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Abstract

Extreme multi-label text classification (XMC)001
aims to assign relevant labels to a document002
from a large set of candidate labels. Prior XMC003
research has typically concentrated on super-004
vised learning methods. However, real-world005
scenarios frequently present situations where006
complete supervision signals, in the form of007
labeled and balanced datasets, are not available,008
highlighting the importance and relevance of009
zero-shot learning settings in XMC. In this pa-010
per, we study the XMC task on biomedical011
documents under the zero-shot setting which012
does not require any annotated documents in013
the training phase. We propose a novel label-014
centric curriculum contrastive learning frame-015
work for the training phase, which effectively016
utilizes hierarchical label information and label-017
metadata co-occurrence. For the inference018
phase, we employ a multi-stage retrieve and019
re-rank framework to make more accurate pre-020
dictions by ruling out the irrelevant labels be-021
fore ranking, rather than making direct predic-022
tions on the entire large label set. Experimental023
results demonstrate the effectiveness of our ap-024
proach in improving the performance of XMC.025

1 Introduction026

The eXtreme Multi-label text Classification (XMC)027

problem focuses on the challenge of tagging a text028

input with a relevant subset of labels from an ex-029

tremely large set. Many real world applications can030

be formulated as XMC tasks, yielding promising031

outcomes. A notable example is the classification032

of biomedical documents on PubMed1, the U.S.033

National Library of Medicine’s (NLM)2 primary034

bibliographic database. It contains more than 36035

million citations sourced from over 5600 biomedi-036

cal journals (as of Dec. 2023). This database contin-037

ues to expand rapidly, with more than a million new038

records being added annually (approximately 2600039

1https://pubmed.ncbi.nlm.nih.gov/about/
2https://www.nlm.nih.gov

daily)3. In response to the challenge of efficiently 040

searching this vast and ever-growing repository of 041

literature, a controlled vocabulary called Medical 042

Subject Headings (MeSH)4 has been introduced 043

and updated annually by NLM since the 1960s. 044

Currently, there are over 29,000 main MeSH terms 045

representing a broad range of fundamental biomed- 046

ical concepts structured hierarchically. 047

The current XMC setup on MeSH indexing 048

is built on full supervision, where the proposed 049

classifiers are trained on a large set of annotated 050

documents together with their corresponding la- 051

bels. While the current supervised XMC set- 052

ting has demonstrated impressive performance, it 053

also comes with several limitations. First, the 054

MeSH ontology is vast and regularly updated 055

(e.g., D000086382: COVID-19). Traditional 056

supervised learning methods would require fre- 057

quent re-training to accommodate new terms or 058

changes. Second, annotating biomedical literature 059

with MeSH terms is labour-intensive, especially 060

when the label space is large and requires domain 061

expertise. Third, the distribution of MeSH terms is 062

extremely long-tailed (e.g., “Humans” in 8 million 063

citations vs. “Pandanaceae” in 31 citations) (Liu 064

et al., 2015). Related research (Wei and Li, 2019; 065

Wei et al., 2021) indicates that supervised learn- 066

ing approaches tend to be biased towards frequent 067

labels while neglecting those in the long tail. 068

To address the aforementioned constraints, we 069

formulate the MeSH indexing in a zero-shot XMC 070

setting: given a collection of documents without 071

any pre-assigned labels and a complete description 072

of each class, our objective is to accurately classify 073

unseen documents into a set of their appropriate 074

classes. To be more specific, we conceptualize 075

the zero-shot XMC as a retrieval problem, where 076

the test document is considered as the query and 077

3https://www.nlm.nih.gov/bsd/medline_pubmed_
production_stats.html

4https://www.nlm.nih.gov/mesh/meshhome.html
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candidate labels are retrieved in response to the078

