-shot cross-lingual abilities to new479

languages. The authors also found that this holds480

for languages that the model has never intentionally481

seen during pre-training, and that multilingual 482

training improves generalization to new tasks. 483

Chen et al. (2023) investigated the effects of full 484

parameter training vs low-rank adaptation (Hu 485

et al., 2022) and monolingual vs multilingual 486

instruction tuning using the Stanford Alpaca 487

(Taori et al., 2023) data, machine translated into 5 488

languages. Lai et al. (2023) trained multilingual 489

instruction-following models for 26 languages 490

with reinforcement learning from human feedback 491

(Ouyang et al., 2022), and Zhang et al. (2023) 492

suggested instruction tuning LLMs by prepending 493

the instruction and response translated into a pivot 494

language (e.g English) to the response in the target 495

language. 496

In this work, we consider transfer from monolin- 497

gual instruction tuning from 12 languages, rather 498

than exclusively on English. Furthermore, we ex- 499

amine multilingual instruction-following using an 500

LLM pre-trained on hundreds of languages, which 501

might be a key to unlocking more transfer to lan- 502

guages not represented during tuning. Importantly, 503

we unveil the potential of just a small amount of 504

language diversity in the instruction tuning set for 505

this cross-lingual generalization. 506

6 Conclusion 507

We demonstrate that cross-lingual transfer of- 508

fers a promising avenue for building multilingual 509

instruction-following LLMs. Our findings across 510

different languages suggest that even monolingual 511

instruction tuning using only one language can re- 512

sult in improved instruction-following capabilities 513

in other languages. Moreover, incorporating even a 514

small set of a few dozen multilingual examples can 515

significantly enhance instruction-following perfor- 516

mance for both the languages the model is tuned on, 517

and ones that were only seen during pre-training. 518

Additionally, training on such multilingual datasets 519

achieves comparable or even superior performance 520

compared to monolingual tuning for some lan- 521

guages. We observe a similar trend when exploring 522

the effect of total number of languages in the tuning 523

set, as even splitting the train set to only two lan- 524

guages improves generalization to new languages, 525

compared to monolingual tuning. These findings 526

pave the way for efficient and scalable development 527

of multilingual LLMs capable of understanding 528

and following instructions across languages with 529

minimal multilingual supervision. 530
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7 Limitations531

Limitations of our work include the use of trans-532

lation for expanding datasets to multilingual set-533

tings, the number of languages we evaluated on,534

and number of models we experimented with. We535

now discuss each of them.536

Translated data One limitation of our work is537

that our data is translated using the Google Trans-538

late API, and not originally sourced by native539

speakers. Automatic translation is inherently im-540

perfect and may introduce noise to the tuning sets.541

However, translation also allows to for a controlled542

setup with parallel data, in which the content of all543

training and evaluation examples is the same for all544

languages.545

Number of languages A second limitation is546

that we use 12 languages in our main experiments547

(§3), with 3 additional languages in the language548

similarity experiment (§4.1). Clearly, multilingual549

instruction-following models need to successfully550

operate in many more languages, and we leave551

work on scaling this number to future work.552

Number of models Lastly, we experiment with553

PaLM 2, and results may vary with different LLMs.554

Nevertheless, our focus on PaLM 2 highlights the555

potential of multilingual pre-training for future ad-556

vancements in LLMs.557

References558

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-559
son, Dmitry Lepikhin, Alexandre Passos, Siamak560
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng561
Chen, Eric Chu, Jonathan H. Clark, Laurent El562
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-563
rav Mishra, Erica Moreira, Mark Omernick, Kevin564
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,565
Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez566
Abrego, Junwhan Ahn, Jacob Austin, Paul Barham,567
Jan Botha, James Bradbury, Siddhartha Brahma,568
Kevin Brooks, Michele Catasta, Yong Cheng, Colin569
Cherry, Christopher A. Choquette-Choo, Aakanksha570
Chowdhery, Clément Crepy, Shachi Dave, Mostafa571
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,572
Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu573
Feng, Vlad Fienber, Markus Freitag, Xavier Gar-574
cia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-575
Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua576
Howland, Andrea Hu, Jeffrey Hui, Jeremy Hur-577
witz, Michael Isard, Abe Ittycheriah, Matthew Jagiel-578
ski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun,579
Sneha Kudugunta, Chang Lan, Katherine Lee, Ben-580
jamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li,581
Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu,582

