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Abstract

The meaning of a natural language utterance
can vary greatly depending on the context of
the communication. An artificial agent inter-
preting natural language needs to be able to
integrate models of the human speaker and the
communicative goal in order to arrive at the
correct interpretation. This paper introduces
an approach integrating pragmatic reasoning
about the conversational partner while learning
representations from scratch. This leads to sig-
nificant improvements over prior work that only
considers pragmatics during inference or builds
on fixed representations of literal meaning. Our
artificial language learner is situated in a ref-
erential game about images, where we show
that equipping the agent with explicit reasoning
about the speaker and the shared observations,
leads to faster learning, higher communicative
success, and better generalization to changes in
the environment.

1 Introduction

Everyday conversations are rich with implicatures.
Being able to infer the intended meaning of an ut-
terance beyond its literal content allows us to com-
municate efficiently. The process of how people
attain interpretations including implicatures using
a model of the speaker’s intentions has long been
studied (Grice, 1975; Horn, 1984; Fox and Katzir,
2011; Levinson, 2000).

In recent years, deep learning methods learn-
ing from large natural language corpora have led
to great advances in natural language understand-
ing and generation. Large scale datasets however,
rarely allow for the study of language in its most
natural function: as a tool of communication be-
tween agents who have a communicative goal and
are surrounded by extra-linguistic context.

While the communicative context is often not
recorded in large natural language corpora, it is
justified to assume that any natural language data
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Figure 1: The speaker is asking for the red object. For a
literal listener, this is ambiguous. A reasoning listener
can conclude that the speaker is asking for the red cir-
cle, as “square” would have been a more informative
message for the other red object.

by humans was generated using some form of prag-
matic reasoning. In this work, we investigate how
to best learn from data where the intended mean-
ing contains implicatures. Our main hypothesis is
that inferring the literal meaning from contextual
language use creates more robust representations
across contexts and leads to faster learning.

When listeners derive the meaning of an utter-
ance, they engage in counterfactual reasoning about
alternative sentences that the speaker could have
uttered (Davies et al., 2022; Frank and Goodman,
2012). The interaction in Figure 1 depicts an in-
stance of such pragmatic reasoning about alterna-
tives within our simple environment. According to
pragmatic theory (Grice, 1975) the same process
accounts for the interpretation “They are in the of-
fice for the rest of the week”, when we hear the
sentence “We are not in the office on Mondays” .

Previous work has investigated how to adjust the
meaning of an utterance using the context and com-
municative goal (Vedantam et al., 2017; Monroe
et al., 2017; Vogel et al., 2013), with the assump-
tion that the context-independent literal interpreta-



tions are already given. It is less well studied how
language users acquire these literal interpretations
that provide the starting point for further reason-
ing. This is especially interesting if the observed
data already contains the result of reasoning that
depends on the context.

In our work, we model an agent who learns about
language from speakers using varying complexity
of pragmatic inference. We show that it is possible
for the language learner to differentiate through the
speaker’s production process and this way directly
learn about literal meaning. We investigate how ex-
plicit models of the other agent influences learning
and communicative success in a referential game
about synthetic images. We show that a reasoning
learners equipped with pragmatic reasoning during
training:

* can successfully learn to interpret messages
in a communicative task.

* learn faster in the initial stages as opposed to
models that do not integrate explicit models
of the speaker.

* achieve higher task accuracy at evaluation
time compared to models that only apply rea-
soning during evaluation.

* learn interpretation functions that are more
robust to changes in the environment.

2 Background

We situate our listener in an image-based version
of Lewis’s signaling game (Lewis, 1969). Image-
referential games are commonly used to study the
benefit of speakers and listeners reasoning about
each other in context (Lee et al., 2018; White et al.,
2020; Andreas and Klein, 2016). These works how-
ever, do not provide a principled way of learning
the literal interpretations that provide the starting
point for pragmatics. Image-captioning datasets
are commonly used to learn the base speaker (Nie
et al., 2020) or listener (Liu et al., 2023). Image-
captions however, were not produced in the context
of other images so they do not contain conversa-
tional phenomena found in referential games, such
as choosing the most informative or shortest de-
scription that still leads to successful communi-
cation. Therefore, pragmatic models building on
datasets that were not produced in context, do not
address the problem of learning literal interpreta-
tions from contextualized language use.

Other works do build on datasets that were gen-
erated in the context of referential games. These
collections might include human-human game-play
or synthetically generated language (Monroe et al.,
2017; White et al., 2020). However, when it comes
to learning the literal interpretations, they resort
to the methods mentioned earlier: they treat the
referring expressions provided for each image as a
caption, ignoring the fact that these captions were
produced in the context of other distractor images.

