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Abstract

Extreme multi-label text classification (XMC)
aims to assign relevant labels to a document
from a large set of candidate labels. Prior XMC
research has typically concentrated on super-
vised learning methods. However, real-world
scenarios frequently present situations where
complete supervision signals, in the form of
labeled and balanced datasets, are not available,
highlighting the importance and relevance of
zero-shot learning settings in XMC. In this pa-
per, we study the XMC task on biomedical
documents under the zero-shot setting which
does not require any annotated documents in
the training phase. We propose a novel label-
centric curriculum contrastive learning frame-
work for the training phase, which effectively
utilizes hierarchical label information and label-
metadata co-occurrence. For the inference
phase, we employ a multi-stage retrieve and
re-rank framework to make more accurate pre-
dictions by ruling out the irrelevant labels be-
fore ranking, rather than making direct predic-
tions on the entire large label set. Experimental
results demonstrate the effectiveness of our ap-
proach in improving the performance of XMC.

1 Introduction

The eXtreme Multi-label text Classification (XMC)
problem focuses on the challenge of tagging a text
input with a relevant subset of labels from an ex-
tremely large set. Many real world applications can
be formulated as XMC tasks, yielding promising
outcomes. A notable example is the classification
of biomedical documents on PubMed!, the U.S.
National Library of Medicine’s (NLM)? primary
bibliographic database. It contains more than 36
million citations sourced from over 5600 biomedi-
cal journals (as of Dec. 2023). This database contin-
ues to expand rapidly, with more than a million new
records being added annually (approximately 2600
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Zhttps://www.nlm.nih.gov

daily)?. In response to the challenge of efficiently
searching this vast and ever-growing repository of
literature, a controlled vocabulary called Medical
Subject Headings (MeSH)* has been introduced
and updated annually by NLM since the 1960s.
Currently, there are over 29,000 main MeSH terms
representing a broad range of fundamental biomed-
ical concepts structured hierarchically.

The current XMC setup on MeSH indexing
is built on full supervision, where the proposed
classifiers are trained on a large set of annotated
documents together with their corresponding la-
bels. While the current supervised XMC set-
ting has demonstrated impressive performance, it
also comes with several limitations. First, the
MeSH ontology is vast and regularly updated
(e.g., D000086382: COVID-19). Traditional
supervised learning methods would require fre-
quent re-training to accommodate new terms or
changes. Second, annotating biomedical literature
with MeSH terms is labour-intensive, especially
when the label space is large and requires domain
expertise. Third, the distribution of MeSH terms is
extremely long-tailed (e.g., “Humans” in 8 million
citations vs. “Pandanaceae” in 31 citations) (Liu
et al., 2015). Related research (Wei and Li, 2019;
Wei et al., 2021) indicates that supervised learn-
ing approaches tend to be biased towards frequent
labels while neglecting those in the long tail.

To address the aforementioned constraints, we
formulate the MeSH indexing in a zero-shot XMC
setting: given a collection of documents without
any pre-assigned labels and a complete description
of each class, our objective is to accurately classify
unseen documents into a set of their appropriate
classes. To be more specific, we conceptualize
the zero-shot XMC as a retrieval problem, where
the test document is considered as the query and

3https://www.nlm.nih.gov/bsd/medline_pubmed_
production_stats.html
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candidate labels are retrieved in response to the
given input. Most existing approaches adopt lexi-
cal matching (Salton and Buckley, 1988; Robertson
and Walker, 1994) and semantic matching (Hofstét-
ter et al., 2021; Zhang et al., 2022a; Xiong et al.,
2022) for this task; however, a significant limitation
of these approaches lies in the minimal lexical or
semantic overlap between the documents and the
label space. This lack of overlap necessitates more
advanced techniques capable of understanding and
bridging the conceptual and contextual gaps be-
tween the documents and the label space, thereby
ensuring effective and accurate classification in
zero-shot XMC scenarios.