Frederick Liu, Marcello Maggioni, Aroma Mahendru, 583
Joshua Maynez, Vedant Misra, Maysam Moussalem, 584
Zachary Nado, John Nham, Eric Ni, Andrew Nys- 585
trom, Alicia Parrish, Marie Pellat, Martin Polacek, 586
Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif, 587
Bryan Richter, Parker Riley, Alex Castro Ros, Au- 588
rko Roy, Brennan Saeta, Rajkumar Samuel, Renee 589
Shelby, Ambrose Slone, Daniel Smilkov, David R. 590
So, Daniel Sohn, Simon Tokumine, Dasha Valter, 591
Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang, 592
Pidong Wang, Zirui Wang, Tao Wang, John Wiet- 593
ing, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting 594
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven 595
Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav 596
Petrov, and Yonghui Wu. 2023. Palm 2 technical 597
report. 598

Mikel Artetxe and Holger Schwenk. 2019. Mas- 599
sively multilingual sentence embeddings for zero- 600
shot cross-lingual transfer and beyond. Transactions 601
of the Association for Computational Linguistics, 602
7:597–610. 603

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda 604
Askell, Anna Chen, Nova DasSarma, Dawn Drain, 605
Stanislav Fort, Deep Ganguli, Tom Henighan, 606
Nicholas Joseph, Saurav Kadavath, Jackson Kernion, 607
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac 608
Hatfield-Dodds, Danny Hernandez, Tristan Hume, 609
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel 610
Nanda, Catherine Olsson, Dario Amodei, Tom 611
Brown, Jack Clark, Sam McCandlish, Chris Olah, 612
Ben Mann, and Jared Kaplan. 2022. Training a help- 613
ful and harmless assistant with reinforcement learn- 614
ing from human feedback. 615

Sébastien Bubeck, Varun Chandrasekaran, Ronen El- 616
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe- 617
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, 618
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, 619
and Yi Zhang. 2023. Sparks of artificial general in- 620
telligence: Early experiments with gpt-4. 621

Pinzhen Chen, Shaoxiong Ji, Nikolay Bogoychev, Barry 622
Haddow, and Kenneth Heafield. 2023. Monolingual 623
or multilingual instruction tuning: Which makes a 624
better alpaca. 625

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 626
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 627
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 628
Stoica, and Eric P. Xing. 2023. Vicuna: An open- 629
source chatbot impressing gpt-4 with 90%* chatgpt 630
quality. 631

Rochelle Choenni, Dan Garrette, and Ekaterina Shutova. 632
2023. How do languages influence each other? study- 633
ing cross-lingual data sharing during LM fine-tuning. 634
In Proceedings of the 2023 Conference on Empiri- 635
cal Methods in Natural Language Processing, pages 636
13244–13257, Singapore. Association for Computa- 637
tional Linguistics. 638

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, 639
Vishrav Chaudhary, Guillaume Wenzek, Francisco 640

9

http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2305.10403
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2309.08958
http://arxiv.org/abs/2309.08958
http://arxiv.org/abs/2309.08958
http://arxiv.org/abs/2309.08958
http://arxiv.org/abs/2309.08958
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://aclanthology.org/2023.emnlp-main.818
https://aclanthology.org/2023.emnlp-main.818
https://aclanthology.org/2023.emnlp-main.818


Guzmán, Edouard Grave, Myle Ott, Luke Zettle-641
moyer, and Veselin Stoyanov. 2020a. Unsupervised642
cross-lingual representation learning at scale. In Pro-643
ceedings of the 58th Annual Meeting of the Asso-644
ciation for Computational Linguistics, pages 8440–645
8451, Online. Association for Computational Lin-646
guistics.647

Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettle-648
moyer, and Veselin Stoyanov. 2020b. Emerging649
cross-lingual structure in pretrained language mod-650
els. In Proceedings of the 58th Annual Meeting of651
the Association for Computational Linguistics, pages652
6022–6034, Online. Association for Computational653
Linguistics.654

