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ABSTRACT

Preference-based reinforcement learning (PbRL) enables agent training without
explicit reward design by leveraging human feedback. Although various query
sampling strategies have been proposed to improve feedback efficiency, many
fail to enhance performance because they select queries from outdated experi-
ences with low likelihood under the current policy. Such queries may no longer
represent the agent’s evolving behavior patterns, reducing the informativeness of
human feedback. To address this issue, we propose a policy likelihood-based
query sampling and critic-exploited reset (PoLiCER). Our approach uses policy
likelihood-based query sampling to ensure that queries remain aligned with the
agent’s evolving behavior. However, relying solely on policy-aligned sampling
can result in overly localized guidance, leading to overestimation bias, as the
model tends to overfit to early feedback experiences. To mitigate this, POLiCER
incorporates a dynamic resetting mechanism that selectively resets the reward es-
timator and its associated Q-function based on critic outputs. Experimental evalu-
ation across diverse locomotion and robotic manipulation tasks demonstrates that
PoLiCER consistently outperforms existing PbRL methods. Our code is available
athttps://github.com/JongKook—Heo/PoLiCER.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) has emerged as a powerful paradigm for
learning complex behaviors without manually designing reward functions, with applications across
diverse domains (Kaufmann et al., [2024} |Ouyang et al.| [2022; |Xu et al., [2023)). In the context of
Markov decision processes (MDPs), this approach is often referred to as preference-based reinforce-
ment learning (PbRL) (Wirth et al.|[2017). In PbRL, an annotator compares trajectories—sequences
of state-action pairs—from the agent’s history and indicates which is preferred (Christiano et al.,
2017). Despite its advantages, PbRL faces two major challenges stemming from its dependence
on sequentially collected human feedback. First, query-policy misalignment arises when sampled
queries no longer represent the current policy’s behavior, reducing the feedback effectiveness (Hu
et al.|[2024). Second, primacy bias causes the reward estimator to overweight early feedback, creat-
ing persistent biases that distort the reward model throughout training.

Hu et al.| (2024)) argued that query-policy misalignment occurs when queries are selected from long-
past experiences that no longer represent the current policy. This reliance on outdated information
diminishes feedback effectiveness and limits its ability to guide policy updates. To address this is-
sue, Hu et al.| (2024) introduced near on-policy sampling (NOS), which prioritizes queries from
recent agent experiences based on the assumption that recency correlates with the current policy’s
behavior. While NOS proves effective in environments with repetitive behaviors, such as loco-
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motion tasks (Tassa et al.| |2018; [Tunyasuvunakool et al., 2020), where recent experiences remain
representative, it struggles in goal-conditioned environments like Meta-World (Yu et al., 2020).
In these settings, dynamic target locations make re-

cent experiences unreliable indicators of current pol- —— Al Episodes —— Last 30 Episodes —— Top 30 Episodes
icy. Figure [T illustrates this limitation by tracking .
policy likelihoods of replay buffer episodes during
training across three categories: all past episodes
(All), the most recent 30 episodes (Last 30), and the
top 30 episodes ranked by current policy likelihood
(Top 30). While recent episodes show better align-
ment with the current policy than the full history,
a widening gap emerges between recent and high-
likelihood episodes, demonstrating that temporal re-
cency becomes an increasingly poor proxy for pol-
icy relevance. To overcome this limitation, we pro-
pose policy likelihood-based query sampling (PLS),
which selects queries based on their likelihood under
the current policy rather than temporal recency. Our
method ensures that selected queries remain relevant
throughout training by continuously adapting to the
evolving policy.
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Figure 1: Policy likelihoods of replay
buffer episodes in Meta-World Sweep
Into (10,000/50), categorized into all past
episodes (All), recent 30 episodes (Last
30), and top 30 episodes into current policy
likelihood (Top 30). Temporal recency
becomes an increasingly poor indicator of
policy relevance as training progresses.

The second critical challenge in PbRL is primacy
bias—the tendency of neural networks to overfit to
early data when trained on a growing dataset (Nik-
ishin et al., 2022} |Lyle et al., [2022; 2023}, |Kaufmann
et al., 2024). In PbRL, the reward estimator suffers
from this bias as it learns from continuously collected feedback. Early feedback, which is often
trivial or ambiguous (Mu et al., 2025} Tu et al., 2025)), can dominate the entire learning process. We
found that this bias leads to reward overestimation: the reward estimator assigns excessively high
values to early-stage favored state-actions, even when later feedback contradicts them. In particular,
we identified that solely relying on PLS can highly localize the learning process, narrowing the pol-
icy distribution and further exacerbating overestimation. The biased rewards then propagate to the
Q-function, reinforcing outdated behaviors and distorting policy optimization.
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Figure 2: Performance comparison of PEB-
BLE and PEBBLE + Reset. (a) Average
episode return and (b) reward overestimation
rate on Walker Walk (100/10), showing me-
dian across ten runs. Primacy bias in the re-
ward estimator leads to reward overestima-
tion and performance degradation in PbRL.

estimator causes reward overestimation, we com-
pared PEBBLE with PEBBLE + Reset—a variant
that resets the reward estimator parameters at ev-
ery feedback session, following standard primacy
bias mitigating approaches (Ash & Adams| [2020;
Nikishin et al.l 2022; [D’Oro et al., 2022). We
quantified reward overestimation using the rate as
(R~ R)/R x 100%, where R and R denote the
scaled estimated and true episode rewards, respec-
tively. Figure [2] shows that periodic resetting sub-
stantially improves performance while reducing re-
ward overestimation. Without resetting, PEBBLE
consistently overestimates rewards, plateauing at ap-
proximately 150%. Furthermore, PEBBLE fails to
distinguish fine-grained differences among trajecto-
ries, particularly for low-reward cases where reward

overestimation is most severe (see Figure[I4]in Appendix[D.2). These results demonstrate how early,
potentially misleading feedback can dominate the entire learning process.

While resetting the reward estimator at every feedback session proves effective at mitigating pri-
macy bias-driven reward overestimation, this technique introduces two key challenges: (1) the high
computational cost associated with frequent resets and (2) residual bias in the corresponding Q-
function, which persists due to outdated reward estimates reinforced through temporal difference
(TD) learning. To overcome these challenges, we propose critic-exploited reset (CER), a dynamic
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resetting strategy that resets both the reward estimator and Q-function based on critic outputs. The
critic output serves as an indicator of overestimation by approximating expected cumulative rewards
(Van Hasselt et al.| [2016} Nikishin et al., [2022; |Chen et al., [2021)). By strategically monitoring critic
outputs, we trigger resets only when necessary, thus mitigating bias while maintaining computa-
tional efficiency.

In summary, we address two key challenges in PbRL: query-policy misalignment in query sampling
and primacy bias in reward estimator learning. We propose policy likelihood-based query sampling
and critic-exploited reset (PoLiCER), with each component targeting a specific challenge. First, PLS
ensures queries remain aligned with the current policy by selecting trajectories based on their likeli-
hood rather than temporal recency. Second, CER mitigates primacy bias through dynamic resetting
of both the reward estimator and Q-function based on critic outputs, providing computational effi-
ciency while addressing residual bias. We evaluated POLiCER on complex continuous control tasks
in the DeepMind Control Suite (DMControl) (Tassa et al.l 2018} Tunyasuvunakool et al.,2020) and
Meta-World (Yu et al.,|2020). Comprehensive experimental results demonstrate that POLiCER sig-
nificantly improves performance when integrated with PEBBLE (Lee et al.,[2021b) and outperforms
other PbRL methods with complementary components.