In this work, we propose a novel label-centric
curriculum contrastive learning framework that
leverages the hierarchical label information and
label-metadata co-occurrence (as shown in Figure
1) for zero-shot MeSH indexing. The framework’s
main component involves a similarity ranker which
calculates the similarity score between two text
units, namely a document and a label description,
in order to generate a ranked list of relevant labels
for each document. In the training phase, given
the absence of annotated document-label pairs, we
use the label hierarchical representation and label-
metadata co-occurrence information to generate
analogous document-document pairs. We adopt
curriculum contrastive learning to train the similar-
ity ranker by gradually pulling similar documents
together and pushing away dissimilar ones. In the
inference phase, we first incorporate metadata and
BM25 to retrieve a subset of candidate MeSH terms
from the large label set. We then utilize the trained
ranker to re-rank the candidate labels and obtain
the final predictions. Figure 2 illustrates our over-
all architecture. Our approach minimizes the gap
between the documents and the label space by in-
jecting label-centric information (i.e., the label hier-
archy and label-metadata co-occurrences) into the
similarity ranker, thereby augmenting the perfor-
mance of the MeSH indexing task. It is also worth
noting that, with the proper selection and incor-
poration of domain-specific metadata knowledge,
adapting our method to a variety of XMC tasks is
feasible and recommended for future research.

Our main contributions are:

1. We introduce a zero-shot XMC framework
that utilizes the label-centric information,
which does not require any labeled training
data and relies solely on the names and de-
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Figure 1: An example of MeSH label information and
metadata information.

scriptions of labels during the inference phase.

2. We propose a novel curriculum contrastive
learning approach to generate similar docu-
ments by leveraging label-centric information,
where the model progressively learns from
simpler to more complex examples, guided
by the structured relationships inherent in the
label hierarchy and the patterns observed in
label-metadata co-occurrences.

3. We use a multi-stage ‘retrieve and re-rank’
framework in the inference phase, which fil-
ters out potential irrelevant labels before the
ranking process begins, rather than attempting
to make direct predictions across the entire
expansive set of labels.

4. Experiments demonstrate that our proposed
model achieves improvements for the biomed-
ical document XMC task under zero-shot set-
ting.

2 Related Work

Zero-shot Multi-label Text Classification ZMTC
represents a fundamental task in NLP, having sub-
stantial practical significance. Some studies have
focused on leveraging label hierarchies, which de-
velop models that learn to match texts with labels.
For instance, Chalkidis et al. (2020) proposed Prob-
abilistic Label Trees (PLT) to encourage interac-
tions between labels and texts. Lu et al. (2020)
introduced a multi-graph aggregation framework,
where each graph encodes distinct semantic rela-
tionships between labels. Liu et al. (2021) intro-
duced reasoning in label hierarchy modeling to
foster interdependence among labels within their
respective hierarchies during the training phase.
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Figure 2: Overview of our proposed framework. We use the label hierarchy and metadata to enhance contrastive
learning in training and propose a multi-stage retrieve and re-rank framework in inference.

Xiong et al. (2022) developed a multi-scale label
clustering method to help the learning of semantic
embeddings of instances and labels with raw text.
Few existing works apply contrastive learning on
ZMTC tasks and focus on generating effective pos-
itive examples. For instance, Zhang et al. (2022a)
proposed a randomized text segmentation (RTS)
technique to generate high-quality contrastive pairs.
Zhang et al. (2022b) used meta-data information to
generate positive examples in contrastive learning
for better ZMTC. Our research focuses on model-
ing the correlations between labels and the contents
of the documents. As a result, we embed the la-
bel hierarchy and meta-data information into the
text encoder for contrastive positive sample con-
struction, which effectively enhances classification
performance.