given input. Most existing approaches adopt lexi-079

cal matching (Salton and Buckley, 1988; Robertson080

and Walker, 1994) and semantic matching (Hofstät-081

ter et al., 2021; Zhang et al., 2022a; Xiong et al.,082

2022) for this task; however, a significant limitation083

of these approaches lies in the minimal lexical or084

semantic overlap between the documents and the085

label space. This lack of overlap necessitates more086

advanced techniques capable of understanding and087

bridging the conceptual and contextual gaps be-088

tween the documents and the label space, thereby089

ensuring effective and accurate classification in090

zero-shot XMC scenarios.091

In this work, we propose a novel label-centric092

curriculum contrastive learning framework that093

leverages the hierarchical label information and094

label-metadata co-occurrence (as shown in Figure095

1) for zero-shot MeSH indexing. The framework’s096

main component involves a similarity ranker which097

calculates the similarity score between two text098

units, namely a document and a label description,099

in order to generate a ranked list of relevant labels100

for each document. In the training phase, given101

the absence of annotated document-label pairs, we102

use the label hierarchical representation and label-103

metadata co-occurrence information to generate104

analogous document-document pairs. We adopt105

curriculum contrastive learning to train the similar-106

ity ranker by gradually pulling similar documents107

together and pushing away dissimilar ones. In the108

inference phase, we first incorporate metadata and109

BM25 to retrieve a subset of candidate MeSH terms110

from the large label set. We then utilize the trained111

ranker to re-rank the candidate labels and obtain112

the final predictions. Figure 2 illustrates our over-113

all architecture. Our approach minimizes the gap114

between the documents and the label space by in-115

jecting label-centric information (i.e., the label hier-116

archy and label-metadata co-occurrences) into the117

similarity ranker, thereby augmenting the perfor-118

mance of the MeSH indexing task. It is also worth119

noting that, with the proper selection and incor-120

poration of domain-specific metadata knowledge,121

adapting our method to a variety of XMC tasks is122

feasible and recommended for future research.123

Our main contributions are:124

1. We introduce a zero-shot XMC framework125

that utilizes the label-centric information,126

which does not require any labeled training127

data and relies solely on the names and de-128

MeSH Name

MeSH Synonyms

MeSH Descriptions

MeSH Hierarchy

Journal Name (Metadata)

Similar Articles (Metadata)

Figure 1: An example of MeSH label information and
metadata information.

scriptions of labels during the inference phase. 129

2. We propose a novel curriculum contrastive 130

learning approach to generate similar docu- 131

ments by leveraging label-centric information, 132

where the model progressively learns from 133

simpler to more complex examples, guided 134

by the structured relationships inherent in the 135

label hierarchy and the patterns observed in 136

label-metadata co-occurrences. 137

3. We use a multi-stage ‘retrieve and re-rank’ 138

framework in the inference phase, which fil- 139

ters out potential irrelevant labels before the 140

ranking process begins, rather than attempting 141

to make direct predictions across the entire 142

expansive set of labels. 143

4. Experiments demonstrate that our proposed 144

model achieves improvements for the biomed- 145

ical document XMC task under zero-shot set- 146

ting. 147

2 Related Work 148

Zero-shot Multi-label Text Classification ZMTC 149

represents a fundamental task in NLP, having sub- 150

stantial practical significance. Some studies have 151

focused on leveraging label hierarchies, which de- 152

velop models that learn to match texts with labels. 153

For instance, Chalkidis et al. (2020) proposed Prob- 154

abilistic Label Trees (PLT) to encourage interac- 155

tions between labels and texts. Lu et al. (2020) 156

introduced a multi-graph aggregation framework, 157

where each graph encodes distinct semantic rela- 158

tionships between labels. Liu et al. (2021) intro- 159

duced reasoning in label hierarchy modeling to 160

foster interdependence among labels within their 161

respective hierarchies during the training phase. 162
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Figure 2: Overview of our proposed framework. We use the label hierarchy and metadata to enhance contrastive
learning in training and propose a multi-stage retrieve and re-rank framework in inference.

