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Abstract

The meaning of a natural language utterance001
can vary greatly depending on the context of002
the communication. An artificial agent inter-003
preting natural language needs to be able to004
integrate models of the human speaker and the005
communicative goal in order to arrive at the006
correct interpretation. This paper introduces007
an approach integrating pragmatic reasoning008
about the conversational partner while learning009
representations from scratch. This leads to sig-010
nificant improvements over prior work that only011
considers pragmatics during inference or builds012
on fixed representations of literal meaning. Our013
artificial language learner is situated in a ref-014
erential game about images, where we show015
that equipping the agent with explicit reasoning016
about the speaker and the shared observations,017
leads to faster learning, higher communicative018
success, and better generalization to changes in019
the environment.020

1 Introduction021

Everyday conversations are rich with implicatures.022

Being able to infer the intended meaning of an ut-023

terance beyond its literal content allows us to com-024

municate efficiently. The process of how people025

attain interpretations including implicatures using026

a model of the speaker’s intentions has long been027

studied (Grice, 1975; Horn, 1984; Fox and Katzir,028

2011; Levinson, 2000).029

In recent years, deep learning methods learn-030

ing from large natural language corpora have led031

to great advances in natural language understand-032

ing and generation. Large scale datasets however,033

rarely allow for the study of language in its most034

natural function: as a tool of communication be-035

tween agents who have a communicative goal and036

are surrounded by extra-linguistic context.037

While the communicative context is often not038

recorded in large natural language corpora, it is039

justified to assume that any natural language data040

Figure 1: The speaker is asking for the red object. For a
literal listener, this is ambiguous. A reasoning listener
can conclude that the speaker is asking for the red cir-
cle, as “square” would have been a more informative
message for the other red object.

by humans was generated using some form of prag- 041

matic reasoning. In this work, we investigate how 042

to best learn from data where the intended mean- 043

ing contains implicatures. Our main hypothesis is 044

that inferring the literal meaning from contextual 045

language use creates more robust representations 046

across contexts and leads to faster learning. 047

When listeners derive the meaning of an utter- 048

ance, they engage in counterfactual reasoning about 049

alternative sentences that the speaker could have 050

uttered (Davies et al., 2022; Frank and Goodman, 051

2012). The interaction in Figure 1 depicts an in- 052

stance of such pragmatic reasoning about alterna- 053

tives within our simple environment. According to 054

pragmatic theory (Grice, 1975) the same process 055

accounts for the interpretation “They are in the of- 056

fice for the rest of the week”, when we hear the 057

sentence “We are not in the office on Mondays”. 058

Previous work has investigated how to adjust the 059

meaning of an utterance using the context and com- 060

municative goal (Vedantam et al., 2017; Monroe 061

et al., 2017; Vogel et al., 2013), with the assump- 062

tion that the context-independent literal interpreta- 063
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tions are already given. It is less well studied how064