Extreme Biomedical Document Classification
Medical Text Indexer (MTI) (Aronson et al., 2004)
is a hybrid system that integrates results from both
pattern matching and k-NN algorithms. This inte-
gration is achieved through rules developed man-
ually, and the system has undergone continual im-
provements over the years. BioASQ> has organized

Shttp://bioasq.org

challenges focused on automatic MeSH indexing
since 2013. These challenges present an ongoing
opportunity to engage a broader number of partici-
pants in the advancement of MeSH indexing sys-
tems. Since then, a large number of effective MeSH
indexing systems have been developed. MeSHLa-
beler (Liu et al., 2015), DeepMeSH (Peng et al.,
2016), and MeSH Now (Mao and Lu, 2017) em-
ploy a Learning-to-Rank (LTR) framework that op-
erates through a two-stage strategy. Initially, they
predict a set of candidate MeSH terms, followed
by a ranking process to determine the final sug-
gestions. AttentionMeSH (Jin et al., 2018) and
MeSHProbeNet (Xun et al., 2019) are based on
RNNs and attention mechanisms, where the pri-
mary distinction between these two methods lies
in their respective approaches to attention mecha-
nisms. Wang and Mercer (2019), FullMeSH (Dai
et al., 2020), and BERTMeSH (You et al., 2021) are
interested in full text MeSH indexing, where the
first two approaches employ attention-based CNN
methods and the latter integrates pre-trained con-
textual embeddings enhanced by an attention mech-
anism. HGCN4MeSH (Yu et al., 2020) leverages
a graph convolutional neural network (GCN) to ef-
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fectively learn the patterns of label co-occurrence,
which enhances the understanding of the com-
plex relationships and interactions among MeSH
terms. KenMeSH (Wang et al., 2022a) introduced
a knowledge-enhanced mask attention module, de-
signed to refine the candidate label set by reducing
its size, which enhances the efficiency and preci-
sion of predictive models.

3 Methods

3.1 Problem Formulation

In this paper, we study the MeSH indexing prob-
lem under the zero-shot setting, which enables the
model to assign relevant MeSH terms to biomedical
documents, even if those terms were not explicitly
included in the training phase.

Given a set of biomedical documents D =
{d1,d2,...,dy} with their associated metadata
information Zyctadata, the objective is to assign a
set of MeSH terms M = {y1,92,...,Ym} to d;,
where M is a subset of the entire MeSH ontol-
ogy Y = {y1,y2,...,yr}, N is the total number
of documents, m is the number of relevant MeSH
terms for d;, and L is the number of labels. In the
ZMTC setup, we have access t0 Dirain, LZmetadata
and )/, but not the ground truth labels M of the
documents in the training phase.

3.2 Label-metadata Co-occurrence

Biomedical documents on PubMed are commonly
associated with comprehensive metadata, includ-
ing publication venues, author details, and a list
of similar articles. These metadata can serve as
a robust indicator of the document’s research top-
ics (Wang et al., 2022a). To retrieve the candidate
MeSH terms, we consider two types of metadata
knowledge: journal information and document sim-
ilarity. Journal information pertains to the name
of the journal in which the article has been pub-
lished, which typically indicates a specific research
domain. Wang et al. (2022a) hypothesize that arti-
cles from the same journal are likely indexed with
MeSH terms relevant to that journal’s research fo-
cus. To leverage this, we construct a journal-MeSH
co-occurrence matrix based on conditional prob-
abilities, denoted by P(y; |J). These probabili-
ties represent the likelihood of a label y; occurring
given the presence of journal J, and are denoted
by:
CyiﬁJ

P(yi|‘]):Cija (D

where Cy,~; denotes the count of co-occurrences
of y; and J, while C; represents the total number
of occurrences of J within the training set. In order
to mitigate the impact of infrequent co-occurrences,
a threshold denoted as « is used to filter out such
noisy correlations. Formally:

7?«journal(t]) = {yz‘P(yzL]) > «, = ].7 ...7L}, (2)

where Rjournal(J) denotes the retrieved MeSH
terms for journal J, and @ = 0.01. Given
a document d published in journal J, we have
7?fjournal(d) = 7?/joulrnaLl(J )

