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ABSTRACT

Self-supervised reinforcement learning (RL) aims to train agents without pre-
specified external reward functions, enabling them to autonomously acquire the
ability to generalize across tasks. A common substitute for external rewards
is the use of observational goals sampled from experience, especially in goal-
conditioned RL. However, such goals often constrain the goal space: they may be
too concrete (requiring exact pixel-level matches) or too abstract (involving am-
biguous observations), depending on the observation structure. Here we propose
a unified hierarchical goal space that integrates both concrete and abstract goals.
Observation sequences are encoded into this partially ordered space, in which a
subset relation naturally induces a hierarchy from concrete to abstract goals. This
encoding enables agents to disambiguate specific states while also generalizing to
shared concepts. We implement this approach using a recurrent neural network to
encode sequences and an energy function to learn the partial order, trained end-
to-end with contrastive learning. The energy function then allows to traverse the
induced hierarchy to vary the degree of abstraction. In experiments on navigation
and robotic manipulation, agents trained with our hierarchical goal space achieve
higher task success and greater generalization to novel tasks compared to agents
limited to purely observational goals.

Most concrete Most abstract

Figure 1: Making goals more abstract in the GridWorld environment.

1 INTRODUCTION

Over the last decade, reinforcement learning (RL) has achieved remarkable successes, both in mas-
tering highly complex games and in domains where environments provide clearly defined reward
functions (Mnih et al., 2015; Silver et al., 2016; Vinyals et al., 2019; Hafner et al., 2025). In real-
world applications, however, such reward functions are rarely available or are highly non-trivial to
specify (Amodei et al., 2016; Russell, 2016; Christiano et al., 2017). In contrast, humans learn about
the world through exploration, play, and observation, largely without external reward signals telling
them what to do (Begus et al., 2014; Gopnik et al., 1999; Goupil et al., 2016). Another problem
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for real-world applications is task-specificity: an agent trained to solve one task may not be able to
apply its learned skills to a different, even slightly modified task (Zhang et al., 2018; Delfosse et al.,
2025).

One approach to address both the lack of external rewards and the need for generalization is unsu-
pervised RL, in which agents are pretrained without relying on designed reward signals and later
adapted to downstream tasks. This pretraining can enable faster inference of policies that gener-
alize across a broad range of tasks. Unsupervised RL is characterized by a spectrum of diverse
techniques, including intrinsic motivation approaches based on novelty, learning progress, or em-
powerment (Salge et al., 2014; Zhang et al., 2021), latent skill learning (Eysenbach et al., 2019;
Sharma et al., 2020), goal-conditioned RL with self-selected goals (Nair et al., 2018; Bae et al.,
2025), approaches that approximate long-term dynamics with successor measures (Agarwal et al.,
2025b;a), and contrastive RL methods (Laskin et al., 2020; Schneider et al., 2021; Eysenbach et al.,
2022).

Here, we focus on goal-conditioned RL within a self-supervised learning setting where tasks are
specified by the goals the agent attempts to achieve. In the literature goals are often expressed
directly in observation space (Ghosh et al., 2021; Eysenbach et al., 2022), which ties the agent’s
capabilities to the abstraction level as well as the structure of the underlying observation space. Typ-
ically, environments either provide local observations like egocentric images, or global observations
such as precise states and positions. These modalities inherently bias how goals are interpreted: lo-
cal observations may be ambiguous, leading to abstract goals unless additional context is provided,
while global observations specify concrete states but make it harder to capture higher-level abstrac-
tions through composition. Thus, neither local nor global observations alone provide a sufficient
basis for representing goals, as each is biased towards a single level of abstraction.

While the most concrete goals can be seen as elements of a sample space composed of observations
or sequences of observations, more abstract goals can instead be seen as (soft) partitions on this
space. In general, such goals, that consist of multiple observations, can be induced by constraints
(Colas et al., 2019), by utility functions (Christiano et al., 2017; Vamplew et al., 2024) or by desired
distributions over observational states (Pong et al., 2020; Ziebart et al., 2008). However, if different
levels of abstraction are defined by separate functions or constraints (Sutton et al., 1999; Ho et al.,
2019), then it might be difficult to capture their relationship to lower-level goals. An alternative is to
represent both concrete and abstract goals in a shared latent space, analogous to word embeddings,
where both tokens and longer texts are encoded in the same vector space (Mikolov et al., 2013).
In the following, we thus introduce a hierarchical latent goal space that represents goals as vectors
that encode observation sequences, organized according to varying levels of abstraction. This is
achieved through contrastive training of an asymmetric energy function that indicates whether one
observation sequence is contained within another. Interestingly, this construction supports join and
meet operations on goals, allowing to make them more or less abstract within the hierarchy.