Xiong et al. (2022) developed a multi-scale label163

clustering method to help the learning of semantic164

embeddings of instances and labels with raw text.165

Few existing works apply contrastive learning on166

ZMTC tasks and focus on generating effective pos-167

itive examples. For instance, Zhang et al. (2022a)168

proposed a randomized text segmentation (RTS)169

technique to generate high-quality contrastive pairs.170

Zhang et al. (2022b) used meta-data information to171

generate positive examples in contrastive learning172

for better ZMTC. Our research focuses on model-173

ing the correlations between labels and the contents174

of the documents. As a result, we embed the la-175

bel hierarchy and meta-data information into the176

text encoder for contrastive positive sample con-177

struction, which effectively enhances classification178

performance.179

Extreme Biomedical Document Classification180

Medical Text Indexer (MTI) (Aronson et al., 2004)181

is a hybrid system that integrates results from both182

pattern matching and k-NN algorithms. This inte-183

gration is achieved through rules developed man-184

ually, and the system has undergone continual im-185

provements over the years. BioASQ5 has organized186

5http://bioasq.org

challenges focused on automatic MeSH indexing 187

since 2013. These challenges present an ongoing 188

opportunity to engage a broader number of partici- 189

pants in the advancement of MeSH indexing sys- 190

tems. Since then, a large number of effective MeSH 191

indexing systems have been developed. MeSHLa- 192

beler (Liu et al., 2015), DeepMeSH (Peng et al., 193

2016), and MeSH Now (Mao and Lu, 2017) em- 194

ploy a Learning-to-Rank (LTR) framework that op- 195

erates through a two-stage strategy. Initially, they 196

predict a set of candidate MeSH terms, followed 197

by a ranking process to determine the final sug- 198

gestions. AttentionMeSH (Jin et al., 2018) and 199

MeSHProbeNet (Xun et al., 2019) are based on 200

RNNs and attention mechanisms, where the pri- 201

mary distinction between these two methods lies 202

in their respective approaches to attention mecha- 203

nisms. Wang and Mercer (2019), FullMeSH (Dai 204

et al., 2020), and BERTMeSH (You et al., 2021) are 205

interested in full text MeSH indexing, where the 206

first two approaches employ attention-based CNN 207

methods and the latter integrates pre-trained con- 208

textual embeddings enhanced by an attention mech- 209

anism. HGCN4MeSH (Yu et al., 2020) leverages 210

a graph convolutional neural network (GCN) to ef- 211
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fectively learn the patterns of label co-occurrence,212