2 RELATED WORKS

Preference-based Reinforcement Learning. |Christiano et al.| (2017) established the foundation
for training deep RL agents using human preferences (Mnih et al., 2016; [Schulman et al.| [2017).
Lee et al.|(2021b) built upon this work, incorporating soft actor-critic (SAC) (Haarnoja et al.,|2018)),
unsupervised pre-training, and reward relabeling to enhance sample efficiency. Subsequent studies
have pursued various directions to improve feedback efficiency: SURF (Park et al.,|2022) leveraged
unlabeled queries through semi-supervised reward learning, RUNE (Liang et al.| 2022)) used reward
uncertainty for exploration, and MRN (Liu et al.l |2022) applied bi-level optimization to reward
learning. Other advances include robust learning under noisy preferences (Cheng et al.,2024;|Huang
et al., 2025), dynamics modeling (Metcalf et al., 2023), preference credit assignment (Verma &
Metcalf, 2024)), and vision-language model (VLM)-based reward design (Wang et al.l 2024; [Tu
et al., [2025). Among these approaches, our work is most closely related to QPA (Hu et al., |[2024),
which identified query-policy misalignment. While QPA relies on recency for query sampling,
we showed that recent data selection inadequately captures policy relevance. Instead, we propose
sampling queries based on policy likelihoods for more effective and policy-relevant query selection.
DUO (Feng et al., [2025) similarly leverages policy likelihood through rectified Z-scores, whereas
we employ ranks of trajectory likelihoods without buffer normalization. Complementary to query
selection methods, PPE (Zhu et al.,[2024) tackled query-policy misalignment through an exploration
strategy that adjusts the behavior policy near the current policy to expand data coverage in policy-
relevant regions. In contrast, we directly address query-policy misalignment by identifying policy-
relevant queries from the replay buffer based on their likelihoods, without requiring modifications
to the exploration strategy or additional behavior policy.

Primacy Bias and Loss of Generalization Ability in Neural Networks. PbRL poses unique
challenge beyond standard RL: periodic reward model updates create non-stationary reward signals,
while high reliance on approximate rewards risks overoptimization (Kaufmann et al.| 2024)). These
issues are compounded by primacy bias, a key challenge in deep RL identified by Nikishin et al.
(2022), who proposed periodic resets as a mitigation strategy. [D’Oro et al.|(2022)) later demonstrated
that more frequent resets enable higher replay ratios, improving sample efficiency. More broadly,
primacy bias relates to a wider set of neural network degradation phenomena, including capacity
loss—the gradual loss of network adaptability to new targets (Lyle et al., 2022)—and plasticity
loss—the inability to overwrite prior predictions when input-output relationships change (Lyle et al.,
2023). These issues are particularly severe in RL due to its non-stationary nature (Igl et al., [2021])).
Proposed solutions to counteract these degradations include feature space regularization (Lyle et al.,
2022), loss landscape flattening (Lyle et al. 2023} [Lee et al.l 2023} [Foret et al., 2021}, plasticity
injection (Nikishin et al., 2023), and resetting inactive neurons (Nikishin et al., 2022} |D’Oro et al.,
2022; Sokar et al., [2023; Xu et al.| 2024). Notably, [Nauman et al.| (2024) identified resetting as
the most effective and robust intervention. Building upon these insights, we develop an adaptive
resetting mechanism tailored for PbRL.
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3 REWARD ESTIMATOR LEARNING WITH PREFERENCE DATASET

PbRL trains agents to align with human intent using human feedback. This approach replaces tra-
ditional reward functions with a learned reward estimator that captures human preferences. The
process begins by collecting pairs of agent behavior trajectories and corresponding preference la-
bels, where human annotators indicate which trajectory they prefer. The reward estimator is then
trained to assign higher rewards to preferred trajectories and lower rewards to non-preferred ones.
This learned reward function guides the agent’s policy optimization in standard RL.

At each feedback session, trajectory pairs are sampled for human evaluation. A trajectory is defined
as a fixed-length sequence of state-action pairs, o = {(sg, aq), (s1,61), .., (SH-1,a5-1)} € (S X
AYH | where H is the trajectory length. For each pair (¢°, o*), the human teacher provides a binary
preference label y, typically in one of three forms: (1,0) when preferring o°, (0, 1) when preferring
ol, or (0.5,0.5) to indicate equal preference. Each preference instance (0, 0!, ) is accumulated

in a dataset D = {(0°, 0, y);}Y,, where NN represents the total feedback collected.

Using this dataset D, the reward estimator 7y, : S < A — R is trained to align predicted rewards with
human preferences. The preference probability is modeled using the Bradley-Terry model (Bradley
& Terry, |1952):

GXP(Z(St,at)Gal fﬂ’(sta at))

Py(o! = %) = — — .
wl ) eXP(D (5,00 0t T (S5 A1) +exD(X0 (s, 01)eoo Fu(St; ar))
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Herein, o' = 0¥ denotes that 0! is preferred over o°. 7, is trained to minimize the binary cross-
entropy (BCE) loss between true preference labels and predicted preference probabilities:

Ly = —E(p0,51,4)~p[y(0)log Py(c° = o) + y(1) log Py(c* = o)), )

where y(7) indicates the i-th component of y. This framework seamlessly integrates with various
RL algorithms (Mnih et al.,2016; Schulman et al.,|2017; |Haarnoja et al.| 2018 |Yarats et al., |[2022),
eliminating the need for manual reward design.

4 PROPOSED METHOD

In this section, we present POLiCER, which consists of two key components: (1) policy likelihood-
based query sampling (PLS) and (2) critic-exploited reset (CER). PLS addresses query-policy mis-
alignment by selecting informative queries based on their likelihoods under the current policy. CER
mitigates overestimation caused by primacy bias by strategically resetting both the reward estimator
and its corresponding Q-function as the feedback dataset accumulates.

4.1 PoOLICY LIKELIHOOD-BASED QUERY SAMPLING
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Figure 3: Overall framework of PLS. Log-likelihoods of trajectories are used for sampling informa-
tive queries relevant to the current policy. The inverse rank of log-likelihoods serves as probability
weights, and the hyperparameter « controls the sharpness of the distribution.

Unlike previous approaches that use recency as a proxy for policy relevance, our method directly
quantifies how well each trajectory represents the current policy by computing its log-likelihood,



Published as a conference paper at ICLR 2026

ensuring alignment regardless of when the data was collected. Figure [3]illustrates the overall pro-
cess. At each feedback session, we begin by uniformly sampling 2 x L x K trajectories, where K
is the number of queries to extract and L is a scaling factor, following prior weighted sampling ap-
proaches (Christiano et al.,[2017; Lee et al.| 2021a3b). We then compute the average log-likelihood
of each trajectory under the current policy 74 as follows:

1
l; = T Z log me(ay | s¢)- 3)

(styat)’\‘gi

The log-likelihood /; is proportional to the probability of trajectory o; under policy 74, with higher
values indicate trajectories that better reflect current behavior of the agent. However, in continuous
control tasks, log-likelihoods can be highly sensitive to outliers because of the unbounded nature
of probability densities. To ensure robustness, we use the inverse rank of log-likelihoods as the
sampling weight w; rather than raw values (Schaul et al., 2016):

p(i) = wit/ Y wf. &)
J

Here, o controls the sharpness of the sampling distribution: lower values yield more uniform sam-
pling, while higher values favor high-likelihood trajectories. Finally, preference queries are gener-
ated by randomly pairing two sampled trajectories.

Compared to disagreement sampling (DS) (Christiano et al., 2017} [Lee et al.| |2021al), our method
is computationally efficient, requiring only 2 x L x K forward passes, while DS incurs a cost that
is N times higher (where IV is the number of reward estimators in an ensemble). The pseudo code
for PLS is presented in Algorithm [I]in Appendix [B] Figure [13]in Appendix confirms that PLS
selects queries more relevant to the current policy than NOS, with no practical increase in training
time.