We then use the k-nearest neighbours (KNN)
algorithm to retrieve a subset of MeSH terms for
each article, based on document similarity. In or-
der to give more weight to important words, the
representation of each article is achieved through
the Inverse Document Frequency (IDF) weighted
sum of word embeddings derived from the abstract,
which is denoted as follows:

Y wea IDF(w) x ey,
> wea IDF(w) 7

where e,, is the word embedding of word w, and
IDF (w) is the inverse document frequency of the
word w. Subsequently, we use the KNN, which
is based on cosine similarity between abstracts, to
identify the K nearest neighbours for each article
within the training set. For a given document d, we
aggregate all MeSH terms from its neighbours

IDF(d) = 3)

Rueighbours(d) = MH{UMHU. . .UMHE, (4)

where MH; denotes the MeSH labels for the ‘"
neighbour of document d. We then combine the
MeSH labels retrieved from the journal informa-
tion and document similarity together to form the
candidate set Retadata:

Rmetadata(d) = Rjournal(d) U Rneighbours(d)a (5)
where Rmetadata(d) - y

3.3 Curriculum and Contrastive Training
Phase

Biomedical Text Encoder Motivated by the suc-
cess of pre-trained language models, we use Pub-
MedBERT (Gu et al., 2021) as the text encoder. We
have a biomedical document d, which consists of a
sequence of input tokens:

d= {[CLS],athQ,...,xn_g,[SEP]}, (6)



where [CLS] and [SEP] are two special tokens that
signify the beginning and end of a sequence respec-
tively, and n is the number of words in document
d. We use PubMedBERT to encode the tokens in
document d and output the corresponding vector to
[CLS] from the last hidden layer as the representa-
tion of the document d, denoted as e(d):

e(d) = PubMedBERT(d), (7

where e(d) € R", h, is the embedding dimension.

Label Encoder MeSH terms are systematically
organized into 16 primary categories, each fur-
ther subdivided into subcategories. MeSH terms
in these subcategories are arranged hierarchically,
from the most general to the most specific, encom-
passing up to 13 hierarchical levels (Dhammi and
Kumar, 2014). The hierarchical structure inherent
in MeSH taxonomies serves as a potent feature,
enriching contextual comprehension and adding se-
mantic depth to the representation of MeSH terms.
This, in turn, contributes to heightened accuracy
and efficiency in the indexing processes. To in-
corporate this information, we employ a two-layer
Graph Convolutional Network (GCN) designed to
incorporate hierarchical relationships, specifically
the parent-child information, among the labels.

We first concatenate each MeSH term name and
description to form a composite text representation
t, for each label y. Following this, we use Pub-
MedBERT to encode these concatenated texts as
e(y) to obtain the original feature for label y:

e(y) = PubMedBERT(t,), (8)

where e(y) € R". In the constructed graph struc-
ture, each node is formulated as a MeSH label, with
edges delineating the relationships inherent in the
MeSH hierarchy. The types of edges connected
to a node encompass links from its parent labels,
its child labels, and self-referential edges. At each
GCN layer, the feature of a node is aggregated with
those of its parent and child nodes. This aggrega-
tion process results in the formation of an updated
label feature for the subsequent layer:

HY =o(A-HY WY, )

where H' and H'*! ¢ RE*"< indicate the node
representation of the I*" and (I + 1) layers, H® =
{ey,,€y,,..., ey, }, Ais the adjacency matrix of
the MeSH hierarchy graph, W is the layer-specific

weight matrix, and o (-) denotes an activation func-
tion. We denote the last layer as Hiype € RE* e,
which integrates the hierarchical information and
represents the label features.