which enhances the understanding of the com-213

plex relationships and interactions among MeSH214

terms. KenMeSH (Wang et al., 2022a) introduced215

a knowledge-enhanced mask attention module, de-216

signed to refine the candidate label set by reducing217

its size, which enhances the efficiency and preci-218

sion of predictive models.219

3 Methods220

3.1 Problem Formulation221

In this paper, we study the MeSH indexing prob-222

lem under the zero-shot setting, which enables the223

model to assign relevant MeSH terms to biomedical224

documents, even if those terms were not explicitly225

included in the training phase.226

Given a set of biomedical documents D =227

{d1, d2, . . . , dN} with their associated metadata228

information Imetadata, the objective is to assign a229

set of MeSH terms M = {y1, y2, . . . , ym} to di,230

where M is a subset of the entire MeSH ontol-231

ogy Y = {y1, y2, . . . , yL}, N is the total number232

of documents, m is the number of relevant MeSH233

terms for di, and L is the number of labels. In the234

ZMTC setup, we have access to Dtrain, Imetadata235

and Y , but not the ground truth labels M of the236

documents in the training phase.237

3.2 Label-metadata Co-occurrence238

Biomedical documents on PubMed are commonly239

associated with comprehensive metadata, includ-240

ing publication venues, author details, and a list241

of similar articles. These metadata can serve as242

a robust indicator of the document’s research top-243

ics (Wang et al., 2022a). To retrieve the candidate244

MeSH terms, we consider two types of metadata245

knowledge: journal information and document sim-246

ilarity. Journal information pertains to the name247

of the journal in which the article has been pub-248

lished, which typically indicates a specific research249

domain. Wang et al. (2022a) hypothesize that arti-250

cles from the same journal are likely indexed with251

MeSH terms relevant to that journal’s research fo-252

cus. To leverage this, we construct a journal-MeSH253

co-occurrence matrix based on conditional prob-254

abilities, denoted by P (yi | J). These probabili-255

ties represent the likelihood of a label yi occurring256

given the presence of journal J , and are denoted257

by:258

P (yi | J) =
Cyi∩J
CJ

, (1)259

where Cyi∩J denotes the count of co-occurrences 260

of yi and J , while CJ represents the total number 261

of occurrences of J within the training set. In order 262

to mitigate the impact of infrequent co-occurrences, 263

a threshold denoted as α is used to filter out such 264

noisy correlations. Formally: 265

Rjournal(J) = {yi|P (yi|J) > α, i = 1, ..., L}, (2) 266

where Rjournal(J) denotes the retrieved MeSH 267

terms for journal J , and α = 0.01. Given 268

a document d published in journal J , we have 269

Rjournal(d) = Rjournal(J). 270

We then use the k-nearest neighbours (KNN) 271

algorithm to retrieve a subset of MeSH terms for 272

each article, based on document similarity. In or- 273

der to give more weight to important words, the 274

representation of each article is achieved through 275

the Inverse Document Frequency (IDF) weighted 276

sum of word embeddings derived from the abstract, 277

which is denoted as follows: 278

IDF(d) =

∑
w∈d IDF(w)× ew∑

w∈d IDF(w)
, (3) 279

where ew is the word embedding of word w, and 280

IDF(w) is the inverse document frequency of the 281

word w. Subsequently, we use the KNN, which 282

is based on cosine similarity between abstracts, to 283

identify the K nearest neighbours for each article 284

within the training set. For a given document d, we 285

aggregate all MeSH terms from its neighbours 286

Rneighbours(d) = MH1∪MH2∪ . . .∪MHK , (4) 287

where MHi denotes the MeSH labels for the ith 288

neighbour of document d. We then combine the 289

MeSH labels retrieved from the journal informa- 290

tion and document similarity together to form the 291

candidate set Rmetadata: 292

Rmetadata(d) = Rjournal(d)∪Rneighbours(d), (5) 293

where Rmetadata(d) ⊆ Y . 294

3.3 Curriculum and Contrastive Training 295

Phase 296

Biomedical Text Encoder Motivated by the suc- 297

cess of pre-trained language models, we use Pub- 298

MedBERT (Gu et al., 2021) as the text encoder. We 299

have a biomedical document d, which consists of a 300

sequence of input tokens: 301

d = {[CLS], x1, x2, ..., xn−2, [SEP]}, (6) 302
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where [CLS] and [SEP] are two special tokens that303