4.2 CRITIC-EXPLOITED RESET

As the feedback dataset grows, the reward estimator
overfits to early feedback due to primacy bias, am-
plifying reward differences through the BCE loss in
Equation @] (Heo et al., [2025). While underestima-
tion is less problematic since low-reward state-action
pairs are naturally avoided (Fujimoto et al., 2018)),
overestimation proves more detrimental by encourag-
ing suboptimal behaviors. Although periodic resetting
helps, naive approaches suffer from computational in-
efficiency and residual Q-function bias. To address
these challenges, we propose CER, a dynamic reset- 20 L ‘ ‘ : : : |
ting strategy that leverages critic outputs as indica- 0 5 10 15 20 25 30
tors of reward overestimation. Rather than resetting at Number of Resets (i)

fixed interval, CER monitors critic outputs against an

adaptive threshold to determine when intervention is Figure 4: Visualization of CER thresh-
necessary. We design the threshold to increase mono- old 3 for different step sizes. Thresholds
tonically throughout training for two critical purposes: grow monotonically and saturate at upper
first, it accommodates genuine policy improvement by bounds determined by 6. Lower § com-
allowing higher Q-values as the policy optimizes; sec- pensates for task complexity by maintain-
ond, it reduces unnecessary resets over time, avoiding ing tighter overestimation control.
excessive training disruption.

Threshold Value (B;)

— Bo=25, 5=7.5, p=0.9
—— B¢=25, =5, p=0.9

Specifically, CER continuously tracks the maximum critic output Q. observed across all gradient
steps since the last reset. At each feedback session, if (.« exceeds the current threshold 3;, CER
resets both the reward estimator 7 and Q-function ()¢ before updating the reward function. In
PbRL, rewards are typically bounded to [—1, 1] via tanh activation, constraining critic outputs to
| 1:7 | = 100 (with discount factor v = 0.99). This bounded nature enables task-agnostic monitoring
with consistent scale. We achieve monotonic threshold growth while ensuring a clear upper-bound
through an exponential decay schedule:
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Bix1 = Bi+8 x p', )

where § > 0 is the initial step size, p € (0, 1) controls decay rate, and ¢ denotes the number of
resets performed. Here, ¢ directly regulates threshold growth based on task complexity (e.g., action
dimension). This exponential decay allows the threshold to grow monotonically while gradually
saturating at 3o + 1%. If the threshold is not exceeded, training proceeds normally with the existing

parameters. Figure E]Dillustrates this adaptive threshold mechanism for different § values.

After each reset, we increase the replay ratio to accelerate adaptation to updated reward estimates.
Inspired by adaptive replay ratio scaling (Ma et al., [2024), we maintain low replay ratios during
early training to preserve plasticity, then gradually increase them later for sample efficiency. Once
feedback collection ends and reward learning completes, resets cease and the replay ratio returns
to one, as further overrides become unnecessary. Additional details are provided in Algorithm 2]
in Appendix (B} Empirically, CER achieves higher returns and lower reward overestimation than
naively resetting the reward estimator at every feedback session (see Figure[I3]in Appendix [D.2).

CER is grounded in three key theoretical principles and empirical findings: (1) resets eliminate ac-
cumulated primacy bias and corresponding overestimation (Nauman et al., 2024), (2) critic outputs
serve as indirect indicators of overestimation (Van Hasselt et al.| 2016} |Fujimoto et al., 2018} [Nik-
1shin et al.| [2022)), and (3) valid policy improvements increase Q-values monotonically (Sutton et al.}
1998). Combined with bounded rewards, these principles justify our monotonic threshold schedule
with asymptotic saturation: initial low thresholds address early overestimation, while gradually in-
creasing thresholds distinguish genuine policy improvements from bias-induced anomalies. Our
empirical sensitivity analysis (Appendix further validates the robustness of CER across hyper-
parameters. We formalize CER’s theoretical advantage through value approximation error bounds,
adapting the analysis from Hu et al.| (2024)).

Definition 1. Ler Q7 be the Q-function of the current stochastic policy m under the true reward
r. For a distribution yi, define the distribution-dependent norm || f|, := Ey,[| f(x)|], and let F
denote the function approximator class. The intrinsic function approximation error is defined as
af :=1infrer [|QF — fllax-

r fer r d
Lemma 1. Assume the reward overestimation error satisfies ||y, — r|lq= < €. Further assume

the learned Q-function estimator Q:[ is the empirical risk minimizer onto F, so that Q:u €

argminger [|QF, — fllar. Then |QF — ng”d“ < aff + 12_57 (Proof in Appendix@).

Lemma 2. Suppose CER reduces the reward overestimation error bound from ¢ to ec, where § =
€ — ec > 0 quantifies this improvement. Then CER tightens the value approximation error bound,
guaranteeing an improvement of % (Proof follows directly from Lemma by substituting ¢ for €

and subtracting the bounds).

These results quantify CER’s advantage: reducing reward overestimation by § yields a Q-function
. . . 25 . . . . . . R .
approximation error reduction of T This provides theoretical justification for CER’s design and

offers a principled method to quantify the benefits of mitigating primacy bias.

5 EXPERIMENTS

5.1 SET UP

PoLiCER is compatible with any PbRL algorithm. In our experiments, we implemented it on PEB-
BLE (Lee et al., 2021b) as the baseline. For PLS, we set the temperature parameter o« = 1 across all
main experiments. For CER, the initial threshold was set to 3y = 25 with a decay rate p = 0.9. The
initial step size was defined as § = %, to compensate for task complexity using action dimension

|A] G.e., 6 = 7.5 for all Meta-World tasks and 6 ~ 1.43 for DMControl Humanoid). To improve
feedback efficiency, we applied multiple temporal data augmentation (TA) with ratio 7 = 20, fol-
lowing prior works (Hu et al., 2024; [Park et al., [2022)). The pseudo code of PoLiCER is presented
in Algorithm [3|in Appendix [B] We evaluated our proposed method on three locomotion tasks from
DMControl (Tassa et al., 2018} [Tunyasuvunakool et al., [2020) and four robotic manipulation tasks
from Meta-World (Yu et al., 2020). Following prior studies, we used a synthetic human annotator
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Figure 5: Learning curves using vector-based state inputs. First row: performance results for loco-
motion tasks (Walker Walk, Cheetah Run, Humanoid Stand) in DMControl. Second row: results for
robotic tasks (Door Open, Sweep Into, Drawer Open, Hammer) in Meta-World.

that provides preference feedback based on ground truth rewards in B-Pref benchmark (Lee et al.|
202Ta). Comprehensive experimental details are provided in Appendix [C|

5.2 VECTOR-BASED CONTROL WITH SYNTHETIC PREFERENCES

For a comprehensive comparison, we included SAC (Haarnoja et al.| 2018) trained with ground truth
rewards, along with other representative PbORL methods: SURF (Park et al/, [2022), RUNE
2022), MRN 2022), and QPA [2024). Each algorithm was evaluated
at every 10,000 steps with ten evaluation episodes per task. In DMControl, we reported average
episode returns, while in Meta-World, we used average success rates. Figure [5| presents the learn-
ing curves for all methods using vector-based state inputs in DMControl and Meta-World. Solid
lines and shaded regions indicate the mean and standard deviation across ten runs. Vertical dashed
gray lines mark the final feedback step, and horizontal dotted lines represent the final performance,
computed by averaging the last ten evaluation scores for each method.

In DMControl, both PoLiCER and QPA showed significant performance improvements over PEB-
BLE. While their average performances were comparable, POLiCER exhibited superior robustness
with lower variance, as reflected in the 95% bootstrapped confidence intervals (see Figure[I6]in Ap-
pendix [D:3). In contrast, in Meta-World environments, most PbRL methods showed high variance
and poor average success rate. PoLiICER, however, achieved over 80% success with consistently
lower variance. The limited improvements of QPA in Meta-World suggest that its policy-aligned
sampling strategy is ineffective in goal-conditioned tasks. Notably, in Drawer Open, none of the
other methods exceeded a 60% success rate after feedback sessions ended, with nearly half of their
runs resulting in 0% success. This indicates a failure to learn a generalized reward function that
aligns feedback, which highlights the need for a deeper analysis of PoLiCER’s individual compo-
nents, as discussed in Section@

5.3 ABLATION STUDY - COMPONENT ANALYSIS

We evaluated the impact of each PoLiCER component on overall performance by incrementally in-
corporating PLS, CER, and TA. Figure [f] shows the learning curves and critic outputs across three
representative tasks: Walker Walk, Door Open, and Drawer Open, to assess the effectiveness of
each component. As shown in Figure[§](a), both PLS and CER independently led to substantial per-
formance gains. Although their combination was not always complementary, especially in Drawer
Open, it remained generally effective in most environments. TA offered modest improvements: it
slightly increased average scores in Door Open and reduced variance in Drawer Open, showing bet-
ter generalization by the reward estimator. However, Figure 6] (b) reveals that PLS can induce critic
overestimation due to its localized policy guidance, a phenomenon also observed in QPA (see Figure
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Figure 6: Contribution of each component in POLiCER across Walker Walk, Door Open, and Drawer
Open. In both rows, solid lines and shaded areas represent the average and standard deviation. (a)
Learning curves showing average episode returns or success rates. (b) Critic outputs during training,
used to indirectly assess overestimation.