The paper is organized as follows. In Section 2 we introduce our methods, including the latent space
encoding, the energy function training and the evaluation methods. For evaluation after pretraining,
we confront agents with multiple novel reward functions and we search for the best fitting goal in
the trained latent space to represent these reward functions. In Section 3, we illustrate our method
in three different RL environments (GridWorld with LiDAR, MemoryMaze, FetchPush). We first
illustrate the best fitting goals to represent abstract reward functions, and then show the performance
of the corresponding pretrained goal-conditioned policies when searching for the best-fitting goal. In
Section 4 we discuss our approach in the context of the wider literature and conclude in Section 5.

2 METHODS

Hierarchical goal space. The key idea is to arrange goals according to their levels of abstrac-
tion, forming a spectrum that runs from the most specific to the most general goal. We formalize
this idea through a shared latent goal space, G, which supports both representing goals at varying
degrees of abstraction and traversing between abstraction levels. In particular, we encode observa-
tion sequences instead of single observations, which allows the representation to extract meaningful
concrete and abstract patterns by exploiting spatio-temporal similarity as well as integrating shared
information. Formally, we capture different levels of abstraction by imposing a partial order ⪯ over
the latent goal space: If ga ⪯ gb, then gb represents a more abstract goal than ga. The most concrete
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goals are denoted by g⊥, and the most abstract by g⊤, such that

g⊥ ⪯ g ⪯ g⊤ ∀g ∈ G.

Using the lattice structure of this partial order allows to traverse the latent space through join,
ga ∨ gb = inf{g | ga ⪯ g,gb ⪯ g} and meet operations, ga ∧ gb = sup{g | g ⪯ ga,g ⪯ gb}.
Intuitively, the join identifies the least abstract goal that encompasses both ga and gb, while the meet
identifies the most concrete goal they share.

Energy function and subset relation. In a self-supervised setting, the data available to the agent
only consists of action–observation sequences without any external rewards. To recover useful re-
lations between observations, the agent must therefore rely on the temporal regularities inherent in
its interactions with the environment. We therefore propose to treat relations between sequences
of observations as proxy for the partial order in goal space. A natural choice of such a relation is
the subset relation in sequence space: if one sequence is contained in another, it corresponds to a
more concrete goal within the hierarchy. We use a single contrastive learning framework to learn the
encoding ϕθ into the latent goal space, as well as the characteristic function χ⪯ of the partial order.
Specifically, we model the latter as an energy Eθ(x,y) that estimates whether x ⪯ y, i.e.

Eθ(x,y) ≈ χ⪯(x,y) =

{
1 x ⪯ y

0 else.

Making sure that Eθ(ϕθ(τ), ϕθ(τ
′)) is close to 1 if τ is a subsequence of τ ′ = (o0, . . . ,oT ) and

close to 0 otherwise, enables to learn both the latent encoding and the ordering relation end-to-end,
guided only by temporal consistency in the data.

Traversing the hierarchy. The induced hierarchy has a one-to-many structure: each concrete
goal corresponds to multiple abstract goals that satisfy the partial order, and conversely, an abstract
goal generally is more abstract than numerous concrete goals. The differentiability of the energy
function allows to traverse this hierarchy by optimization, holding one input fixed while updating
the other. In this way, we can move upward to find a more abstract goal (↑) or downward to obtain
a more concrete goal (↓). Given a set of goals {gi}ni=1, our aim is to find a new goal that is either
more abstract or more concrete than the entire set. To generate diverse solutions, we initialize the
optimization from a randomly sampled goal, which produces different trajectories over the energy
landscape and thus leads to different optimized goals:

g
(t+1)
↑ = gt

↑ + η∇g↑

n∑
i=1

E(gi,g
t
↑) ≈ g1 ∨ · · · ∨ gn (more abstract)

g
(t+1)
↓ = gt

↓ + η∇g↓

n∑
i=1

E(gt
↓,gi) ≈ g1 ∧ · · · ∧ gn (more concrete)

where g0 ∼ G. Swapping the order of inputs in the energy function determines whether the opti-
mization yields a more abstract or more concrete goal.

Learning the energy function. For practical implementation, we jointly learn the sequence en-
coding as well as the energy function that induces the partial order, using neural networks trained
end-to-end. The overall architecture is shown in Figure 3. To handle sequences of arbitrary length,
we use an recurrent neural network (RNN) based encoder (Cho et al., 2014), which maps the se-
quence τ into a fixed-dimensional context vector cτ . Similar to Hafner et al. (2022), we further
encode this context vector into a discrete latent representation g using a categorical encoder, where
the discrete bottleneck encourages the formation of higher-level abstractions over goals. Differen-
tiability is maintained by using a straight-through estimation of the gradients with respect to the
discrete samples. This setup is closely related to the discrete variational autoencoder (VAE) used
by Hafner et al. (2025), but instead of optimizing a reconstruction loss, we train the model with a
reconstruction-free objective based on our proposed subset relation, using contrastive learning.