signify the beginning and end of a sequence respec-304

tively, and n is the number of words in document305

d. We use PubMedBERT to encode the tokens in306

document d and output the corresponding vector to307

[CLS] from the last hidden layer as the representa-308

tion of the document d, denoted as e(d):309

e(d) = PubMedBERT(d), (7)310

where e(d) ∈ Rhe , he is the embedding dimension.311

Label Encoder MeSH terms are systematically312

organized into 16 primary categories, each fur-313

ther subdivided into subcategories. MeSH terms314

in these subcategories are arranged hierarchically,315

from the most general to the most specific, encom-316

passing up to 13 hierarchical levels (Dhammi and317

Kumar, 2014). The hierarchical structure inherent318

in MeSH taxonomies serves as a potent feature,319

enriching contextual comprehension and adding se-320

mantic depth to the representation of MeSH terms.321

This, in turn, contributes to heightened accuracy322

and efficiency in the indexing processes. To in-323

corporate this information, we employ a two-layer324

Graph Convolutional Network (GCN) designed to325

incorporate hierarchical relationships, specifically326

the parent-child information, among the labels.327

We first concatenate each MeSH term name and328

description to form a composite text representation329

ty for each label y. Following this, we use Pub-330

MedBERT to encode these concatenated texts as331

e(y) to obtain the original feature for label y:332

e(y) = PubMedBERT(ty), (8)333

where e(y) ∈ Rhe . In the constructed graph struc-334

ture, each node is formulated as a MeSH label, with335

edges delineating the relationships inherent in the336

MeSH hierarchy. The types of edges connected337

to a node encompass links from its parent labels,338

its child labels, and self-referential edges. At each339

GCN layer, the feature of a node is aggregated with340

those of its parent and child nodes. This aggrega-341

tion process results in the formation of an updated342

label feature for the subsequent layer:343

H l+1 = σ(A ·H l ·W l), (9)344

where H l and H l+1 ∈ RL×he indicate the node345

representation of the lth and (l+1)th layers, H0 =346

{ey1 , ey2 , . . . , eyL}, A is the adjacency matrix of347

the MeSH hierarchy graph, W is the layer-specific348

weight matrix, and σ(·) denotes an activation func- 349

tion. We denote the last layer as Hlabel ∈ RL×he , 350

which integrates the hierarchical information and 351

represents the label features. 352

Positive Example Generation In the conven- 353

tional paradigm of contrastive learning in NLP, 354

positive pairs are generated through methods fo- 355

cused on learning language representations. This 356

involves refining techniques into specific actions 357

for instance word insertion, deletion, substitution, 358

reordering, and back translation (Giorgi et al., 2021; 359

Wu et al., 2022; Xie et al., 2020; Wei and Zou, 360

2019). Moving beyond these purely text-based 361

methodologies, we use a straightforward approach 362

that integrates label hierarchical information and 363

label-metadata co-occurrence, motivated by Wang 364

et al. (2022b). This shift represents a significant 365

advancement, leveraging the structural aspects of 366

labels and patterns inherent in label-metadata co- 367

occurrence to enhance the learning process. Given 368

the original text sequence in Equation 6, the em- 369

bedding for each token is defined as: 370

etoken(d) = {e1, e2, . . . , en} = PubMedBERT(d), (10) 371

where etoken(d) ∈ Rn×he . We then calculate 372

the similarity score between each token in d and 373

MeSH terms, and normalize the scores using 374

Gumbel-Softmax to make the sampling differen- 375

tiable, which is denoted as follows: 376

S(d,Y) = Gumbel-Softmax(etoken(d) ·Hlabel), (11) 377

where S(d,Y) ∈ Rn×L is a probability matrix 378

that contains the scores associated with a token 379

x ∈ d to a specific label y. In instances where 380

a single token can be influenced by multiple rele- 381

vant labels, we compute the cumulative probability 382

across all labels in the metadata retrieved label set 383

Rmetadata(d) associated with the token x. This ag- 384

gregated probability serves as the comprehensive 385

label score for x, which is: 386

S(d) = {Sx1 , Sx2 , . . . , Sxn} =
∑

y ∈ Rmetadata

S(d,Y), (12) 387

where S(d) ∈ Rn. Subsequently, tokens are re- 388

tained as positive examples only if their sampling 389

probabilities surpass a specified threshold, denoted 390

β. This threshold not only facilitates the selection 391

of tokens but also regulates the proportion of tokens 392

that undergo retention for further processing. 393

d+ = {x̂i, if S(d) > β, else0} (13) 394

0 is a special token with an embedding of all zeros. 395
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Curriculum Learning for Positive Sample Se-396

lection In the positive sample generation process,397

we implement curriculum learning by progressively398

escalating the noise level at each difficulty stage.399

Specifically, this escalation is quantified by the co-400

sine similarity between the original document d401

and the generated positive sample d+, which is402

controlled by the threshold β. As the noise level403

increases, d+ becomes increasingly dissimilar to404

d, thereby creating more challenging examples for405

contrastive learning. We use discrete curriculum406

learning where we divide the pre-training step into407

three steps and increase the noise level at each step.408

Fine-tune with Contrastive Learning Our ob-409

jective is to enhance the re-ranking efficacy of a pre-410

trained language model, i.e., PubMedBERT, by411

fine-tuning it with label hierarchy information and412

label-metadata co-occurrence. Unlike the objec-413

tives of supervised learning, which predominantly414

focus on discerning ‘what is what’, contrastive415

learning adopts a distinct approach. It aims to com-416

prehend ‘what is similar or dissimilar to what’,417

thereby diverging from traditional supervised learn-418

ing paradigms. In our setting, we have a collection419

of document pairs (d, d+), while negative exam-420

ples d− are the remaining documents in the same421

batch; the contrastive loss is defined as:422

L = −log
exp(cos(ed,ed+ )/τ)

exp(cos(ed,ed+ )/τ)+

B∑
i=1

exp(cos(e
d+

,e
d− )/τ)

, (14)423

where τ = 0.05 is the temperature hyper-424

parameter, B is the number of documents in a batch.425

The PubMedBERT model is thus fine-tuned by426

minimizing the contrastive loss.427

3.4 Multi-stage Retrieve and Re-rank428

Inference Phase429

Multi-stage Retrieval We first use the metadata430

information to obtain a shortened candidate list431

Rmetadata(d) (see Section 3.2). The metadata re-432

trieval stage, while emphasizing the relationship433

between MeSH terms and metadata information,434

tends to overlook the lexical correspondence be-435

tween documents and MeSH terms. To further436

reduce the candidate label list in the retrieval stage,437

we use BM25 (Robertson and Walker, 1994) facili-438

tating partial lexical matching between documents439

and labels. Given a document d and MeSH term y,440

the score between d and y is calculated as follows:441

BM25(d, y) =
∑

w∈d∩wy

IDF(w)
TF(w,wy)·(k+1)

TF(w,wy)·k1(1−b+b
|Y|
avgdl )