[I7]in Appendix [D.4). While this guidance improved average performance over PEBBLE, it can also
reinforce overestimation, ultimately leading to suboptimal policies. CER helps mitigate this effect,
enabling the agent to explore a broader policy space while still leveraging policy-aligned sampling.

Notably, in Drawer Open, CER alone achieved

the highest success rate of approximately
100%, outperforming other combinations of  * | S 2
components and PbRL methods. This result
can be attributed to the misalignment between
task success and rewards, particularly during -
the early and mid-training phases as shown in o m=i==E0E  LOETE_=ERE o e PR
Figure[7] In these phases, the true reward dis- e
tributions of successful and failed trajectories  Figure 7: True reward distributions for successful
exhibit significant overlap, indicating that the and failed trajectories in Drawer Open under Po-
true reward function does not consistently re- [iCER at different training stages. Early and mid-
flect actual task completion (see rendered ex-  training show low-reward trajectories even among
amples in Appendix [D.4). This discrepancy successful attempts, revealing misalignment be-
can introduce noisy preferences in early train- tween task success and rewards.

ing stages, which may misguide both policy and

query sampler. As a result, agents relying solely on PLS showed high performance variance and lim-
ited improvement in Drawer Open. In contrast, CER effectively reduced the influence of these early
misaligned preferences, preventing the agent from being trapped in biased reward estimations and
enabling more stable and consistent learning.

5.4 PIXEL-BASED CONTROL WITH SYNTHETIC PREFERENCES

We expanded our experiments to pixel-based state inputs using synthetic preference annotators. Fol-
lowing (2022), we adopted DrQ-v2 (Yarats et al.| 2022) as the backbone RL algorithm
and included its variant of PEBBLE, SURF, and QPA (see the details in Appendix. Our method
achieved higher performance compared to other methods, as shown in Figure[8] Specifically, QPA
failed to improve performance compared to the baseline (PEBBLE) in Cheetah Run and Window
Open. This result suggests that the reliance of QPA on recent experiences for query sampling and
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Figure 8: Learning curves on two locomotion tasks (Walker Walk and Cheetah Run), and one robotic
manipulation task (Window Open) using pixel-based state inputs.

policy updates may be less effective in high-dimensional pixel-based environments, where visual
complexity weakens the link between recency and relevance. In contrast, POLiCER achieved ap-
proximately 80% success rate with low variance in Window Open, doubling the performance of
PEBBLE. These findings demonstrate that prioritizing policy relevance over recency becomes in-
creasingly crucial in complex visual domains, and our strategic reset approach provides a clear
advantage for robust and stable preference learning across diverse perceptual challenges. While
PoLiCER requires moderately longer training time than baselines due to CER’s increased replay
ratio after resets, this computational overhead is modest relative to the inherent rendering costs of
pixel-based and is offset by substantial performance improvements (see Appendix [D.3]for detailed
computational analysis).

5.5 HUMAN-IN-THE-LOOP EXPERIMENT

While synthetic annotators in the B-Pref benchmark (Lee et al., 2021a)) provide a fair comparison
of PbRL methods, they may yield different trends and interpretations from human labels (Hu et al.,
2024; [Kim et al, [2023). As shown in Section[5.3] synthetic preferences do not always align with
intended behaviors, which can lead to misleading conclusions. To ensure more realistic evaluations,
we conducted human-in-the-loop experiments using ten volunteers on Walker Walk and Window
Open for both PEBBLE and PoLiCER. Following prior works (Hu et al.,[2024} Heo et al., [2025)), we
included an equal preference option y = (0.5, 0.5) to account for human inconsistencies. Detailed
experimental procedures for these tasks are provided in Appendix [D.6]
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1,000 100
800 - 80 1
£ S
S < -
£ 600 Y 60
& ©
9 ﬁ
° n
@ 4004 S 40
Q. o
w =]
w
200 4 204
0 . j : 0 : . .
0.0 0.125 0.25 0.375 0.5 0.0 0.125 0.25 0.375 0.5
Environment Steps (x10°) Environment Steps (x106)
Walker Walk (100/10) Window Open (240/15)

Figure 9: Learning curves on Walker Walk and Window Open using vector-based state inputs with
human annotators.

Figure [9] shows that POLICER improved feedback efficiency over PEBBLE. Although both agents
performed similarly during the feedback collection phase, PoLiCER achieved significantly higher
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ground truth rewards and success rates as training progressed. We examined how the two meth-
ods produced qualitatively different learned behaviors. On Walker Walk, Figure [I0]reveals striking
differences: the PEBBLE-trained agent primarily moved by crawling on its knees with a hunched
posture, failing to develop natural walking behavior. In contrast, the POLiCER-trained agent suc-
cessfully learned coordinated bipedal locomotion with alternating leg movements and maintained
an upright torso throughout motion. This behavioral difference suggests that POLiCER more effec-
tively captured and incorporated human preferences regarding natural walking motion, translating
feedback into more naturalistic and biomechanically appropriate locomotion patterns. These human-
in-the-loop results provide critical validation that PoLiCER effectively narrows the gap between
theoretical preference learning and practical implementation challenges, suggesting a promising ap-
proach for preference-based learning in complex interactive scenarios.

f

(a) Agent trained with PEBBLE

(b) Agent trained with POLICER

Figure 10: Comparison of final behaviors learned in Walker Walk with human feedback. (a) PEB-
BLE agent resorted to crawling with poor posture, while (b) PoLiCER agent demonstrated coordi-
nated bipedal walking with proper balance and form.

6 CONCLUSION

In this study, we introduced PoLiCER, a novel approach that addresses two key challenges in PbRL:
(1) query-policy misalignment in query sampling and (2) reward overestimation caused by primacy
bias in reward learning. Our solution combines two complementary components: PLS ensures se-
lected queries better reflect current policy behavior, while CER dynamically resets both the reward
estimator and Q-function to mitigate primacy bias. Together, these components create a synergistic
effect—PLS provides more relevant feedback signals, and CER prevents bias accumulation when
processing this feedback. Our theoretical analysis proves that CER’s resetting strategy delivers mea-
surable improvements: for every unit of reward overestimation reduced, the Q-function approxima-
tion error improves by twice that amount, scaled by the discount factor. Extensive evaluations on
DMControl and Meta-World benchmarks demonstrated that PoOLiCER significantly outperformed
existing PbRL methods, achieving nearly 100% success rate in Drawer Open where other methods
struggled to exceed 60%. These results highlight the effectiveness of our integrated approach, which
aligns query selection with policy behavior while maintaining stable learning through strategic re-
sets.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we described the implementation details in Appendix
including all hyperparameters, network architecture, and training procedures (Table [IHI2). The
complete algorithms are provided in Algorithms [IH3]in Appendix [B] Source code is publicly avail-
able at https://github.com/JongKook—Heo/PoLiCERL
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A PROOFS

Proof of Lemmal|l} Using the Bellman operator and Jensen’s inequality, we have

”ng - Q:”tﬁ = E(s,a)wd"| lep (Sa a) - Q?(Sa a) |

Ty (s,a) — (s, a)

< ]E(s,a)fvd"

+ PYES/NTCIS,G,), a’'~m(-]s") [Q;fw (5/, a/) _ Q:(3/7 a/)} ‘
< E(s,a)~d"| 721&(87 Cl) - T(Sa Cl) | + PYES/NT, a//\/ﬂ" Q;r,d, (8/7 a/) - Q:(Slv CL/) ’
<e+7QF, — Qllar-

Hence,
€

l—fy'

I=QF, —QFllax <& = [QF, —Qflla <
Let f* € argminser ||QF — fll¢~ so that |QF — f*||4~ = o . Then, by the triangle inequality,
— 3 *
o, = I ||QF, = fllar < 1Q7, = Flla-
<N@QF, — QFllax + 1Q7 — fllax

13 e
S 1= tar.