Given recorded data D consisting of trajectories τ = (o0, . . . ,oT ), we construct datasets D+ and
D− of positive and negative pairs of trajectories, respectively, based on their relation in sequence
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Figure 2: Subset selection for contrastive learn-
ing. Positive (green) and negative (red) exam-
ples are selected from observation trajectories.

Figure 3: Proposed sequence abstraction model
combining a learnable goal representation and
similarity measure.

space. The energy function Eθ and sequence encoder ϕθ are learned jointly by optimizing

L(θ) =− E(τ1,τ2)∼D+

[
logEθ(ϕθ(τ1), ϕθ(τ2))

]
− E(τ1,τ2)∼D−

[
log(1− Eθ(ϕθ(τ1), ϕθ(τ2)))

]
.

Here, D+ contains pairs (τ1, τ2) such that τ1 ⊂ τ2, including cases where both come from the
same trajectory as well as composite trajectories formed from unrelated segments. In contrast, D−
contains pairs where τ1 ̸⊂ τ2, for example pairs (τ1, τ2) with τ2 ⊂ τ1, as well as non-overlapping
trajectories, either from the same or from distinct base trajectories τ . Examples are shown in Fig-
ure 2.

Abstract hindsight relabeling. To learn policies in our approach, we chose contrastive reinforce-
ment learning (CRL) introduced in Eysenbach et al. (2022), which is based on hindsight relabeling
of achieved goals. In standard CRL, relabeling is restricted to single observations from past experi-
ence. This limits the diversity of goals available for training, since the agent repeatedly encounters
only a narrow subset of the goal space, an effect that becomes more pronounced when training on
a fixed, concrete task. Our goal encoding addresses this limitation by allowing entire sequences of
observations to be relabeled as a single, more abstract goal. This provides the agent with richer su-
pervision: it can learn from both fine-grained, single-observation goals and higher-level, temporally
extended goals. We hypothesize that this broader and more expressive goal set improves general-
ization and task performance. In practice, we randomly sample the sequence length during training,
allowing the agent to experience both concrete and abstract goals. It is important to note, however,
that this strategy does not by itself yield a policy that can achieve fully abstract, compositional con-
cepts that are possible through our learned goal abstraction. This higher-order hindsight relabeling
merely increases the diversity of goals experienced by the policy (see Conclusion).

Encoding reward functions. To learn goal representations from reward signals, we employ a
hindsight learning procedure that translates rewarding observations into parametrized goals. This
procedure uses contrastive learning to combine high-rewarding goals through a similarity measure
in goal space:

L(ϑ) = E
(rt,gt)∼D,g∗∼pϑ

[
−rt logE(gt,g

∗)︸ ︷︷ ︸
hindsight

− (1− rt) log(1− E(gt,g
∗))︸ ︷︷ ︸

negative feedback

]
,

where D are reward-goal tuples obtained from either environment interactions or from curated data.
For our approach, observations are encoded into goals using the sequence encoder, and similarity
is computed using the energy function. By optimizing for a more abstract goal than all rewarding
goals, we learn a representation of the reward function at hand. In contrast, observational goals use
cosine similarity to combine high-reward observations directly.

Generalization to novel rewards. We borrow ideas from zero-shot RL, where we evaluate the
agent’s behavior on novel, unseen rewards to evaluate the persuadability of our agents (Levin, 2022).
To compare the performance of observational goals against our proposed hierarchical goal space, we
pre-train two agents on the corresponding goal space with the same original, single-observation goal
reaching task in mind.
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T

X,Y

Speed Final Streak

Attainment Final Reward

Max. Streak

Rewarding States

Criterion Description

Attainment Rewarding state reached
Total Reward Time fraction at reward
Final Reward Reward in the final state
Final Streak End consecutive rewards
Max. Streak Max consecutive rewards
Avg. Streak Avg. consecutive rewards
Speed Steps to first reward

Figure 4: Agent performance criteria.

The agent is tasked with exploring the state space au-
tonomously to encode reward functions. For this, the
agent collects rewards during fixed length episodes un-
der the policy induced by the current, best fitting goal. As
a result, the data is goal-oriented towards reaching high
rewarding states which otherwise may be too unlikely to
get sufficient data for. However, this may introduce a bias
where the agent focuses more on a frequent rewarding
states instead of capturing the full reward function. We
evaluate the agents behavior under the performance cri-
teria given in Figure 4 to capture different aspects of the
induced policy behavior.

