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Abstract

Federated learning (FL) is a distributed learning paradigm that facilitates training a global
machine learning model without collecting the raw data from distributed clients. Recent
advances in FL have addressed several considerations that are likely to transpire in realistic
settings such as data distribution heterogeneity among clients. However, most of the existing
works still consider clients’ data distributions to be static or conforming to a simple dynamic,
e.g., in participation rates of clients. In real FL applications, client data distributions
change over time, and the dynamics, i.e., the evolving pattern, can be highly non-trivial.
Further, evolution may take place from training to testing. In this paper, we address
dynamics in client data distributions and aim to train FL systems from time-evolving
clients that can generalize to future target data. Specifically, we propose two algorithms,
FedEvolve and FedEvp, which are able to capture the evolving patterns of the clients during
training and are test-robust under evolving distribution shifts. FedEvolve explicitly models
the temporal evolution by learning two distinct representation mappings that capture the
transition between consecutive data domains for each client. And FedEvp learns a single,
evolving-domain-invariant representation by aligning current data with prototypes that are
continuously updated from all previously seen domains. Through extensive experiments on
both synthetic and real data, we show the proposed algorithms can significantly outperform
the FL baselines across various network architectures.

1 Introduction

Federated learning (FL) is a widely used distributed learning framework where multiple clients, using their
local data, train machine learning models collaboratively, orchestrated by a server (McMahan et al., 2017;
Yang et al., 2019; Zhang et al., 2021). A problem that has been extensively studied in FL literature is learning
from heterogeneous clients, i.e., ensuring convergence of FL training and avoiding degradation of accuracy
when clients’ data are not identically and independently distributed (non i.i.d.) (Diao et al., 2021; Achituve
et al., 2021; Reisizadeh et al., 2020).

Although a variety of approaches such as robust FL (Reisizadeh et al., 2020) and personalized FL (Wang
et al., 2019) have been proposed to tackle the issue of data heterogeneity, most of them still assume that the
data distribution of each client is static and, in particular, remains fixed between training and testing. Some
recent works (Jiang & Lin, 2023; Gupta et al., 2022) move one step further by proposing test-robust FL
models when there exist distribution shifts between training and testing data. However, they only consider
one-step shift between training and testing while the training data distribution is still assumed to be static.
In practice, FL systems are trained and deployed in dynamic environments that may continually change
over time, e.g., satellite data evolves due to spatial environmental changes and seasonal variations, clinical
data evolve due to changes in disease prevalence and diverse across regions due to difference in hospital
infrastructure, and human language exhibits temporal and regional changes, etc. Existing FL algorithms
without considering such evolving distribution shifts may result in inaccurate models and show degradation
under evolving shifts, especially when there is a large magnitude of the shift, as shown in Figure 3.

In this paper, we will explore two questions:

• How can data stream with evolving distribution shifts impact FL systems (with or without client hetero-
geneity)?
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• How can we exploit the evolving patterns from training data (source domains) and deploy our model on
the unseen future distribution (target domain)?

The goal is to continuously train an FL model from distributed, time-evolving data that can generalize well
on future target data. Figure 1 shows one motivating example.

Note that although the problem of learning under evolving distribution shifts has been studied recently in the
centralized setting (typically known as evolving domain generalization), e.g., see Wang et al. (2022); Qin et al.
(2022); Pham et al. (2024), it remains unclear how evolving distribution shifts can impact FL training and
how to design FL algorithms when both evolving distribution shifts and data heterogeneity exist. The most
relevant line of research to ours is continual federated learning (CFL) (Yoon et al., 2021; Casado et al., 2022),
which aims to train an FL system continuously from a set of distributed time series. However, the primary
objective of these works is to stabilize the training process and tackle the issue of catastrophic forgetting (i.e.,
prevent forgetting the previously learned old knowledge as the model is updated on new data). This differs
from our work, where we aim to explicitly learn evolving patterns and leverage them to adapt the model on
future unseen data.

1920s 1950s 1980s 2010s
Source Domain Target Domain

Client 2

Client 1

Figure 1: Illustration of evolving distribution shifts and client heterogeneity: Consider an FL system trained
from distributed time-evolving photos (Ginosar et al., 2015) for gender classification. In this example, data
exhibits obvious evolving patterns (e.g., changes in facial expression and hairstyle, improvement in the quality
of images). Besides, clients are non-i.i.d and they have different class distributions. Our goal is to train an FL
model that captures the evolving pattern of source domains and generalizes it to the future target domain.

To answer the above two questions, we will examine the performance of existing FL methods on time-evolving
data, including a wide range of methods such as traditional FL methods, personalized FL methods, test-time
adaptation methods, domain generalization methods, and continual FL methods. We observe that existing
methods cannot capture evolving patterns and fail to generalize on future data. We then propose FedEvolve,
an FL algorithm that learns the evolving patterns of clients during the training process and can generalize to
future test data.

Specifically, FedEvolve learns the evolving pattern of source domains through representation learning. It
assumes there exists a mapping function for each client that captures the transition of any two consecutive
domains. To learn such transition, each client in FedEvolve learns two distinct representation mappings that
map the inputs of domains in two consecutive time steps to a representation/latent space. By minimizing the
distance between the distributions of these feature representations, FedEvolve captures the transition over
two consecutive steps.

Although FedEvolve shows superior performance in learning from evolving distribution shifts in empirical
experiments, the need for two distinct representation mappings brings double overhead during FL training.
To reduce the computation cost and communication overhead, we further develop FedEvp as a more efficient
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and versatile version of FedEvolve by updating one representation mapping when evolving distribution shifts
occur. Moreover, FedEvp better tackles heterogeneous data by incorporating the personalization strategy to
partially personalize the model on each client’s local data.

We illustrate via extensive experiments that our algorithms significantly outperform current benchmarks of
FL when the feature domain is evolving, on multiple datasets (Rotated MNIST/EMNIST, Circle, Portraits,
Caltran) using different models (MLP, CNN, ResNet). Our main contributions are:

• We identify the evolving distribution shift in FL that the current robust FL, personalized FL, and
test-robust FL frameworks have failed to consider.

• We propose FedEvolve to actively capture the evolving pattern from evolving source domains and generalize
to unseen target domains.

• We propose a more efficient and versatile version of algorithm FedEvp that learns domain-invariant
representation from evolving prototypes.

• We empirically study how FL systems are affected when both evolving shifts and local heterogeneity exist.
Experiments on multiple datasets show the superior performance of our methods compared to previous
benchmark models.

2 Related Work

We briefly review related previous works in this section.

Tackle client heterogeneity in FL. Many approaches have been proposed to tackling data heterogeneity
issues in FL and they can be roughly categorized into four classes. The first method is to add a regularization
term. For example, Li et al. (2020; 2021) proposed to steer the local models towards a global model by
adding a regularization term to guarantee convergence when the data distributions among different clients are
non-IID. The second method is clustering (Briggs et al., 2020; Ghosh et al., 2020; Sattler et al., 2020). By
aggregating clients with similar distribution into the same cluster, the clients within the same cluster have
lower statistical heterogeneity. Then, a cluster model that performs well for clients within this cluster can be
found to reduce the performance degradation of statistical heterogeneity. The third method is to mix models
or data. For example, Zhao et al. (2018) proposed a data-sharing mechanism where clients update models
according to both the local train data and a small amount of globally shared data. Wu et al. (2022); Shin
et al. (2020) developed mixup data augmentation techniques to let local devices decode the samples collected
from other clients. Mansour et al. (2020) find a mixture of the local and global models according to a certain
weight. The fourth method is robust FL. For instance, Reisizadeh et al. (2020); Deng et al. (2020b) obtain
robust Federated learning models by finding the best model for worst-case performance. Notably, Reisizadeh
et al. (2020) only considers the affine transformation of data distributions and Deng et al. (2020b) focuses on
varying weight combinations over local clients. In addition, different personalization methods are applied to
local clients, such as personalization (Wang et al., 2019; Yu et al., 2020; Arivazhagan et al., 2019; Huang
et al., 2023; Bao et al., 2023), representation learning (Arivazhagan et al., 2019; Collins et al., 2021; Chen &
Chao, 2022; Jiang & Lin, 2023), and meta-learning (Fallah et al., 2020).

FL with dynamic data distributions. While most previous works on statistical heterogeneity have
considered static situations (i.e., the local heterogeneity stays constant during training), another line of
literature focuses on FL in a dynamic environment where various distribution drifts occur. Some works aim
to tackle drifts caused by time-varying participation rates of clients with local heterogeneity (Rizk et al.,
2020; Park et al., 2021; Wang & Ji, 2022; Zhu et al., 2021), while other works assume the global distributions
are also evolving (Guo et al., 2021; Casado et al., 2022; Yoon et al., 2021). However, among all previous
works, Jiang & Lin (2023); Gupta et al. (2022) are the only ones considering the distribution shift between
training and testing, but they assume the training distribution itself is static.

Evolving domain generalization. Domain Generalization (DG) has been extensively studied to generalize
ML algorithms to unseen domains where different methods including data manipulation (Khirodkar et al.,
2019; Robey et al., 2021), representation learning (Blanchard et al., 2017; Deshmukh et al., 2019), and
domain adversarial learning (Rahman et al., 2020; Zhao et al., 2020). To go one step further, a few works
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have considered the evolving patterns of the domains (Hong Liu, 2020; Zhang & Davison, 2021; Kumar
et al., 2020; Wang et al., 2022; Qin et al., 2022; Pham et al., 2024), but only Wang et al. (2022); Qin et al.
(2022); Pham et al. (2024) consider Evolving Domain Generalization (EDG) where the target domain is
not accessible. Specifically, Wang et al. (2022) developed an algorithm to learn embeddings of the previous
domain and the current domain such that their representations are invariant. Qin et al. (2022) developed a
dynamic probabilistic framework to model the underlying latent variables across domains. Pham et al. (2024)
went beyond stationary dynamics to consider non-stationary evolving patterns across domains. Unlike these
works that do not require access to the target domain during training, Wang et al. (2020) considered the
evolving domain adaptation problem, where the unlabeled data from a target domain is available and the
goal is to use domain discriminators to learn domain-invariant features and adapt the model to target data.
Note that domain adaptation differs from domain generalization, as domain generalization imposes stricter
conditions by restricting access to the target domain during training, thereby making it a more challenging
setting. However, all these previous works consider the centralized setting. Thus, there is a gap for EDG
under distributed settings, and in particular for FL.