Finally, decompose total error and use triangle inequality again:
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Remark 1. In our proof we used the relation o/rfw < 157 +a, which leads to the looser bound o +
12fv' Under the more restrictive assumption that the function approximation error is independent of
the reward function (i.e., a}rw = ), the total error bound reduces to o + ﬁ, which coincides

with the result in|Hu et al.| (2024).

B ALGORITHM DETAILS

In this section, we present the detailed procedures of POLiCER, which consists of two components:
(1) PLS and (2) CER. The complete implementation with PEBBLE is described in Algorithm [3]

Algorithm 1 PLS

1: Require: Hyperparameters: temperature parameter «, the number of queries per session k, and
scaling factor L

Input: Replay buffer without reward R, preference dataset D, and current policy 7

Sample trajectories uniformly from replay buffer T’ = {o; }2*L**1 ~ R

Calculate log-likelihood /; = - 2 (sv,a0)~0; 108 T (ar | 1) Vo, €T

Calculate sampling weight w; using the inverse rank of log-likelihood [;

Sample 2 x k trajectories and pair them with probability P(i) = wi*/ >, w§

Add k queries with corresponding human annotations to preference dataset D

AN A S
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Algorithm 2 CER

1: Require: Hyperparameters: current threshold j3;, step size J, decay rate p, and current replay
ratio r
Input: Maximum critic output Q44
if Qmuw > Bz then
Increase replay ratio r+ = 1
Increase threshold 3,41 = 3; + d x p'
i+=1 ~
Reset parameters of critic 8, target critic 6, and reward estimator 1)
Qmaa: — —00
end if

YR RN AELD

Algorithm 3 PoLiCER

1: Require: Hyperparameters: reward learning frequency F

2: Initialize parameters of policy ¢, critic 6, target critic 6, and reward estimator 1)
3: Initialize a preference dataset D < ()
4: (Optional) Initialize replay buffer R and policy 7, with unsupervised exploration
5: Qma:v &~ —00
6: for each iteration do
7: if iteration % F == 0 then > feedback session
8: Sample queries using likelihoods of current policy 7 > Algorithm
9: Determine whether to reset or not using maximum critic output (4, > Algorithm 2]
10: Optimize 1) with Equation [2|and temporal data augmentation
11: Relabel replay buffer R using 7,
12: end if
13: if feedback session over then > revert replay ratio after all feedback provided
14: replay ratior =1
15: end if
16: for each gradient step in r do > agent update with current replay ratio
17: Sample random mini-batch B from R
18: Optimize 4, 0, and ¢, and log current critic outputs Qg(s¢, a;) of B
19: if Qo(s,a) > Quaz then > update maximum critic output for Algorithm
20: Qmaw < Q9(57 a’)
21: end if
22: end for
23: Take action a; ~ 7y (a¢ | s¢) and collect 5,41
24: Store transition {s, at, S¢11, 7y (s8¢, a¢)} in R
25: end for

C EXPERIMENTAL DETAILS

C.1 IMPLEMENTATION DETAILS FOR VECTOR-BASED CONTROL

We adopted SAC (Haarnoja et al., 2018) for vector-based control, with the full set of hyperparam-
eters listed in Table [I} For the baseline PbRL method PEBBLE (Lee et al., 2021b), which uses
SAC as its backbone, we employed an ensemble estimator comprising three multi-layer perceptron
(MLP) models. Each MLP contained three hidden layers of 256 units with leaky rectified linear
unit (ReLU) activations. The outputs of each ensemble member were bounded within the range [-1,
1] using a hyperbolic tangent activation. We trained the models using BCE loss with the Adam
optimizer (Kingma & Ba, 2015)), a batch size of 128, and a learning rate of 0.0003 (see Table @
These settings closely followed those described in B-Pref benchmark (Lee et al., 2021a)). For other
PbRL methods built upon PEBBLE—SURF (Park et al.| |2022)), RUNE (Liang et al., 2022), MRN
(Liu et al., [2022), and QPA (Hu et al., 2024)—we maintained the same hyperparameters as in the
PEBBLE configuration. The remaining method-specific hyperparameters are provided in Tables 3]
to[6] Table[7]summarizes the settings of POLiCER, which we kept largely consistent across environ-
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ments to ensure generalizability. All experiments were conducted using ten random seeds, and the
environments used are illustrated in Figure [T 1]

Walker Walk (100/10) Cheetah Run (100/10) Humanoid Stand (10000/50)
1 \k L1
» P » »
»> > »> >
Door Open (4000/40) Sweep Into (5000/50) Drawer Open (5000/50) Hammer (10000/50)

Figure 11: Visualization of test environments for vector-based control. The top row shows three
locomotion tasks from DMControl: Walker Walk, Cheetah Run, and Humanoid Stand. The bottom
row displays four manipulation tasks from Meta-World: Door Open, Sweep Into, Drawer Open, and
Hammer.

Across all experiments, we used different query sampling strategies depending on the method. For
most methods (except QPA and PoLiCER), we employed disagreement-based sampling (DS), which
leverages the uncertainty of ensemble reward model to select informative queries
2017 [Lee et al.l 2021b). Specifically, DS operates in two steps: first, it randomly samples L x K
trajectory pairs from a query buffer containing the 100 most recent episodes; then it computes the
variance of preference predictions across ensemble members for each pair. High variance indicates
that the reward model is uncertain about which trajectory is better, signaling regions where the
model would benefit from additional training data. The top K pairs with the highest variance are
then selected for human annotation. Importantly, this variance measures model disagreement about
the reward function, not the reliability of consistency of human annotation. Following prior studies,
we set L = 10 for this initial sampling pool.

Table 1: Hyperparameters of SAC for vector-based control.

Hyperparameter Value | Hyperparameter Value
Init temperature 0.1 | Hidden dimension 1,024 (DMControl),
Learning rate for agent 0.0005 (Walker Walk, Cheetah Run), 256 (Meta-World)
0.0001 (Humanoid Stand), | # of layers for agent 2 (DMControl),

0.0003 (Meta-World) 3 (Meta-World)

Target critic update frequency 2 | Batch size for agent 1,024 (DMControl),
Optimizer Adam 512 (Meta-World)
Optimizer temperatures 0.9,0.999) | Critic EMA rate 0.005
Discount factor 0.99

Table 2: Hyperparameters of PEBBLE for vector-based control.

Hyperparameter Value \ Hyperparameter Value

Batch size for ¢ 128 | Length of segment 50 (DMControl),

Total feedbacks / 100/10 (Walker Walk, Cheetah Run), 25 (Meta-World)

# of queries per session 4,000/40 (Door Open), | Frequency of feedback 20,000 (Walker Walk, Cheetah Run),

5,000/50 (Drawer Open, Sweep Into), 5,000 (Humanoid Stand, Meta-World)

10,000/50 (Humanoid Stand, Hammer) | Pre-training steps 9,000

Learning rate for 0.0003 | Data collection steps 1,000
Query buffer size 100

For QPA, we implemented NOS as specified in their original work 2024), which required
reducing the query buffer size to focus on more recent experiences (see Table [6| for specific buffer
size). In contrast, POLiCER used our PLS method, which selects queries based on their relevance to
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Table 3: Hyperparameters of SURF for vector-based control.