Goal Visualization. In order to get an intuition of what
the goal space actually encodes, we use the learned en-
ergy function to visualize goals as follows. First, we
sample 10000 observations alongside their position from
the environment. Next, we encode them as single-
observation goals and compare them in the learned en-
ergy function, effectively checking if they are more con-
crete than some target goal. For observation goals we use
cosine similarity instead of the energy function. Finally,
an energy heatmap can be plotted by using the position
information and computed energies.

3 EXPERIMENTS

We evaluate our approach on different environments with local and global observations. The agents
are pretrained on the original, single observation goal reaching task with observational goals pro-
vided by the environment. For our approach, we encode the observations into latent goals. First, we
show how our goal representation can be used to traverse between concrete and abstract goals. Next,
we analyze the learned goal representation by trying to encode novel reward functions. Finally, we
conduct experiments to analyze the induced agent behavior under novel goals.

3.1 ENVIRONMENTS

Figure 5: Environments.

We use two navigation tasks with ego-centric, local ob-
servations as well as one robot manipulation task with a
global, image based observation space. Further, we de-
fine various new reward functions for each environment.
Rewards are binary and state-based. A full list of rewards
is given in A.2.

GridWorld is a 2D navigation task where agents navi-
gate through a grid-based environment using discrete ac-
tions. A new episode starts when the agent reaches the
goal. Contrary to normal position-based GridWorld envi-
ronments, our agent receives egocentric LiDAR observa-
tions. For analysis we define observation-based rewards
(such as circular room) as well as spatial rewards (specific
room, disjoint rooms).

MemoryMaze (Pasukonis et al., 2022) is originally a long-term memory task based on discrete
2D navigation with image observations. We adapt the task to use the environment for goal-based
navigation where goals are provided as image observations. Episodes end when the goal is reached.
We again define additional observational rewards (such as yellow corners) and spatial rewards (such
as a specific room).
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FetchPush (Plappert et al., 2018) is a robotic manipulation task where a gripper is tasked to move
an object to a specific position and keep it there until the episode ends. We use the adapted task
from Eysenbach et al. to obtain image-based observations, making the environment challenging.
Goal images show the object at some random position with the gripper close to the object. As novel
reward functions we define gripper rewards and object rewards such as moving the gripper to the
table border or pushing the object off the table.

3.2 RESULTS

Traversing the hierarchy. Optimizing the energy function to traverse the induced hierarchy
proves effective for generating goals at varying levels of abstraction. Figure 1 shows how we can
traverse the hierarchy in the GridWorld environment. Starting from the most concrete goal, we can
optimize for single-position goals, abstract them to broader regions and even combine individual
regions to more abstract, disjoint regions. Finally, the hierarchy is bounded by the most abstract
goal. Note that only one possible abstraction is shown at a time, while the partial order allows for
different abstractions fulfilling the subset relation. With this observation in mind, we show how we
can learn abstract representations of rewards by combining individual goals, corresponding to high
rewarding states, into a single abstract goal.

Encoding reward functions. A fundamental challenge in self-supervised reinforcement learning
is achieving sufficient exploration to capture the complete state space. Since data collection occurs
within the environment, an agent’s policy inherently constrains which regions of the state space can
be observed. To properly evaluate our pretrained goal representation’s ability to encode diverse re-
ward functions, we need comprehensive state coverage that is independent of any particular policy.
We construct a dataset by systematically sampling observations and their corresponding rewards
across the environment to ensure uniform coverage of the entire state space. Using this unbiased
dataset, we then optimize goals to encode high-reward states, effectively capturing diverse reward
functions through the methodology detailed in Section 2. This optimization process is applied to
both observational goals and our abstract goals, enabling direct comparison of their representa-
tional capabilities. Figure 6 demonstrates our goal representation’s ability to encode diverse reward

Specific Room Passages Rect. Rooms Room Centers Right Region Walls

R
ew

ar
d

A
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O
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. G
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l

Figure 6: Learned goal spaces from diverse data in the GridWorld environment. White regions in the
top row indicate high rewarding states. There is a single abstract goal to represent each considered
reward but no single observation.

functions in the GridWorld environment, ranging from concrete spatial targets (specific rooms) to
increasingly abstract concepts (room centers, disjoint rooms). This spectrum reveals critical dif-
ferences in representational requirements: while some rewards correspond directly to observable
features (e.g., passages that can be identified from single observations), others demand spatial and
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compositional knowledge of the environment. Our analysis reveals limitations with respect to ob-
servational goals. While raw observations can partially encode simple, visually-identifiable objec-
tives like corridor passages, they fail to capture spatial relationships and compositional properties
effectively. Furthermore, the optimized observations show overall high and noisy activity in co-
sine similarity, indicating fundamental limitations in their capacity to serve as robust abstract goal
representations. More results supporting our interpretaion in the MemoryMaze and FetchPush envi-
ronments are given in subsection A.1.