In our version of the game, at each turn a col-
lection of N images (o1, ..., o) is provided, with
the speaker having knowledge of a specific target
image o;, where 1 < ¢ < N. The listener’s objec-
tive is to correctly identify the target image index ¢
given the speaker’s message w. The messages may
contain multiple words by combining words from
a fixed vocabulary.

2.1 Literal meaning and the base listener

Frank and Goodman (2012) provide a concise
model for how speakers and listeners reason about
each-other when sharing referential content called
the Rational Speech Act model. As a starting point,
the model assumes an underlying literal interpre-
tation. This is a function D(w, o) of an utterance
w and an observation o, in our case an image. In
the formulation of Goodman and Frank (2016) the
base interpretation function is a 0-1 valued indica-
tor of the set of messages that are true of the image
o. In line with other work, we replace this binary
function with a real-valued similarity between the
observed image and text.

D(0s,w) = da(0;) e (w) (1)

Each image is individually embedded with a CNN
following the ResNet architecture (He et al., 2016).
The message embedding is computed by an RNN
with Gated Recurrent Units (Cho et al., 2014). The
listener models the distribution over the indices in
an ordered set of images. This expresses the likeli-
hood of each image given the message and all the
observed images. The simplest listener distribu-
tion is produced by normalizing the score assigned
by the literal interpretation function over all the
images in a given context C'.
€D(oi,w)

Lo(ijw,C) = 2)

ZLC:"l eD(0j,w)

In previous work, the literal interpretations are
initialized by functions learned outside of the con-
text of a referential game. This is most commonly
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Figure 2: The iterative process of creating higher level speakers and listeners. The listener’s distribution has lower

entropy with more iterations.

done by learning a function that maximizes simi-
larity between an image and a corresponding de-
scription (White et al., 2020; Lazaridou et al., 2020;
Andreas and Klein, 2016).

2.2 Recursive reasoning in speaker-listener
games

Here we explain how to add recursive reasoning
on top of a base L listener model. The speaker
produces a message that maximizes the probabil-
ity that the listener chooses the right image and
also considers the cost of each message w. This
means that the speaker has an internal model of the
listener.

e)\(log(Ln,l(i\C,w))—cost(w))

Sn(wl|C,1) = N(l0g(Ln_1(i|Cw0’))—cost(w'))

3)

The speaker’s probability of producing a message
given an image and the context is proportional to
the listener’s probability of identifying that image
based on the message and the same context. The
formulation in Equation 3 introduces a parameter
A that controls how rational a speaker’s choices are
given an internal listener distribution. In this work,
we only consider fully rational speakers with A = 1.
The speaker equation in 3 also adds a cost for
each message, this means that communication is
not for free. If we consider the cost to be the same
as the negative logarithm of the prior over mes-
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sages, then we recover the Bayes formula. In this
work, we consider a cost function that assigns a
constant weight to each word, which gives a linear
relation between message length and cost.

Now we define a more complex listener that can
also have an internal model of a speaker:

Ly (i|C,w) o< Sy (w]C, i) P(Cyd) - (4)

By applying Equations 3 and 4 in an alternating
fashion, we can produce higher level speakers and
listeners. Figure 2 shows the process of altering
the underlying literal representations to create the
Ly and then Ly distributions. This example only
considers a fixed set of five messages to illustrate
the effect of longer messages being more expensive.
The first column of S; shows that “red square” is
not likely to be produced because of its cost.

Contrasting Ly and L9 in this example shows
how the iterative process of applying Equations 3
and 4 creates implicatures in context: the message
“red” is unambiguous for Ly while it is ambiguous
for L. Frank and Goodman (2012) show that hu-
mans reliably interpret messages produced by a Ss
speaker consistent with a Lo listener.

3 Reasoning while Learning

In the previous section we saw how to perform
recursive reasoning on top of a given literal rep-
resentation D (o, w). However, the optimal initial



representations are likely influenced by the reason-
ing itself. In this work, we would like to learn the
parameters of the literal representations in the pres-
ence of a communicative goal and context. There-
fore, we propose to already apply recursive reason-
ing during training.

Reasoning learners that use models of the
speaker’s production process seek to update
the weights of the literal interpretation function
D(o,w) but they need to do so by considering the
repeated application of Equations 3 and 4. We
would like to derive the gradients of the reasoning
process with respect to the literal representations so
we can update these parameters through stochastic
gradient descent. We achieve this by repeated ap-
plication of the chain rule through the hierarchical
reasoning.