language users acquire these literal interpretations065

that provide the starting point for further reason-066

ing. This is especially interesting if the observed067

data already contains the result of reasoning that068

depends on the context.069

In our work, we model an agent who learns about070

language from speakers using varying complexity071

of pragmatic inference. We show that it is possible072

for the language learner to differentiate through the073

speaker’s production process and this way directly074

learn about literal meaning. We investigate how ex-075

plicit models of the other agent influences learning076

and communicative success in a referential game077

about synthetic images. We show that a reasoning078

learners equipped with pragmatic reasoning during079

training:080

• can successfully learn to interpret messages081

in a communicative task.082

• learn faster in the initial stages as opposed to083

models that do not integrate explicit models084

of the speaker.085

• achieve higher task accuracy at evaluation086

time compared to models that only apply rea-087

soning during evaluation.088

• learn interpretation functions that are more089

robust to changes in the environment.090

2 Background091

We situate our listener in an image-based version092

of Lewis’s signaling game (Lewis, 1969). Image-093

referential games are commonly used to study the094

benefit of speakers and listeners reasoning about095

each other in context (Lee et al., 2018; White et al.,096

2020; Andreas and Klein, 2016). These works how-097

ever, do not provide a principled way of learning098

the literal interpretations that provide the starting099

point for pragmatics. Image-captioning datasets100

are commonly used to learn the base speaker (Nie101

et al., 2020) or listener (Liu et al., 2023). Image-102

captions however, were not produced in the context103

of other images so they do not contain conversa-104

tional phenomena found in referential games, such105

as choosing the most informative or shortest de-106

scription that still leads to successful communi-107

cation. Therefore, pragmatic models building on108

datasets that were not produced in context, do not109

address the problem of learning literal interpreta-110

tions from contextualized language use.111

Other works do build on datasets that were gen- 112

erated in the context of referential games. These 113

collections might include human-human game-play 114

or synthetically generated language (Monroe et al., 115

2017; White et al., 2020). However, when it comes 116

to learning the literal interpretations, they resort 117

to the methods mentioned earlier: they treat the 118

referring expressions provided for each image as a 119

caption, ignoring the fact that these captions were 120

produced in the context of other distractor images. 121

In our version of the game, at each turn a col- 122

lection of N images (o1, ..., oN ) is provided, with 123

the speaker having knowledge of a specific target 124

image ot, where 1 ≤ t ≤ N . The listener’s objec- 125

tive is to correctly identify the target image index t 126

given the speaker’s message w. The messages may 127

contain multiple words by combining words from 128

a fixed vocabulary. 129

2.1 Literal meaning and the base listener 130

Frank and Goodman (2012) provide a concise 131

model for how speakers and listeners reason about 132

each-other when sharing referential content called 133

the Rational Speech Act model. As a starting point, 134

the model assumes an underlying literal interpre- 135

tation. This is a function D(w, o) of an utterance 136

w and an observation o, in our case an image. In 137

the formulation of Goodman and Frank (2016) the 138

base interpretation function is a 0-1 valued indica- 139

tor of the set of messages that are true of the image 140

o. In line with other work, we replace this binary 141

function with a real-valued similarity between the 142

observed image and text. 143

D(oi,w) = ϕθ(oi)
Tγθ(w) (1) 144

Each image is individually embedded with a CNN 145

following the ResNet architecture (He et al., 2016). 146

The message embedding is computed by an RNN 147

with Gated Recurrent Units (Cho et al., 2014). The 148

listener models the distribution over the indices in 149

an ordered set of images. This expresses the likeli- 150

hood of each image given the message and all the 151

observed images. The simplest listener distribu- 152

tion is produced by normalizing the score assigned 153

by the literal interpretation function over all the 154

images in a given context C. 155

L0(i∣w,C) =
eD(oi,w)

∑
∣C∣
j=1 e

D(oj ,w)
(2) 156

In previous work, the literal interpretations are 157

initialized by functions learned outside of the con- 158

text of a referential game. This is most commonly 159
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Figure 2: The iterative process of creating higher level speakers and listeners. The listener’s distribution has lower
entropy with more iterations.

done by learning a function that maximizes simi-160

larity between an image and a corresponding de-161

scription (White et al., 2020; Lazaridou et al., 2020;162

Andreas and Klein, 2016).163

2.2 Recursive reasoning in speaker-listener164

games165

Here we explain how to add recursive reasoning166

on top of a base L0 listener model. The speaker167

produces a message that maximizes the probabil-168

ity that the listener chooses the right image and169

also considers the cost of each message w. This170

means that the speaker has an internal model of the171

listener.172

Sn(w∣C, i) =
eλ(log(Ln−1(i∣C,w))−cost(w))

∑w′∈V eλ(log(Ln−1(i∣C,w′))−cost(w′))