Adaptation to novel rewards. We extend our analysis to a more realistic task by considering data
obtained by environment interactions instead of relying on full state coverage. This is accomplished
by using the optimized goal as a target for the agent while refining the goal. This methodology al-
lows the agent to bias the observed state space down to meaningful observations in order to solve the
task more efficiently. Consequently, the goal is not necessarily required to encode the full reward
function. Figure 7 presents a comparative analysis of agents trained with abstract goal represen-

Legend

Abstract

Observation

Random

GridWorld MemoryMaze FetchPush
Observational

Rewards

Spatial
Rewards

Observational
Rewards

Spatial
Rewards

Gripper
Rewards

Object
Rewards

1    Attainment
2    Total Reward
3    Final Reward
4    Final Streak
5    Max. Streak
6    Avg. Streak
7    Goal Speed

Figure 7: Agent performance on novel rewards for all considered environments.

tations versus observational goal representations, evaluated according to the performance criteria
outlined in Figure 4. Our findings reveal comparable performance between both agent types on
observational tasks, where the available observations are sufficient to encode the reward function.
However, a difference emerges on spatial tasks that demand both spatial and compositional knowl-
edge about the environment. Our goal representation demonstrates better performance across most
evaluation metrics, while agents using observational goals exhibit near-random performance. This
performance gap indicates that agents trained with our goal representation have better generalization
capabilities for abstract goals that cannot be adequately represented within the observation space.
In the FetchPush environment, where all observations are global, we analyze the agents’ behavior
on abstract gripper and object-based rewards. We deliberately excluded concrete spatial objectives
(such as positioning objects or grippers at specific coordinates) due to their extremely low success
probability without sufficient exploration. Our results demonstrate that only our goal representa-
tion successfully handles both abstract object manipulation and gripper control tasks. In contrast,
observational goals fail on both tasks.

4 RELATED WORK

Self-supervised representation learning. Self-supervised representation learning tries to learn
meaningful representations without explicit supervision signals like labels (Ericsson et al., 2021).
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Contrastive learning has emerged as a powerful paradigm for self-supervised representation learning
by augmenting data with labels, often obtained by defining a suitable similarity measure between
data points (Jaiswal et al., 2021). The core principle involves bringing semantically similar sam-
ples closer together while pushing dissimilar samples apart in the learned embedding space. This
approach has shown remarkable success across domains, including computer vision with methods
like SimCLR (Chen et al., 2020) as well as natural language processing through approaches like
contrastive sentence representation learning (Kim et al., 2021) and supervised contrastive learn-
ing for pre-trained language model fine-tuning (Gunel et al., 2021). Temporal contrastive learning
extends these principles to sequential data by leveraging temporal relationships as augmentations.
Contrastive learning through time (Schneider et al., 2021) takes inspiration from biology to learn ob-
ject representations by forming augmentations from successive views in temporal sequences. Con-
trastive learning can be understood through the lens of energy-based models, where the similarity
measures used to bring positive pairs together and push negative pairs apart implicitly form an en-
ergy landscape over the representation space (LeCun et al., 2006). Such energy functions can be
used to learn compositional concepts as shown in Du et al. (2021). Our approach combines the
idea of using temporal contrastive learning in combination with an energy function to guide repre-
sentation learning. Moreover, we extend temporal contrastive learning to not only using temporal
relations between individual images but to temporal relations between whole trajectories through
the introduced subset similarity in sequence space.

Abstraction in RL. The complexity of most RL tasks makes abstraction indispensable. The liter-
ature mainly distinguishes state abstraction and temporal abstraction (Abel, 2020). State abstraction
reduces the size of the state space by engineering or learning low-dimensional features from raw
sensory inputs (Mnih et al., 2015). Often this is achieved with reconstruction-based compression
methods like VAEs that do not always focus on relevant features (Ha & Schmidhuber, 2018; Hafner
et al., 2025; 2019). Hence, there has been a flurry of reconstruction-free compression methods based
on contrastive learning (InfoNCE and contrastive predictive coding (Oord et al., 2018; Ma & Collins,
2018), or DeepInfoMax (Hjelm et al., 2019)). Our proposed method for goal embeddings follows
this line of research, but adds the pre-order structure on the latent space that is absent in previous
methods. As we encode observation trajectories there is also some level of temporal abstraction that
we did not explore in the current study. In the future, it will be interesting to pursue this avenue in
the context of hierarchical RL (Vezhnevets et al., 2017; Nachum et al., 2018) where concrete and
abstract goal vectors could be used to communicate between different agents in the hierarchy. Unsu-
pervised pretraining goal-conditioned policies with such goals could also form the basis to discover
a diverse set of skills (Eysenbach et al., 2019).