First, the reasoning listener has to differentiate
the listener equation 4. The listener’s distribution is
computed by normalizing the speaker scores from
the previous level over all images in the context.
For simplicity, we abbreviate L, (i|C,w) as L%*
and S,,_1 (w|C, j) as 7%,

oL . .

o ™ L (8= LA )
This is the derivative of the softmax function that is
applied to the scores assigned by the speaker from
the previous level.

The speaker equation is also a computation of
normalisation of the listener scores from the pre-
vious level, with the additional application of the
messaging cost.!

In the case of the speaker, the normalization hap-
pens over all possible messages w € V. This is the
most expensive step in the hierarchical reasoning
process. In many natural language applications it
is even prohibited by the fact that the set of all pos-
sible utterances is infinite. While exact inference
is intractable, there are many papers discussing ap-
proximations (Cohn-Gordon et al., 2018; Liu et al.,
2023; Lazaridou et al., 2020; White et al., 2020).
Due to the small number of messages in our game,
we can compute the gradients exactly:

!The cost of the messages is proportional to their length
and is kept fixed during training. The value of the cost is
shared knowledge between the speaker and the listener. This
corresponds to the intuition that they both experience the same
environmental pressures and difficulty of production. We note
it though, that it would be an interesting direction to make the
cost of communication a learnable parameter, that the players
also need to adjust during training.

oS . .y
N = S (§ gy — ST 6

This allows us to examine the effect of recursive
reasoning during learning without the confounds
from approximations.

Depending on the depth of the listener, learning
chains Equations 5 and 6 an appropriate number of
times. Reasoning learners backpropagate through
the hierarchical reasoning and update the weights
of the image- and utterance-embedding models
with stochastic gradient descent. The representa-
tions learned this way take pragmatics into account,
as opposed to the prevalent approach to pragmatic
reasoning, where the literal interpretations have not
been optimised to match the reasoning process.

4 Related work

A growing number of works consider adding ex-
plicit pragmatic capabilities to language under-
standing and generation systems. The first group
of these works upgrades models with additional
reasoning only during evaluation time. Such
models have been used to generate better image-
descriptions in context (Nie et al., 2020; Andreas
and Klein, 2016; Lazaridou et al., 2020), informa-
tive referring expressions about location (Golland
et al., 2010) and visual objects (Mao et al., 2016).

Cohn-Gordon and Goodman (2019) integrate a
listener model in their machine translation system
in order to find better translations to potentially
ambiguous sentences. Similarly, models of the
speaker have been used in instructions following
agents to resolve unclear utterances (Fried et al.,
2018b,a).

Closer to our interest, the second group of mod-
els already consider pragmatic reasoning during
learning. Smith et al. (2013) provides a sampling-
based inference for learning the “some and maybe
all” literal semantic content for the word “some”.
Vogel et al. (2013) investigate heuristics for finding
the underlying literal interpretations in a naviga-
tion game between humans where the referring
expressions for the location are rich with scalar im-
plicatures. Liu et al. (2023) learn a speaker in an
image-referential game that approximates a model
of the listener during training. Their base listener
on the other hand is initialised with a literal model
that was trained outside of the context of the com-
municative game.

Most similar to our work, Monroe and Potts



(2015) learn a literal lexicon of words and sym-
bolic image features by modeling a speaker with an
internal listener in an image-referential game. They
also derive gradients by differentiating the speaker
equation to update the listener model. Unlike the
flexible neural network formulations in this paper,
they use log-linear model with a hand-crafted fea-
ture space for images and words.

5 Experiments

5.1 Data

We create a new environment based on the Shape-
World dataset (Kuhnle and Copestake, 2017). This
dataset was designed for the study of multimodal
language understanding and has been previously
used to investigate messaging strategies (White
et al., 2020; Wang et al., 2021).

Each game consists of a target image and a vari-
able number of NV distractor images. Images are
described by one out of six different colors and a
shape that can take four different values. The shape
and size of the objects is randomized on a 64x64
grid which creates a large variation of candidate
pictures. In the original dataset, the shapes and
colors as well as the index of the target image are
drawn from a uniform distribution. If the target
is identical to one of the distractors, the sample is
rejected, as there is no unique referring expression
that would identify the target.