(3)173

The speaker’s probability of producing a message174

given an image and the context is proportional to175

the listener’s probability of identifying that image176

based on the message and the same context. The177

formulation in Equation 3 introduces a parameter178

λ that controls how rational a speaker’s choices are179

given an internal listener distribution. In this work,180

we only consider fully rational speakers with λ = 1.181

The speaker equation in 3 also adds a cost for182

each message, this means that communication is183

not for free. If we consider the cost to be the same184

as the negative logarithm of the prior over mes-185

sages, then we recover the Bayes formula. In this 186

work, we consider a cost function that assigns a 187

constant weight to each word, which gives a linear 188

relation between message length and cost. 189

Now we define a more complex listener that can 190

also have an internal model of a speaker: 191

Ln(i∣C,w)∝ Sn−1(w∣C, i)P (C, i) (4) 192

By applying Equations 3 and 4 in an alternating 193

fashion, we can produce higher level speakers and 194

listeners. Figure 2 shows the process of altering 195

the underlying literal representations to create the 196

L0 and then L2 distributions. This example only 197

considers a fixed set of five messages to illustrate 198

the effect of longer messages being more expensive. 199

The first column of S1 shows that “red square” is 200

not likely to be produced because of its cost. 201

Contrasting L0 and L2 in this example shows 202

how the iterative process of applying Equations 3 203

and 4 creates implicatures in context: the message 204

“red” is unambiguous for L2 while it is ambiguous 205

for L0. Frank and Goodman (2012) show that hu- 206

mans reliably interpret messages produced by a S3 207

speaker consistent with a L2 listener. 208

3 Reasoning while Learning 209

In the previous section we saw how to perform 210

recursive reasoning on top of a given literal rep- 211

resentation D(o,w). However, the optimal initial 212
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representations are likely influenced by the reason-213

ing itself. In this work, we would like to learn the214

parameters of the literal representations in the pres-215

ence of a communicative goal and context. There-216

fore, we propose to already apply recursive reason-217

ing during training.218

Reasoning learners that use models of the219

speaker’s production process seek to update220

the weights of the literal interpretation function221

D(o,w) but they need to do so by considering the222

repeated application of Equations 3 and 4. We223

would like to derive the gradients of the reasoning224

process with respect to the literal representations so225

we can update these parameters through stochastic226

gradient descent. We achieve this by repeated ap-227

plication of the chain rule through the hierarchical228

reasoning.229

First, the reasoning listener has to differentiate230

the listener equation 4. The listener’s distribution is231

computed by normalizing the speaker scores from232

the previous level over all images in the context.233

For simplicity, we abbreviate Ln(i∣C,w) as Liw
n234

and Sn−1(w∣C, j) as Sjw
n−1.235

∂Liw
n

∂Sjw
n−1

= Liw
n (δij −L

jw
n ) (5)236

This is the derivative of the softmax function that is237

applied to the scores assigned by the speaker from238

the previous level.239

The speaker equation is also a computation of240

normalisation of the listener scores from the pre-241

vious level, with the additional application of the242

messaging cost.1243

In the case of the speaker, the normalization hap-244

pens over all possible messages w ∈ V . This is the245

most expensive step in the hierarchical reasoning246

process. In many natural language applications it247

is even prohibited by the fact that the set of all pos-248

sible utterances is infinite. While exact inference249

is intractable, there are many papers discussing ap-250

proximations (Cohn-Gordon et al., 2018; Liu et al.,251

2023; Lazaridou et al., 2020; White et al., 2020).252

Due to the small number of messages in our game,253

we can compute the gradients exactly:254

1The cost of the messages is proportional to their length
and is kept fixed during training. The value of the cost is
shared knowledge between the speaker and the listener. This
corresponds to the intuition that they both experience the same
environmental pressures and difficulty of production. We note
it though, that it would be an interesting direction to make the
cost of communication a learnable parameter, that the players
also need to adjust during training.

