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ABSTRACT

Arabic handwritten text recognition (HTR) is challenging, especially for histori-
cal texts, due to diverse writing styles and the intrinsic features of Arabic script.
Additionally, Arabic handwriting datasets are smaller compared to English ones,
making it difficult to train generalizable Arabic HTR models. To address these
challenges, we propose HATFORMER, a transformer-based encoder–decoder ar-
chitecture that builds on a state-of-the-art English HTR model. By leveraging
the transformer’s attention mechanism, HATFORMER captures spatial contextual
information to address the intrinsic challenges of Arabic script through differ-
entiating cursive characters, decomposing visual representations, and identifying
diacritics. Our customization to historical handwritten Arabic includes an im-
age processor for effective ViT information preprocessing, a text tokenizer for
compact Arabic text representation, and a training pipeline that accounts for a
limited amount of historic Arabic handwriting data. HATFORMER achieves a
character error rate (CER) of 8.6% on the largest public historical handwritten
Arabic dataset, with a 51% improvement over the best baseline in the literature.
HATFORMER also attains a comparable CER of 4.2% on the largest private non-
historical dataset. Our work demonstrates the feasibility of adapting an English
HTR method to a low-resource language with complex, language-specific chal-
lenges, contributing to advancements in document digitization, information re-
trieval, and cultural preservation.

1 INTRODUCTION

Global archives contain hundreds of millions of manuscript pages written in the Arabic alphabet,
primarily from the 19th and early 20th centuries, with around 25 million images from the Middle
East and North Africa alone. For historians, the laborious process of sifting through these pages
for relevant data is impractical due to time and resource constraints. Existing handwritten text
recognition (HTR) systems for non-historical Arabic texts fail to effectively render these histori-
cal documents into a searchable format. Developing a dedicated HTR system for historical Arabic
manuscripts would revolutionize digital humanities, enabling rapid data search and retrieval while
facilitating the creation of advanced large language models for research, thus opening new avenues
for historical and humanities scholarship.

This paper introduces HATFORMER, a transformer-based historical Arabic HTR system that lever-
ages self-attention mechanisms to capture long-range dependencies, outperforming traditional HTR
methods for complex scripts like Arabic. HTR systems such as Shi et al. (2016) have traditionally
relied on convolutional neural networks (CNNs) (LeCun et al., 1989) for feature extraction and re-
current neural networks (RNNs) (Rumelhart et al., 1986) for text generation. However, RNN-based
methods often struggle to capture long-range dependencies, which are more crucial for handling
Arabic scripts than for English scripts. Recently, transformer (Vaswani et al., 2017) methods have
shown to be promising for modern and historical English HTR tasks, with Li et al. (2023), Fujitake
(2024), and Parres & Paredes (2023) achieving state-of-the-art character error rates (CER) of 2.9%,
2.4%, and 2.7%, respectively. HATFORMER builds on the success of pretrained vision and text
transformers in HTR, introducing key adaptations to handle the intrinsic challenges of Arabic for
more accurate recognition of historical text.
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We will show through experimental verification that the inductive bias of the transformer’s attention
mechanism effectively addresses the following three intrinsic challenges (Najam & Faizullah, 2023;
Faizullah et al., 2023) of Arabic script absent in English. First, Arabic is required to be written in cur-
sive, making characters visually harder to distinguish. The attention mechanism allows the model to
better differentiate between connected characters. Second, Arabic characters are context-sensitive,
meaning a character’s shape can change depending on its position in a word and adjacent characters.
Attention helps accurately decompose these visual representations by focusing on the relevant con-
text within the sequence. Third, the Arabic language includes diacritics, which are markings above
or below characters that can completely alter the semantics of a word. Attention enables the model
to effectively identify diacritics by considering their contextual influence on surrounding characters.

In addition to the intrinsic challenges of Arabic scripts, Arabic handwritten datasets, especially
historical ones, are significantly smaller than those available for languages like English. Many HTR
works (Li et al., 2023; Wigington et al., 2018; Zhang et al., 2019) focus on languages using the
modern Latin alphabet, such as English and French, where large amounts of training data are readily
available. Common datasets include IAM (Marti & Bunke, 2002), with over 1,500 handwritten
pages, and RIMES (Grosicki et al., 2024), which comprises a mix of handwritten and printed text
across approximately 12,500 pages. In contrast, the largest public dataset for handwritten Arabic
(Saeed et al., 2024) consists of just over 1,600 pages, while another widely used dataset, KHATT
(Mahmoud et al., 2012), contains only 1,000 pages. A notable exception is the MADCAT (Lee et al.,
2012; 2013a;b) dataset, which contains over 40,000 pages of handwritten Arabic. However, it is not
focused on historical writing, highlighting the limited availability of resources for historical texts.

We base our approach on TrOCR (Li et al., 2023) and leverage domain knowledge of the Arabic lan-
guage to identify key factors in building an effective historical Arabic HTR system. We incorporate
a novel image preprocessor and synthetic dataset generator to enhance performance by minimizing
horizontal information loss and expanding the training dataset with realistic synthetic images. We
perform extensive evaluation and cross-dataset experiments on HATFORMER. We will release the
image preprocessor, tokenizer, model weights, and source code for our HTR system, along with
a detailed guide for researchers to interface our system with existing text detection packages for
page-level HTR evaluations and practical deployment. Additionally, we will release our dataset of
realistic synthetic Arabic images and its generation source code, as well as provide an OCR Error
Diagnostic App and its source code to benefit both machine learning and history studies researchers.
The contributions of our work are threefold.

1. Our proposed HATFORMER for historical Arabic HTR outperforms the state of the art across
various Arabic handwritten datasets. It achieves a CER of 8.6% and 4.2% on the largest public
and private handwritten Arabic datasets, respectively.