First, we change the way the speaker chooses
the message. Instead of the rule-based method of
Kuhnle and Copestake (2017), we use an exact
implementation of the rational speaker defined in
Equation 3. This way we can create speakers with
different depth of recursive reasoning. Our speak-
ers are not learned, they are knowledgeable users
of the language: they have access to the underlying
true literal meaning representations which indicates
the mapping between words and image properties.

We parameterize the process that generates the
image tuples for each game by three sets of proba-
bility distributions: the prior over the shapes P(.S),
the probability of colors given a shape P(C|S) and
a third distribution the controls the co-occurrence
of shapes P(S|S). This enables us to introduce
correlations between object properties, making it
more difficult to find the right referring expression.

We sample P(S), the four conditionals for
P(S|S) and for P(C|S) from different Dirich-
let distributions. P(.S) has four concentration
parameters (Qeilipse; -+, Asquare). FP(C|S) has

six concentration parameters, one for each color
(Qtreds ---» Qe ) Tepeated over all shapes to create
four different conditional distributions. Each of the
four conditionals characterizing P(.S|S) has four
parameters belonging to each shape.

5.2 Experimental setup

The fact that we have full control over the speaker’s
messaging strategy and the data generating process
behind context images allows us to create interest-
ing learning environments for the listeners. For
example, we can alter the level of the speakers that
the listeners learn from, or modify the environment
between training and evaluation time.

We train listeners of three different levels. The
level O listener, Lg has no internal model of the
speaker. This is the model that we will upgrade to
higher level reasoning during evaluation to create a
similar setup that was explored in previous work.
The level 2 listener, Lo models a level 1 speaker,
and the level 4 listeners applies a further step of
reasoning by modeling a level 3 speaker.

We create two different levels of speakers to pair
them with our learning listeners: .S is level 1 and
Ss is level 3. In our experiments, we create learning
scenarios with all possible pairings of listener and
speaker levels. This allows us to examine how
the learning is influenced if there is a mismatch
between the actual level of the learner and the level
of the learner that the speaker internally models.

We also design two further versions of the game:
one where communication is free, and one where
each word has a cost 0.6. This cost was derived to
make sure that the speakers of all levels will send
the shorter message, where it is possible, while also
guaranteeing that communication is not too expen-
sive for speakers to send ambiguous messages that
cannot be resolved.

Generating image tuples We set all alphas that
belong to P(.S) and the four P(C|S) conditionals
to 100. This results in sampling distributions that
are close to a uniform distribution.

For P(S|S), we construct two different sets of
parameters. In the first version, we set all concen-
tration parameters to 100, just like in the case of
P(S) and P(C|S). In the second version, we cre-
ate correlation between shapes by multiplying the
« that controls the likelihood of a shape given the
same shape by 10. This leads distribution samples
where the co-occurrence of the same shape within a
game becomes likelier than random chance. For ex-



ample, a circle target shape will more often appear
with other circle distractors. A speaker sending un-
ambiguous messages, will have to more often use
color as the distinguishing feature, and the learners
will see less evidence of what shape-words mean.

For training, we sample only one instance of
P(S), P(S|S) and P(C|S). At test time, we sam-
ple different P(.S), P(S|S) and P(C|S) instances
10 times. From each of these constellations we sam-
ple 3,200 games. This results in a test set of 32,000
examples.

The random seed is fixed across all experiments
and is reset for the learning and evaluation of each
learner. This ensures that each listener sees the
exact same examples in all environments.

Model training and implementation All model-
parameters are trained from scratch. Weights are
updated with the AdamW optimizer (Loshchilov
and Hutter, 2017) which we initalize with a learn-
ing rate of 1le — 5.

For each training step, we use a batch of 32
games and the listeners are trained for 25,920 train-
ing steps. We train one instance of each listener.
The implementation code will be publicly released
upon acceptance of the paper.

5.3 Results

In this section, we present the most insightful re-
sults from our extensive set of experiments. First,
we look into how listeners with different depths be-
have during training and which parameters of the
environment pose the biggest challenges for them.

Next, we turn to the main interest of this paper
which is contrasting models that apply reasoning
during training with ones that upgrade a base model
to higher levels during deployment. For clarity,
we call the first group reasoning learners and the
second group upgraded listeners.

We report accuracy for all results, which simply
shows the proportion of games where the listener
guessed the right image based on the speaker’s
message. We perform Fisher’s exact test for sig-
nificance testing. For the sake of brevity we do
not report significance results for all pairings, but
only for the ones most relevant to the research ques-
tion. We note p < 0.05 with one asterisk * and for
p < 0.01 we put ** next to the results.