∂Siw
n

∂Liw′
n−1

= Siw
n (δw′w − S

iw′

n ) (6) 255

This allows us to examine the effect of recursive 256

reasoning during learning without the confounds 257

from approximations. 258

Depending on the depth of the listener, learning 259

chains Equations 5 and 6 an appropriate number of 260

times. Reasoning learners backpropagate through 261

the hierarchical reasoning and update the weights 262

of the image- and utterance-embedding models 263

with stochastic gradient descent. The representa- 264

tions learned this way take pragmatics into account, 265

as opposed to the prevalent approach to pragmatic 266

reasoning, where the literal interpretations have not 267

been optimised to match the reasoning process. 268

4 Related work 269

A growing number of works consider adding ex- 270

plicit pragmatic capabilities to language under- 271

standing and generation systems. The first group 272

of these works upgrades models with additional 273

reasoning only during evaluation time. Such 274

models have been used to generate better image- 275

descriptions in context (Nie et al., 2020; Andreas 276

and Klein, 2016; Lazaridou et al., 2020), informa- 277

tive referring expressions about location (Golland 278

et al., 2010) and visual objects (Mao et al., 2016). 279

Cohn-Gordon and Goodman (2019) integrate a 280

listener model in their machine translation system 281

in order to find better translations to potentially 282

ambiguous sentences. Similarly, models of the 283

speaker have been used in instructions following 284

agents to resolve unclear utterances (Fried et al., 285

2018b,a). 286

Closer to our interest, the second group of mod- 287

els already consider pragmatic reasoning during 288

learning. Smith et al. (2013) provides a sampling- 289

based inference for learning the “some and maybe 290

all” literal semantic content for the word “some”. 291

Vogel et al. (2013) investigate heuristics for finding 292

the underlying literal interpretations in a naviga- 293

tion game between humans where the referring 294

expressions for the location are rich with scalar im- 295

plicatures. Liu et al. (2023) learn a speaker in an 296

image-referential game that approximates a model 297

of the listener during training. Their base listener 298

on the other hand is initialised with a literal model 299

that was trained outside of the context of the com- 300

municative game. 301

Most similar to our work, Monroe and Potts 302
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(2015) learn a literal lexicon of words and sym-303