Hyperparameter Value \ Hyperparameter Value
Unlabeled batch ratio p 4 | Segment length before cropping 60 (DMControl),
Loss weight for unlabeled data A 1 35 (Meta-World)
Threshold 0.999 (Cheetah, Sweep Into), | Min/Max length of cropped segment  [45, 55] (DMControl),

0.99 (Others) [20, 30] (Meta-World)

Table 4: Hyperparameters of RUNE for vector-based control.

Hyperparameter Value
Initial weight for intrinsic reward 0.05
Decaying rate 0.00001

Table 5: Hyperparameters of MRN for vector-based control.

Hyperparameter Value
Meta-step frequency 1,000 (Walker Walk)

10,000 (Door Open, Sweep Into)
5,000 (Others)

Table 6: Hyperparameters of QPA for vector-based control.

Hyperparameter Value \ Hyperparameter Value
Query buffer size 10 (DMControl), | Data augmentation ratio 7 20
60 (Door Open), | Hybrid experience replay sample ratio w 0.5

30 (Others)

Table 7: Hyperparameters of POLiCER for vector-based control.

Hyperparameter Value \ Hyperparameter Value
Sampling weight temperature o 1.0 | Data augmentation ratio 7 20
Initial reset threshold Sy 25 | Threshold growth decay rate p 0.9
Numerator of step size ¢ 30 | Maximum replay ratio r 4
Denominator of step size 0 |Al

the current policy without restricting the buffer size. This allowed PoLiCER to maintain the default
buffer size of 100 episodes while still ensuring policy-aligned queries.

For the CER component of POLiCER, we carefully calibrated the reset thresholds based on theoreti-
cal bounds. Since the maximum possible critic output is bounded by | 1f,y | = 100 with reward scale
r = 1 and discount factor v = 0.99, we set the threshold range to [-100, 100]. Specifically, we used
an initial threshold 5y, = 25, decay rate p = 0.9, and step size § = ﬁTol (scaled by action dimension),
ensuring that reset thresholds remained appropriate across all environments while adapting to task
complexity.

C.2 IMPLEMENTATION DETAILS FOR PIXEL-BASED CONTROL

We extended our evaluation of PoLiCER to pixel-based state inputs, as described in Section
Following the official SURF implementation for pixel-based control, we replaced the SAC back-
bone with DrQ-v2 (Yarats et al., [2022) and adopted the hyperparameters detailed in Table B} For
comparison, we implemented pixel-based versions of PEBBLE and SURF according to Park et al.
(2022). We also incorporated QPA into our pixel-based experiments. However, since the original
implementation does not support pixel-based inputs, we adapted it using hyperparameters consis-
tent with its vector-based version, modifying only the data augmentation ratio 7. Tables [J] through
[I2] outline the hyperparameter differences across all methods. For PoLiCER implementation built
upon DrQ-v2, we applied a selective reset strategy that only affected the last three MLP layers of
Q-function and reward estimator, while preserving the image encoder parameters (Nikishin et al.,
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[2022). This approach maintains learned visual representations across resets. All pixel-based experi-
ments were conducted across ten random seeds, with the test environments used illustrated in Figure

Walker Walk (200/10) Cheetah Run (1000/50) Window Open (800/20)
Figure 12: Visualization of test environments for pixel-based control. The left two images show

locomotion tasks from DMControl: Walker Walk and Cheetah Run. The rightmost image displays
a manipulation task from Meta-World: Window Open.

Table 8: Hyperparameters of DrQ-v2 for pixel-based control.

Hyperparameter Value | Hyperparameter Value
Replay buffer capacity 1,000,000 | Optimizer Adam (Kingma & Ba] 2015}
Action repeat 2 | Critic EMA rate .
# of seed frames 4,000 | Update frequency 2
Exploration steps 2,000 | Feature dimension 50
n-step returns 3 (Cheetah Run), | Hidden dimension 1,024
1 (Others) | Exploration std clip 0.3
Batch size 256 (Cheetah Run), | Exploration std schedule (1.0, 0.1, 500,000) (Cheetah Run),
512 (Others) (1.0, 0.1, 100,000) (Others)

Table 9: Hyperparameters of PEBBLE for pixel-based control.

Hyperparameter Value | Hyperparameter Value
Batch size for ¢ 16 | Length of segment 50 (DMControl),
Total feedbacks / 200/10 (Walker Walk), 25 (Meta-World)
# of queries per session  1,000/50 (Cheetah Run), | Frequency of feedback 30,000 (DMControl),

800/20 (Window Open) 10,000 (Meta-World)
Learning rate for v 0.0003 | Query buffer size 20

Table 10: Hyperparameters of SURF for pixel-based control.

Hyperparameter Value \ Hyperparameter Value
Segment length before cropping 60 (Cheetah Run), | Min/Max length of cropped segment [45, 55] (Cheetah Run),
54 (Walker Walk), [48, 52] (Walker Walk),

29 (Window Open), [23, 27] (Window Open),

Threshold 0.99 | Unlabeled batch ratio p 5 (DMControl),
Loss weight for unlabeled data A 1 (Cheetah Run), 0.1 (Others) 10 (Meta-World)

Table 11: Hyperparameters of QPA for pixel-based control.

Hyperparameter Value | Hyperparameter Value
Query buffer size 10 | Data augmentation ratio 7 10
Hybrid experience replay sample ratio w 0.5

Table 12: Hyperparameters of POLiCER for pixel-based control.

Hyperparameter Value | Hyperparameter Value
Sampling weight « 1.0 | Data augmentation ratio 7 10
Init threshold 5, 25 | Threshold growth decay rate p 0.9
Numerator of step size § 30 | Maximum replay ratio r 2 (Meta-World),
Denominator of step size & |A] 4 (DMControl)
Query buffer size 30
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D ADDITIONAL EXPERIMENTAL RESULTS

D.1 COMPARISON OF SAMPLING SCHEMES

We compared our proposed PLS with two existing sample schemes: DS and NOS. DS selects the
top K trajectory pairs with the highest variance among ensemble members, while NOS prioritizes
queries from recent episodes to mitigate query-policy misalignment (Christiano et al., [2017; Hu
et al,[2024). Details for both methods are provided in Appendix [C.1]

To ensure fair comparison, we evaluated all three methods on Meta-World Sweep Into across ten runs
with identical hyperparameters. We set a total feedback budget of 10,000 preferences, delivered
in batches of 50 instances every 5,000 environment steps following the unsupervised pre-training
phase. Performance was assessed using two metrics: learning curves (success rate) and the average
log-likelihood of sampled trajectories under the current policy 7 at each feedback session (Hu et al.,
2024).
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e == PEBBLE + NOS
== PEBBLE + PLS
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(a) Success Rate on Sweep Into (b) Policy Log-likelihoods on Sweep Into

Figure 13: Comparison of three different query sampling strategies on Meta-World Sweep Into
(10,000/50) with ten random seeds. The feedback session configuration is consistent with Figure
[} (a) Success rate learning curves over ten evaluation episodes, showing the mean and standard
deviation across runs. (b) Average log-likelihoods of sampled trajectories under the current policy
7 at each feedback session. Median and IQR are reported to mitigate the influence of outliers.

As shown in Figure [I3] PLS significantly improved the success rate by approximately 20% com-
pared to the competing methods and consistently achieved the highest policy log-likelihoods. While
NOS demonstrated effectiveness early in training, its benefits diminished over time, with the gap in
policy likelihood between NOS and DS gradually narrowing. This suggests that recency becomes
a less reliable proxy for policy relevance as task complexity increases. Importantly, PLS introduces
no noticeable computational overhead. On an RTX 4090 GPU with an i9-13900KF CPU, PLS
completed one million training steps in approximately 1.5 hours, comparable to the training time
required by NOS.

Table 13: Actor entropy statistics for three sampling strategies on Meta-World Sweep Into
(10,000/50) with ten random seeds.