2. Our method has proven effective by leveraging the attention mechanism to address three intrinsic
challenges of the Arabic language.

3. Our historical Arabic HTR system and OCR Error Diagnostic App will aid humanity researchers
by automatically transcribing historical Arabic documents and debugging common recognition
errors, thereby significantly enhancing the accessibility of these documents.

2 RELATED WORKS

Handwritten Text Recognition (HTR). Handcrafted features were historically used for optical
character recognition (OCR) and HTR (Balm, 1970), but deep learning methods gradually took
over due to their improved performance. Common deep learning methods adopt the encoder–
decoder paradigm where visual signals are encoded into a feature representation and the fea-
ture is decoded for text generation. Graves & Schmidhuber (2008) proposed using a long short-
term memory (LSTM) (Hochreiter & Schmidhuber, 1997) multidimensional recurrent neural net-
work (MDRNN) (Graves et al., 2007) for feature extraction and a connectionist temporal classifi-
cation (CTC) layer for decoding (Graves et al., 2006). Notably, Shi et al. (2016) introduced the
convolutional recurrent neural network (CRNN) architecture for OCR, where a CNN was used to
extract visual features from images, and a stacked bidirectional LSTM (BLSTM) (Graves & Schmid-
huber, 2005; Graves et al., 2013) was used as the decoder. Puigcerver (2017); Wang & Hu (2017)
respectively adapted the encoder to use a CNN and modified recurrent convolutional neural net-
work (RCNN) (Liang & Hu, 2015). Newer approaches (Michael et al., 2019; Wang et al., 2020)
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attempt to incorporate the attention mechanism (Bahdanau et al., 2015) into the HTR pipeline. Co-
quenet et al. (2023) use the attention mechanism to perform full-page HTR, bypassing the need for
line-level segmentation.

Transformers for HTR. Transformers (Vaswani et al., 2017) have recently been applied to
HTR with earlier works using architectures consisting of a CNN-feature-extractor encoder and
a transformer-encoder–decoder-hybrid decoder, which later was simplified to a transformer-only
encoder–decoder pair or a transformer-decoder-only architecture. Wick et al. (2021) proposed a
hybrid system that uses a CNN feature extractor and multiple encoder–decoder transformers for
bidirectional decoding. Li et al. (2023) proposed a transformer-only method utilizing pretrained
vision transformers (ViT) (Dosovitskiy et al., 2021), specifically BEiT (Bao et al., 2022), as its en-
coder using raw pixels as input and text transformers, specifically RoBERTa (Liu et al., 2019), as the
decoder. Fujitake (2024) proposed a transformer-decoder-only method, using GPT (Radford et al.,
2018; 2019) in particular, with raw pixel inputs. However, the decoder-only method, in general,
requires more labeled data for training end-to-end, whereas a pretrained encoder could be used as
an initialization step for visual feature extraction. Our approach does not use a dedicated CNN fea-
ture extractor and builds upon the transformer-only encoder–decoder architecture. ViTs have been
shown to outperform CNNs and can benefit from large-scale pretraining for downstream tasks with
low resources (Dosovitskiy et al., 2021), like Arabic HTR.

Arabic HTR. Arabic handwriting poses unique challenges to HTR systems, such as cursive writing,
connected letters, and context-dependent character shapes. One of the earliest approaches to Arabic
HTR is Graves & Schmidhuber (2008), which proposes using multidimensional LSTM (MDLSTM)
and CTC decoding. Shtaiwi et al. (2022); Lamtougui et al. (2023); Saeed et al. (2024) proposed using
a CNN and BLSTM architecture, with Shtaiwi et al. (2022); Saeed et al. (2024) based upon the Start,
Follow, Read network (Wigington et al., 2018). As with traditional English HTR, many Arabic HTR
systems are starting to use the transformer architecture. Mostafa et al. (2021) proposed a method that
combines a ResNet-101 (He et al., 2016) for feature extraction and an encoder–decoder transformer
for text prediction. Momeni & BabaAli (2024) proposed a system that solely uses transformers,
similar to Li et al. (2023), but also introduces transducers (Graves, 2012) for HTR, removing the
need for external postprocessing language models. We continue using transformers for HTR and
leverage the most recent advancements to further improve recognition performance on Arabic texts.

3 BACKGROUND AND PRELIMINARIES

This section provides background information about the components that HATFORMER is built on.

Arabic-Character Encoding. Arabic characters can be efficiently represented in tokens for learn-
ing using byte-level byte pair encoding (BBPE) (Radford et al., 2019). It is a tokenization technique
that compresses a string into a reversible compact representation by leveraging the UTF-8 encoding
standard using a vocabulary dictionary. To train the vocabulary dictionary, it is initialized with all
256 possible byte values as base tokens, allowing it to tokenize any Unicode character and elimi-
nating the need for a task-specific vocabulary. They are then iteratively merged based on the most
frequent token pairs in a corpus to form new tokens. This iterative process expands the vocabulary,
allowing for more efficient encoding of frequent patterns.

TrOCR. The TrOCR framework (Li et al., 2023) for predicting text from images will be used as the
base architecture for this work. TrOCR employs a transformer-only encoder–decoder architecture,
specifically using a pretrained ViT as the encoder and a pretrained text transformer as the decoder.
The encoder takes an input image of shape 3 × H0 × W0, which is resized to a fixed shape of
3 × H × W . The resized image is then decomposed into a sequence of N = HW

/
P 2 patches,

where each patch has a shape of 3×P ×P . The encoder will use the patches with added positional
embeddings as input to generate encoder embeddings. The decoder employs masked attention on the
ground-truth text tokens to ensure it does not access more information during training than during
prediction. The ground-truth text tokens are then combined with the encoder embedding using cross-
attention. A linear layer projects the hidden states from the decoder to match the vocabulary size,
and the probabilities over the vocabulary are computed using the softmax function. Beam search is
used to generate the final output.