bolic image features by modeling a speaker with an304

internal listener in an image-referential game. They305

also derive gradients by differentiating the speaker306

equation to update the listener model. Unlike the307

flexible neural network formulations in this paper,308

they use log-linear model with a hand-crafted fea-309

ture space for images and words.310

5 Experiments311

5.1 Data312

We create a new environment based on the Shape-313

World dataset (Kuhnle and Copestake, 2017). This314

dataset was designed for the study of multimodal315

language understanding and has been previously316

used to investigate messaging strategies (White317

et al., 2020; Wang et al., 2021).318

Each game consists of a target image and a vari-319

able number of N distractor images. Images are320

described by one out of six different colors and a321

shape that can take four different values. The shape322

and size of the objects is randomized on a 64x64323

grid which creates a large variation of candidate324

pictures. In the original dataset, the shapes and325

colors as well as the index of the target image are326

drawn from a uniform distribution. If the target327

is identical to one of the distractors, the sample is328

rejected, as there is no unique referring expression329

that would identify the target.330

First, we change the way the speaker chooses331

the message. Instead of the rule-based method of332

Kuhnle and Copestake (2017), we use an exact333

implementation of the rational speaker defined in334

Equation 3. This way we can create speakers with335

different depth of recursive reasoning. Our speak-336

ers are not learned, they are knowledgeable users337

of the language: they have access to the underlying338

true literal meaning representations which indicates339

the mapping between words and image properties.340

We parameterize the process that generates the341

image tuples for each game by three sets of proba-342

bility distributions: the prior over the shapes P (S),343

the probability of colors given a shape P (C ∣S) and344

a third distribution the controls the co-occurrence345

of shapes P (S∣S). This enables us to introduce346

correlations between object properties, making it347

more difficult to find the right referring expression.348

We sample P (S), the four conditionals for349

P (S∣S) and for P (C ∣S) from different Dirich-350

let distributions. P (S) has four concentration351

parameters (αellipse, ..., αsquare). P (C ∣S) has352

six concentration parameters, one for each color 353

(αred, ..., αblue) repeated over all shapes to create 354

four different conditional distributions. Each of the 355

four conditionals characterizing P (S∣S) has four 356

parameters belonging to each shape. 357

5.2 Experimental setup 358

The fact that we have full control over the speaker’s 359

messaging strategy and the data generating process 360

behind context images allows us to create interest- 361

ing learning environments for the listeners. For 362

example, we can alter the level of the speakers that 363

the listeners learn from, or modify the environment 364

between training and evaluation time. 365

We train listeners of three different levels. The 366

level 0 listener, L0 has no internal model of the 367

speaker. This is the model that we will upgrade to 368

higher level reasoning during evaluation to create a 369

similar setup that was explored in previous work. 370

The level 2 listener, L2 models a level 1 speaker, 371

and the level 4 listeners applies a further step of 372

reasoning by modeling a level 3 speaker. 373

We create two different levels of speakers to pair 374

them with our learning listeners: S1 is level 1 and 375

S3 is level 3. In our experiments, we create learning 376

scenarios with all possible pairings of listener and 377

speaker levels. This allows us to examine how 378

the learning is influenced if there is a mismatch 379

between the actual level of the learner and the level 380

of the learner that the speaker internally models. 381

We also design two further versions of the game: 382

one where communication is free, and one where 383

each word has a cost 0.6. This cost was derived to 384

make sure that the speakers of all levels will send 385

the shorter message, where it is possible, while also 386

guaranteeing that communication is not too expen- 387

sive for speakers to send ambiguous messages that 388

cannot be resolved. 389

Generating image tuples We set all alphas that 390

belong to P (S) and the four P (C ∣S) conditionals 391

to 100. This results in sampling distributions that 392

are close to a uniform distribution. 393

For P (S∣S), we construct two different sets of 394

parameters. In the first version, we set all concen- 395

tration parameters to 100, just like in the case of 396

P (S) and P (C ∣S). In the second version, we cre- 397

ate correlation between shapes by multiplying the 398

α that controls the likelihood of a shape given the 399

same shape by 10. This leads distribution samples 400

where the co-occurrence of the same shape within a 401

game becomes likelier than random chance. For ex- 402
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ample, a circle target shape will more often appear403

with other circle distractors. A speaker sending un-404

ambiguous messages, will have to more often use405

color as the distinguishing feature, and the learners406

will see less evidence of what shape-words mean.407

For training, we sample only one instance of408

P (S), P (S∣S) and P (C ∣S). At test time, we sam-409

ple different P (S), P (S∣S) and P (C ∣S) instances410

10 times. From each of these constellations we sam-411

ple 3,200 games. This results in a test set of 32,000412

examples.413

The random seed is fixed across all experiments414

and is reset for the learning and evaluation of each415

learner. This ensures that each listener sees the416

exact same examples in all environments.417

Model training and implementation All model-418

parameters are trained from scratch. Weights are419

updated with the AdamW optimizer (Loshchilov420

and Hutter, 2017) which we initalize with a learn-421

ing rate of 1e − 5.422

For each training step, we use a batch of 32423

games and the listeners are trained for 25,920 train-424

ing steps. We train one instance of each listener.425

The implementation code will be publicly released426

upon acceptance of the paper.427

5.3 Results428

In this section, we present the most insightful re-429

sults from our extensive set of experiments. First,430

we look into how listeners with different depths be-431

have during training and which parameters of the432

environment pose the biggest challenges for them.433

Next, we turn to the main interest of this paper434

which is contrasting models that apply reasoning435

during training with ones that upgrade a base model436

to higher levels during deployment. For clarity,437

we call the first group reasoning learners and the438

second group upgraded listeners.439

We report accuracy for all results, which simply440

shows the proportion of games where the listener441

guessed the right image based on the speaker’s442

message. We perform Fisher’s exact test for sig-443

nificance testing. For the sake of brevity we do444

not report significance results for all pairings, but445

only for the ones most relevant to the research ques-446

tion. We note p < 0.05 with one asterisk * and for447

p < 0.01 we put ** next to the results.448

Learning dynamics We first examine the learn-449

ing dynamics of reasoning learners with different450

depth of recursive reasoning. Figure 3 shows that451

Figure 3: Higher level listeners learn quicker. In this
comparison all other parameters such as speaker level,
number of distractors, correlation between shapes are
left constant.

when we keep all parameters of the learning en- 452

vironment constant, and only vary the listener’s 453

depth, we observe that listeners with higher levels, 454

learn to perform the task with good accuracy faster. 455

The gap in performance is especially large in the 456

initial learning stages. This suggests that applying 457

pragmatic reasoning might be particularly useful 458

in case of limited data. 459

Here we show results for a level 1 speaker with 460

N = 2 distractor images and uniform distributions 461

over all image features. These results however, 462

hold across all training scenarios. 463

Listener Easy Hard

a) 0 91.9 80.8
b) 2 93.7** 84.7**
c) 4 94.1** 85.4**

Table 1: Accuracy in the easiest and hardest environ-
ments. The easy environment has no messaging cost,
each game has N=2 distractor images and the same
shapes co-occur frequently. In the hard environment
N=4, each word has a cost 0.6 for the speaker, the im-
age features are uniformly distributed. In both environ-
ments higher level reasoning learners perform better.
The speaker is S1 for training and evaluation.