DS NOS PLS

Mean -3.688 -3.759 -3.758
Std 1.138  0.948  0.945
Max 2236 2209 2.267
Min -4.271 -4.158 -4.135

One might consider that PLS could implicitly bias sampling toward low-entropy policies due to
its localized guidance. However, policy entropy is controlled independently by the backbone RL
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algorithm (i.e., SAC uses an automatic entropy adjustment, and DrQ-v2 relies on scheduled explo-
ration noise). Therefore, the sampling strategies do not directly influence entropy dynamics. To
empirically verify this, we compared policy entropy statistics across three sampling strategies used
in our experiments. As shown in Table[T3] entropy remains nearly identical regardless of sampling
methods, indicating that PLS does not induce low-entropy behavior.

D.2 FURTHER ANALYSIS OF REWARD OVERESTIMATION

We further analyzed the detrimental effect of reward overestimation caused by primacy bias, as
discussed in Section f.2] While Figure 2] demonstrates how overestimation persists in PEBBLE
through learning curves and overestimation rates, Figure[I4]presents a more detailed visualization by
comparing estimated and true rewards over 1,000 collected episodes in Walker Walk. We carefully
sampled these episodes to ensure a uniform distribution of true rewards ranging from 0 to 1,000 (see

Table [14] for detailed statistics).
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Figure 14: Comparison between estimated rewards and true rewards for 1,000 collected episodes in
Walker Walk, uniformly sampled across the full reward range. (a) PEBBLE exhibits strong reward
overestimation, particularly in low-reward regions. (b) PEBBLE+Reset alleviates this problem, pro-
ducing more accurate reward estimates across the full reward range.

The heatmap reveals that PEBBLE exhibited severe reward overestimation, particularly for low-
reward trajectories, where early feedback disproportionately inflated reward estimates. In contrast,
PEBBLE+Reset produced a more accurate and consistent relationship between estimated and true
rewards. Additionally, PEBBLE struggled to distinguish between high- and mid-reward trajectories
because of compressed estimated values in those regions, limiting the reward estimator’s ability to
capture performance differences needed for effective policy optimization.

Table 14: Statistics for true episode rewards collected in Walker Walk.

Statistic Value
Count 1,000
Average 500.168
Standard deviation 281.716
Minimum 19.826

25th percentile (Q1) 257.404
50th percentile (Q2)  500.595
75th percentile (Q3) 744.916
Maximum 989.187

As described in Section [T] and [f.2} resetting the reward estimator at every feedback session helped
mitigate reward overestimation. However, this approach alone proved insufficient because the Q-
function retained biased estimates from previously overestimated rewards. Our CER method ad-
dressed this by resetting both the reward estimator and Q-function when current critic outputs ex-
ceeded a dynamically increasing threshold.
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Figure 15: Performance comparison between PEBBLE, PEBBLE + Reset, PEBBLE + CER on
Walker Walk. (a) Learning curves showing the average episode return, with the mean and standard
deviation across ten runs. (b) Reward overestimation rate during training, displaying median and
IQR. (c¢) Critic output magnitudes representing Q-value estimates, reported as mean and standard
deviation. CER achieved both faster return gain and more effective mitigation of overestimation.

Figure |1;5| demonstrates the effectiveness of CER. Figures E] (a) and (b) reveal that agents trained
with CER achieved higher returns and lower reward overestimation rates, respectively, compared to
using reward estimator reset alone. Importantly, Figure T3] (c) shows that CER had a significant im-
pact on reducing Q-function overestimation, resulting in more accurate value estimates throughout
training.

D.3 ADDITIONAL RESULTS FOR VECTOR-BASED CONTROL
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(b) SAC normalized scores for Meta-World tasks

Figure 16: Aggregate performance metrics for all methods across ten independent runs. (a) Re-
sults for three DMControl tasks. (b) Results for four Meta-World tasks. Each panel shows SAC-
normalized IQM, Median, Mean and OG with 95% stratified bootstrap confidence intervals. Lower
OG values indicate performance closer to SAC with ground-truth rewards.

To ensure robust and reliable performance evaluation, we used rliable library (Agarwal et al.|[2021))
to compute several normalized metrics relative to SAC: interquartile mean (IQM), mean, median,
and optimality gap (OG). IQM represents the average performance within the interquartile range
(middle 50% of runs), effectively reducing influence of outliers. OG quantifies the deviation from

22



Published as a conference paper at ICLR 2026

optimal performance (SAC in our study), with lower values indicating closer alignment to optimal
results. We reported all metrics with 95% stratified bootstrap confidence intervals. Figures[T6(a) and
(b) present the aggregated results across three DMControl tasks and four Meta-World tasks, respec-
tively. Across both benchmarks, POLiCER consistently outperformed other PbRL methods, achiev-
ing the highest IQM and lowest OG in Meta-World. Although PoLiCER and QPA yielded similar
average scores in DMControl, PoOLiCER showed significantly narrower 95% CI bands, demonstrat-
ing greater stability across tasks. The lower OG values further confirmed that PoLiCER remained
closer to SAC performance, highlighting its efficiency under limited feedback conditions.
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Figure 17: Results across ten runs on Humanoid Stand, Drawer Open, and Hammer. (a) Learning
curves showing performance progression with horizontal dotted lines indicating final performance.
(b) Critic outputs during training. In both rows, solid lines represent means, shaded areas show
standard deviation.

Building on these aggregate results, we next visualized the learning curves and corresponding critic
output plots across all methods on three challenging tasks—Humanoid Stand, Drawer Open, and
Sweep Into (Figure[T7). Solid lines represent mean values, shade regions indicate standard deviation,
and vertical dashed gray lines mark the last feedback step. Dotted lines in the learning curves
denote the final performance, calculated by averaging the last ten evaluation scores. The critic output
plots show that most baselines suffered from overestimation during the feedback phase, with value
estimates inflated beyond actual performance (Van Hasselt et al., 2016). Notably, QPA exhibited the
highest critic outputs, driven by its use of recent—and thus policy relevant—data for query sampling
and Q-function updates, reinforcing localized guidance 2024). In contrast, despite also
using policy-aligned sampling, PoOLiCER maintained much more stable critic values. This highlights
the effectiveness of CER in mitigating overestimation and stabilizing training (Nikishin et al.|[2022).
This enabled PoLiCER to combine feedback efficiency with robustness, avoiding runaway value
estimates while preserving policy relevance.

D.4 DETRIMENTAL EFFECT OF REWARD MISIDENTIFICATION

Figure[T8]illustrates problematic cases in the Drawer Open environment where the true reward signal
significantly diverged from actual task success, creating misleading preference feedback. Figure [I8]
(a) shows a successful task completion—the robot eventually opened the drawer completely—but
received unexpectedly low true rewards because of time spent exploring before achieving the goal.
Conversely, Figure [I§] (b) depicts a clear failure case where the robot merely grasped the drawer
handle without fully opening it, yet paradoxically received high true rewards.
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This reward-task misalignment led synthetic annotators to generate inconsistent preference labels
that poorly reflected actual task completion. As documented by [Lee et al (2021a), such noisy
preferences can severely impact learning by misguiding both policy updates and query selection
processes. This problem created a detrimental feedback loop where the query sampler reinforced
suboptimal behaviors based on flawed reward signals. This phenomenon helps explain high perfor-
mance variance and inconsistent learning outcomes observed across most baseline methods.

ﬁi'.‘h "“" "

(a) Success case with true rewards of 1285.33

(b) Failure case with true rewards of 3013.11

Figure 18: Visualization of reward-task misalignment in Drawer Open. (a) Successful drawer open-
ing that received unexpectedly low rewards. (b) Failed attempt that received disproportionately high
rewards. This misalignment generated noisy synthetic preferences that hindered consistent policy
learning.

D.5 COMPUTATIONAL OVERHEAD ANALYSIS FOR PIXEL-BASED CONTROL

Table 15: Wall-clock training time (hours) comparison for pixel-based control tasks across PbRL
methods.