3
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Vision Transformer Encoder (BEiT) Text Transformer Decoder (RoBERTa)

BlockProcessor

Arabic BBPE Tokenizer

ا��� ����� �� ا���� ا���دم و��� ا���� ������ ا����� ��

Ground Truth Text

576321 4 5 6 7 8 9

Patch Embedding 16x16 px

Positional Embedding

Input Image varying height & width

[BOS] ا��� ��� �� ا���دم �� ا���� ���� �� و�ا����� ���� ا����

ا��� ��� �� ا���دم �� ا���� ���� �� و�ا����� ���� ا���� [EOS]

384x384 px

Encoder Embedding Predicted Output

Ground Truth Tokens

Figure 1: The architecture of HATFORMER. The input text-line image is processed by our BLOCK-
PROCESSOR and the BEiT vision transformer. The ground-truth text string is tokenized using our
Arabic BBPE tokenizer. The RoBERTa transformer is used for text prediction. HATFORMER ad-
dresses the three intrinsic challenges of Arabic scripts by leveraging attention and is able to work on
smaller datasets with the help of our synthetic image training pipeline.

4 PROPOSED METHOD FOR HISTORICAL ARABIC HTR

In this section, we present HATFORMER, which tackles the unique challenges of Arabic handwriting
recognition, particularly for historical documents. We describe the main components of our method,
including an image processor for effective ViT information preprocessing, a text tokenizer for com-
pact Arabic text representation, and a training pipeline that accounts for the limited availability of
historic Arabic handwriting data.

Architecture and Unit of Analysis. Prediction for HTR involves recognizing and converting a text
image into machine-readable characters. As illustrated in Figure 1, HATFORMER follows TrOCR’s
transformer encoder–decoder architecture for HTR text prediction. We focused on line-level images
as in Li et al. (2023); Momeni & BabaAli (2024), which is more challenging than the word- and
character-level predictions but less complex than the paragraph- and page-level predictions. This
approach allows us to focus on Arabic HTR without the additional complexities of text document
structure. HATFORMER can be easily integrated with existing layout detection methods, enabling
full-page prediction capabilities.

4.1 BLOCKPROCESSOR FOR EFFECTIVE VIT INFORMATION PREPROCESSING

We introduce a BLOCKPROCESSOR to best prepare each text-line image for effective ViT compre-
hension by applying image-processing insights and leveraging ViT’s blocking and indexing behav-
iors. The proposed BLOCKPROCESSOR works by first horizontally flipping a text-line image, then
standardizing its height to 64 pixels, and finally warping it to fill in the ViT’s 384×384-pixel im-
age container from left to right and top to bottom. The ViT’s image container will allow up to six
nonoverlapping complete rows that are 384 pixels wide, accommodating line images with varying
widths for up to 2,304 pixels. For shorter images, zeros will be padded. Figure 2(c) shows an out-
put of the proposed BLOCKPROCESSOR respecting the input image’s aspect ratio to allow potential
perfect reconstruction. In contrast, images in Figure 2(d), (b), and (f) show significant information
loss due to the direct use of ViT’s image preprocessor. We provide analysis below and justify the
system design of BLOCKPROCESSOR.

Aspect Ratio. ViT resizes input images to 384×384 without respecting their original aspect ratios.
This leads to an inefficient representation of text-line images from the Muharaf dataset, which has an
average image width of 614 pixels after standardizing their heights to 64 pixels. A direct application
of ViT image preprocessing will lead to horizontal compression of 1.6 times on average, losing
the clarity of the strokes in the horizontal direction for confident recognition. Figure 2(d) shows a
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384 px

960 pixels (variable)

(a) Original Image

(b) Reconstructed Image

(c) Proposed BlockProcessor (d) ViT Image Processor
Reconstructed
Block

(e) Original Block

(g) Synthetic Data Generation(f)

64
 p

x

Horizontal
Information Loss

Arabic Corpus

Distort, Shear, Blur

Words from
newspapers,

wikis and more

Augmentations

1 Million Generated Images

Font

Background Image

Figure 2: Left: Our proposed BLOCKPROCESSOR respects the aspect ratio of (a) an original image
and chunks it to fit within (c) a 384×384-pixel ViT image container. In contrast, the base ViT
image processor naively resizes images to (d) fully occupy its square image container, resulting
in (f) significant horizontal information loss of the vertical strokes when compared to (e) the raw
version. Right: (g) Synthetic image generation pipeline. Realistic-looking text-line images are
generated by randomly selecting words from a large Arabic corpus, rendering with a random font,
paper background, and image augmentation.

ViT-resized text-line image and Figure 2(b) shows the image content if the resized image is rescaled
back to its original shape. As the zoomed-in reconstruction block in Figure 2(f) reveals, the vertical
strokes suffer the most severe blurring, making it difficult for any observer to confidently determine
the exact thickness of a stroke at different vertical heights.