Learning dynamics We first examine the learn-
ing dynamics of reasoning learners with different
depth of recursive reasoning. Figure 3 shows that

Listener's accuracy
Listener 4 = Listener 2 Listener @
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Figure 3: Higher level listeners learn quicker. In this
comparison all other parameters such as speaker level,
number of distractors, correlation between shapes are
left constant.

when we keep all parameters of the learning en-
vironment constant, and only vary the listener’s
depth, we observe that listeners with higher levels,
learn to perform the task with good accuracy faster.
The gap in performance is especially large in the
initial learning stages. This suggests that applying
pragmatic reasoning might be particularly useful
in case of limited data.

Here we show results for a level 1 speaker with
N = 2 distractor images and uniform distributions
over all image features. These results however,
hold across all training scenarios.

Listener Easy Hard
a) 0 91.9 80.8
b) 2 03.7%%  84.7%*
c) 4 94.1%%  85.4%%*

Table 1: Accuracy in the easiest and hardest environ-
ments. The easy environment has no messaging cost,
each game has N=2 distractor images and the same
shapes co-occur frequently. In the hard environment
N=4, each word has a cost 0.6 for the speaker, the im-
age features are uniformly distributed. In both environ-
ments higher level reasoning learners perform better.
The speaker is S for training and evaluation.

Easiest and most challenging learning environ-
ments We now present results of the models’ per-
formance after the reasoning learners finished train-
ing. We would like to see what parameters in the
environment make learning more challenging. In
this set of evaluations, we keep the parameters of
the environments the same across training and test-
ing. Table 5.3 shows the accuracy of the reasoning
learners of three different levels in the least and
most challenging settings.



The cost of messaging has the biggest impact
on accuracy, followed by the number of distrac-
tors. The fewer distractors the environments have,
the easier the task becomes. Having correlation
between the the target and distractor shapes also
makes the task easier, as in these cases the speaker
uses messages about the color more frequently and
the learners can achieve a high accuracy with only
understanding the color terms.

Listener  Speaker train Accuracy
a) 0 1 80.8%%*
b) 3 79.2
c) ) 1 84.7%*
d) 3 83.4
e) 4 1 85.4%%
f) 3 84.1

Table 2: For each level of reasoning learner, learning
from a lower level listener results in significantly better
accuracy. Here we have a cost of 0.6, and a S; speaker
at evaluation, N = 3. The same trends hold for a S5 at
evaluation time.

Learning from speakers with different depth
The level of the speaker who the listener learns
from is also of interest. S7 has an internal model of
a competent Lg, while S5 anticipates Lo-behavior.
We would like to see how reasoning learners of
different levels are impacted by learning from dif-
ferent speakers.

Table 2 shows that reasoning learners that
learned from lower level speakers always achieve
higher accuracy at evaluation. This can be ex-
plained by the fact that lower level speakers send
longer messages on average, see Table 3, because
their internal model is of a simpler listener who
needs longer descriptions for success. Higher level
speakers on the other hand, model higher level
listeners who can successfully resolve shorter mes-
sages. As communication has a cost in this setup,
speakers of higher levels will resort to shorter com-
munication if possible.

Learners benefit from longer messages as this
provides more data about both color and shape of
the objects. This behaviour nicely aligns with the
intuition that language learners benefit from sim-
ple, verbose communication and teachers should
not assume challenging patterns of communica-
tive competence early on in the learning process
(Nguyen, 2022).

Speaker

Distractors 1 3
2 1.05 | 1.01
3 1.13 | 1.02
4 1.23 | 1.06

Table 3: Average message length over 5000 samples
for different number of distractors and speaker levels.
Higher level speakers send shorter messages and more
distractors result in longer messages.

Listener
Training Evaluation Accuracy
a) 0 0 85.4
b) 0 ) 85.7
c) 2 87.6%%*
d) 0 4 85.8
e) 4 88.2%*

Table 4: Reasoning learners perform significantly better
than upgraded listeners of the same level at evaluation
time. The environment parameters are [NV = 2, cost = 0.6
with S; speaker.

Accuracy impact of reasoning during leaning
One of the main interests of this paper is to see
the impact of applying pragmatic reasoning during
learning as opposed to only upgrading a L listener
to higher levels during evaluation. In Table 4 row
a) we show the performance the simplest O-level
listener. Then we compare two versions of each
higher level listener: rows b) and d) show listen-
ers that were only upgraded to higher levels during
evaluation. The corresponding results in row c¢) and
e) show listeners that applied the same level of rea-
soning already during training. Reasoning learners
are significantly better than upgraded listeners of
the same level at evaluation time.