, (15)442

avgdl =
1

|Y|
∑
y∈Y

|wy|, (16) 443

where wy represents the words in the name of a 444

MeSH term, |Y| is the length of the MeSH name 445

in words, avgdl is the average length of text in- 446

formation in the label. k1 = 1.5 and b = 0.75 447

are parameters in BM25 to control the impact of 448

term frequency saturation and document length nor- 449

malization, respectively. When the BM25 score 450

between the document d and the MeSH term yi 451

is larger than a pre-defined threshold γ, yi is then 452

added as a candidate label for d. Formally: 453

RBM25(d)={yi|BM25(d, yi) > γ, yi∈Rmetadata}, (17) 454

where γ = 0. For a given biomedical document d, 455

the initial set of candidate MeSH terms is generated 456

through the use of metadata during the retrieval 457

stage. This set is subsequently refined by applying 458

the BM25 algorithm, where RBM25 ⊆ Rmetadata 459

and Rmetadata ⊆ Y . 460

Re-ranking For a given document in the test set, 461

dtest, and a candidate label y ∈ RBM25, we em- 462

ploy PubMedBERTfine-tuned, which is fine-tuned 463

in the training phase, to encode each independently. 464

edtest = PubMedBERTfine-tuned(dtest),

ey = PubMedBERTfine-tuned(ty)
(18) 465

The score assessing the relationship between the 466

document dtest and the label y is determined based 467

on the cosine similarity of their respective vectors: 468

score(dtest, y) = cos(edtest , ey) (19) 469

4 Experiment 470

4.1 Setup 471

Dataset For a fair comparison, we follow You 472

et al. (2021) and Wang et al. (2022a) by using the 473

PMC FTP service6 (Comeau et al., 2019) to down- 474

load 1.44M human-annotated documents as of 475

September 2021. The dataset encompasses 28,415 476

distinct MeSH terms. In supervised learning set- 477

tings, You et al. (2021) and Wang et al. (2022a) fur- 478

ther split the dataset into training, validation, and 479

testing subsets. However, as our study focuses on 480

the zero-shot setting, we merge the training and val- 481

idation sets from their work to form our unlabeled 482

input corpus Dtrain. This implies that the labels of 483

6https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-
PMC
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Algorithm
Evaluation Metrics

P@1 P@3 P@5 NDCG@3 NDCG@5 PSP@1 PSP@3 PSP@5 PSW@3 PSW@5 PSP@1/P@1

Zero-shot

MPNet 44.66 35.63 30.21 36.75 33.12 29.47 31.87 32.07 29.91 30.69 65.99
PubMedBERT 46.72 36.52 30.81 38.92 35.71 32.19 32.81 32.92 32.17 31.93 68.90

MICoL 54.12 40.36 32.57 43.91 39.06 41.05 38.07 35.58 38.41 36.25 75.84
Ours - curriculum 57.35 42.76 33.86 44.85 40.03 43.96 38.23 36.37 39.68 36.82 76.65

Ours - no curriculum 56.65 42.13 33.02 43.79 39.76 43.02 38.04 35.78 38.39 36.31 75.94
Supervised KenMeSH 99.30 97.20 93.70 97.80 94.20 49.86 53.56 54.97 51.08 52.78 50.21

Table 1: Comparison to baseline methods across different evaluation metrics. Bold: the optimal values.