3 Problem Formulation

Consider a federated learning (FL) system consisting of K clients, whose data distributions vary dynamically
over time. For each local client k, Define {Sk1 , ..., SkM} as the distributions over X × Y for M consecutive
local domains with some evolving patterns. Let Dkm be the local dataset of client k ∈ {1, . . . ,K} at m-th
domain. The clients are heterogeneous and they may have access to different class labels. Given an FL model
with parameter h, let ℓ(x, y;h) be the corresponding loss evaluated on a labeled data sample (x, y). Our goal
is to learn an FL model h that can generalize on subsequent target domains {SkM+1}Kk=1. That is, we wish to
find h∗ that minimizes the total loss at the target domain SkM+1 over K clients:

h∗ = arg min
h∈Rd

K∑
k=1

αkLk(h) (1)

where αk is the weight of client k (e.g., the proportion of sample size), and Lk(h) := E(x,y)∼Sk
M+1

[ℓ(x, y;h)] is
the local loss of client k evaluated on target domain SkM+1.

4 Methodology

To learn an FL model from time-evolving data that generalizes well to the future domain, we need to learn the
evolving pattern of source domains during federated training. Motivated by (Wang et al., 2022; Snell et al.,
2017), we assume there is an evolving pattern that captures the transition between every two consecutive
domains Skm and Skm+1 for each client. Instead of learning evolving patterns directly in the input space, we
consider representation learning to learn the evolution in a representation space. Next, we introduce two
algorithms FedEvolve and FedEvp, which align data representation from evolving domains and facilitate
local personalization. Specifically, FedEvolve is designed to actively identify the evolving pattern between
two consecutive domains, while FedEvp first learns an evolving invariant representation across all existing
domains, then generalizes to the unknown evolving domain.

4.1 FedEvolve

Theoretical motivation. To actively capture the evolving patterns of source domains, FedEvolve learns
two distinct learnable representation functions fϕ, fψ1. Given two consecutive domains Skm and Skm+1:

• fϕ(Skm) is the estimated representation of subsequent domain Skm+1 using input Skm.
• fψ(Skm+1) is the representation of input domain Skm+1.

1Theoretically, we can also use one function f to demonstrate the evolving pattern directly in terms of the source domains.
However, using two representation mappings fϕ, fψ brings empirical benefits and makes it easier for the model to learn the
evolving patterns accurately in a latent representation space (Snell et al., 2017).
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Figure 2: Illustration of FedEvolve (left) and FedEvp (right): (i). FedEvolve consists of two distinct modules
ϕ and ψ, where ϕ calculates the prototypes for domain Sm, individually for each class, using mean values as
class representations. Then, ψ represents a data batch from the domain Sm+1. Both modules are updated
based on the distance between Sm+1 representations and Sm prototypes. During inference, ψ computes the
distance to the latest domain’s prototypes, then selects the minimal one as the prediction result. (ii). FedEvp
simplifies FedEvolve by removing ψ and integrating a classifier w with ϕ. This decreases the communication
cost during federated training. Instead of using localized prototypes from just Sm, FedEvp builds global
prototypes from domains S1 to Sm. These prototypes align with the representations of the succeeding domain
Sm+1, providing an integrated feature representation across diverse domains. By emphasizing consistent
feature representation, FedEvp ensures its classifier adeptly handles an unseen domain, making predictions
resilient and versatile across changing data contexts.

Since we define {Sk1 , · · · , SkM} as the data distributions in input space, fϕ(Skm), fψ(Skm) associated with each
domain Skm are the corresponding distributions in the representation space.

To measure the distance between two distributions, we adopt Jensen-Shannon divergence dJS. For each client k,
define {ψ∗

k, ϕ
∗
k} as the parameter pair that minimizes the average distance between representation distributions

generated from consecutive local domains, i.e., ψ∗
k, ϕ

∗
k

def= arg minψ,ϕ 1
M−1

∑M−1
m=1 dJS

(
fψk(Skm+1)∥fϕk(Skm)

)
.

The following theorem characterizes an upper bound of the prediction error at the target domains {SkM+1}Kk=1.
Theorem 4.1 (Upper bound of error at target domains). Let ĥ be a classifier operated on a representation
space, and denote Lfψ(Skm)

(
ĥ
)
, Lfϕ(Skm)

(
ĥ
)

as the expected losses of ĥ with respect to distributions fψ(Skm),
fϕ(Skm) in the corresponding representation space. Suppose the loss function ℓ is bounded and define its range
as G = max(ℓ)−min(ℓ). Then for any h, fψ, and fϕ, the following holds
K∑
k=1

αkLfψ(Sk
M+1)

(
ĥ
)

≤
K∑
k=1

αkLfϕ(Sk
M

)

(
ĥ
)

︸ ︷︷ ︸
Term 1

+ (2)

K∑
k=1

αk
G√

2(M − 1)

(
M−1∑
m=1

(√
dJS
(
fψ∗

k
(Skm+1)∥fϕ∗

k
(Skm)

)
︸ ︷︷ ︸

Term 2

+
(√

dJS
(
fψ(Skm+1)∥fψ∗

k
(Skm+1)

)
+
√

dJS
(
fϕ(Skm)∥fϕ∗

k
(Skm)

))︸ ︷︷ ︸
Term 3

+
∣∣∣√dJS

(
fψ(SkM+1)∥fϕ(SkM )

)
−
√

dJS
(
fψ(Skm+1)∥fϕ(Skm)

)∣∣∣︸ ︷︷ ︸
Term 4

))

The proof of Thm. 4.1 is motivated by Wang et al. (2022) and provided in Appendix B. Thm. 4.1 suggests
that the prediction error at unseen target domains can be bounded. Specifically, Term 1 in the upper bound
is the prediction error on estimated representations of the target domain. Term 2 measures the distance
between representations generated from consecutive domains and it also indicates stationarity of evolving
pattern of local source domains—for any given hypothesis classes of fϕ, fψ, it represents the extent to which
we can use one (ψ, ϕ) pair to capture the evolution across domains. Term 3 measures the client heterogeneity
in evolution patterns of the federated system. Term 4 represents whether the evolution pattern learned from
source domains Sk1 , · · · , SkM can be generalized to target domain SkM+1.
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Thm. 4.1 provides insights for algorithm design: to learn an FL model with small prediction error on future
target domains {SkM+1}Kk=1, we find ϕ, ψ, ĥ such that the upper bound in Thm. 4.1 is minimized. Specifically,
we aim to find a classification rule ĥ such that predictions on estimated representations fϕ(SkM ) are sufficiently
accurate (reducing Term 1). Meanwhile, the parameter pair (ϕ, ψ) should be close to the optimal parameters
(ϕ∗
k, ψ

∗
k) of local clients on average (reducing Term 3), where (ϕ∗

k, ψ
∗
k) should be learned from source domains

{Sk1 , · · · , Skm} such that representation fϕ∗
k
(Skm) is sufficiently close to fψ∗

k
(Skm+1) estimated from previous

domain Skm (reducing JS-distance in Term 2). Following this idea, we design FedEvolve as detailed below.

FedEvolve algorithm. Because fϕ estimates the representation of a domain using the previous domain,
we can use it to estimate unknown target domain SkM+1 from source domains {Sk1 , ..., SkM} for each client k.
Let ϕ, ψ be the trainable neural network parameters of fϕ, fψ, respectively. To learn the evolving pattern,
we aim to learn ϕ, ψ such that the estimated future domain representation fϕ(Skm) is sufficiently accurate
and close to the actual representation fψ(Skm+1), i.e., we need to minimize the distance between fϕ(Skm)
and fψ(Skm+1). Inspired by (Wang et al., 2022), to align the two representations while capturing the class
characteristics across evolving domains, we leverage prototypical learning (Snell et al., 2017) to directly align
their representation prototypes. Instead of directly optimizing on representation functions, we maintain
prototypes for each evolving domain to handle the representation shifts by learning the prototype differences.

Specifically, for each client k and domain Skm, we let the average of representations for each class y learned by
f
ϕ̃k

be the prototype Ckm,y, where ϕ̃k is the local parameter learned on client k, i.e.,

Ckm,y = 1
|Dkm,y|

∑
x∈Dk

m,y

f
ϕ̃k

(x) (3)

where Dkm,y ⊆ Dkm is a subset of data instances with label y, |Dkm,y| is the cardinality of this set. For the next
domain Skm+1, Instead of directly minimizing the JS-distance between representation distributions f

ψ̃k
(Skm+1)

and f
ϕ̃k

(Skm), FedEvolve achieves this by aligning the representations from f
ψ̃k

(Skm+1) to prototypes Ckm,y
computed from Skm. Mathematically, we minimize the loss defined below:

ℓ(x, y) = − log
exp

(
−d
(
f
ψ̃k

(x), Ckm,y
))

∑
y′∈YDk

m+1

exp
(
−d
(
f
ψ̃k

(x), Ckm,y′

)) (4)

where (x, y) is a sample pair from Dkm+1 and YDk
m+1

including all class labels in Dkm+1. d is a distance measure
(e.g. Euclidean distance, cosine distance) that quantifies the difference between feature representation f

ψ̃k
(x)

and the prototype Ckm,y of class y from the local dataset Dkm. In this paper, we employ Euclidean distance.

By minimizing equation 4 on all active clients, local models learn the evolving pattern by aligning representa-
tions of domain Skm+1 with prototypes from the former domain Skm. After local updates, active clients It
send local parameters to the server and the server performs an average aggregation to update the global
parameters ϕ = 1

|It|
∑
k∈It ϕ̃k, ψ = 1

|It|
∑
k∈It ψ̃k. This aggregation rule is chosen to reduce Term 3 in

Thm. 4.1 and the resulting aggregations encapsulate global information with diverse data contributions of all
clients. Once consolidated, these models can be directly dispatched to the clients and facilitate continuous
model generalizations to the evolving data distributions across the federated network.