ViT Blocking & Indexing. In the BLOCKPROCESSOR, both horizontal flipping of text-line images
and the standardization of their heights to 64 pixels are designed to better leverage ViT’s blocking
and indexing behaviors for more efficient transformer training. First, Arabic text-line images read
from right to left, so flipping them horizontally can avoid representing the end of a sentence with
beginning ViT image tokens. Even though positional embeddings will help with ordering, we opt
not to add extra workload to the attention layers as it will potentially require more training data.
Second, we standardize the line image to an integer multiple of the ViT’s patch height of 16 pixels.
This resizing choice ensures that when Arabic texts are written in the middle of a text line, the
corresponding ViT image tokens with foreground text will always have similar indices. Without
resizing the height to an integer multiple of 16 pixels, the boundary of a text line and the boundary
of a ViT block will misalign at varying pixel counts for different rows. This will cause foreground
text to appear in all ViT image tokens, increasing the learning complexity for the attention layers.

4.2 ARABIC BBPE TEXT TOKENIZER FOR COMPACT ARABIC TEXT REPRESENTATION

Text representation is integral for language modeling. Radford et al. (2019) showed the impact of
using a byte-level representation for text with byte-level byte pair encoding (BBPE). This led to an
optimal balance of token sequence length and vocabulary size. To efficiently represent Arabic text,
we trained our own custom BBPE dictionary on a combined corpus from Abbas & Smaili (2005);
Abbas et al. (2011); Saad & Alijla (2017). As the base BBPE dictionary from Radford et al. (2019)
is skewed toward ASCII characters, our experiments show that Arabic text is represented with over
300% more tokens compared to our custom BBPE dictionary. The more compact representation
from the custom BBPE dictionary results in a less complicated classification problem, resulting in
higher accuracy along with our BLOCKPROCESSOR, as we will discuss in Section 5.5.

5
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4.3 TRAINING ON REALISTIC SYNTHETIC AND REAL-WORLD TEXTLINE IMAGES

Our proposed method involves a two-stage training/fine-tuning process, i.e., training on a large
synthetic dataset followed by fine-tuning on a real-world Arabic handwritten dataset.

Stage 1–Training on Large Synthetic Printed Dataset. To address the scarcity of historical
handwritten Arabic data and capture key intrinsic features of Arabic scripts, we first trained HAT-
FORMER on a large dataset of one million synthetic text-line images. This approach mitigates the
impact posed by the limited availability of historical handwritten Arabic data. The synthetic images
contain all three inherent characteristics of Arabic, i.e., cursive writing, context-dependent character
shapes, and diacritics. This enables our system to learn these challenging characteristics of Arabic
script before being trained on a downstream task. Synthetic training provides the necessary data
for the encoder to learn the visual features of Arabic, leading to more effective generalization. The
synthetic image generation pipeline will be described in Section 5.1 and shown in Figure 2.

Stage 2–Fine-Tuning on Real Handwritten Dataset. We fine-tune HATFORMER on real Arabic
handwritten datasets, primarily focusing on the Muharaf dataset containing 36,000 text-line images
due to its relevance to historical handwritten texts. To achieve strong performance on Arabic HTR,
we leverage a technical insight for large-scale training from Hao et al. (2019); Mosbach et al. (2021).
Traditional machine learning theory suggests that when the validation loss flattens, the model has
converged, and no further learning occurs (Mohri et al., 2018; Jo, 2021). However, Mosbach et al.
(2021) demonstrated that transformers can continue to improve in task performance long after the
validation loss has plateaued. Mosbach et al. (2021) indicates that achieving a near-perfect training
loss can serve as a strong baseline for model performance. In Stage 2, we train past the plateau of
the validation loss and approach a near-perfect training loss while monitoring the validation CER as
the stopping criteria, which can take twice as long as the minimum validation loss.

5 EXPERIMENTAL RESULTS

We present the experimental results for HATFORMER on three Arabic handwritten datasets and
compare it with other Arabic HTR baselines. We also conduct ablation studies to assess the effec-
tiveness of each component and analyze various parameters of HATFORMER.

5.1 SYNTHETIC & REAL-WORLD ARABIC DATASETS

Synthetic Stage 1 Training Dataset. For our Stage 1 training dataset, we generated 1,000,065
synthetic images of Arabic text lines. We first randomly sampled between 1–20 words from an
Arabic corpus containing 8.2 million words. The sampled words were then paired with one of 54
Arabic text fonts on a background chosen from 130 paper background images and one of eight image
augmentations to generate synthetic line images. Our ablation study in Section 5.5 will show that
English OCR initialization is insufficient and synthetic Arabic training is required.

Arabic HTR Datasets. The Muharaf dataset (Saeed et al., 2024) is a collection of historical hand-
written Arabic manuscripts that span from the early 19th century to the early 21st century. The
dataset contains over 36,000 text line images, which vary significantly in quality, from clear writing
on clean white backgrounds to illegible sentences on creased pages with ink bleeds. The KHATT
dataset (Mahmoud et al., 2012) is a collection of Arabic handwriting samples with over 6,600 seg-
mented line images. All images have black text on a clean white background. The MADCAT
dataset (Lee et al., 2012; 2013a;b) is a collection of 740,000 handwritten Arabic line images created
under controlled writing conditions. All images have black text on a clean, white background. See
Appendix B for more detailed descriptions of each dataset.

5.2 EXPERIMENTAL CONDITIONS

We initialized our model from HuggingFace’s trocr-base-stage1 334M parameter model.
We use BEiT (Bao et al., 2022) and RoBERTa (Liu et al., 2019) as the encoder and decoder, respec-
tively, since TrOCR (Li et al., 2023) empirically showed that they achieved the best CER perfor-
mance. We used a batch size of 15 with a learning rate of 5 × 10−5 and linear warmup of 20,000
steps for synthetic Stage 1 training. For Stage 2 fine-tuning, we used a batch size of 30 with a learn-
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Table 1: Performance on Arabic Handwritten Datasets.