these documents are unknown to us, and we rely484

solely on their text and label hierarchy information,485

disregarding any predefined gold-truth labels. We486

use the same testing documents (dtest /∈ Dtrain) as487

their testing set that contains 20,000 articles.488

Evaluation Metrics We use two ranking-based489

evaluation metrics, i.e., Precision at k (P@k) and490

Normalized Discounted Cumulative Gain for k491

(NDCG@k), where k = 1, 3, 5. P@k quantifies492

the number of relevant MeSH terms suggested493

within the top-k recommendations of the MeSH494

indexing system. This measures the accuracy of495

the system in prioritizing the most relevant terms at496

the top of its recommendations. NDCG@k focuses497

on the quality of the rankings and their order. The498

detailed computations of evaluation metrics can be499

found in Appendix A.500

4.2 Baselines501

We evaluate our proposed model against a variety502

of baseline models which are used as the re-ranker503

after the retrieval stage proposed in Section 3.4.504

MPNet (Song et al., 2020) inherits the advan-505

tages of BERT and XLNet and has been pre-trained506

on a 160GB text corpora.507

PubMedBERT (Gu et al., 2021) is a BERT-508

based language model, pre-trained on the PubMed509

biomedical abstracts.510

MICoL (Zhang et al., 2022b) is an unsupervised511

contrastive learning approach that generates posi-512

tive pairs by using the meta-path and meta-graph.513

KenMeSH (Wang et al., 2022a) is the state-of-514

the-art supervised approach that uses metadata in-515

formation to build an attention mask in order to516

reduce the candidate labels to improve the perfor-517

mance of the predictions.518

4.3 Overall Performance519

We compare our proposed framework against pre-520

vious baseline models on various evaluation met-521

rics in Table 1. Each row in the table shows all522

evaluation metrics for a specific method. The best523

score for each metric is indicated. As reported,524

our model consistently outperforms all of the zero- 525

shot baselines across every metric. These results 526

provide solid evidence to validate the efficacy of 527

integrating the label hierarchy and label-metadata 528

co-occurrence. The integration of the label hierar- 529

chy enables the model to understand and utilize the 530

structural relationships between different labels, en- 531

hancing its ability to navigate and classify within a 532

complex label space. Meanwhile, leveraging label- 533

metadata co-occurrence allows the model to cap- 534

ture additional contextual and relational insights, 535

which does not solely rely on the texts. The results 536

provide robust evidence supporting the efficacy of 537

our approach. 538

4.4 Performance on the Tail Labels 539

Tail labels, which are applicable to only a limited 540

number of documents, tend to be more fine-grained 541

and informative compared to head labels, the lat- 542

ter being those that frequently occur in the dataset. 543

Given the imbalanced distribution of various MeSH 544

terms, we are interested in evaluating the efficiency 545

of our model in handling infrequent MeSH terms 546

(i.e., tail labels). We use propensity-scored met- 547

rics, such as propensity-scored P@k (PSP@k) and 548

propensity-scored NDCG@k (PSW@k), to per- 549

form a more balanced and realistic evaluation of 550

the model, especially in terms of its ability to han- 551

dle and effectively predict tail labels. The detailed 552

computations can be found in Appendix A. 553

As shown in Table 1, our proposed framework 554

outperforms all zero-shot baselines on PSP@k and 555

PSW@k. The ratio of PSP@1
P@1 provides insight into 556

the effectiveness of the model in not just accurately 557

predicting labels, but in predicting labels that are 558

of higher relevance. The higher a ratio is, the more 559

infrequent the correctly predicted labels are. Our 560

proposed framework performs the best on the ratio, 561

which indicates that the labels predicted by our 562

model (and other zero-shot methods) tend to be 563

more infrequent compared to those predicted by 564

the supervised model. This suggests that zero-shot 565

models can potentially uncover insights and make 566
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PubMedBERT Fine-tuned PubMedBERT

Figure 3: t-SNE visualization of one document’s repre-
sentation (red) and its label representations (blue).

predictions on less frequent labels that supervised567

models might overlook due to their training on568

more commonly occurred labels.569

4.5 Effectiveness of Integrating Label-centric570

Information571

Our approach incorporates label hierarchy and572

label-metadata co-occurrence into the training573

phase in order to minimize the gap between the574

documents and label space. As shown in Table 1,575

compared to PubMedBERT, our model shows sig-576

nificant improvement on all metrics, which empha-577

sizes the effectiveness of integrating label-centric578

information. Figure 3 shows a t-SNE plot that visu-579

ally assesses and compares the performance of our580

proposed model against PubMedBERT. We extract581

embeddings of the documents and their associated582

MeSH terms from both the original PubMedBERT583

and our contrastively fine-tuned model, and apply584

t-SNE to these embeddings. We can see a notably585

closer proximity between the embeddings of a doc-586

ument and its corresponding MeSH terms in our587

proposed model. This distance reduction indicates588

a more precise semantic alignment achieved by our589

model, reflecting its superior capability in under-590

standing and categorizing the biomedical literature.591

4.6 Effectiveness of Adding Curriculum592

Learning593

We establish two distinct experimental settings to594

evaluate the impact of curriculum learning on per-595

formance. The first setting is no curriculum learn-596

ing, where α = 0.02. The second is discrete cur-597

riculum learning, where we divide the training into598

three steps and update the α = [0.02, 0.2, 0.8] re-599

spectively. Curriculum learning has demonstrated600

effectiveness in generating appropriate positive ex-601

amples, as shown in Table 1. This structured learn-602

ing approach guides the model through progres-603

sively challenging examples, enhancing its ability604

to distinguish and learn from relevant (positive)605

instances. A notable outcome of implementing cur-606

Figure 4: Average batch training loss of first 600 steps
with and without curriculum learning