Representation learning in self-supervised RL. The concepts of goals, skills, and intentions
share fundamental similarities as they all represent desired outcomes or behaviors that guide agent
decision-making. Ghosh et al. (2023) learns intention-conditioned value functions by encoding how
outcome likelihoods change when the policy acts with a particular intention in mind. Skill based
methods aim to find latent representations of reproducible behavior (Eysenbach et al., 2019; Sharma
et al., 2020). To find latent skills, information theoretic ideas are employed to maximize mutual
information between states and skills while making skills distinguishable (Eysenbach et al., 2019),
between skills and future outcomes (Sharma et al., 2020) or between skills and state transitions
(Laskin et al., 2022). Another way to encode diverse behavior is to exploit the linear dependence
of the Q value function on the reward Touati & Ollivier (2021); Agarwal et al. (2025b). Agarwal
et al. (2025b) show that any agent behavior which can be represented by visitation distributions
can be described as a affine combinations of policy independent basis functions. While our current
embedding space is based on observational sequences and thus more related to goals, extending this
approach to sequences of actions or action and observation sequences may support a representation
that forms a bridge between goals and skills.

Goal-conditioned RL. Goal-conditioned reinforcement learning enables agents to learn diverse
policies by conditioning behavior on desired goals. As the overall objective is attaining a goal,
rewards are in general sparse which poses a fundamental problem. Hindsight experience replay
(Andrychowicz et al., 2017) and in general hindsight relabeling proved to be an effective method
to tackle sparsity by relabeling failed trajectories as success under a different goal Andrychowicz
et al. (2017); Ghosh et al. (2021). Different extensions to this idea where proposed to deal with
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dynamics goals (Ren et al., 2019) or prioritize the experience for better relabeling (Zhao & Tresp,
2018). Ghosh et al. (2021) rephrase the goal-conditioned learning problem as supervised learning
without rewards, by relabeling experiences trajectories as success and using self-imitation learn-
ing to directly optimize the policy. Eysenbach et al. (2022) demonstrated that contrastive learning
can be reinterpreted as goal-conditioned reinforcement learning, showing that contrastive objectives
naturally lead to goal-reaching behavior. In our work we simply used existing goal-conditioned RL
approaches, in particular contrastive methods, to learn policies. The innovation of our work focuses
on the representation of the goal space that can be used by such methods.

Goal representation learning While observations are commonly used as goals, various ap-
proaches for learning latent goal representations have been proposed. Nair et al. (2018) employ
a VAE with reconstruction loss to embed observations into a latent space, enabling the sampling of
novel goals and computation of distances in latent space. Building on this foundation, Nair et al.
(2020) extend the approach using a conditional VAE that incorporates future goals to encode goal
feasibility. Co-Reyes et al. (2018) take a different approach by encoding entire trajectories into latent
representations using a VAE trained with reconstruction loss, subsequently training a policy condi-
tioned on these latent trajectories to replicate the encoded sequences. Hafner et al. (2022) utilizes
discrete latent sub-goals derived from a discrete VAE applied to world model states to guide reward
optimization. We built on both ideas, encoding trajectories into latent representations and using a
discrete VAE for encoding goals but in contrast to other approaches, we use reconstruction only to
facilitate initial convergence before fully transitioning to contrastive learning.

Evaluation. Self-supervised RL methods like goal-conditioned RL and successor feature methods
are often used to study zero-shot RL (Schaul et al., 2015; Barreto et al., 2018), i.e. instant general-
ization to unseen tasks. While we also evaluated our method in terms of adaptation to novel reward
functions, our policies where not optimized during pretraining for abstract goals. Instead, we fo-
cused on representation learning of the goal space in the energy function and showed that there is
some emergent capability of our policies to deal with abstract goals despite being trained exclusively
on concrete goals. In the future it will also be interesting to compare our method to other zero-shot
RL methods, but for this comparison to be meaningful our policies should be also pretrained with
abstract goals, which requires a kind of curriculum, which was not the purpose of the current study.

5 CONCLUSION

In this paper, we introduce a novel approach for representing goals as embedding vectors in a la-
tent space with varying levels of abstraction for self-supervised reinforcement learning. Existing
methods typically define goals either through hand-engineered, goal-dependent reward functions or
directly in terms of observations, thereby constraining the level of abstraction to the properties of the
observation space. Our proposed method addresses this limitation by encoding sequences of obser-
vations into a latent goal space, learned in an unsupervised manner with contrastive learning, where
a partial order naturally induces a hierarchy of abstraction. Traversing this hierarchy in our goal
space leads to more abstract, unseen goals which can be exploited to encode novel reward functions
as goals. Through experiments in navigation and robotic manipulation, we have demonstrated that
agents trained with our hierarchical goal space achieve higher task success and significantly greater
generalization to novel, unseen tasks compared to agents reliant on purely observational goals.