Dataset Model Architecture CER (%) ↓
Muharaf Saeed et al. (2024) CRNN 14.9
(Full) Proposed Model Transformer 11.7

Muharaf Saeed et al. (2024) CRNN 17.6
(Arabic Only) Proposed Model Transformer 8.6

KHATT Saeed et al. (2024) CRNN 14.1
Lamtougui et al. (2023) CRNN 19.9
Momeni & BabaAli (2024) Transformer 18.5
Proposed Model Transformer 15.4

MADCAT Saeed et al. (2024) CRNN 5.5
Shtaiwi et al. (2022) CRNN 4.0
Rawls et al. (2018) CRNN 1.51

Proposed Model Transformer 4.2

Combined Proposed Model Transformer 15.3
1 Used the 2013 NIST OpenHART evaluation tools for computing

CER/WER, which involved normalizing certain diacritics.

Table 2: Cross-Dataset Evaluation.

Training Data Test Data Model CER (%) ↓
Muharaf KHATT Saeed et al. (2024) 38.5
(Full) Proposed Model 22.8

MADCAT Saeed et al. (2024) 30.5
Proposed Model 21.6

Muharaf KHATT Saeed et al. (2024) 33.0
(Arabic Only) Proposed Model 27.5

MADCAT Saeed et al. (2024) 28.9
Proposed Model 26.5

KHATT Muharaf Saeed et al. (2024) 43.8
Proposed Model 40.7

MADCAT Saeed et al. (2024) 17.8
Proposed Model 18.1

MADCAT Muharaf Saeed et al. (2024) 43.5
Proposed Model 41.4

KHATT Saeed et al. (2024) 17.8
Proposed Model 16.3

ing rate of 10−4 and linear warmup of 2,000 steps. The warmup was followed by an inverse square
root schedule for both Stage 1 training and Stage 2 fine-tuning. We trained on 2 to 4 A100 or H100
GPUs.

We did Stage 1 training on a train–validation–test dataset split of 90–9–1 for 1,000,065 synthetic line
images. We fine-tuned using a split of 85–15–5 for 25,767 line images from the Muharaf dataset;
the author recommended a 72–14–14 split for 6,687 line images from the KHATT dataset and a 72–
18–10 split for 741,877 line images from the MADCAT dataset. We used traditional validation loss
as the early stopping criterion during Stage 1 of training, with a maximum of 5 epochs. However,
we used the overtraining technique during our Stage 2 fine-tuning and utilized the validation CER
for early stopping as explained in Section 4.3.

5.3 MAIN RESULTS

We compare the performance of HATFORMER against state-of-the-art baselines across the Muharaf,
KHATT, and MADCAT datasets. We evaluate the HTR performance using the character error
rate (CER) (Levenshtein, 1966), which is widely used for assessing the accuracy of OCR and HTR
systems (Neudecker et al., 2021). It is defined as CER = (S + D + I)

/
N , where S is the num-

ber of substitutions, D is the number of deletions, I is the number of insertions, and N is the total
number of characters in the original text. The CER is based on the edit distance, which calculates
the number of aforementioned operations required to transform the predicted text into the original
text. We also performed cross-dataset comparisons to evaluate HATFORMER’s ability to generalize
across different datasets.

Table 1 reports the CER for HATFORMER and several existing baselines across the three datasets.
An important note is that the only existing baseline for the Muharaf dataset is Saeed et al. (2024).
Since the source code for many existing Arabic HTR baseline models is not publicly available,
except Saeed et al. (2024), we compared our results to the reported numbers obtained from their
papers. For Saeed et al. (2024), we retrained their model on each dataset and with stage-1 synthetic
training for a fair comparison. It is important to note that the dataset splits used in these baselines
may differ from those in our experiments, potentially affecting direct comparisons. Additionally,
we conducted experiments on two variants of Muharaf, the entire dataset and a subset containing
only Arabic characters. This allows us to investigate the impact of non-Arabic characters on HTR
performance. For clarity, our analysis will refer to the Arabic-only subset as Muharaf.

We first compared with CNN and RNN-based methods. HATFORMER achieves a CER of 8.6%
and 15.4% on the Muharaf and KHATT datasets, respectively, as compared to Saeed et al. (2024)
who achieved a CER of 17.6% and 14.1%. Lamtougui et al. (2023) achieved a CER of 19.9% on the
KHATT dataset. These results indicate that the transformer architecture can significantly outperform
traditional HTR methods based on CRNNs with a 23–51% improvement in CER for handwritten
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Figure 3: Self- and Cross-attention map visualizations. Yellow highlights areas of greater attention,
with attention maps overlaid onto the input image for easier comparison. Left: ViT encoder self-
attention maps for selected patch tokens. The top of each column shows the relevant patch, followed
by attention maps showing what the transformer attends to as it progresses through its subsequent
layers. The leftmost column shows the attention for a diacritic patch. Red lines indicate the layer
cutoff where the attention association becomes too broad, as identified by our Arabic expert. Right:
RoBERTa decoder cross-attention maps for selected ground truth text tokens. Each row represents
consecutive text tokens, read from right to left, with the decoded token string above each map.
Tokens are annotated based on their type: red underlines indicate diacritic tokens, green underlines
denote subword tokens, and all other tokens correspond to full words, as identified by our Arabic
language expert. The attention maps reveal the model’s ability to attend to relevant image regions
for each token. It can handle a diverse range of text, from small diacritics to complex compounded
characters, demonstrating the model’s ability to overcome the inherent challenges of Arabic script.

Arabic. This aligns with computer vision and natural language processing trends, where transform-
ers are increasingly favored due to their superior ability to take care of contextual information.