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and655
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-656
ing of quantized LLMs. In Thirty-seventh Confer-657
ence on Neural Information Processing Systems.658

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and659
Kristina Toutanova. 2019. BERT: Pre-training of660
deep bidirectional transformers for language under-661
standing. In Proceedings of the 2019 Conference of662
the North American Chapter of the Association for663
Computational Linguistics: Human Language Tech-664
nologies, Volume 1 (Long and Short Papers), pages665
4171–4186, Minneapolis, Minnesota. Association for666
Computational Linguistics.667

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,668
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy669
Liang, and Tatsunori B. Hashimoto. 2023. Alpaca-670
farm: A simulation framework for methods that learn671
from human feedback.672

Patrick Fernandes, Behrooz Ghorbani, Xavier Garcia,673
Markus Freitag, and Orhan Firat. 2023. Scaling laws674
for multilingual neural machine translation.675

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wal-676
lace, Pieter Abbeel, Sergey Levine, and Dawn Song.677
2023. Koala: A dialogue model for academic re-678
search. Blog post.679

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang680
Geng, Hao Liu, Pieter Abbeel, Sergey Levine, and681
Dawn Song. 2023. The false promise of imitating682
proprietary llms.683

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and684
Yejin Choi. 2020. The curious case of neural text de-685
generation. In International Conference on Learning686
Representations.687

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-688
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu689
Chen. 2022. LoRA: Low-rank adaptation of large690
language models. In International Conference on691
Learning Representations.692

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-693
ham Neubig, Orhan Firat, and Melvin Johnson.694

2020. XTREME: A massively multilingual multi- 695
task benchmark for evaluating cross-lingual gener- 696
alisation. In Proceedings of the 37th International 697
Conference on Machine Learning, volume 119 of 698
Proceedings of Machine Learning Research, pages 699
4411–4421. PMLR. 700

Karthikeyan K, Zihan Wang, Stephen Mayhew, and Dan 701
Roth. 2020. Cross-lingual ability of multilingual bert: 702
An empirical study. In International Conference on 703
Learning Representations. 704

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, 705
Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens, 706
Abdullah Barhoum, Nguyen Minh Duc, Oliver 707
Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri, 708
David Glushkov, Arnav Dantuluri, Andrew Maguire, 709
Christoph Schuhmann, Huu Nguyen, and Alexander 710
Mattick. 2023. Openassistant conversations – democ- 711
ratizing large language model alignment. 712

Viet Lai, Chien Nguyen, Nghia Ngo, Thuat Nguyen, 713
Franck Dernoncourt, Ryan Rossi, and Thien Nguyen. 714
2023. Okapi: Instruction-tuned large language mod- 715
els in multiple languages with reinforcement learning 716
from human feedback. In Proceedings of the 2023 717
Conference on Empirical Methods in Natural Lan- 718
guage Processing: System Demonstrations, pages 719
318–327, Singapore. Association for Computational 720
Linguistics. 721

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke 722
Zettlemoyer, Omer Levy, Jason Weston, and Mike 723
Lewis. 2023. Self-alignment with instruction back- 724
translation. 725

Chin-Yew Lin. 2004. ROUGE: A package for auto- 726
matic evaluation of summaries. In Text Summariza- 727
tion Branches Out, pages 74–81, Barcelona, Spain. 728
Association for Computational Linguistics. 729

Dan Malkin, Tomasz Limisiewicz, and Gabriel 730
Stanovsky. 2022. A balanced data approach for eval- 731
uating cross-lingual transfer: Mapping the linguistic 732
blood bank. In Proceedings of the 2022 Conference 733
of the North American Chapter of the Association for 734
Computational Linguistics: Human Language Tech- 735
nologies, pages 4903–4915, Seattle, United States. 736
Association for Computational Linguistics. 737

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and 738
Hannaneh Hajishirzi. 2022. Cross-task generaliza- 739
tion via natural language crowdsourcing instructions. 740
In Proceedings of the 60th Annual Meeting of the 741
Association for Computational Linguistics (Volume 742
1: Long Papers), pages 3470–3487, Dublin, Ireland. 743
Association for Computational Linguistics. 744