After training on source domains, we can use the learned representation functions fϕ, fψ to predict the target
domains {SkM+1}Kk=1. Specifically, we first compute the prototypes of fϕ(SkM ) on SkM . Then, we apply fψ
to test samples in SkM+1 to generate representations fψ(SkM+1) and classify them based on proximity to
prototypes. We present the pseudocode of FedEvolve in Algorithm 3 in Appendix A and its simplified version
in Algorithm 1.
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Algorithm 1 FedEvolve (Simplified)
Require: Number of clients K, client ratio r, step size η, local steps τ , rounds T , source domains M , global

parameters ϕ, ψ, local datasets Dkm
1: for each round t = 1 to T do
2: Server selects rK clients and broadcasts ϕ, ψ
3: for each selected client k in parallel do
4: Initialize local models ϕ̃k ← ϕ, ψ̃k ← ψ
5: for τ local updates do
6: For domain pairs (m,m+ 1), sample episodic batches
7: Compute class prototypes from domain m using equation 3
8: Compute prototypical contrastive loss on domain m+ 1 using equation 4
9: Update ϕ̃k, ψ̃k using gradient descent

10: end for
11: Send updated parameters to server
12: end for
13: Server aggregates parameters to update ϕ and ψ
14: end for
15: Output: final global parameters ϕ, ψ

4.2 FedEvp

Because the two distinct representation functions fϕ and fψ in FedEvolve are usually large neural networks
(e.g., ResNet (He et al., 2016) for complex image datasets), there is a non-negligible additional overhead
to transmit extra parameters of the second representation function, rendering deployment challenges in
environments with limited computational resources or network bandwidth. To address the potential overhead,
we also present FedEvp, an efficient and streamlined strategy that achieves similar performance as FedEvolve.

Unlike the dual model mechanism of FedEvolve, FedEvp adopts a single-model strategy to reduce communica-
tion costs while simultaneously accelerating training. As shown in the right plot of Figure 2, FedEvp aims
to learn the evolving-domain-invariant representation using a representation function fϕ by continuously
aligning data to prototypes from previous domains. If we can develop a representation that is resilient to
evolving distributional shifts, a single classifier could effectively serve all domains. To further address local
heterogeneity, we also incorporate an efficient personalization step for the classifier.

To ensure a consistent learning process, FedEvp maintains evolving prototypes according to the classes of
consecutive domains. In essence, the prototypes learned by FedEvp consolidate the global information from
all previous domains to enable the learning of domain-invariant features. For each class y within client k, an
evolving prototype Ckm,y is continually updated as equation 5,

Ckm,y = (m− 1)
m

Ckm−1,y + 1
m

(
1

|Dkm,y|

) ∑
x∈Dk

m,y

f
ϕ̃k

(x) (5)

where Ck0,y is set to zero, Dkm,y is the set of all instances in the current domain m that belongs to class y,
and f

ϕ̃k
(xi) denotes the representation of instance xi under the client k’s local model parameters ϕ̃k. Such

an iterative update mechanism ensures that the prototype Ckm,y evolves as new domains are introduced,
gradually incorporating information from each one. As a result, CkM,y becomes a representative prototype of
class y across all available training domains for client k.

We then align the data from domain Skm+1 to the prototypes Ckm to update parameter ϕ̃k. We adopt the
same loss function as FedEvolve given in equation 6,
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ℓf (x, y) = − log
exp

(
−d
(
f
ϕ̃k

(x), Ckm,y
))

∑
y′∈YDk

m+1

exp
(
−d
(
f
ϕ̃k

(x), Ckm,y′

)) (6)

where d is the same distance metric as in FedEvolve, and d
(
f
ϕ̃k

(x), Ckm,y
)

measures the distance between
feature representation f

ϕ̃k
(x) of instance x and the prototype Ckm,y of class y, YDk

m+1
is the set of classes in

domain Skm+1.

Indeed, the above idea of continuously aligning data to an evolving prototype also comes with theoretical
support. Following Pham et al. (2023), we construct another upper bound of prediction error at the target
domain, as detailed in Lemma 4.2 below.

Lemma 4.2 (Upper bound of error at target domain SkM+1). Let ĥ be a classifier operated on a representation
space, and denote Lfϕk (Skm)

(
ĥ
)

as the expected loss of ĥ with respect to distribution fϕk(Skm). Suppose the

loss function ℓ is upper bounded by C. Then the following holds for any ĥ and fϕk :

Lfϕk (Sk
M+1)

(
ĥ
)
≤

M∑
m=1

Lfϕk (Skm)

(
ĥ
)

︸ ︷︷ ︸
Term 1

+
√

2C min
m∈[M ]

dJS(SkM+1∥Skm)︸ ︷︷ ︸
Term 2

+
√

2C max
m,n∈[M ]

dJS
(
fϕk(Skm)∥fϕk(Skn)

)
︸ ︷︷ ︸

Term 3

Lemma 4.2 provides an upper bound of prediction error at target domain SkM+1. Note that Term 2 in
the upper bound is fully determined by domains {Sk1 , · · · , SkM+1} and out of our control. To attain a small
error on target domain SkM+1, Lemma 4.2 suggests that we may learn ĥ, ϕk such that predictions on source
domains {Sk1 , · · · , SkM+1} are sufficiently accurate (reducing Term 1). Meanwhile, we need to learn ϕk to
minimize the maximum possible distance between representations generated from any two source domains
(reducing Term 3). As domains continuously evolve in a specific direction, a good representation function
ϕk that minimizes the maximum JS-distance in Term 3 is to align data from the current domain to the
average of all previous representations (i.e., evolving prototype in equation 5 is updated by averaging over all
previous domains).

Besides minimizing ℓf to learn evolving-domain-invariant representation, we introduce a classifier ĥ
w̃k

operated
in a representation space, where w̃k is parameter and is updated by minimizing empirical risk ℓe defined as:

ℓe(x, y) = −y log
exp

(
ĥy
w̃k

(
f
ϕ̃k

(x)
))

∑
y′∈YDkm

exp
(
ĥy

′

w̃k

(
f
ϕ̃k

(x)
)) (7)

where ĥy
w̃k

(
f
ϕ̃k

(x)
)

is the predicted outputs of the class y for instance (x, y) ∈ Dkm,y, computed by the

classifier ĥ
w̃k

. In our experiments, ℓe is the classical cross-entropy loss.

After local updates, FedEvp aggregates the local parameters of active clients It at the server ϕ =
1

|It|
∑
k∈It ϕ̃k, w = 1

|It|
∑
k∈It w̃k. These aggregated global models are then sent back to clients for fu-

ture updates. As FedEvp relies on the classifier using evolving domain invariant features instead of directly
using the difference between two consecutive domain representations, the prediction may be influenced by the
client’s heterogeneity. To handle the issue raised by local heterogeneity, a personalization mechanism, akin
to local fine-tuning, is further incorporated. Specifically, we personalize each client by updating both the
classifier w and the last layer of the feature extractor fϕ for an additional epoch on the client’s local dataset.
The pseudocode of FedEvp is given in Algorithm 4 in Appendix A and its simplified version is in Algorithm 2..
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Algorithm 2 FedEvp (Simplified)
Require: Number of clients K, client ratio r, step size η, local steps τ , rounds T , source domains M , global

parameters ϕ, w, local datasets Dkm
1: for each round t = 1 to T do
2: Server selects rK clients and broadcasts ϕ, w
3: for each selected client k in parallel do
4: Initialize local models ϕ̃k ← ϕ, w̃k ← w
5: for τ local updates do
6: for each domain m do
7: Incrementally update evolving prototypes across domains as equation 5
8: Compute evolving alignment loss on domain m and pass evolving prototypes using equation 6
9: Update ϕ̃k, w̃k using gradient descent with cross-entropy loss and alignment loss

10: end for
11: end for
12: Send updated parameters to server
13: end for
14: Server aggregates parameters to update ϕ and w
15: end for
16: Server Output: global model ϕ, w
17: for each client k do
18: Client Output: personalized model via fine-tuning on Dk
19: end for

5 Experiments

To evaluate our methods, we consider classification tasks using various network architectures and report
the average accuracy and standard deviation over three runs. The detailed implementation can be found in
Appendix D. The Dirichlet distribution (Yurochkin et al., 2019; Mendieta et al., 2022) is used to control
the level of heterogeneity with parameter Dir ∈ [0,∞). The smaller Dir implies that the clients are more
heterogeneous. Heterogeneous clients may have access to different class labels. We report the average
performance across clients and the performance on the server. Both are evaluated on the test domain after
the last epoch. The federated training phase follows typical FL steps. In each communication round t, a
subset It of K clients join the system and the server distributes aggregated global model parameters to client
k ∈ It. Upon receiving these parameters, each client k initializes its local parameters to those and performs
τ local updates. We follow the same setting as Jiang & Lin (2023) to use 20 clients in experiments. For
datasets with a limited number of samples, we reduce the number of clients to 10. Details can be found in
the dataset introduction in Appendix D.

5.1 Datasets and Networks

We evaluate FedEvolve and FedEvp on both synthetic data (Circle) and real data (Rotated MNIST,
Rotated EMNIST, Portraits, and Caltran). All datasets either come with evolving patterns or are adapted
to evolving environments. For all datasets, the last domain is viewed as the target domain. The feature
extractor in the neural network is viewed as ϕ and ψ, and the classifier is w mentioned in the previous section.

Circle (Pesaranghader & Viktor, 2016). This synthetic data has 30 evolving domains. 30000 instances
within these domains are sampled from 30 two-dimensional Gaussian distributions, with the same variance
but different means that are uniformly distributed on a half-circle. We use a 5-layer multilayer perception
(MLP) with 3 layers serving as a representation function (fϕ and fψ in FedEvolve, fϕ in FedEvp) and the
remaining 2 layers as a classifier (fw in FedEvp).

Rotated MNIST (Ghifary et al., 2015) and Rotated EMNIST (Cohen et al., 2017). The Rotated
MNIST is a variation of the MNIST data, where we rotate the original handwritten digit images to produce
different domains. Specifically, we partition the data into 12 domains and rotate the images within each
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domain by an angle θ, beginning at θ = 0◦ and progressing in 15-degree increments up to θ = 165◦. We also
consider other increments spanning from 0◦ to 25◦ to simulate varying degrees of evolving shifts. EMNIST is
a more challenging alternative to MNIST with more classes including both hand-written digits and letters.
We use the hand-written letters subset and split it into 12 domains by rotating images with a degree of
θ = {0◦, 8◦, ..., 88◦}. We design a model consisting of a 4-layer convolutional neural network (CNN) for
representation layers, followed by two linear layers for classification.

Portraits (Ginosar et al., 2015). It is a real dataset consisting of frontal-facing American high school
yearbook photos over a century. This time-evolving dataset reflects the changes in fashion (e.g., high style
and smile). We resize images to 32 × 32 and split the dataset by every 12 years into 9 domains. We use
WideResNet (Zagoruyko & Komodakis, 2016) as the representation function to train the gender classifier.
Note that the data is only intended to compare various methods.