While our goal representation is shown to be effective at encoding a variety of reward functions,
there are several remaining challenges. Currently, the agent’s policy is only trained with concrete
goals during pretraining. Accordingly, it is not surprising that results show a discrepancy between
what the goal representation can encode and what a pretrained agent can actually achieve with these
abstract goals. Therefore, future work should focus on developing a more effective mechanism for
training agents to fully utilize these rich, abstract representations. The concepts of compositionality
and multi-level abstraction could also be explored further, particularly in the context of hierarchical
RL where goal vectors with multiple levels of abstraction could be easily communicated between
different modules. Ultimately, our goal representation approach can be used in conjunction with
other RL methods in an unsupervised fashion to foster learning and generalization in the absence
of explicit reward functions, a critical step toward applying reinforcement learning to open-ended
environments.
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an anonymous repository. Our implementation includes network architectures and code to learn
the proposed goal representation as well as helper scripts for visualization. Hyper-parameters and
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A APPENDIX

A.1 ADDITIONAL RESULTS

Here we present additional results on the representative power of our goal representation. First,
we consider the MemoryMaze environment where we learn abstract goals from image observations
by using comprehensive data sampled uniformly from the environment. Our goal representation
is able to encode all considered goals, ranging from observational goals like colored corners or
walls to more abstract spatial goals combining different rooms as shown in Figure 8. In contrast,
observational goals struggle with encoding spatial concepts like a specific room but are able to
encode observational properties like colored walls or corners. For the FetchPush environment, only

Specific Room Disjoint Rooms Room Centers Yellow Corners Red Walls
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Figure 8: Learned goal spaces from diverse data in the MemoryMaze environment. White regions
in the top row indicate high rewarding states.

spatial goals regarding the gripper and object are considered (see Figure 9. While our method is
able to encode both, gripper based (specific regions, off-table) and object based (specific regions,
off-table) rewards, the observational goals are not able to capture any meaningful structure.

A.2 ENVIRONMENT SPECIFIC REWARDS

We add novel reward function to the GridWorld, MemoryMaze and FetchPush environments. Ta-
ble 1 shows an overview of all rewards used for evaluation. For the GridWorld and MemoryMaze
environments, rewards are categorized as spatial (requiring positional and compositional knowledge)
or observational (encodable from single observations). For the FetchPush environment, reward func-
tions focus on spatial properties of the gripper and object as the observations contain solely global
information.

A.3 MODEL ARCHITECTURES & HYPERPARAMETERS

Contrastive RL. We base our implementation of CRL (Eysenbach et al., 2022) on the code pro-
vided by Zheng et al. (2024). For all experiments we use a two layer multi-layer perceptron (MLP)
based policy with 256 hidden units each and ReLU activation. For image based environments, all
images are scaled to 64 × 64 × 3. We encode images to latent representation size of 256 using a
convolutional neural network (CNN) based encoder as proposed in Mnih et al. (2013). The encoders
in the parametrized Q-value function consist of MLPs of two hidden layers with 256 units and ReLU
activation, projecting down to a representation dimension of 32. Note that the encoder consists of
two separate networks for state-action and goal encoding. For experiments using continuous actions
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Figure 9: Learned goal spaces from diverse data in the FetchPush environment (top-down view).
Black regions indicate high rewarding states for the object while cyan regions are used for gripper
rewards.

Environment Category Rewards Description

GridWorld

Spatial
Individual rooms Requires spatial

knowledgeDisjoint rooms (two rooms)
Regions (top, down, left, right)

Observational

Room centers
Possible to encode by
a single observation

Shaped rooms (elliptical, polygonal, . . . )
Close to wall
Passages (between rooms)

MemoryMaze

Spatial Individual rooms Requires spatial
knowledgeDisjoint rooms (two rooms)

Observational Looking at walls (any wall, red wall) Possible to encode by
a single observationLooking at colored corners (blue, yellow)

FetchPush

Gripper-based
Off table Focus on gripper

representation
encoding

On table border
In table region (top, left, bottom, right)

Object-based
Off table Focus on object

representation
encoding

On table border
In table region (top, left, bottom, right)

Table 1: Environment-specific reward functions.

we use adaptive entropy regularization as proposed in Haarnoja et al. (2018) with a target entropy
of 0.0. For discrete actions we bound the maximum DKL between policy and a uniform prior policy
by 1 via minimization (”free-bits” trick proposed in Kingma et al. (2016) and used by Hafner et al.
(2025)). Batch-sizes vary depending on the problem and are mostly limited by memory: 128 for
image based tasks and 2048 for all other experiments. We try to maximize batch sizes as Zheng
et al. (2024) showed that in general larger batch sizes are desired for CRL.