Positive Example Generation In the conven-
tional paradigm of contrastive learning in NLP,
positive pairs are generated through methods fo-
cused on learning language representations. This
involves refining techniques into specific actions
for instance word insertion, deletion, substitution,
reordering, and back translation (Giorgi et al., 2021;
Wu et al., 2022; Xie et al., 2020; Wei and Zou,
2019). Moving beyond these purely text-based
methodologies, we use a straightforward approach
that integrates label hierarchical information and
label-metadata co-occurrence, motivated by Wang
et al. (2022b). This shift represents a significant
advancement, leveraging the structural aspects of
labels and patterns inherent in label-metadata co-
occurrence to enhance the learning process. Given
the original text sequence in Equation 6, the em-
bedding for each token is defined as:

€token(d) = {€1,€2,...,e,} = PubMedBERT(d), (10)

where €ioken(d) € R™ . We then calculate
the similarity score between each token in d and
MeSH terms, and normalize the scores using
Gumbel-Softmax to make the sampling differen-
tiable, which is denoted as follows:

S(d,Y) = Gumbel-Softmax(etoken (d) * Hiabet), (11)

where S(d,)) € R™Z is a probability matrix
that contains the scores associated with a token
x € d to a specific label y. In instances where
a single token can be influenced by multiple rele-
vant labels, we compute the cumulative probability
across all labels in the metadata retrieved label set
R metadata(d) associated with the token z. This ag-
gregated probability serves as the comprehensive
label score for x, which is:

S(d) = {Sur,Sezr-- 2 Sen} = D> S(d, V),
y e Rmetadata

(12)

where S(d) € R™. Subsequently, tokens are re-
tained as positive examples only if their sampling
probabilities surpass a specified threshold, denoted
(. This threshold not only facilitates the selection
of tokens but also regulates the proportion of tokens

that undergo retention for further processing.
dt = {#;, if S(d) > 3,else 0} (13)

0 is a special token with an embedding of all zeros.



Curriculum Learning for Positive Sample Se-
lection In the positive sample generation process,
we implement curriculum learning by progressively
escalating the noise level at each difficulty stage.
Specifically, this escalation is quantified by the co-
sine similarity between the original document d
and the generated positive sample d*, which is
controlled by the threshold 8. As the noise level
increases, d becomes increasingly dissimilar to
d, thereby creating more challenging examples for
contrastive learning. We use discrete curriculum
learning where we divide the pre-training step into
three steps and increase the noise level at each step.

Fine-tune with Contrastive Learning Our ob-
jective is to enhance the re-ranking efficacy of a pre-
trained language model, i.e., PubMed BERT, by
fine-tuning it with label hierarchy information and
label-metadata co-occurrence. Unlike the objec-
tives of supervised learning, which predominantly
focus on discerning ‘what is what’, contrastive
learning adopts a distinct approach. It aims to com-
prehend ‘what is similar or dissimilar to what’,
thereby diverging from traditional supervised learn-
ing paradigms. In our setting, we have a collection
of document pairs (d,d"), while negative exam-
ples d~ are the remaining documents in the same
batch; the contrastive loss is defined as:

r= —log exp(cos(e},;,ed+)/'r) 7 (14)

exp(cos(eq,e 4+ )/T)+Zexp(cos(ed+ ey—)/T)
i=1
where 7 = 0.05 is the temperature hyper-
parameter, B is the number of documents in a batch.
The PubMedBERT model is thus fine-tuned by
minimizing the contrastive loss.

3.4 Multi-stage Retrieve and Re-rank
Inference Phase

Multi-stage Retrieval We first use the metadata
information to obtain a shortened candidate list
Rmetadata(d) (see Section 3.2). The metadata re-
trieval stage, while emphasizing the relationship
between MeSH terms and metadata information,
tends to overlook the lexical correspondence be-
tween documents and MeSH terms. To further
reduce the candidate label list in the retrieval stage,
we use BM25 (Robertson and Walker, 1994) facili-
tating partial lexical matching between documents
and labels. Given a document d and MeSH term y,
the score between d and y is calculated as follows:

BM25(d, y) = ZIDF(w) . (15)

weEdNwWy

TF(w,wy)<(k+1)