Caltran (Hoffman et al., 2014). This real surveillance dataset comprises images captured by a fixed
traffic camera. We divide the dataset into 12 domains where the samples from every 2-hour block form a
domain (evolving shifts arising from changes in light intensity). ResNet18 (He et al., 2016) backbone is used
as the representation function and the last linear layer is used as the classifier.

5.2 Baselines

We compare FedEvolve and FedEvp with various existing FL methods. These baselines cover a broad range of
methods including regular FL methods, methods with personalization (PFL) or test-time adaptation (TTA)
mechanisms, and methods designed for distribution shifts across domains or sequential tasks e.g. domain
generalization methods. Note that this paper focuses on a domain generalization setting rather than domain
adaptation. Therefore, domain adaptation methods are not included as baselines.
• FedAvg (McMahan et al., 2017): A FL method that learns the global model by averaging the client’s local

model.

• GMA (Tenison et al., 2022): A FL method using gradient masked averaging approach to aggregate local
models.

• FedAvg + FT : Fine-tunes the global model on local training data, an effective strategy for personalization
in FL.

• MEMO (Zhang et al., 2022): A TTA method and we adapt it to FL. Following (Jiang & Lin, 2023), we
term MEMO applied to the global model as MEMO(G) and to the FedAvg + FT model as MEMO(P).

• APFL (Deng et al., 2020a): A PFL method that leverages a weighted ensemble of personalized and global
models.

• FedRep (Collins et al., 2021) and FedRoD (Chen & Chao, 2022): PFL methods that use a decoupled
feature extractor and classifier to enhance personalization in FL.

• Ditto (Li et al., 2021): A fairness-aware PFL method that has been shown to outperform other fairness
FL methods.

• T3A (Iwasawa & Matsuo, 2021): A TTA method that is adapted to personalized FL by adding test-time
adaptation to FedAvg + FT.

• FedTHE (Jiang & Lin, 2023): A TTA PFL method that tackles the data heterogeneity issue while learning
test-time robust FL under distribution shifts.

• Flute (Liu et al., 2024): Flute is a PFL method that facilitates the distillation of the subspace spanned by
the global optimal representation from the misaligned local representations.

• FedSR (Nguyen et al., 2022): A TTA FL method using the regular domain generalization method.

• CFL (Guo et al., 2021): A continual federated learning method that learns from time-series data without
forgetting old tasks..

• CFeD (Ma et al., 2022): It uses distillation to learn from sequential tasks in continual federated learning.
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Table 1: Average accuracy over three runs of experiments on rotated MNIST under i.i.d and non-i.i.d
distribution. The client heterogeneity(Dir) is determined by the value of Dirichlet distribution.

Dir→∞ Dir=1.0 Dir=0.1
Method Client Server Client Server Client Server
FedAvg 65.92±1.01 66.34±0.34 62.35±0.97 63.16±1.78 51.68±0.73 51.59±2.48
GMA 65.94±0.91 66.17±0.21 61.49±0.30 61.68±0.66 50.86±1.15 51.32±2.47
Memo(G) 65.94±1.34 66.78±2.30 61.39±0.94 62.91±2.55 49.76±5.58 52.06±1.23
FedAvgFT 48.70±1.03 66.61±0.59 57.95±2.91 62.61±1.02 69.51±1.97 51.59±1.70
APFL 62.37±1.08 65.57±1.54 67.58±1.09 63.98±2.31 70.37±2.19 50.66±0.47
FedRep 60.04±1.00 68.09±3.10 63.95±0.75 63.49±2.62 76.35±1.67 52.25±1.75
Ditto 65.23±0.87 65.35±1.50 68.14±0.92 64.64±1.45 75.55±2.56 50.89±2.79
FedRod 52.30±1.87 67.93±1.05 54.00±3.98 63.32±2.33 64.11±3.68 53.02±1.22
Memo(P) 51.70±2.48 65.35±1.47 59.84±0.61 64.75±1.59 69.46±2.77 50.27±2.85
T3A 53.94±0.76 66.61±0.59 61.60±2.49 62.61±1.02 71.73±1.63 51.59±1.70
FedTHE 66.84±1.51 67.43±0.23 67.98±0.43 62.55±1.98 78.52±3.92 53.40±0.74
Flute 62.97±1.39 63.27±1.13 68.86±0.75 61.46±0.16 78.44±3.54 54.71±3.28
FedSR 69.91±1.14 71.79±1.75 67.00±1.23 68.01±2.65 61.49±2.60 59.88±3.54
CFL 63.75±0.98 64.33±2.17 60.29±1.85 60.82±1.97 50.76±1.41 51.04±2.49
CFeD 70.22±0.63 71.66±0.66 68.07±0.72 68.64±1.38 60.41±2.33 61.27±2.93
FedEvolve 84.75 ±1.39 84.43±1.21 79.93±1.00 77.25±1.82 83.86±1.81 71.66±1.95
FedEvp 75.99±0.31 77.63±1.99 77.91±1.80 73.85±1.53 83.15±0.49 61.84±3.34

Table 2: Average accuracy over three runs of experiments on rotated EMNIST-Letter under i.i.d and non-i.i.d
distribution.

Dir→∞ Dir=1.0 Dir=0.1
Method Client Server Client Server Client Server
FedAvg 53.83±1.84 54.18±1.72 52.72±4.45 52.77±3.74 46.72±2.55 45.71±1.77
GMA 54.23±1.77 55.10±1.71 51.23±1.93 51.42±0.79 48.40±1.75 48.61±2.13
Memo(G) 53.32±1.38 53.85±0.72 50.33±2.06 50.37±1.10 47.53±2.09 47.20±1.86
FedAvgFT 44.20±2.54 54.09±1.30 52.16±4.62 53.82±2.13 66.96±0.68 46.87±0.60
APFL 44.98±1.57 54.33±1.12 49.84±1.48 50.99±0.62 66.80±0.37 46.42±2.58
FedRep 39.01±2.03 46.39±2.49 47.26±2.64 47.25±0.93 67.51±1.35 44.12±0.46
Ditto 42.38±1.77 53.90±1.20 53.80±1.89 56.22±1.58 72.66±0.61 55.48±1.94
FedRod 44.25±1.60 51.79±2.77 49.53±0.81 50.32±2.61 67.31±2.03 45.74±3.99
Memo(P) 45.42±2.39 53.47±1.33 51.23±4.94 51.10±1.10 68.37±1.48 47.73±2.26
T3A 48.80±2.84 54.49±0.46 55.93±2.28 53.29±1.12 71.80±1.95 52.08±2.84
FedTHE 52.40±3.87 53.27±3.60 58.08±1.44 53.45±1.87 69.34±2.10 46.15±2.17
Flute 48.89±3.04 51.52±4.63 55.10±3.88 46.71 ±2.73 64.99±3.35 40.27±3.01
FedSR 55.71±0.09 56.92±0.44 51.40±4.65 55.35±3.93 44.38±2.30 49.43±2.48
CFL 40.65±2.19 41.41±1.86 45.82±2.34 46.13±1.01 40.24±3.50 39.37±4.29
CFeD 56.76±0.65 56.17±1.39 55.50±4.33 55.53±5.73 47.20±1.37 47.76±2.22
FedEvolve 83.58±1.45 82.91±1.36 82.13±0.48 78.68±0.25 87.67±0.55 72.85±1.03
FedEvp 67.30±1.35 71.94±1.50 73.61±1.70 68.91±0.30 87.01±0.22 58.73±0.96

Table 3: Average accuracy across various datasets over three runs. We consider the i.i.d setting that Dir→∞.

Circle Portraits Caltran
Client Server Client Server Client Server

FedAvg 70.40±6.51 70.40±6.51 94.10±0.13 94.10±0.13 62.93±2.10 64.31±2.13
GMA 62.55±6.94 62.55±6.94 94.18±0.14 94.18±0.14 63.28±3.48 63.85±3.49
Memo(G) - - 94.38±0.07 94.63±0.31 63.41±2.81 63.82±2.92
FedAvgFT 60.85±3.07 63.55±5.67 90.99±0.74 93.21±1.86 63.82±0.70 63.98±3.22
APFL 59.90±2.48 63.55±5.67 90.54±0.29 94.64±0.16 62.11±1.85 63.17±3.29
FedRep 64.37±5.60 64.97±6.05 90.88±0.63 93.50±1.15 62.03±3.05 64.07±2.41
Ditto 62.60±2.64 63.10±6.00 91.46±0.13 94.07±0.30 62.44±2.59 63.58±3.43
FedRod 64.60±2.33 65.00±6.55 91.57±0.18 94.78±0.43 64.14±3.94 58.29±4.75
Memo(P) - - 91.30±0.16 94.34±0.28 63.66±2.93 63.58±3.43
T3A 62.20±4.11 66.50±4.95 91.84±0.61 94.59±0.34 63.90±0.60 63.98±3.22
FedTHE 64.03±4.79 63.27±5.05 94.13±0.24 93.48±0.98 60.48±1.44 58.17±3.18
Flute 65.69±3.81 63.04±3.31 94.25±0.10 94.53±0.18 61.71±2.19 61.46±3.70
FedSR 72.77±3.38 71.62±5.70 94.43±0.35 94.52±0.35 64.57±1.36 66.02±1.47
CFL 72.12±8.76 72.12±8.76 92.91±1.07 92.91±1.07 63.68±3.61 63.92±3.15
CFeD 71.60±6.77 71.60±6.77 93.64±0.27 93.64±0.27 63.48±3.87 63.55±3.27
FedEvolve 84.25±2.45 81.64±1.95 95.43±0.17 96.88±1.35 65.04±1.66 63.54±0.74
FedEvp 73.30±5.02 74.12±6.93 93.54±0.19 94.92 ±0.11 66.59±1.44 66.34±0.69
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Table 4: Accuracy of baselines across various datasets over three runs (Dir=1.0).