Method Walker Walk Cheetah Run  Window Open
(IM frames) (1M frames) (0.8M frames)
(200/10) (1000/50) (800/20)
DrQ-v2 (upper bound) 3.47 2.53 7.24
PEBBLE 4.04 3.21 8.77
SURF 4.27 4.36 11.45
QPA 4.26 3.28 8.22
PoLiCER 5.88 4.68 9.35

We analyzed the computational overhead of PoLiCER for the pixel-based control experiments de-
scribed in Section[5.4] Wall-clock training time was measured across methods on three representa-
tive tasks using an RTX 4090 GPU with an i9-13900KF CPU. RL with pixel-based states is inher-
ently computationally expensive due to environment rendering. DrQ-v2 employs action repeat of 2,
executing each action for 2 environment steps with a single rendering. In our setup, this results in
approximately 11-12 seconds per 1,000 environment frames in DMControl and 14-15 seconds per
500 frames in Meta-World. This rendering cost dominates training time, with DrQ-v2 (ground-truth
rewards) requiring 2.5-3.5 hours for 1M frames in DMControl and 7.2 hours for 0.8M frames in
Meta-World Window Open. As shown in Table [T3] all PbRL methods incur additional overhead
from reward model updates, with SURF requiring extra computation for semi-supervised learning
and PoLiCER introducing overhead through CER-triggered increased replay ratio after resets. Po-
LiCER’s overhead primarily stems from CER rather than PLS. PLS adds only 2 x L x K policy
forward passes per feedback session (Appendix [D.I]), substantially less than DS. CER dynamically
increases the replay ratio after resets during the feedback collection phase, returning to 1 once all
feedback is collected (Algorithm[3] lines 13—15). Therefore, The overhead magnitude varies across
feedback schedule and reset frequency. While PoLiCER incurred approximately 8-9% additional
training time, it achieved approximately 80% success rate, doubling the performance of PEBBLE
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on Window Open. This overhead remains modest relative to the inherent rendering costs and reward
learning that dominate pixel-based PbRL.

D.6 HUMAN-IN-THE-LOOP EXPERIMENT PROCEDURE

We recruited volunteers consisting of undergraduate and graduate students not majoring in RL or
robotics, ensuring preference judgments reflect intuitive human understanding of natural motion
without domain expertise. Each participant annotated trajectories for a single run of both PEBBLE
and PoLiCER to ensure unbiased comparison (Muslimani & Taylor}, [2025)). At each feedback ses-
sion, participants were presented with pairs of trajectory videos displayed side-by-side for direct
comparison. Each video clip spanned a segment length of 50, corresponding to 2.5 seconds at 20
frames per second (fps). We used a lateral camera view at 96 x 192 resolution for Walker Walk,
while employing a dual-view setup combining corner and top-down perspectives vertically into a
single 288 x 288 resolution for Window Open, as the side view alone proved insufficient for judging
spatial relationships between the robot arm and window handle (refer to Figure [T9). Participants
could replay videos repeatedly before making a decision. After 10,000 steps of unsupervised pre-
training 2021b), we collected preference labels at regular intervals throughout training.
For Walker Walk, we gathered 10 queries every 20,000 steps (totaling 100 labels), while Window
Open required 15 queries every 10,000 steps (totaling 240 labels). These intervals correspond to ap-
proximately 10 minutes of wall-clock time in both environments. Completing all feedback sessions
required approximately 1.5-1.8 hours for Walker Walk and 2.6-3.0 hours for Window Open.

Walker Walk Window Open

Figure 19: Snapshot examples of query pairs to human annotators in Walker Walk (left) and Window
Open (right).

To ensure consistent and meaningful feedback, we provided clear task-specific criteria to annotators
for each environment. Participants were instructed to view both trajectory clips simultaneously and
select the relatively better trajectory. We informed them that their feedback was actively shaping the
agent’s learning and that both clips might show suboptimal behavior early in training. While partic-
ipants were encouraged to choose the relatively better one even in such cases, an equal preference
option was available for genuinely ambiguous cases where trajectories appeared indistinguishable
in quality. Annotators were instructed to evaluate trajectories in the following priority order:

Walker Walk

* If fallen, prefer the trajectory that recovers to standing position more rapidly

* If moving forward, prefer coordinated alternating leg motion rather than limping or relying
on one leg

* When standing or moving forward, prefer maintenance of upright torso posture.
Window Open

* Atthe initial stage with the window closed, prefer trajectories where the end-effector moves
closer to the handle
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* If the handle is contacted, prefer leftward sliding motion that fully opens the window (from
corner view)

* Throughout manipulation, prefer smooth and direct movements without excessive jitter or
unnecessary detours

While we pursued a fair and controlled HiL experiment by providing concrete evaluation crite-
ria, some exceptional cases not specified led participants to express varying preferences for similar
query pairs, resulting in mixed or personalized preferences. We present two representative examples
in Window Open below to identify critical considerations for improving guideline design and anno-
tation consistency in real-human experiments. Figure[20](a) illustrates state-action credit assignment
ambiguity, where one trajectory showed active sliding motion with less opening currently while the
other achieved greater opening but remained stationary: annotators disagreed on whether to priori-
tize current action or state. Figure [20] (b) shows heterogeneous stage comparison difficulty, where
each trajectory performed well at different task stages (approaching vs sliding), making direct com-
parison ambiguous without cross-stage evaluation priorities. These cases highlight the need for more
detailed guidelines that explicitly specify stage-specific priorities and clarify state-action trade-offs
in evaluation criteria. Even with such mixed preferences across annotators, POLiCER demonstrated
more consistent performance than PEBBLE by mitigating primacy bias through CER’s periodic
resets, preventing the reward model from overfitting to individual annotator preferences.

Almost sliding motion with partial opening Nearly full opening but stationary
(a) State-action credit assignment ambiguity

Approaching the window handle Actively sliding the handle
(b) Heterogeneous stage comparison difficulty

Figure 20: Representative examples of mixed or personalized preference cases that led to inter-
subject annotation disagreement: (a) State-action credit assignment ambiguity and (b) Heteroge-
neous stage comparison difficulty.

D.7 EFFECT OF HYPERPARAMETERS

We investigated PoLiCER’s sensitivity to two key hyperparameters in DMControl Walker Walk; the
temperature parameter « for PLS and the initial reset threshold 3 for CER. Figure 21 presents the
final performance achieved using 100 feedback instances across ten runs for various hyperparameter
settings.

For the sampling temperature o € {0.0,0.5,1.0,1.5,2.0}, our results showed that & = 1.0 yielded
the best overall performance. This moderate o value effectively balanced prioritization of policy-
aligned queries with sufficient exploration diversity. Very high alpha values (1.5 and 2.0) provided
only marginal improvements, likely because of overly concentrated sampling that limited explo-
ration. Although not shown in the figure, we observed that higher o accelerated early-stage learning,
but this advantage diminished over time compared to uniform sampling (o = 0.0).

For the initial reset threshold Sy, we found a clear trade-off. Lower 3y triggered more frequent re-
sets, which reduced long-term bias accumulation but introduced short-term instability in TD learn-
ing (Nikishin et all, [2023). Higher 3y reduced computational costs by decreasing reset frequency
but allowed primacy bias from early, potentially low-quality feedback to persist longer. Despite
these competing factors, POLiICER maintained consistent performance across a broader range of g
values, demonstrating robust performance without requiring precise hyperparameter tuning.
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Figure 21: Final performance on Walker Walk for PoLiCER using 100 feedback instances across ten
runs: (a) Effect of sampling weight temperature « for PLS and (b) Effect of initial reset threshold
Bp for CER. Error bars indicate standard deviation across runs.

E LARGE LANGUAGE MODEL USAGE

Large Language Model (Claude, developed by Anthropic) was used to aid and polish the writing of
this manuscript. Specifically, the LLM was used for:

e Grammar checking and correction

* Improving sentence clarity and readability

* Suggesting alternative phrasings for better expression
The LLM was used solely as a writing assistance tool and did not contribute to research ideation,
methodology development, experimental design, data analysis, or any core technical contributions.

All research ideas, algorithmic innovations, experimental results, and scientific conclusions are en-
tirely the work of the human authors.
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