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, 745
Adam Roberts, Stella Biderman, Teven Le Scao, 746
M Saiful Bari, Sheng Shen, Zheng Xin Yong, Hai- 747
ley Schoelkopf, Xiangru Tang, Dragomir Radev, 748
Alham Fikri Aji, Khalid Almubarak, Samuel Al- 749
banie, Zaid Alyafeai, Albert Webson, Edward Raff, 750
and Colin Raffel. 2023. Crosslingual generaliza- 751
tion through multitask finetuning. In Proceedings 752

10

https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2302.09650
http://arxiv.org/abs/2302.09650
http://arxiv.org/abs/2302.09650
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
http://arxiv.org/abs/2305.15717
http://arxiv.org/abs/2305.15717
http://arxiv.org/abs/2305.15717
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://proceedings.mlr.press/v119/hu20b.html
https://openreview.net/forum?id=HJeT3yrtDr
https://openreview.net/forum?id=HJeT3yrtDr
https://openreview.net/forum?id=HJeT3yrtDr
http://arxiv.org/abs/2304.07327
http://arxiv.org/abs/2304.07327
http://arxiv.org/abs/2304.07327
https://doi.org/10.18653/v1/2023.emnlp-demo.28
https://doi.org/10.18653/v1/2023.emnlp-demo.28
https://doi.org/10.18653/v1/2023.emnlp-demo.28
https://doi.org/10.18653/v1/2023.emnlp-demo.28
https://doi.org/10.18653/v1/2023.emnlp-demo.28
http://arxiv.org/abs/2308.06259
http://arxiv.org/abs/2308.06259
http://arxiv.org/abs/2308.06259
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2022.naacl-main.361
https://doi.org/10.18653/v1/2022.naacl-main.361
https://doi.org/10.18653/v1/2022.naacl-main.361
https://doi.org/10.18653/v1/2022.naacl-main.361
https://doi.org/10.18653/v1/2022.naacl-main.361
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2023.acl-long.891


of the 61st Annual Meeting of the Association for753
Computational Linguistics (Volume 1: Long Papers),754
pages 15991–16111, Toronto, Canada. Association755
for Computational Linguistics.756

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,757
Carroll Wainwright, Pamela Mishkin, Chong Zhang,758
Sandhini Agarwal, Katarina Slama, Alex Ray, John759
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,760
Maddie Simens, Amanda Askell, Peter Welinder,761
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.762
Training language models to follow instructions with763
human feedback. In Advances in Neural Information764
Processing Systems, volume 35, pages 27730–27744.765
Curran Associates, Inc.766
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A Languages905

The languages we use, their language families,906

scripts ,and language codes are shown in Table 2.907

B Side-By-Side Evaluation908

Figure 9 shows the prompt given the the LLM judge909

for the side-by-side evaluation.910

C Training and Inference Details911

We now describe the hyperparameters we use in912

our experiments. We tune every model for 2,000913

steps, using a fixed learning rate of 1e-5, a batch914

size of 128, and a dropout rate of 0.05. We limit in-915

puts to 1,024 tokens and targets to 512 tokens. We916

sample a development set of 250 examples from ev-917

ery training set and select the checkpoint based on918

the development RougeL (Lin, 2004) score. Dur-919

ing inference, we generate responses of up to 512920

tokens using nucleus sampling (Holtzman et al.,921

2020) with p = 0.9 and temperature of 0.7. For the922

Language Code Family Script

Arabic ar Afro-Asiatic Arabic
Chinese zh Sino-Tibetan Chinese
Czech cs Indo-European Latin
English en Indo-European Latin
Estonian et Uralic Latin
Finnish fi Uralic Latin
Hebrew he Afro-Asiatic Hebrew
Hindi hi Indo-European Devanagari
Italian it Indo-European Latin
Russian ru Indo-European Cyrillic
Spanish es Indo-European Latin
Swahili sw Niger-Congo Latin

Table 2: Languages used in our main experiments.

Below is an instruction and two answers. Choose your
preferred answer, which can be subjective.

The instruction:
{instruction}

Answer1:
{response 1}

Answer2:
{response 2}

Which one is better, Answer1 or Answer2?
Only write a single digit as your answer, ’1’ for Answer1
or ’2’ for Answer2. Do not add any explanation.