riculum learning is observed in the form of faster 607

convergence towards the pre-training objective, as 608

evidenced in Figure 4. This accelerated conver- 609

gence indicates that the model is able to grasp and 610

adapt to the learning tasks more efficiently when 611

exposed to a progressively structured curriculum. 612

5 Conclusion 613

In this paper, we address the challenges of Extreme 614

Multi-Label Classification (XMC) in real-world 615

scenarios with limited supervision signals. We 616

explore the task of XMC specifically within the 617

realm of biomedical documents, adopting a zero- 618

shot learning approach that does not rely on any an- 619

notated documents during the training phase, which 620

is a significant departure from traditional methods. 621

For the training phase, we develop a novel label- 622

centric curriculum contrastive learning framework. 623

This innovative framework is tailored to leverage hi- 624

erarchical label information and the co-occurrence 625

of labels with metadata, which effectively captures 626

the complex relationships and nuances inherent in 627

biomedical documents and their labels. During 628

the inference phase, we use a multi-stage ‘retrieve 629

and re-rank’ framework, which filters out irrele- 630

vant labels first and then refines the focus to a 631

more relevant subset of labels. Experimental re- 632

sults demonstrate the effectiveness of our approach 633

in improving the performance of XMC. In the fu- 634

ture, our proposed framework may be extended 635

with more metadata information, such as author- 636

ship, and more real-world applications, such as 637

keyword recommendation. Another interesting di- 638

rection would be to involve large language models 639

(LLMs) to help generate similar documents. 640
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Limitations641

Our use of metadata is limited to using the journal642

information and similar articles only. Other meta-643

data including authorship and others could also be644

potentially useful for improving the performance645

of XMC on biomedical documents.646

Our study is constrained by its focus on biomed-647

ical documents. This limitation primarily arises648

from our specific interest in leveraging the meta-649

data unique to the biomedical domain, such as jour-650

nal of publication, author affiliations, and subject-651

specific terminologies. This domain-specific nature652

of metadata plays a pivotal role in our methodology653

and analysis. As a result, the specialized approach654

we have developed, may require adaptation to trans-655

late to other domains within XMC tasks.656

Ethics Statement657

We are using the publicly-available publication in-658

formation on PubMed. We do not see any ethics659

issues in this paper.660
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where rk(ŷ) returns the top-k ranked items.855

DCG@k =

k∑
i=1

2reli − 1

log2(i+ 1)
,

IDCG@k =

min(k,N)∑
i=1

2reli − 1

log2(i+ 1)
,

NDCG@k =
DCG@k

IDCG@k
,

(21)856

where reli is the relevance of the item at position i,857

and N is the total number of relevant items in the858

prediction set.859

Propensity-scored Evaluation Propensity-860

scored Precision at k (PSP@k) and Propensity-861

scored Normalized Discounted Cumulative Gain862

at k (PSW@k) are adaptations of the standard863

Precision at k and NDCG metrics, which are used864

to address the position bias. The formulas can be865

represented as:866

PSP@k =
1

k

k∑
i=1

reli
Propensity(i)

, (22)867

where reli is 1 if the i-th item is relevant and 0 oth-868

erwise, and Propensity(i) is the propensity score869

of the i-th item.870

PDCG@k =
k∑

i=1

2reli−1
log2(i+1)

Propensity(i)
,

PIDCG@k =

min(k,N)∑
i=1

2reli−1
log2(i+1)

Propensity(i)

PSW@k =
PDCG@k

PIDCG@k
.

(23)871

B Implementation Details872

We implement our model in PyTorch (Paszke et al.,873

2019) on a single NVIDIA A100 40G GPU. We874

set the initial learning rate as 5e-5 with batch size875

64. We choose a learning rate scheduler which is876

warmed up with cosine decay, and the warm up877

ratio is set to 0.1. We use the Adam optimizer and878

early stopping strategies to avoid over-fitting.879
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