While Saeed et al. (2024) slightly outperformed our method on the KHATT dataset, HATFORMER
remains comparable. We attribute this to differences in the dataset characteristics, which may favor
Saeed et al. (2024)’s hybrid architecture. Our results imply that CNNs and RNNs are no longer
required for HTR. We enable a fully transformer-based model that can surpass these hybrid archi-
tectures by utilizing vision transformers as standalone feature extractors combined with a text trans-
former decoder. We credit the effectiveness of our model to the attention mechanism, which allows
for learning contextual information critical for language modeling. Figure 3 illustrates how the at-
tention mechanism captures character relationships. See Appendix A for a more detailed description
and analysis of the attention maps.

We also compared our approach with transformer-based methods. HATFORMER achieves a CER of
15.4%, compared with Momeni & BabaAli (2024), who achieved a CER of 18.5% on the KHATT
dataset. Our 17% improvement in CER demonstrates the effectiveness of our preprocessing and
overtraining methods. Our preprocessing pipeline mitigates information loss caused by horizontal
image compression, resulting in a CER improvement discussed in Section 5.5, while our overtraining
strategy establishes a strong baseline, ultimately leading to better performance.

HATFORMER achieves a CER of 4.2%, comparable to other baseline Arabic HTR models on the
MADCAT dataset. The 1.5% CER achieved by Rawls et al. (2018) may be due to several fac-
tors, specifically text normalization during evaluation (Rawls et al., 2018), which can significantly
improve performance as shown in Section 5.5. MADCAT also presents many unique dataset-
specific complexities and requires distinct preprocessing techniques, as highlighted by Abandah
& Al-Hourani (2018). Furthermore, as both KHATT and MADCAT are non-historical datasets, they
pose a different set of challenges compared to the historical Arabic texts that are the main focus of
our work. While we included MADCAT and KHATT in our evaluation for a more complete com-
parison with existing Arabic HTR systems, we did not specifically optimize for them, as our primary
goal is to enhance the performance of historical Arabic HTR.
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Table 3: Ablation Study on Muharaf.

Model CER (%) ↓

(A) Proposed Model 8.6
(B) (A) - Overtraining 9.9

(C1) (B) - BLOCKPROCESSOR + TrOCR Processor 11.4
(C2) (B) - Modified text tokenizer + TrOCR Tokenizer 10.0

(D) (B) - (C1) - (C2) 10.4
(E) (D) - Synthetic Stage-1 fine-tuning 14.6
(F) (E) - Pretrained weights 86.0

Table 4: Effects of Arabic normalization
postprocessing on Muharaf.

Model CER (%) ↓

Best Base Model 8.6
+ Remove diacritics 8.0
+ Remove without context 7.4
+ Remove with context 6.7

We combined the three handwritten datasets into a single large dataset to evaluate the model’s per-
formance across diverse handwriting styles. Using this combined dataset, HATFORMER achieved
a CER of 15.3%. While this result is slightly worse than the individual dataset CERs, it reflects the
challenge of adapting to significant image content and style variability across the Muharaf, KHATT,
and MADCAT datasets, indicating that HATFORMER can still extract meaningful shared features
even with the increased difficulty of combining datasets.

5.4 CROSS-DATASET EVALUATION

We conducted cross-dataset evaluations to explore the generalization ability of our model. Table 2
shows the results of cross-dataset evaluation. This table reveals the importance of using historical
handwriting data for a strong general Arabic HTR model. While training on modern Arabic hand-
writing using either KHATT or MADCAT gives a high CER of 40% on Muharaf, training on his-
torical Muharaf data gives a lower CER of 26% on modern Arabic handwriting. Hence, this shows
that our model can perform well on the historic Muharaf handwriting and generalize to in-the-wild,
unseen modern handwritten Arabic.

We also ran cross-dataset evaluations using Saeed et al. (2024)’s HTR system. As seen in Table 2,
our proposed model outperforms their approach in every evaluation except one. Notably, when
training on Muharaf (Arabic only) and testing on KHATT, our model outperforms (Saeed et al.,
2024) by 16.7% at a CER of 27.5% compared to 33%, which further shows our model’s capability
to generalize better compared to other methods.

5.5 ABLATION STUDY

In our ablation study, we quantify the impact of each component of our model by starting with our
best model and removing each component one at a time, as shown in Table 3 .

Baseline Model (A). Our baseline model achieved a CER of 8.6%. This served as the benchmark
against which we compared the performance of the ablated models.

Overtraining (B). When we only trained to the minimum validation loss, we observed a slight
increase in CER by 1.3%. This result is consistent with Hao et al. (2019); Mosbach et al. (2021),
suggesting that our model was not fully trained.

BLOCKPROCESSOR and Modified Text Tokenizer. (C1) & (C2) & (D). When the BLOCKPRO-
CESSOR and Arabic BBPE were added together, this led to a 0.5% CER improvement supporting
our ideas in Sections 4.1 and 4.2. Replacing TrOCR’s image processor with our BLOCKPROCES-
SOR led to a 0.4% CER improvement, whereas replacing the modified text tokenizer with TrOCR’s
tokenizer led to a −1.0% CER performance change. This indicates that the BLOCKPROCESSOR
enhances image feature extraction. However, the modified text tokenizer struggles when paired with
TrOCR’s processor due to the naive resizing, which discards essential features needed for predicting
compact Arabic token representations, as discussed in Section 4.1. The 1.1% CER improvement
observed due to the synergy when both components are combined highlights their complementary
roles: the BLOCKPROCESSOR enables richer feature extraction, while the Modified Text Tokenizer
ensures compact and accurate Arabic text representation. This shows the importance of aligning
task-specific components to the target language, as their interaction can yield significant synergistic
effects beyond individual contributions.
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Synthetic Stage-1 Fine-Tuning (E). Removing the synthetic Stage-1 fine-tuning resulted in a sub-
stantial increase in CER by 4.2%. This demonstrates the effectiveness of the Stage-1 fine-tuning
step that allows the model to better address the three inherent challenges of Arabic.