These results confirm our hypothesis that it
is worth making the extra effort to differentiate
through pragmatic reasoning when learning the un-
derlying literal representations. As most real-world
examples of natural language use also involve prag-
matic reasoning, this result is important to consider
when designing artificial language learners in a
conversational setting.

Reasoning learners are more robust We would
also like to understand how robust our listeners are
to environmental changes. As reasoning learners
make an explicit effort to model how the context
contributes to the observed distributions, we expect



that these listeners will generalize better to out-of-
domain data.

In order to test this idea, we take listeners that
were trained in the easiest setting still including
communication cost: two distractor images and fre-
quent co-occurrences of the same shapes. Having
correlated shapes results in the speaker using more
messages about the color, which means that the
learners observe less evidence about the meaning
of shape-words.

We first evaluate in-domain, in the same envi-
ronment, then we change the environment to the
most challenging set of parameters. The out-of-
domain evaluation set has 4 distractor images and
the shapes come from a uniform distribution.

Listener Accuracy
train eval | ID OOD A
a) 0 0 92 735 -185
by O ’ 922 745 -17.7
c) 2 935 773 -16.2%
d 0 4 92.1 748 -17.3
e) 4 939 783 -15.6*

Table 5: Models evaluated in the easy in-domain (ID),
and challenging out-of-domain (OOD) environment.
The last column shows the difference in performance
between the two environments for the same model.

In Table 5 we report the relative changes in ac-
curacy between in- and out-of-domain data. Rea-
soning learners and upgraded listeners degrade in
accuracy when they are evaluated in a more diffi-
cult environment. In the last column, we indicate
the drop in performance for all models. We observe
that the reasoning learners suffer significantly less
from environmental changes.

As here we are interested if the difference in
differences is significant, we perform binomial lo-
gistic regression as significance test, and find that
reasoning learners are significantly more robust
than upgraded listeners of the same level at evalua-
tion time.

6 Discussion

A lot of the analysis presented in this paper was
made possible by the fact that we used an artificial
setup where the data-generating process is fully
known. In most real world data sets the natural
language data is not labelled with the level of hi-
erarchical reasoning that the participants applied

during production, and this factor remains a latent
variable. Curriculum learning that would like to
integrate the knowledge about speaker-depth would
first have to infer this from the data.

We proposed to use stochastic gradient descent
for learning language while integrating pragmatic
reasoning. This was permitted by the fact the hi-
erarchical reasoning process we presented is fully
differentiable. The most unrealistic aspect of this
process is the normalisation over all possible mes-
sages in the speaker’s production. This assumes
that listeners and speakers are able to consider all
competing sentences during reasoning.

Obviously, the set of natural language sentences
is not finite and an infinite number of sentences
can be composed from a fixed vocabulary. This
is a known problem in models that integrate coun-
terfactual reasoning about alternative utterances.
The most common resolution is sampling a set of
relevant sentences from a proposal distribution (An-
dreas and Klein, 2016; Liu et al., 2023). This of
course breaks differentiability. As a result, models
using sampling often turn to reinforcement learning.
Any model that integrates hierarchical reasoning
during training for natural-language datasets, also
needs to consider this problem.

7 Conclusions

For artificial agents to understand humans, it is
critical for them to correctly interpret context. By
recursively modeling the conversational partner,
reasoning listeners can improve their interpretation
in context. In this work we introduced artificial
language learners that have an explicit model of the
speaker’s production process during learning.

We have shown that learners that reason about
how the context influences the data they observe,
learn to perform the task with high accuracy faster.
They also learn literal utterance representations that
lead to higher task success within the training do-
main and lead to better generalization when there
are changes in the environment. Finally, we also
provided evidence that speakers that assume high
level reasoning from the learners actually are worse
teachers. Overall, we conclude that the widely used
practice of applying pragmatic reasoning during
evaluation is not sufficient. Instead, it is benefi-
cial to model pragmatic processes already during
learning.



8 Limitations

While the conversational phenomena we model in
this paper have been widely attested to in linguistic
theory and psycho-linguistic research, our experi-
ments are limited to an artificial sandbox scenario
with a small vocabulary and simple observations.
As discussed in Section 6 reasoning about all pos-
sible utterances is intractable with larger vocabular-
ies.

Real world conversations contain a wide range
pragmatic inferences, not all of which can be ac-
counted for by the recursive reasoning presented in
this paper.
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