T (w,wy ) k1 (1-b+b 120

1
avgdl = & Z [wy, (16)

yey

where w,, represents the words in the name of a
MeSH term, |Y| is the length of the MeSH name
in words, avgdl! is the average length of text in-
formation in the label. k&1 = 1.5 and b = 0.75
are parameters in BM25 to control the impact of
term frequency saturation and document length nor-
malization, respectively. When the BM25 score
between the document d and the MeSH term y;
is larger than a pre-defined threshold -, y; is then
added as a candidate label for d. Formally:

Remzs(d) ={y:[BM25(d, yi) > 7, yi € Rmetadata}, (17)

where v = 0. For a given biomedical document d,
the initial set of candidate MeSH terms is generated
through the use of metadata during the retrieval
stage. This set is subsequently refined by applying
the BM25 algorithm, where Rpnma2s € Rumetadata
and Rmetadata c .

Re-ranking For a given document in the test set,
diest, and a candidate label y € Rpnes, we em-
ploy PubMedBERT g6 tuned, Which is fine-tuned
in the training phase, to encode each independently.

Ciost — PUbMedBERTﬁne—tuned (dtest)a

(18)
ey = PubMedBERT fipe-tuned (ty)

The score assessing the relationship between the
document dy.s; and the label y is determined based
on the cosine similarity of their respective vectors:

SCOI‘e(dtesta y) = Cos(edtest’ ey) (19)

4 Experiment

4.1 Setup

Dataset For a fair comparison, we follow You
et al. (2021) and Wang et al. (2022a) by using the
PMC FTP service® (Comeau et al., 2019) to down-
load 1.44M human-annotated documents as of
September 2021. The dataset encompasses 28,415
distinct MeSH terms. In supervised learning set-
tings, You et al. (2021) and Wang et al. (2022a) fur-
ther split the dataset into training, validation, and
testing subsets. However, as our study focuses on
the zero-shot setting, we merge the training and val-
idation sets from their work to form our unlabeled
input corpus Dy;,in. This implies that the labels of

®https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-
PMC



Algorithm Evaluation Metrics
P@l P@3 P@5 | NDCG@3 NDCG@5 | PSP@1 PSP@3 PSP@5 | PSW@3 PSW@5 | PSP@1/P@I
MPNet 44.66 35.63 30.21 36.75 33.12 2047 3187 3207 2991 30.69 65.99
PubMedBERT 4672 36.52 30.81 38.92 35.71 3219 32.81 3292 32.17 31.93 68.90
Zero-shot MICoL 5412 4036 3257 | 4391 39.06 41.05 3807 3558 38.41 36.25 75.84
Ours - curriculum | 57.35 42.76 33.86 | 44.85 40.03 4396 3823 3637 | 39.68 36.82 76.65
Ours - no curriculum | 56.65 42.13 33.02 | 43.79 39.76 43.02  38.04 3578 38.39 36.31 75.94
Supervised | KenMeSH [99.30 9720 9370 97.80 9420 | 4986 5356 5497 | 51.08 5278 | 5021

Table 1: Comparison to baseline methods across different evaluation metrics. Bold: the optimal values.

these documents are unknown to us, and we rely
solely on their text and label hierarchy information,
disregarding any predefined gold-truth labels. We
use the same testing documents (diest & Dirain) S
their testing set that contains 20,000 articles.

Evaluation Metrics We use two ranking-based
evaluation metrics, i.e., Precision at £ (P@Qk) and
Normalized Discounted Cumulative Gain for k
(NDCGQ@k), where k£ = 1,3,5. PQk quantifies
the number of relevant MeSH terms suggested
within the top-k£ recommendations of the MeSH
indexing system. This measures the accuracy of
the system in prioritizing the most relevant terms at
the top of its recommendations. NDCG@k focuses
on the quality of the rankings and their order. The
detailed computations of evaluation metrics can be
found in Appendix A.

4.2 Baselines

We evaluate our proposed model against a variety
of baseline models which are used as the re-ranker
after the retrieval stage proposed in Section 3.4.

MPNet (Song et al., 2020) inherits the advan-
tages of BERT and XLNet and has been pre-trained
on a 160GB text corpora.