Pretrained Weights (F). When the training of HATFORMER was started from randomly initialized
weights, the model’s performance plummeted to a CER of 86.0%. Despite the major differences be-
tween English and Arabic scripts, leveraging TrOCR’s synthetic pretraining checkpoint for English
OCR led to better results.

Arabic Specific Postprocessing Normalization. We leveraged Arabic domain knowledge to group
our model errors into normalization categories: replace without context, replace with context,
and remove diacritics. The replace without context category normalizes characters to a single
form that is phonetically similar and generally does not change the meaning of the word. The
replace with context category is where more aggressive normalization is applied. Characters that
are similar but can change the word’s meaning are converted to a single form. Remove diacritics
is relevant to applications such as historical informational archival and search, where normalizing
certain characters into a single form is acceptable. Diacritics, in some cases, can be sparsely used
and be removed in an Arabic OCR system. Table 4 shows that the model performance in terms of
CER improves by 1.9% points or an additional ∼0.6% per post-processing for each category.

5.6 FACTOR/SENSITIVITY STUDY Table 5: Block Processor Comparison

Processor CER (%) ↓

Lee et al. (2023) 20.3
Li et al. (2023) 11.4
BLOCKPROCESSOR 8.6

We analyze the impact of various parameters on model
performance, with additional experiments in Appendix C.

Block Processor Methods. Several studies have ex-
plored dynamic aspect ratio image-processing approaches
in vision-language models (Bavishi et al., 2023; Fadeeva
et al., 2024; Dehghani et al., 2024). We compared our
proposed BLOCKPROCESSOR with two notable methods:
TrOCR (Li et al., 2023), which employs the standard ViT processing approach by resizing input
images to 384-by-384 pixels, and Pix2Struct (Lee et al., 2023), which scales input images while
preserving the aspect ratio to extract the maximum number of patches within a given sequence
length. Table 5 shows that our BLOCKPROCESSOR achieves the best CER of 8.6% on the Muharaf
dataset. As discussed in Sections 4.1 and 5.5, TrOCR’s processor suffers from information loss due
to its inefficient representation of resized images. While Pix2Struct addresses this by preserving the
aspect ratio, it introduces variability in the semantic meaning of patches, even when using absolute
2-dimensional positional embeddings. A patch may correspond to a character fragment in shorter
images, while a patch might represent an entire character in longer images. This inconsistency in
patch representation can negatively impact the model’s ability to interpret and process the input.

6 CONCLUSION AND LIMITATIONS

In this paper, we have presented HATFORMER, a dedicated Arabic handwritten text recognition sys-
tem harnessing the transformer’s attention mechanism to address the unique challenges of the Arabic
language. Our system integrates training methods with image and text processing techniques de-
signed for Arabic HTR. Experiments show that HATFORMER outperforms baseline methods across
multiple real-world datasets, highlighting the effectiveness of our approach.

HATFORMER demonstrates significant progress in historical Arabic handwritten text recognition
but also has some limitations. As a text line recognition model, its performance relies on the quality
of line segmentations during real-world inference. Additionally, HATFORMER struggles with line
images exhibiting extreme slants without angle normalization, which can impact recognition accu-
racy. The computational demands of the training process, particularly with the overtraining strategy,
pose challenges for institutions with extremely limited resources. Addressing this, future work could
explore parameter-efficient fine-tuning, such as low-rank adaptation (LoRA) (Hu et al., 2022) to en-
hance accessibility. These limitations point to key areas for improvement, including preprocessing
enhancements and optimization of training methods, to increase robustness and applicability across
diverse contexts.
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A ATTENTION MAPS

We analyze the effectiveness of using self-attention for Arabic HTR, including visualizing the self-
attention maps of our vision transformer encoder. We also visualize the cross-attention maps corre-
sponding to a selected ground truth token.

Our visualization scheme for the vision transformer involves selecting a patch of interest in the
image and then visualizing how it attends to other patches. In the heatmaps, a brighter color (yellow)
indicates that the selected patch pays more attention to this patch. We accumulate the self-attention
heatmaps from the previous layers (taking into account residual connections) in the next layer to
get a more holistic view of the attention flow. In the following text, we discuss insights from the
attention maps and how our transformer model deals with the intricacies of Arabic handwriting and
addresses key Arabic script challenges that we outlined in Section 3.

Cursive. Figure 3 demonstrates that when a patch containing a cursive line is selected, the attention
map first highlights the relevant strokes of that character. This indicates that the network learns to
distinguish individual characters and strokes before applying broader, global attention, effectively
connecting relevant patches. The cross-attention map further shows that the model accurately iden-
tifies character boundaries. The model successfully segments the entire word in the image for tokens
with complex cursive dependencies.

Context-Sensitive. A character in Arabic can take multiple forms depending on its position within
a word and the surrounding characters. The cross-attention maps in Figure 3 demonstrate that even
when words are split into multiple tokens, the model can accurately differentiate between word
pieces and segment each part. These maps reveal that the model effectively learns the complex
morphological rules of Arabic script and can distinguish between different positional forms of the
same character.

Diacritics. Figure 3 demonstrates that the diacritic patch can attend to the character patches it
is associated with. Importantly, both self-attention and cross-attention maps indicate that diacritic
marks are not treated as noise but carry a strong signal. The self-attention maps reveal that the model
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can associate the relevant character corresponding with the diacritic. The cross-attention maps show
the model correctly identifying the position of diacritics within the corresponding word. These maps
highlight the network’s ability to incorporate these small marks into the final token predictions rather
than ignoring them.