Figure 9: Side-by-side evaluation prompt.

judge, we use greedy decoding to generate the ID 923

of the better response (1 or 2). 924

D Judge-Human Agreement 925

To measure PaLM 2-L agreement with human judg- 926

ments across language, we conduct a human anno- 927

tation process on four languages, English, Span- 928

ish, Russian, and Hebrew. For every language we 929

sample 50 instructions and let two native speak- 930

ers select the better response out of two options, 931

similarly to the task we assign the LLM judge (Fig- 932

ure 9). We always present the response by the 933

model that was monolingually tuned using the eval- 934

uation language, alongside a response by model 935

selected at random from the of the monolingually 936

tuned ones described in §3.1. The agreement score 937

on a single instruction is 1 if the LLM judge and 938

human agree, 0.5 if exactly one of them selects a 939

tie, and 0 if each selects a different response (Zhou 940

et al., 2023). Table 3 shows the results. Overall, the 941

LLM judge agreement with humans is strong for 942
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Language Human-Model Human-Human

English 79.5 85.0
Spanish 77.0 80.0
Russian 76.5 79.0
Hebrew 75.0 82.0

Table 3: Judges agreement scores per language.

all four languages, yet there is some room of 2.5-7943

points from inter human agreement in all languages.944

As expected, the models’ highest agreement with945

humans is in English with 79.5%,. In the rest of946

the languages the agreement is a few points lower.947

E Response Language948

When a user prompts a model in a specific lan-949

guage, they usually expect to receive a response in950

that same language. However, pre-trained LLMs951

often respond in a different language than the lan-952

guage of their prompt (Touvron et al., 2023a; Chen953

et al., 2023). This poses a challenge also for evalu-954

ation of open-ended queries, since those are com-955

monly evaluated with an LLM-as-a-judge (Zheng956

et al., 2023) protocol, and the judges often ignore957

whether the response language match the prompt958

language, even when instructed not to (Chen et al.,959

2023). Usually, this is handled by forcing the960

lowest score to such response (Chen et al., 2023),961

which does not account for all cases.8 To verify our962

trained models respond in the same language as963

their prompt, we manually annotate the language964

of responses to evaluation instructions in all lan-965

guages. For every language, we randomly sample966

20 responses from the pool of models tuned mono-967

lingually in other languages, to end up with a total968

of 240 generations from various models. We find969

that 239 responses are in the same language as the970

prompt, as desired. This is a major difference in the971

behavior of our PaLM 2-based instruction-tuned972

models and the commonly used (Chen et al., 2023)973

LLaMA-based ones (Touvron et al., 2023a,b). We974

hypothesize this stems from the multilingual em-975

phasis in the pre-training of PaLM 2, compared to976

the more English-centric LLaMA.977

F Comparison to The Base Model978

The scores of models of model instruction tuned979

monolingually compared to the pre-trained model980

8For example, a response in English to a prompt in French
can still be very helpful, or when the prompt is a request for
translation or code.

1 2 3 4 5 6

fi fi,en fi,en,ru fi,en,ru,it fi,en,ru,it,sw all six
sw sw,it sw,it,ar sw,it,ar,en sw,it,ar,en,fi all six
it it,fi it,fi,en it,fi,en,ar it,fi,en,ar,ru all six

Table 4: Subsets of languages used to tune models for
the experiment described in Section 3.4. Each cell repre-
sents a version of the training set, for which all examples
are uniformly split between the languages in that cell.

that was not instruction tuned, as opposed to our 981

main evaluation setup, are shown in Figure 10. As 982

evident, instruction tuning the model on each of the 983

languages separately unlocks instruction-following 984

abilities across all languages. 985

G Languages Permutations 986

We use 3 different permutations of 6 languages to 987

determine the order in which we add languages 988

to the tuning set in the experiment described Sec- 989

tion 3.4. The permutations are displayed in Table 4. 990
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Figure 10: Per language instruction-following comparisons of models instruction-tuned on monolingual data to the
pre-trained model that was not instruction tuned. Each row represents a model tuned using a different language, and
each column is an individual heatmap of the scores of all models on the same evaluation language. Scores are the
discounted-ties weighted average of the side-by-side scores against the pre-trained model.

14