PubMedBERT (Gu et al., 2021) is a BERT-
based language model, pre-trained on the PubMed
biomedical abstracts.

MICoL (Zhang et al., 2022b) is an unsupervised
contrastive learning approach that generates posi-
tive pairs by using the meta-path and meta-graph.

KenMeSH (Wang et al., 2022a) is the state-of-
the-art supervised approach that uses metadata in-
formation to build an attention mask in order to
reduce the candidate labels to improve the perfor-
mance of the predictions.

4.3 Overall Performance

We compare our proposed framework against pre-
vious baseline models on various evaluation met-
rics in Table 1. Each row in the table shows all
evaluation metrics for a specific method. The best
score for each metric is indicated. As reported,

our model consistently outperforms all of the zero-
shot baselines across every metric. These results
provide solid evidence to validate the efficacy of
integrating the label hierarchy and label-metadata
co-occurrence. The integration of the label hierar-
chy enables the model to understand and utilize the
structural relationships between different labels, en-
hancing its ability to navigate and classify within a
complex label space. Meanwhile, leveraging label-
metadata co-occurrence allows the model to cap-
ture additional contextual and relational insights,
which does not solely rely on the texts. The results
provide robust evidence supporting the efficacy of
our approach.

4.4 Performance on the Tail Labels

Tail labels, which are applicable to only a limited
number of documents, tend to be more fine-grained
and informative compared to head labels, the lat-
ter being those that frequently occur in the dataset.
Given the imbalanced distribution of various MeSH
terms, we are interested in evaluating the efficiency
of our model in handling infrequent MeSH terms
(i.e., tail labels). We use propensity-scored met-
rics, such as propensity-scored P@Qk (PSP@k) and
propensity-scored NDCG@k (PSW@k), to per-
form a more balanced and realistic evaluation of
the model, especially in terms of its ability to han-
dle and effectively predict tail labels. The detailed
computations can be found in Appendix A.

As shown in Table 1, our proposed framework
outperforms all zero-shot baselines on PSP@k and
PSW@k. The ratio of ng?l provides insight into
the effectiveness of the model in not just accurately
predicting labels, but in predicting labels that are
of higher relevance. The higher a ratio is, the more
infrequent the correctly predicted labels are. Our
proposed framework performs the best on the ratio,
which indicates that the labels predicted by our
model (and other zero-shot methods) tend to be
more infrequent compared to those predicted by
the supervised model. This suggests that zero-shot
models can potentially uncover insights and make
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Figure 3: t-SNE visualization of one document’s repre-
sentation (red) and its label representations (blue).

predictions on less frequent labels that supervised
models might overlook due to their training on
more commonly occurred labels.

4.5 Effectiveness of Integrating Label-centric
Information

Our approach incorporates label hierarchy and
label-metadata co-occurrence into the training
phase in order to minimize the gap between the
documents and label space. As shown in Table 1,
compared to PubMedBERT, our model shows sig-
nificant improvement on all metrics, which empha-
sizes the effectiveness of integrating label-centric
information. Figure 3 shows a t-SNE plot that visu-
ally assesses and compares the performance of our
proposed model against PubMedBERT. We extract
embeddings of the documents and their associated
MeSH terms from both the original PubMedBERT
and our contrastively fine-tuned model, and apply
t-SNE to these embeddings. We can see a notably
closer proximity between the embeddings of a doc-
ument and its corresponding MeSH terms in our
proposed model. This distance reduction indicates
a more precise semantic alignment achieved by our
model, reflecting its superior capability in under-
standing and categorizing the biomedical literature.