Circle Portraits Caltran
Client Server Client Server Client Server

FedAvg 66.53±4.74 66.53±4.74 94.37±0.86 94.37±0.86 66.34±2.41 65.12±4.87
GMA 65.93±6.01 65.93±6.01 93.75±0.68 93.75±0.68 65.12±1.95 63.05±4.51
Memo(G) - - 93.81±0.45 93.81±0.45 66.20±2.07 65.54±0.73
FedAvgFT 65.97±1.49 66.93±3.30 92.54±0.65 94.56±0.43 65.12±2.84 65.56±3.61
APFL 64.23±0.80 66.93±3.30 92.16±0.42 94.47±0.38 70.49±3.70 65.41±3.84
FedRep 66.87±4.91 69.07±5.42 92.50±0.65 94.19±0.56 65.27±1.86 65.90±3.39
Ditto 69.05±4.41 64.50±5.09 91.86±0.87 94.93±0.32 65.45±3.43 65.61±4.52
FedRod 63.70±1.96 77.20±4.98 92.64±0.58 95.26±0.31 73.27±3.35 64.88±4.03
Memo(P) - - 92.94±0.65 94.48±0.32 64.88±3.13 62.24±3.97
T3A 69.80±1.60 69.10±1.50 91.93±0.50 94.20±0.34 67.24±2.01 65.61±4.52
FedTHE 70.30±5.83 74.97±3.90 91.77±0.85 94.53±0.32 71.80±3.07 62.02±4.22
Flute 70.33±4.31 67.04±3.66 94.16±0.69 94.59±0.38 71.61±1.61 63.46±1.58
FedSR 73.88±3.10 72.08±4.85 93.99±0.79 94.22±0.77 62.99±2.11 68.35±0.53
CFL 70.82±5.43 70.82±5.43 93.84±0.30 93.84±0.30 64.50±3.17 65.28±3.50
CFeD 68.37±8.22 68.38±8.22 93.22±3.21 94.77±0.92 65.30±2.92 67.18±2.91
FedEvolve 82.52±1.94 83.59±5.91 93.84±1.62 96.54±1.39 75.04±4.03 64.06±3.83
FedEvp 74.80±1.69 77.93±4.20 94.50±0.28 93.91±2.19 73.46±0.90 68.24±1.08
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Figure 3: Performance comparison of various methods across different rotation angles on RMNIST for distinct
distributions.

5.3 Results

In Figure 3, we examine how the algorithm performance changes as the degree of evolving shifts varies.
Tables 14, 2 and 3 show the comparison with baselines, where we report both the averaged performance of
clients’ local models and the performance of the global model at the server. We also extend the experiments
in Table 3 to the setting when clients are heterogeneous (Dir = 1.0) and present the results in Table 4.

Impacts of distribution shifts and local heterogeneity. First, we examine the impact of distribution
shifts and client heterogeneity on FL systems. Figure 3 presents the results on RMNIST data under clients
with varying degrees of local heterogeneity (Dir = ∞, 1.0, 0.1). Each sub-figure shows how performance
changes as the extent of distribution shift changes from no distribution shift (0◦ incremental angle) to high
distribution shift (25◦ incremental angle):

• In the absence of significant distribution shifts (e.g. rotation incremental angle 0◦, 3◦, or 5◦), Figure
3a shows that, when there is no client heterogeneity, our methods have similar performance as the
traditional FL methods. The learning task reduces to the standard FL task, and the classical FL methods
maintain competitive performance. As clients become more heterogeneous, Figures 3b and 3c show
that all methods experience performance degradation. Importantly, we observe a widening gap between
client-side (personalized) and server-side (generalized) performance as heterogeneity increases. This is
especially pronounced in Figure 3c where Dir = 0.1, highlighting the value of personalization under extreme
heterogeneity. While FedEvolve’s server-side accuracy drops slightly below FedAvg, its client-side model
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retains competitive performance, and FedEvp shows consistently robust results across both views. This
increasing gap indicates that personalized models benefit more from local adaptation when clients become
highly non-iid, whereas server aggregation struggles to reconcile the diverging local objectives as we also
find in Table 4.

• When the rotation increments increase, FedAvg experiences a significant performance drop (e.g., nearly
12% decrease when the incremental angle increases for 5 degrees, see Figure 3a). Such impacts are more
significant than the performance drop caused by client heterogeneity, indicating the challenge of evolving
shifts. However, our methods are still robust against such shifts and significantly better than baselines.
When both strong local heterogeneity and distribution shifts are present (Figure 3c), both the baselines and
ours experience a performance drop while ours exhibit a relatively slower decline. Additionally, the client-
server performance gap grows under these settings, further validating the importance of personalization.
Notably, the superior client-side performance of FedEvp under these compounded challenges further
validates the effectiveness of the personalization mechanism of FedEvp.

Comparison with Baselines. We conduct extensive experiments on five datasets with different levels of
client heterogeneity. Table 14 and 2 and the results of Circle data in Table 3 compare different methods in
scenarios with strong evolving patterns. We observe that both FedEvolve and FedEvp outperform the baseline
methods. In particular, FedEvolve attains the highest accuracy (84.75%, 83.58%, and 84.25% on RMNIST,
REMNIST, and Circle respectively), demonstrating its capability to learn from the evolving pattern and
effectively address the distribution shifts. This advantage also shows on other datasets (Portraits and Caltran)
in Table 3 with less obvious evolving patterns.

For PFL or TTA baselines tuned on local source domains, without client heterogeneity (Dir → ∞), the
performance may deteriorate compared to classical FL such as FedAvg. Specifically, methods such as
FedAvgFT, APFL, and FedRep may experience a drop in client performance compared to the server on certain
datasets. These methods originally designed to tackle client heterogeneity without learning evolving patterns
suffer performance degradation; this further highlights the importance of considering evolving distribution
shifts in FL systems. Nonetheless, when clients are heterogeneous (Dir is 1.0 or 0.1 in Table 14 and 2), their
personalization or test-time adaptation can still be beneficial. Methods designed for addressing domain shifts
or task shifts like FedSR, CFL, and CFeD tend to achieve better results than other baselines, indicating
their capability to mitigate the influence of evolving distribution shifts. However, the gap between their
performance and that of ours still emphasizes the need for a specific design to solve the problem.

Among all methods, our proposed FedEvolve and FedEvp show the best performance and are robust to both
client heterogeneity and evolving shifts. FedEvp achieves comparable performance with FedEvolve but only
uses half numbers of parameters as FedEvolve. Specifically, when Dir = 0.1, FedEvolve achieves accuracy of
83.86% and 87.67% on RMNIST and REMNIST, while FedEvp achieves similar accuracy of 83.15% and
87.01%. Thus, a careful design of personalization can prevent the unintended consequence of performance
degradation.

Impact of varying the number of domains. Specifically, we conduct experiments under the same settings
as shown in Table 5, while controlling for the number of source domains and test prediction performance for
the target domain. Our methods are compared to FedAvg using reduced numbers of domains: 7 domains
(rotation starting at 75◦ and increasing to 165◦), 10 domains (rotation starting at 30◦ and increasing to 165◦),
and 12 domains (rotation starting at 0◦ and increasing to 165◦).

As the number of domains increases, FedAvg shows significant performance degradation across all heterogeneity
settings. This indicates regular methods’ vulnerability to evolving distributional shifts. Both FedEvolve and
FedEvp display robustness against increasing domain numbers and maintaining or improving performance. In
particular, FedEvolve can fully learn the transition of two consecutive domains by incorporating more source
domains. However, FedEvp remains less sensitive to domain transitions, performing consistently well across
different settings. The robustness of our methods contrasts sharply with the performance drop observed in
FedAvg, highlighting the importance of handling distribution variability in FL. In addition, we study the
impact of the unexpected changing pattern on the target domain.
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Table 5: Performance under different number of domains.

RMNIST(Dir→∞) 7 10 12
FedAvg 74.92 ± 1.08 70.07 ± 1.48 65.92 ± 1.01

FedEvolve 78.24 ± 1.18 82.44 ± 1.40 84.57 ± 2.45
FedEvp 80.20 ± 2.09 74.17 ± 1.15 75.99 ± 0.31

RMNIST(Dir=1.0) 7 10 12
FedAvg 71.44 ± 1.21 65.40 ± 0.58 62.35 ± 0.97

FedEvolve 75.07 ± 2.42 80.81 ± 2.33 79.93 ± 1.00
FedEvp 80.19 ± 1.26 78.99 ± 0.82 77.91 ± 1.80

RMNIST(Dir=0.1) 7 10 12
FedAvg 61.18 ± 0.91 54.83 ± 1.24 51.68 ± 0.73

FedEvolve 78.56 ± 1.69 83.44 ± 2.25 83.86 ± 1.81
FedEvp 78.16 ± 4.26 83.92 ± 1.59 82.12 ± 1.84

Impact of Straggler. Stragglers in FL systems introduce heterogeneity at the system level; therefore, we
also study how our methods could be resilient to the straggler problem. We report the results in Table 6
when stragglers are present during the training phase. The results show our methods are not significantly
affected by stragglers. In this experiment, the straggler ratio represents the probability that a client will
train fewer local iterations than the specified number τ . For stragglers, the actual number of local iterations
is randomly selected, ranging from 1 to τ .

Table 6: Performance under different straggler ratio.

RMNIST(Dir=1.0) 0 0.1 0.3 0.5 0.7 0.9
FedEvolve 79.93±1.00 78.56±4.17 77.50±4.87 77.42±3.45 75.88±2.58 71.87±0.98

FedEvp 77.91±1.80 77.79±1.69 77.11±0.83 77.00±1.14 76.91±0.84 76.60±1.54

Overhead Comparison. Table 7 compares transmission overhead. We use an CNN as an example to
report the number of parameters and server-client transmission time in the MPI environment. Although
FedEvolve has the higher transmission overhead, its cost-efficient version FedEvp has comparable overhead as
the baselines. Here we also provide learning-curve plots and wall-clock time per round for FedEvolve and
FedEvp in Figure 4.

Table 7: The number of model parameters and transmission time.

FedRod FedTHE FedSR FedEvolve(Ours) FedEvp (Ours) Others
Parameters 382106 382208 391937 741120 379392 379392
Time/ms 21.38± 0.45 21.95± 1.23 21.62± 0.87 46.32± 0.78 21.30± 0.86 21.26± 1.11

Ablation study. We also study the influence of personalization mechanisms of FedEvp on the performance
in Table 8. The results show personalizing part of the feature extractor and classifier can achieve the best
results. We also notice that personalizing the classifier brings the most significant improvement which means
the classifier is most sensitive to the client heterogeneity with evolving distribution shifts.