Easiest and most challenging learning environ- 464

ments We now present results of the models’ per- 465

formance after the reasoning learners finished train- 466

ing. We would like to see what parameters in the 467

environment make learning more challenging. In 468

this set of evaluations, we keep the parameters of 469

the environments the same across training and test- 470

ing. Table 5.3 shows the accuracy of the reasoning 471

learners of three different levels in the least and 472

most challenging settings. 473
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The cost of messaging has the biggest impact474

on accuracy, followed by the number of distrac-475

tors. The fewer distractors the environments have,476

the easier the task becomes. Having correlation477

between the the target and distractor shapes also478

makes the task easier, as in these cases the speaker479

uses messages about the color more frequently and480

the learners can achieve a high accuracy with only481

understanding the color terms.482

Listener Speaker train Accuracy

a)
0

1 80.8**
b) 3 79.2

c)
2

1 84.7**
d) 3 83.4

e)
4

1 85.4**
f) 3 84.1

Table 2: For each level of reasoning learner, learning
from a lower level listener results in significantly better
accuracy. Here we have a cost of 0.6, and a S1 speaker
at evaluation, N = 3. The same trends hold for a S3 at
evaluation time.

Learning from speakers with different depth483

The level of the speaker who the listener learns484

from is also of interest. S1 has an internal model of485

a competent L0, while S3 anticipates L2-behavior.486

We would like to see how reasoning learners of487

different levels are impacted by learning from dif-488

ferent speakers.489

Table 2 shows that reasoning learners that490

learned from lower level speakers always achieve491

higher accuracy at evaluation. This can be ex-492

plained by the fact that lower level speakers send493

longer messages on average, see Table 3, because494

their internal model is of a simpler listener who495

needs longer descriptions for success. Higher level496

speakers on the other hand, model higher level497

listeners who can successfully resolve shorter mes-498

sages. As communication has a cost in this setup,499

speakers of higher levels will resort to shorter com-500

munication if possible.501

Learners benefit from longer messages as this502

provides more data about both color and shape of503

the objects. This behaviour nicely aligns with the504

intuition that language learners benefit from sim-505

ple, verbose communication and teachers should506

not assume challenging patterns of communica-507

tive competence early on in the learning process508

(Nguyen, 2022).509

Speaker
Distractors 1 3

2 1.05 1.01
3 1.13 1.02
4 1.23 1.06

Table 3: Average message length over 5000 samples
for different number of distractors and speaker levels.
Higher level speakers send shorter messages and more
distractors result in longer messages.

Listener
Training Evaluation Accuracy

a) 0 0 85.4
b) 0

2
85.7

c) 2 87.6**
d) 0

4
85.8

e) 4 88.2**

Table 4: Reasoning learners perform significantly better
than upgraded listeners of the same level at evaluation
time. The environment parameters are N = 2, cost = 0.6
with S1 speaker.

Accuracy impact of reasoning during leaning 510

One of the main interests of this paper is to see 511

the impact of applying pragmatic reasoning during 512

learning as opposed to only upgrading a L0 listener 513

to higher levels during evaluation. In Table 4 row 514

a) we show the performance the simplest 0-level 515

listener. Then we compare two versions of each 516

higher level listener: rows b) and d) show listen- 517

ers that were only upgraded to higher levels during 518

evaluation. The corresponding results in row c) and 519

e) show listeners that applied the same level of rea- 520

soning already during training. Reasoning learners 521

are significantly better than upgraded listeners of 522

the same level at evaluation time. 523

These results confirm our hypothesis that it 524

is worth making the extra effort to differentiate 525

through pragmatic reasoning when learning the un- 526

derlying literal representations. As most real-world 527

examples of natural language use also involve prag- 528

matic reasoning, this result is important to consider 529

when designing artificial language learners in a 530

conversational setting. 531

Reasoning learners are more robust We would 532

also like to understand how robust our listeners are 533

to environmental changes. As reasoning learners 534

make an explicit effort to model how the context 535

contributes to the observed distributions, we expect 536
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that these listeners will generalize better to out-of-537