4.6 Effectiveness of Adding Curriculum
Learning

We establish two distinct experimental settings to
evaluate the impact of curriculum learning on per-
formance. The first setting is no curriculum learn-
ing, where @ = 0.02. The second is discrete cur-
riculum learning, where we divide the training into
three steps and update the o = [0.02,0.2,0.8] re-
spectively. Curriculum learning has demonstrated
effectiveness in generating appropriate positive ex-
amples, as shown in Table 1. This structured learn-
ing approach guides the model through progres-
sively challenging examples, enhancing its ability
to distinguish and learn from relevant (positive)
instances. A notable outcome of implementing cur-
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Figure 4: Average batch training loss of first 600 steps
with and without curriculum learning

riculum learning is observed in the form of faster
convergence towards the pre-training objective, as
evidenced in Figure 4. This accelerated conver-
gence indicates that the model is able to grasp and
adapt to the learning tasks more efficiently when
exposed to a progressively structured curriculum.

5 Conclusion

In this paper, we address the challenges of Extreme
Multi-Label Classification (XMC) in real-world
scenarios with limited supervision signals. We
explore the task of XMC specifically within the
realm of biomedical documents, adopting a zero-
shot learning approach that does not rely on any an-
notated documents during the training phase, which
is a significant departure from traditional methods.
For the training phase, we develop a novel label-
centric curriculum contrastive learning framework.
This innovative framework is tailored to leverage hi-
erarchical label information and the co-occurrence
of labels with metadata, which effectively captures
the complex relationships and nuances inherent in
biomedical documents and their labels. During
the inference phase, we use a multi-stage ‘retrieve
and re-rank’ framework, which filters out irrele-
vant labels first and then refines the focus to a
more relevant subset of labels. Experimental re-
sults demonstrate the effectiveness of our approach
in improving the performance of XMC. In the fu-
ture, our proposed framework may be extended
with more metadata information, such as author-
ship, and more real-world applications, such as
keyword recommendation. Another interesting di-
rection would be to involve large language models
(LLMs) to help generate similar documents.



Limitations

Our use of metadata is limited to using the journal
information and similar articles only. Other meta-
data including authorship and others could also be
potentially useful for improving the performance
of XMC on biomedical documents.

Our study is constrained by its focus on biomed-
ical documents. This limitation primarily arises
from our specific interest in leveraging the meta-
data unique to the biomedical domain, such as jour-
nal of publication, author affiliations, and subject-
specific terminologies. This domain-specific nature
of metadata plays a pivotal role in our methodology
and analysis. As a result, the specialized approach
we have developed, may require adaptation to trans-
late to other domains within XMC tasks.

Ethics Statement

We are using the publicly-available publication in-
formation on PubMed. We do not see any ethics
issues in this paper.
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A Evaluation Metrics

Ranking-based Evaluation We use Precision at
k (P@k) and Normalized Discounted Cumulative

Gain for k¥ (NDCGQXk) in our evaluation. The
metrics are defined as follows:

1
POk =2 > w, (20)
ler(9)
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where 7 (7)) returns the top-k ranked items.

k

oreli _ 1
poGak =S -
ZZ:; logy (i + 1)
min(k,N) 1.
greli _ 1 Q1)
IDCG@k — L
2 g+
DCG@k
NDCG@Qk = IDCGaK

where rel; is the relevance of the item at position ¢,
and N is the total number of relevant items in the
prediction set.

Propensity-scored Evaluation Propensity-
scored Precision at k (PSP@k) and Propensity-
scored Normalized Discounted Cumulative Gain
at k (PSW@k) are adaptations of the standard
Precision at £ and NDCG metrics, which are used
to address the position bias. The formulas can be
represented as:

rel;

k
1
PSP@Qk = — - 22
5 k ; Propensity (i)’ 22)

where rel; is 1 if the i-th item is relevant and O oth-
erwise, and Propensity (4) is the propensity score
of the ¢-th item.
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B Implementation Details

We implement our model in PyTorch (Paszke et al.,
2019) on a single NVIDIA A100 40G GPU. We
set the initial learning rate as Se-5 with batch size
64. We choose a learning rate scheduler which is
warmed up with cosine decay, and the warm up
ratio is set to 0.1. We use the Adam optimizer and
early stopping strategies to avoid over-fitting.
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