Discussion. The empirical evidence suggests that conventional FL algorithms cannot simultaneously
handle the evolving distributional shifts and clients heterogeneity. In addition, evolving distributional shifts
could be viewed as a specific form of data heterogeneity affecting client devices. Present personalization
strategies, designed for data heterogeneity, fail in adapting models to unseen distributions. Simply tuning
clients on known domains without considering shifts between training data and test data, these methods may
inadvertently increase the model’s bias towards training data resulting in performance that is sometimes
inferior to that of non-personalized algorithms. While continual FL frameworks take account of dynamic
distributional shifts during training, they primarily concentrate on preventing catastrophic forgetting of
prior tasks or domains rather than adapting to new, unseen ones. This focus makes them inadequate for
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Figure 4: Learning curves on RMNIST (left) and REMNIST (right) datasets under dir = 1.0.

Table 8: Ablation for FedEvp (Dir=0.1). We compare the average accuracy on clients for FedEvp with three
versions: one without any personalization, another that personalizes only the classifier, and a third that
personalizes all parameters.

Method RMNIST Acc REMNIST Acc
FedEvp 83.15±0.49 87.01±0.22
FedEvp w/o personalization 63.59±2.38 57.67±1.64
FedEvp personalize C 79.21±2.29 86.59±0.35
FedEvp personalize all 73.06±1.07 82.78±0.54

managing evolving distributional shifts effectively. However, when the distribution of a target domain is
predictable based on existing data, our methods explicitly leverage and learn the pattern of distribution
transitions, enabling the extrapolation of the model to the target domain. Therefore, our methods mitigate
the performance drop and achieve the best results.

6 Conclusions

This paper studies FL under evolving distribution shifts. We explored the impacts of evolving shifts and
client heterogeneity on FL systems and proposed two algorithms: FedEvolve that precisely captures the
evolving patterns of two consecutive domains, and FedEvp that learns a domain-invariant representation
for all domains with the aid of personalization. Extensive experiments show both algorithms have superior
performance compared to SOTA methods.
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nocturnal? federated learning of multi-branch networks from periodically shifting distributions. In
International Conference on Learning Representations, 2021.

19

https://www.sciencedirect.com/science/article/pii/S0950705121000381
https://arxiv.org/abs/1806.00582


Under review as submission to TMLR

A Algorithm

We present the pseudo-code for FedEvolve and FedEvp in Alg.3 and Alg.4. We randomly sample a subset of
data from the dataset to train the model for each update instead of the whole dataset.

Algorithm 3 FedEvolve
Require: Number of clients K; client participation ratio r; step size η; the number of local training updates

τ ; communication rounds T ; the number of source domains M ; initial global parameter ϕ and global
parameter ψ for representation function f ; distance metric d; local datasets Dkm and their known classes
YDk

m
for m ∈ {1, . . . ,M}, k ∈ {1, . . . ,K}.

1: for t ∈ {1, . . . , T} do
2: server samples rK clients as It from all clients
3: server sends ϕ, ψ to It
4: for each client k ∈ It in parallel do
5: client k initialize ϕ̃k := ϕ, ψ̃k := ψ
6: for τ local training iterations do
7: for m ∈ {1, . . . ,M − 1} do
8: A ← RandomSample(Dkm)
9: B ← RandomSample(Dkm+1)

10: for y ∈ YDk
m

do
11: Ay ← {(xi, yi) ∈ A|yi = y}
12: Ckm,y = 1

|Ay|
∑

(xi,yi)∈Ay
f
ϕ̃k

(xi)
13: end for
14: ℓ = 0
15: for (x, y) ∈ B do

16: ℓ = ℓ− 1
|B| [log

exp
(

−d
(
f
ψ̃k

(x),Ckm,y

))
∑

y′∈Y
Dkm

exp
(

−d
(
f
ψ̃k

(x),Ck
m,y′

))
)
]

17: end for
18: ϕ̃k, ψ̃k = GradientDescent(ℓ; ϕ̃k, ψ̃k, η)
19: end for
20: end for
21: client k sends local parameters ϕ̃k, ψ̃k to server
22: end for
23: ϕ = 1

|It|
∑
k∈It ϕ̃k

24: ψ = 1
|It|
∑
k∈It ψ̃k

25: end for
26: Output ϕ and ψ
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Algorithm 4 FedEvp
Require: Number of clients K; client participation ratio r; step size η; the number of local training updates

τ ; communication rounds T ; the number of source domains M ; initial global parameter ϕ and global
parameter w for representation function f ; distance metric d;; local datasets Dkm and their known classes
YDk

m
for m ∈ {1, . . . ,M}, k ∈ {1, . . . ,K}.

1: for t ∈ {1, . . . , T} do
2: server samples rK clients as It from all clients
3: server sends ϕ, w to It
4: for each client k ∈ It in parallel do
5: client k initialize ϕ̃k := ϕ, w̃k := w
6: for τ local training iterations do
7: for y ∈ YDk

m
do

8: Ck0,y = 0
9: end for

10: for m ∈ {1, . . . ,M} do
11: A ← RandomSample(Dkm)

12: ℓe ← − 1
|A|

∑
(xi,yi)∈A

yi log
exp
(
gy

w̃k

(
f
ϕ̃k

(x)
))

∑
y′∈Y

Dkm

exp
(
gy

′

w̃k

(
f
ϕ̃k

(x)
))

13: for y ∈ YDk
m

do
14: Ay ← {(xi, yi) ∈ A|yi = y}
15: Ckm,y = (m−1)

m Ckm−1,y + 1
m

1
|Ay|

∑
(xi,yi)∈Ay

f
ϕ̃k

(xi)
16: end for
17: if m≥2 then
18: ℓf = 0
19: for (x, y) ∈ A do

20: ℓf = ℓf − 1
|A| log

exp
(

−d
(
f
ϕ̃k

(x),Ckm,y

))
∑

y′∈Y
Dkm

exp
(

−d
(
f
ϕ̃k

(x),Ck
m,y′

))
)

21: end for
22: ϕ̃k, w̃k = GradientDescent(ℓf + ℓe; ϕ̃k, w̃k, η)
23: end if
24: end for
25: end for
26: client k sends local parameters ϕ̃k, w̃k to server
27: end for
28: ϕ = 1

|It|
∑
k∈It ϕ̃k

29: w = 1
|It|
∑
k∈It w̃k

30: end for
31: Server Output ϕ, w
32: for each client k do
33: Client Output ϕ̃k, w̃k = personalize(ϕ, w, Dk)
34: end for

B Proof of Thm. 4.1

Proof. Denote DJS(P,Q) as
√
dJS(P∥Q). From Lemma 1 in Wang et al. (2022), we know that:

K∑
k=1

αkLfψ(Sk
M+1)(ĥ) ≤

K∑
k=1

αkLfϕ(Sk
M

)(ĥ) +
K∑
k=1

αk
G√
2
DJS(fψ(SkM+1)∥fϕ(SkM ))
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Next, for each m ∈ {1, 2, ...,M − 1}, we have:

DJS(fψ(SkM+1)∥fϕ(SkM )) ≤ DJS(fψ(Skm+1)∥fϕ(Skm)) + |DJS(fψ(SkM+1)∥fϕ(SkM ))−DJS(fψ(Skm+1)∥fϕ(Skm))|

Moreover, since all the distributions have the same support (i.e., the representation space), we can apply the
triangle inequality with respect to DJS:

DJS(fψ(Skm+1)∥fϕ(Skm)) ≤ DJS(fψ(Skm+1)∥fψ∗
k
(Skm+1)) +DJS(fψ∗

k
(Skm+1)∥fϕ∗

k
(Skm)) +DJS(fϕ∗

k
(Skm)∥fϕ(Skm))

Plug these two equations into the first equation:

K∑
k=1

αkLfψ(Sk
M+1)(ĥ) ≤

K∑
k=1

αkLfϕ(Sk
M

)(ĥ) +
K∑
k=1

αk
G√
2

(
DJS(fψ∗

k
(Skm+1)∥fϕ∗

k
(Skm)) +DJS(fϕ∗

k
(Skm)∥fϕ(Skm))

+DJS(fψ(Skm+1)∥fψ∗
k
(Skm+1)) +

∣∣DJS(fψ(SkM+1)∥fϕ(SkM ))−DJS(fψ(Skm+1)∥fϕ(Skm))
∣∣)

We sum from m = 1 to M − 1 and average to get:

K∑
k=1

αkLfψ(Sk
M+1)(ĥ) ≤

K∑
k=1

αkLfϕ(Sk
M

)(ĥ) +
K∑
k=1

αk
G√

2(M − 1)

(
M−1∑
m=1

(
DJS(fψ∗

k
(Skm+1)∥fϕ∗

k
(Skm)) + DJS(fψ(Skm+1)∥fψ∗

k
(Skm+1))

+ DJS(fϕ(Skm)∥fϕ∗
k
(Skm)) +

∣∣DJS(fψ(SkM+1)∥fϕ(SkM )) − DJS(fψ(Skm+1)∥fϕ(Skm))
∣∣))

Substitute DJS with
√
dJS and we get Thm. 4.1.

C Datasets

C.1 Rotated MNIST (Ghifary et al., 2015) and Rotated EMNIST (Ghifary et al., 2015)

For Rotated MNIST (RMNIST), We generate 12 domains by applying the rotations with angles of θ =
{0◦, 15◦, ..., 165◦} on each domain respectively. For Rotated EMNIST (REMNIST), we generate 12 domains
by applying the rotations with angles of θ = {0◦, 8◦, ..., 88◦} on each domain respectively.

C.2 Circle (Pesaranghader & Viktor, 2016)

We follow (Pesaranghader & Viktor, 2016) to generate this dataset. In this synthetic data set, we have
30 Gaussian distributions centered on a half circle with standard deviation 0.6, and the radius r is set
to 10. Each data point has two attributes, and the number of classes is 2. The decision boundary is
(x− x0)2 + (y − y0)2 ≤ r2, where (x0, y0) are the coordinates of the circle’s center (we set it as (0, 0)).

C.3 Portraits (Ginosar et al., 2015)

The portraits dataset contains human face images from yearbooks spanning from 1905 to 2013. We partition
the data into nine domains by segmenting the dataset into 12-year intervals. All images are resized into
32×32 without any augmentation.
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C.4 Caltran(Hoffman et al., 2014)

This real surveillance dataset comprises images captured by a fixed traffic camera deployed in an intersection.
The images in this dataset come with time attributes. We categorize the images into 12 distinct domains
based on their capture time throughout the day. Specifically, each domain represents a 2-hour interval. As
such, a 24-hour day is evenly divided into these 12 domains. We resize images in Caltran to 224×224.