Goal Abstraction. We encode sequences with a gated recurrent unit (Cho et al., 2014) with a
hidden state size of 256. After encoding the whole sequence we use the last hidden state and use a
discrete VAE (Hafner et al., 2022; 2025) using two hidden layers to project the RNN hidden state to
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a multi-categorical distribution. We use 16 categories with 16 possible values, resulting in a one-hot
encoding of shape 16×16. For image based observations we first encode the images using the CNN
described in Mnih et al. (2013) to obtain a 256 dimensional encoding and apply our architecture to
the encoded images. The energy function is parametrized as a simple 3 layer neural network with
ReLU activation and a hidden dimension of 256. We use binary cross entropy as loss to train the
energy function and a fixed batch size of 256 for all experiments.

Reward encoding. While rewards were translated into goals g∗ by optimizing

L(ϑ) = E
(rt,gt)∼D,g∗∼pϑ

[
−rt logE(gt,g

∗)︸ ︷︷ ︸
hindsight

− (1− rt) log(1− E(gt,g
∗))︸ ︷︷ ︸

negative feedback

]
,

we dropped the the negative feedback term when encoding observational goals in the FetchPush
environment, because constrastive learning would eliminate static background information in this
case and thereby destroy almost all observational information.

To practically encode rewards into goals we parametrized the goal by a simple neural network,
receiving a zero-vector of shape 64 as input and outputting a goal in the corresponding goal space.
For image based goals, we use three transposed convolution layers, reversing the architecture of the
CNN encoder. For the LiDAR observations and our approach we use a simple three layer MLP.
Discretization for our goals is achieved by a final categorical distribution.

Network sizes. We ensured that network sizes are comparable between different goal represen-
tations by increasing/decreasing the width of hidden layers accordingly to match the number of
trainable parameters.

A.4 TRAINING PROCEDURE & EVALUATION

We split training into a pretraining phase, where the policy and goal representation is pretrained, and
a fine tuning phase, where we optimize over goals to encode reward functions. In the pretraining
phase, we collect interactions in the environments for 16 steps while performing one training step
as a trade-off between sample efficiency and speed. The agents are pretrained on the original, single
observation goal reaching task where observations are provided by the environment. For GridWorld
and FetchPush, pre-training lasts for 1000000 environment steps. For MemoryMaze, we use 500000
environment steps. During the first 50000 environment steps we use additional losses to stabilize
training and improve performance. First, we use a reconstruction objective, reconstructing single
observations from the encoded goals. This helps with early learning, especially in image based
environment where otherwise the subset relation takes a long time to find good representations. Note
that we fully transition to contrastive learning later in training, as reconstruction hinders convergence
at some point. Furthermore, we regularize the discrete latent space by imposing a DKL constraint on
the categorical distribution effectively regularizing it towards a uniform distribution. This constraint
loosens over the course of the first 50000 environment steps. This is required as during early training
the encoder may collapse.

To see what the goal representation is capable of, diverse data is provided directly by the environment
which guarantees good coverage of the state space. Figure 6, Figure 8 and Figure 9 are generated
from goals learned with this data. Note that the policy is not required for these experiments. For
each reward function, 20000 observations are sampled sequentially with training conducted every
16 steps. Finally, the agent is tasked to learn the reward function from environment interactions to
evaluate how good the agent performs given the goal representation. For each reward function, the
agent interacts with the environment for a total of 20000 steps. The environment steps are split up
into episodes of 50 steps. The resulting behavior is analyzed using the performance criteria given
Figure 4 and depicted in Figure 7. After learning the reward function, the agent is tasked to reach the
optimized goal 100 times starting from different initial states and with a budget of 50 environment
steps. For each reward function, three runs are performed and averaged. Then reward groups are
averaged to obtain the final plot. The star plot in Figure 7 min-max normalizes the performance
metrics such that 0 is the worst observed performance and 1 is the best observed performance over
all rewards in an environment. Attainment dependent metrics are scaled by the attainment value
such that non-attaining episodes result in worst performance (0).
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A.5 USE OF LLMS

This work utilized large language models (LLMs) for two specific purposes: (1) manuscript prepara-
tion, especially grammar checking and LaTeX formatting assistance, and (2) visualization enhance-
ment, where LLMs helped to improve plotting code aesthetics and to generate visualizations for the
environments. Importantly, LLMs were used solely for presentation and formatting purposes. All
underlying research data and experimental results remain unmodified to preserve scientific integrity.
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