domain data.538

In order to test this idea, we take listeners that539

were trained in the easiest setting still including540

communication cost: two distractor images and fre-541

quent co-occurrences of the same shapes. Having542

correlated shapes results in the speaker using more543

messages about the color, which means that the544

learners observe less evidence about the meaning545

of shape-words.546

We first evaluate in-domain, in the same envi-547

ronment, then we change the environment to the548

most challenging set of parameters. The out-of-549

domain evaluation set has 4 distractor images and550

the shapes come from a uniform distribution.551

Listener Accuracy
train eval ID OOD ∆

a) 0 0 92 73.5 -18.5
b) 0

2
92.2 74.5 -17.7

c) 2 93.5 77.3 -16.2*
d) 0

4
92.1 74.8 -17.3

e) 4 93.9 78.3 -15.6 *

Table 5: Models evaluated in the easy in-domain (ID),
and challenging out-of-domain (OOD) environment.
The last column shows the difference in performance
between the two environments for the same model.

In Table 5 we report the relative changes in ac-552

curacy between in- and out-of-domain data. Rea-553

soning learners and upgraded listeners degrade in554

accuracy when they are evaluated in a more diffi-555

cult environment. In the last column, we indicate556

the drop in performance for all models. We observe557

that the reasoning learners suffer significantly less558

from environmental changes.559

As here we are interested if the difference in560

differences is significant, we perform binomial lo-561

gistic regression as significance test, and find that562

reasoning learners are significantly more robust563

than upgraded listeners of the same level at evalua-564

tion time.565

6 Discussion566

A lot of the analysis presented in this paper was567

made possible by the fact that we used an artificial568

setup where the data-generating process is fully569

known. In most real world data sets the natural570

language data is not labelled with the level of hi-571

erarchical reasoning that the participants applied572

during production, and this factor remains a latent 573

variable. Curriculum learning that would like to 574

integrate the knowledge about speaker-depth would 575

first have to infer this from the data. 576

We proposed to use stochastic gradient descent 577

for learning language while integrating pragmatic 578

reasoning. This was permitted by the fact the hi- 579

erarchical reasoning process we presented is fully 580

differentiable. The most unrealistic aspect of this 581

process is the normalisation over all possible mes- 582

sages in the speaker’s production. This assumes 583

that listeners and speakers are able to consider all 584

competing sentences during reasoning. 585

Obviously, the set of natural language sentences 586

is not finite and an infinite number of sentences 587

can be composed from a fixed vocabulary. This 588

is a known problem in models that integrate coun- 589

terfactual reasoning about alternative utterances. 590

The most common resolution is sampling a set of 591

relevant sentences from a proposal distribution (An- 592

dreas and Klein, 2016; Liu et al., 2023). This of 593

course breaks differentiability. As a result, models 594

using sampling often turn to reinforcement learning. 595

Any model that integrates hierarchical reasoning 596

during training for natural-language datasets, also 597

needs to consider this problem. 598

7 Conclusions 599

For artificial agents to understand humans, it is 600

critical for them to correctly interpret context. By 601

recursively modeling the conversational partner, 602

reasoning listeners can improve their interpretation 603

in context. In this work we introduced artificial 604

language learners that have an explicit model of the 605

speaker’s production process during learning. 606

We have shown that learners that reason about 607

how the context influences the data they observe, 608

learn to perform the task with high accuracy faster. 609

They also learn literal utterance representations that 610

lead to higher task success within the training do- 611

main and lead to better generalization when there 612

are changes in the environment. Finally, we also 613

provided evidence that speakers that assume high 614

level reasoning from the learners actually are worse 615

teachers. Overall, we conclude that the widely used 616

practice of applying pragmatic reasoning during 617

evaluation is not sufficient. Instead, it is benefi- 618

cial to model pragmatic processes already during 619

learning. 620
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8 Limitations621

While the conversational phenomena we model in622

this paper have been widely attested to in linguistic623

theory and psycho-linguistic research, our experi-624

ments are limited to an artificial sandbox scenario625

with a small vocabulary and simple observations.626

As discussed in Section 6 reasoning about all pos-627

sible utterances is intractable with larger vocabular-628

ies.629

Real world conversations contain a wide range630

pragmatic inferences, not all of which can be ac-631

counted for by the recursive reasoning presented in632

this paper.633
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