D Implementation

All experiments are conducted on a server equipped with multiple NVIDIA A5000 GPUs, two AMD EPYC
7313 CPUs, and 256GB of memory. The code is implemented with Python 3.8 and PyTorch 1.13.0 on Ubuntu
20.04 based on the implementation in Jiang & Lin (2023). To evaluate our methods, we consider classification
tasks using various network architectures and report average accuracy over three different random seeds. All
experiments are conducted over 50 communication rounds. The personalization epoch is 1 for PFL methods,
including FedEvp. For each dataset, we test both SGD and Adam optimizers and use the best one for the
dataset. We tune the weight decay rate from {1e-5, 5e-5, 1e-4, 5e-4, 1e-3}.

• RMNIST: For the Rotated MNIST dataset, we employ a CNN with four convolutional layers, each
equipped with a 3x3 kernel. Group Normalization is applied post-convolution for stabilization using
groups of 8 channels. Followed by convolutional layers, there are two linear layers with a hidden
dimension of 64. The four convolutional layers and the first linear layer form the representation
functions (fϕ and fψ in FedEvolve, fϕ in FedEvp) with the final linear layer serving as the classifier (fw
in FedEvp). We employ an SGD optimizer with a weight decay of 5e-4 and conduct local training for
10 epochs per communication round.

• REMNIST: For the Rotated EMNIST dataset, we employ the same CNN as the one in RMNIST. We
use Adam optimizer with weight decay of 1e-4 and run local training for 10 epochs per communication
round.

• Circle: For the Circle dataset, we utilize a five-layer Multi-Layer Perceptron (MLP). This includes
three dense layers (2x256, 256x256, 256x256) for feature representation (fϕ and fψ in FedEvolve,
fϕ in FedEvp), linked by ReLU activations, and two subsequent linear layers (256x64, 64x2) that
function as the classifier (fw in FedEvp). Given data constraints, we utilize 10 clients and train for 5
epochs using Adam with a weight decay of 5e-4.

• Portraits: For this dataset, images are resized to 32x32 and processed using a WideResNet
architecture. The convolution layers along with the average pooling layer act as the representation
function. A linear layer is designated as the classifier after representation. The model is trained
among 20 clients over 5 epochs using an Adam optimizer with a weight decay of 5e-4.

• Caltran: We deploy ResNet18 for the Caltran dataset, with the last linear layer used as the classifier.
The representation function comprises four residual convolution blocks and an average pooling layer.
With pre-trained weights, we tune the model using an SGD optimizer with a weight decay of 5e-4.
Given data limitations, training involves 10 clients over 5 epochs.

Networks for each dataset are presented in Table 9.

For each dataset, we search the learning rate for each algorithm to find the best results. The training detail
is given in Table 10. We use the grid search strategy for hyperparameters to tune the models.

• For GMA(Tenison et al., 2022), we set the masking threshold as 0.1, searching from
{0.1, 0.2, 0.3, ..., 1.0}

• For FedRep(Collins et al., 2021), FedRod(Chen & Chao, 2022), and FedTHE(Jiang & Lin, 2023), the
last fc layer of the model is used as the head.
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Dataset Input Number NetworkDimension of Classes
RMNIST 28 × 28 10 CNN
REMNIST 28 × 28 26 CNN
Circle 2 2 MLP
Portraits 32 × 32 2 WideResNet
Caltran 3 × 224 × 224 2 ResNet18

Table 9: Networks for datasets

Dataset Num of Batch Learning Rate
Clients Size Range

RMNIST 20 32 1e-3, 1e-2, 1e-1
REMNIST 20 96 1e-3, 5e-3, 1e-2, 5e-2, 1e-1
Circle 10 32 1e-6, 5e-6, 1e-5, 5e-5, 1e-4
Portraits 20 32 1e-3, 5e-3, 1e-2
Caltran 10 32 1e-5, 5e-5, 1e-4, 5e-4

Table 10: Training Details for datasets

• For Ditto(Li et al., 2021), the regularization factor λ is set to 0.1, searching from {0.01, 0.05, 0.1, 0.5}.

• For MEMO,(Zhang et al., 2022) we use 32 augmentations and 3 optimization steps.

• For T3A(Iwasawa & Matsuo, 2021), M = 50 is used in our experiments, searching from {20, 50, 100}.

• For FedSR(Nguyen et al., 2022), we follow the same setting in their paper: αL2R = 0.01 and
αCMI = 0.001.

E Supplementary Results

We compared the P-values of our proposed methods, FedEvolve and FedEvp, with various baseline federated
learning algorithms in Table 11. The p-values from our t-test statistical analysis indicated that our methods
significantly outperform the baseline methods.

Table 11: P-values comparing FedEvolve and FedEvp with baseline methods on rotated MNIST.

FedAvg GMA Memo(G) FedAvgFT APFL FedRep Ditto
FedEvolve 5.17 × 10−4 4.42 × 10−4 7.69 × 10−4 1.44 × 10−3 2.26 × 10−4 9.41 × 10−4 7.27 × 10−4

FedEvp 7.33 × 10−3 6.76 × 10−3 9.82 × 10−3 2.42 × 10−3 6.20 × 10−6 4.60 × 10−4 2.16 × 10−5

FedRod Memo(P) T3A FedTHE FedSR CFL CFeD
FedEvolve 6.21 × 10−4 1.04 × 10−3 8.09 × 10−4 8.92 × 10−4 6.27 × 10−4 2.46 × 10−4 1.41 × 10−3

FedEvp 2.71 × 10−3 1.20 × 10−3 7.71 × 10−4 2.27 × 10−4 2.77 × 10−2 4.04 × 10−3 4.40 × 10−2

E.1 Impact of Changing Pattern

In previous experiments, we primarily focus on invariant changing patterns in image rotation experiments.
Here we examine if our methods are robust against an unexpected pattern. In this experiment, we test the
robustness of our methods against an unexpected pattern. Specifically, we simulate an unexpected domain
by rotating images from the target domain by an additional 10◦ and 20◦. To prevent confusion between
numerals like 6 and 9 when rotated by 180◦, we set the incremental rotation degree as 10◦. Therefore, the
images experience a 120◦ rotation or a 130◦ rotation instead of the expected 110◦. This experiment aims to
evaluate whether our methods can handle deviations from anticipated patterns.

As shown in Table 12, all methods exhibit a significant performance drop when the test data distribution
changes substantially, however, our methods still outperform the baseline and the drop is less than the baseline.
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Table 12: Average accuracy over three runs of experiments on rotated MNIST with different rotation degrees
for the target domain.

Dir→∞ Dir=1.0 Dir=0.1
Method Client Server Client Server Client Server
FedAvg (110◦) 80.96±1.62 80.92±0.23 79.41±0.30 81.63±1.71 70.16±0.48 71.93±2.06
FedAvg (120◦) 66.39±0.92 66.61±1.17 64.30±1.36 65.08±1.89 54.74±1.40 53.62±1.01
FedAvg (130◦) 50.53±0.88 51.04±2.72 48.64±1.28 48.41±1.16 40.87±1.44 40.41±0.91
FedEvolve (110◦) 86.66±0.66 86.62±1.60 85.57±1.35 83.11±2.31 86.92±1.72 74.67±2.29
FedEvolve (120◦) 78.09±0.88 77.80±0.82 74.85±2.86 72.81±5.46 78.43±4.92 61.57±7.44
FedEvolve (130◦) 65.13±1.79 64.64±1.85 62.88±2.23 60.47±3.91 69.77±4.30 50.82±5.58
FedEvp (110◦) 84.68±1.51 86.07±1.38 85.84±1.33 83.33±3.50 84.99±2.32 69.41±2.47
FedEvp (120◦) 72.91±0.65 75.66±0.82 74.93±2.54 71.82±2.83 79.48±1.89 62.28±3.88
FedEvp (130◦) 61.67±0.31 64.64±0.16 65.79±2.36 62.99±2.11 72.11±3.01 53.84±4.05

Table 13: Average accuracy over three runs of experiments on Reddit text classification.

Dir→∞ Dir=1.0 Dir=0.1
Method Client Server Client Server Client Server
FedAvg 62.42±0.68 62.42±0.68 61.37±0.38 61.37±0.38 57.34±0.86 57.34±0.86
T3A 62.13±0.48 63.53±0.15 62.71±0.71 57.50±0.04 71.52±0.78 53.42±1.12
FedTHE 62.22±0.44 62.18±0.32 63.57±0.29 61.15±0.39 68.70±0.74 57.78±1.04
CFeD 62.31±0.71 62.31±0.71 61.28±0.58 61.28±0.58 56.36±1.46 56.36±1.46
FedEvolve 63.00±0.58 65.62±0.82 67.84±1.58 61.75±1.39 72.38±1.09 52.84±1.62
FedEvp 63.46±1.82 62.75±1.39 73.68±0.62 60.99±1.50 78.16±1.23 56.64±2.01

Notably, FedEvp demonstrates superior performance compared to FedEvolve when clients are heterogeneous.
This difference arises because FedEvolve explicitly learns the distribution transition between consecutive
domains, while FedEvp learns evolving-domain-invariant features. Consequently, when the distribution
transition deviates from the learned pattern, the performance of FedEvolve is adversely affected, whereas
FedEvp remains less influenced by the change.

E.2 Experiment on Text Dataset

To evaluate the generality of our methods beyond image modality, we conduct experiments on a real-world
text dataset from Reddit Baumgartner et al. (2020). We partition Reddit post titles from 2014 to 2018 into
10 domains based on 6-month intervals, capturing natural temporal shifts.

We focus on five subreddits that exhibit meaningful evolution over time: AskReddit, news, technology,
movies, and worldnews. These are used as the classification labels. For each domain, we sample 5,000
examples, resulting in a total of 50,000 samples. We distribute this data across 20 clients for federated training.
For the model architecture, we use a two-layer bidirectional LSTM (BiLSTM) with a hidden dimension of
256 for text classification. Each method is trained for 10 local epochs per round using the Adam optimizer
over 50 rounds. As shown in Table 13, our methods (FedEvolve and FedEvp) still consistently outperform
baselines across all heterogeneity levels. These results demonstrate that our approach generalizes well to the
evolving patterns in text data.

E.3 Study of Distance Metrics

To examine the impact of the choice of distance metric in prototype alignment, we evaluate FedEvolve using
two common similarity measures: L2 distance and cosine distance. The results across multiple datasets and
Dirichlet heterogeneity levels are summarized in Table 14.