Attention Maps Cutoff. To further evaluate the self-attention mechanism, our Arabic expert coau-
thor analyzed the progression of attention associations across layers. Specifically, our expert identi-
fied layers where the attention between a patch and other patches becomes excessively broad rela-
tive to the associated word, potentially diluting the model’s focus on relevant features. These cutoff
points are marked with red lines in the visualizations. This analysis provides valuable insights into
how effectively the model maintains meaningful associations and highlights potential areas for im-
provement, particularly in leveraging Arabic-specific linguistic and structural knowledge.

B DATASETS

B.1 MUHARAF

The Muharaf dataset (Saeed et al., 2024) is a public collection of historical handwritten Arabic
manuscripts spanning from the early 19th century to the early 21st century. The dataset encom-
passes diverse document types, including personal letters, poems, dialogues, legal records, corre-
spondences, and church documents. It consists of over 36,000 text line images, exhibiting signifi-
cant variability in quality. These range from clear handwriting on clean white paper to highly de-
graded illegible text on creased pages with ink bleed-through. Fluent Arabic speakers scanned and
transcribed the historical documents, ensuring high-quality annotations. This makes the Muharaf
dataset a valuable resource for advancing research in historical handwriting recognition in Arabic.

B.2 KHATT

The KHATT dataset (Mahmoud et al., 2012) is a standard benchmark for Arabic HTR tasks. It
is a public collection of modern Arabic handwriting samples comprising over 6,600 segmented line
images. All images feature black text written on clean white backgrounds, ensuring consistent visual
quality. The dataset was created under controlled conditions, where 1,000 participants transcribed
2,000 unique texts provided to them.

B.3 MADCAT

The MADCAT dataset (Lee et al., 2012; 2013a;b) is a proprietary dataset created by the Linguistic
Data Consortium (LDC) to support the DARPA MADCAT Program. It comprises 740,000 modern
handwritten Arabic line images created under controlled conditions with standardized writing speed,
methodology, tool, and paper-type specifications. The text content was sourced from various digital
mediums, including weblogs, newswires, and newsgroups. Each image features black text on a clean
white background, ensuring high visual consistency. Due to its large size, the MADCAT dataset is a
valuable resource for advancing Arabic HTR research.

B.4 SYNTHETIC

For our Stage 1 training dataset, we generated 1,000,065 synthetic images of Arabic text lines.
To create these, we randomly sampled between 1 and 20 words inclusive from an Arabic corpus
comprising 8.2 million words, constructed by combining the datasets from Abbas & Smaili (2005);
Abbas et al. (2011); Saad & Alijla (2017). The selected words were rendered using one of 54 Arabic
fonts and placed on a background randomly selected from a set of 130 paper background textures.
We source the Arabic fonts from freely available online websites. The 130 paper backgrounds are
created from the Muharaf dataset by copying parts of the background image or created by using
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Figure 4: (a) The impact of synthetic Stage-1 fine-tuning size on final HTR performance. A larger
synthetic Stage-1 fine-tuning dataset allows for better generalization in terms of CER. (b) The CER
and latency effect of inference beam size of our model on Muharaf. Using a larger beam size leads
to a more accurate model but reduced speed. A beam width of three demonstrates a good trade-off
between accuracy and computational speed. (c) The impact of inference length penalty of our model
on Muharaf. A length penalty of 0.2 to 0.8 is preferred to achieve the best CER.

online paper texture images. Additionally, we applied one of eight image augmentation techniques:
width distortion, height distortion, barrel distortion, left arc, right arc, left rotation, right rotation, or
no distortion. We will release the realistic Arabic synthetic dataset and code to generate the images.

C ADDITIONAL FACTOR/SENSITIVITY STUDY

We analyze the impact of various parameters on model performance with further discussion and
comparison of image processors in Section 5.6. 1

Stage-1 Synthetic Dataset Size. Figure 4(a) shows the impact of the synthetic Stage-1 training
dataset size on the final performance of HATFORMER on the Muharaf dataset. As the size of the
synthetic dataset increases, the CER decreases, demonstrating improved generalization. Specifically,
datasets of 500k images and 1M images yield the best performance, with the CER dropping below
10%. This trend suggests that a larger synthetic Stage-1 training dataset enhances the model’s ability
to effectively handle the inherent challenges of Arabic, ultimately leading to better CER performance
in downstream HTR tasks.

Consecutive Whitespaces. The reported evaluation results throughout this paper were derived by
removing consecutive whitespaces at test time. This is in line with the default CER score implemen-
tation in the HuggingFace evaluate library (v0.4.2). We observed that performing this normalization
during the training stage instead of inference time leads to an additional 0.2% CER improvement.

Inference Beam Width. Figure 4(b) shows the effect of beam width on CER and generation speed.
The CER improves until the beam width is three and stabilizes beyond this point. Hence, we used a
beam width of three in our reported results. The inference speed was measured in tokens per second
over the Muharaf test set (total time / total tokens) on a single A10 (24GB) GPU with a batch size of
1. From the inference speeds we can see that our model can be used in a low-resource environment.

Inference Length Penalty. The length penalty parameter in beam search biases the generated output
sequence length, where negative values encourage shorter sequences and positive values encourage
longer ones. In Figure 4(c), we empirically show that on the Muharaf dataset, our model performs
optimally using a length penalty between 0.2 and 0.8.

1One notable parameter that was infeasible to study was decreasing the ViT patch size due to training com-
putational complexity. Reducing patch size in ViT’s results in a longer sequence and the attention mechanism
requires quadratic cost O(n2) with respect to sequence length n.
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