Overall, we observe that cosine distance performs better than L2 distance on digit datasets like RMNIST
and REMNIST, while on other datasets such as Circle and Portraits, L2 distance shows more stable or
superior performance. This suggests that the effectiveness of a distance metric may depend on dataset-specific
characteristics, including feature distributions and the nature of the domain shifts.
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Table 14

Dir→∞ Dir=1.0 Dir=0.1
FedEvolve Distance Client Server Client Server Client Server

RMNIST L2 84.75±1.39 84.43±1.21 79.93±1.00 77.25±1.82 83.86±1.81 71.66±1.95
Cosine 88.17±0.97 87.34±0.99 84.45±0.96 84.40±1.40 91.73±1.35 82.98±3.11

REMNIST L2 83.58±1.45 82.91±1.36 82.13±0.48 78.68±0.25 87.67±0.55 72.85±1.03
Cosine 82.29±0.52 82.29±0.29 83.06±0.23 78.97±0.28 88.70±0.99 78.33±1.22

Circle L2 84.25±2.45 81.64±1.95 82.52±1.94 83.59±5.91 85.20±5.24 84.60±7.73
Cosine 75.95±4.78 76.28±4.33 74.20±3.38 74.78±4.40 71.45±4.40 72.45±6.38

Portraits L2 95.43±0.17 96.88±1.35 93.84±1.62 96.54±1.39 93.03±0.43 96.08±0.30
Cosine 94.56±1.03 94.81±1.53 92.95±1.28 93.94±2.82 91.03±1.64 92.33±1.22

Caltran L2 65.04±1.66 63.54±0.74 75.04±4.03 64.06±3.83 84.07±5.76 69.88±3.14
Cosine 60.49±1.74 59.77±4.19 75.30±1.51 64.45±6.93 81.83±6.51 61.94±8.21

Dir→∞ Dir=1.0 Dir=0.1
FedEvp Distance Client Server Client Server Client Server

RMNIST L2 75.99±0.31 77.63±1.99 77.91±1.80 73.85±1.53 83.15±0.49 61.84±3.34
Cosine 80.47±0.98 82.40±1.32 82.23±1.88 82.18±1.37 76.07±1.25 68.86±2.05

REMNIST L2 67.30±1.35 71.94±1.50 73.61±1.70 68.91±0.30 87.01±0.22 58.73±0.96
Cosine 71.09±1.84 75.72±3.14 74.30±2.42 70.09±2.82 81.58±1.07 57.89±1.28

Circle L2 73.30±5.02 74.12±6.93 74.80±1.69 77.93±4.20 91.87±2.82 89.30±4.67
Cosine 70.62±3.00 69.11±4.03 68.29±2.04 60.14±5.07 74.29±2.73 71.76±4.14

Portraits L2 93.54±0.19 94.92 ±0.11 94.50±0.28 93.91±2.19 94.24±0.65 93.13±0.57
Cosine 93.82±0.42 95.08±0.41 94.02±2.88 93.38±4.59 93.31±1.47 92.38±1.50

Caltran L2 66.59±1.44 66.34±0.69 73.46±0.90 68.24±1.08 78.55±0.50 67.60±3.15
Cosine 64.21±1.95 65.37±1.75 72.99±2.28 67.56±2.09 76.46±2.70 66.71±2.58

Table 15: Comparison of FedAvg and Local-Only Training (Dir →∞).

Method RMNIST REMNIST Circle Portraits Caltran
FedAvg 65.92±1.01 53.83±1.84 70.40±6.51 94.10±0.13 62.93±2.10
Local 59.04±0.78 44.53±1.36 61.84±2.34 88.10±0.31 59.28±2.30

E.4 Impact of Collaboration

To study the impact of collaborative learning, we introduce a local-only baseline, where each client trains
its model solely on its own data without any communication or aggregation and tests on its own data. We
compare this to FedAvg under the i.i.d. setting (Dir → ∞), where data is randomly distributed across
clients, ensuring that both local and federated models are exposed to similar data diversity. Table 15 presents
performance on five datasets. Across all tasks, FedAvg significantly outperforms the local-only baseline,
confirming that collaboration yields better generalization in our problem.

E.5 Impact of Client Numbers

We follow the setting in Jiang & Lin (2023) and initially evaluate performance with 20 clients. To examine
the scalability and performance under varying degrees of client participation, we scale up the number of
clients to 60. Due to data availability constraints of real-world datasets, we use the MNIST dataset as a
representative dataset, given its larger sample size per class. As shown in Table 16, increasing the number
of clients does not necessarily lead to significant performance degradation, suggesting that these methods
maintain stable accuracy even as the client population grows.

E.6 Addition Results

We also conduct the experiments on Circle, Portraits, and Caltran with Dir = 0.1. The results are provided
in Table 17.
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Table 16: Comparison of average accuracy on rotated MNIST under different client settings (20 and 60
clients).

Dir→∞ Dir=1.0 Dir=0.1
Method Client Server Client Server Client Server
FedAvg (20) 65.92±1.01 66.34±0.34 62.35±0.97 63.16±1.78 51.68±0.73 51.59±2.48
FedAvg (60) 64.44±1.69 63.50±3.34 61.06±0.58 60.74±1.23 50.82±1.17 50.15±1.52
FedTHE (20) 66.84±1.51 67.43±0.23 67.98±0.43 62.55±1.98 78.52±3.92 53.40±0.74
FedTHE (60) 65.39±0.97 63.82±1.23 67.17±0.62 61.27±2.57 75.10±1.56 52.11±1.06
T3A (20) 53.94±0.76 66.61±0.59 61.60±2.49 62.61±1.02 71.73±1.63 51.59±1.70
T3A (60) 57.74±1.21 63.71±1.12 62.15±0.87 60.89±1.07 75.63±0.95 50.96±0.92
FedEvolve (20) 84.75±1.39 84.43±1.21 79.93±1.00 77.25±1.82 83.86±1.81 71.66±1.95
FedEvolve (60) 83.06±2.27 82.03±2.09 79.28±1.82 77.15±1.46 81.92±2.56 68.37±3.22
FedEvp (20) 75.99±0.31 77.63±1.99 77.91±1.80 73.85±1.53 83.15±0.49 61.84±3.34
FedEvp (60) 74.09±1.84 78.72±3.14 76.30±3.42 72.09±2.82 81.58±1.07 59.89±1.28

Table 17: Accuracy of baselines across various datasets (Dir = 0.1).

Circle Portraits Caltran
Client Server Client Server Client Server

FedAvg 77.43±6.29 77.43±6.29 95.08±0.68 95.08±0.68 64.23±3.62 64.15±5.55
GMA 79.40±6.84 79.40±6.84 95.49±0.21 95.49±0.21 66.61±0.78 66.81±0.95
Memo(G) - - 94.86±0.21 94.86±0.21 64.80±3.76 64.15±5.55
FedAvgFT 67.92±7.45 74.52±8.94 93.78±0.52 94.99±0.12 63.17±4.07 63.74±6.02
APFL 67.37±6.46 77.55±7.35 92.54±0.36 95.04±0.48 77.46±5.75 63.66±5.95
FedRep 66.73±3.44 70.40±7.80 93.69±0.28 95.06±0.39 65.61±3.09 64.07±6.05
Ditto 70.30±3.75 77.55±7.35 93.09±0.55 95.33±0.02 63.17±4.07 63.74±6.02
FedRod 69.60±4.12 64.37±9.55 92.20±0.14 95.06±0.22 77.73±3.70 60.01±3.16
T3A 70.57±7.07 78.30±9.63 92.72±0.03 94.83±0.11 63.33±4.11 63.74±6.02
Memo(P) - - 95.35±0.90 95.21±0.28 65.85±1.96 63.74±6.02
FedTHE 83.38±8.65 80.08±7.88 94.10±0.89 95.45±0.26 79.71±5.05 58.01±5.16
Flute 69.26±8.15 66.97±7.84 93.11±0.28 94.22±0.38 64.96±1.87 67.64±1.04
FedSR 76.77±5.55 77.24±6.07 94.02±0.67 94.38±0.89 60.16±3.91 65.77±1.40
CFL 70.12±5.17 71.09±6.33 92.40±1.41 92.40±1.41 65.12±3.40 65.20±5.34
CFeD 74.97±8.08 74.97±8.08 94.66±0.42 94.66±0.42 63.90±4.39 63.54±6.22
FedEvolve 85.20±5.24 84.60±7.73 93.03±0.43 96.08±0.30 84.07±5.76 69.88±3.14
FedEvp 91.87±2.82 89.30±4.67 94.24±0.65 93.13±0.57 78.55±0.50 67.60±3.15

F Limitations and Future Works

• The theoretical analysis and core design of the methods assume that the data evolution follows a
predictable pattern that can be learned. This assumption may not hold in all real-world scenarios.
Therefore, we also validate our methods on datasets like Portraits, which reflect changes in fashion,
or Caltran, where shifts are caused by natural light changes, and the evolution is not subject to a
simple, structured pattern. Since the FedEvolve relies on learning patterns between two consecutive
distributions, it may underperform when domain shifts are chaotic or abrupt. In addition, in this
paper, we only study the domain distribution shift in training data and test data, without considering
label or concept drift. Our methods may not be robust under these unevaluated drifts. Future
directions include modeling abrupt shifts and bridging our approach with other shifts in machine
learning to build a more robust FL system.

• The FedEvolve algorithm incurs significant overhead due to its use of two distinct representation
functions. This design results in roughly double the number of parameters to transmit between the
server and clients, leading to increased communication costs and training time. Furthermore, in
settings where differential privacy is applied, more parameters may require additional noise to meet a
given privacy budget, potentially affecting model utility. While the FedEvp was developed specifically
to be a more efficient alternative with comparable overhead to standard baselines, the high cost of
FedEvolve remains a practical limitation for those edge devices with relatively less computational
resources.

27



Under review as submission to TMLR

• The methods use prototypical learning to align representations across domains. The prototypes
for each class are calculated as the mean of the feature representations from that class based on
L2 distance. This approach focuses on matching the first moment (the mean) of the distributions
and may not effectively capture more complex shifts where the mean is stable but the variance or
other higher-order moments change. A potential method is to consider the Mahalanobis distance,
which considers the covariance between features. In addition to distance metrics, it is also possible to
consider other variance-based measures (e.g., KL divergence assuming Gaussian distributions around
prototypes) to better capture evolving shifts in future studies.
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