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ABSTRACT

Evaluating text-to-image models is notoriously difficult. A strong recent approach
for assessing text-image faithfulness is based on QG/A (question generation and
answering), which uses pre-trained foundational models to automatically gener-
ate a set of questions and answers from the prompt, and output images are scored
based on whether these answers extracted with a visual question answering model
are consistent with the prompt-based answers. This kind of evaluation is naturally
dependent on the quality of the underlying QG and VQA models. We identify and
address several reliability challenges in existing QG/A work: (a) QG questions
should respect the prompt (avoiding hallucinations, duplications, and omissions)
and (b) VQA answers should be consistent (not asserting that there is no motor-
cycle in an image while also claiming the motorcycle is blue). We address these
issues with Davidsonian Scene Graph (DSG), an empirically grounded evalua-
tion framework inspired by formal semantics, which is adaptable to any QG/A
frameworks. DSG produces atomic and unique questions organized in depen-
dency graphs, which (i) ensure appropriate semantic coverage and (ii) sidestep
inconsistent answers. With extensive experimentation and human evaluation on a
range of model configurations (LLM, VQA, and T2I), we empirically demonstrate
that DSG addresses the challenges noted above. Finally, we present DSG-1k, an
open-sourced evaluation benchmark that includes 1,060 prompts, covering a wide
range of fine-grained semantic categories with a balanced distribution. We release
the DSG-1k prompts and the corresponding DSG questions.

1 INTRODUCTION

Text-to-Image (T2I) generation models are the “talk of the town” (Saharia et al., 2022; Yu et al.,
2022; Chang et al., 2023; Rombach et al., 2022; Ramesh et al., 2022). Until recently, the standard
practice to assess T2I alignment was to compute similarity scores between the prompt and the
generated image using captioning models (Hong et al., 2018), multimodal encoders (Xu et al., 2018;
Hessel et al., 2022), or object detectors (Hinz et al., 2022; Cho et al., 2023a). To provide a more fine-
grained and interpretable (hence informative) evaluation of T2I alignment, a recent line of work (Hu
et al., 2023; Yarom et al., 2023; Cho et al., 2023b) proposes to use a Question Generation (QG)
module to create a set of validation questions and expected answers from text description. For
example, from text “a blue motorcycle parked by paint chipped doors.”, it generates the question “is
there a motorcycle?” and the expected answer “Yes”. Then a Visual Question Answering (VQA)
module answers the questions based on the generated image, and a score is computed by comparing
the responses to the expected answers. We refer to these as QG/A frameworks (see Fig. 1). QG/A is
well motivated by successful applications in other areas such as summarization, where QA is used
to validate the quality of automatically generated summaries (Deutsch et al., 2021; Min et al., 2023).

Compared to the popular single-score similarity-based metrics (e.g., CLIPScore, Hessel et al. 2022;
CLIP R-Precision, Park et al. 2021), QG/A approaches are more calibrated and interpretable, and
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“A blue motorcycle 
parked by paint 
chipped doors.”

• Is there a motorcycle?

• Are there some doors?

• Is the motorcycle blue?
• Are the doors painted?

• Is the paint chipped?

• Is the motorcycle parked
near the door?

Question Generation (QG) Question Answering (QA)

Score = 5/6

Figure 1: QG/A workflow: Generate questions from text prompt (QG), answer the questions via
VQA models (QA), and average the answer scores to obtain a single summary score.

they correlate well with human judgments. For calibration, e.g., a CLIPScore of 0.3 is empirically
on the low side for realistic images but on the high end for pixel art. For interpretability, the question-
answer pairs provides a more granular view of the model behavior. E.g., it is possible to assess that
a generated image depicts the entities and their spatial relations correctly while having the colors
wrong. For human correlation, Hu et al. (2023) for example achieves 47.2 Kendall’s τ in a sizable
correlation analysis with human 1-5 Likert judgments, with CLIPScore τ = 23.1.

Nevertheless, we identify several nontrivial reliability issues in existing QG/A methods. Extracted
questions often involve multiple details that introduce ambiguity in interpretation (e.g., the answer
to “is there a blue motorcycle” covers both the color and presence of the object). Duplicated and
hallucinated questions are common (e.g., “is there a motorcycle?” & “what type of vehicle is this?”
are duplicates). Finally, the VQA invalid query failure is prevalent (e.g., “is there a motorcycle?”
(root), model: “no”; “is the motorcycle blue?” (dependent), model: “yes”).

Focusing first on the QG step, we argue that a good framework should have the following properties:

A. Atomic Questions. Each question should cover the smallest possible semantic unit, so that (i) its
answer is unequivocally interpretable and (ii) it facilitates the task of the VQA model or person
answering it. E.g., “is there a blue motorcycle?” inquires about more than one detail and thus
the answer is unnecessarily harder to assess – is there no motorcycle or is the color incorrect?

B. Full Semantic Coverage and No Hallucinations. All contents of the prompt, and only the
contents of the prompt, should be represented by the generated questions.

C. Unique Questions. Having “is there a motorcycle?” and “what type of vehicle is this?” over-
represents one part of the prompt and thereby skews the final metric.

D. Valid Question Dependency. Depending on the answers, some questions become invalid and
thus should not be asked to the VQA module. For instance, if the answer to “is there a motor-
cycle?” is no, dependent questions like “is the motorcycle blue?” should be skipped – VQA
models may often say “motorcycle doesn’t exist but it’s blue” (more examples in Appendix C).

To capture these desired properties, we introduce Davidsonian Scene Graph (DSG), a structured
representation of text descriptions that naturally fulfills the above requirements. It is inspired by
linguistic formalisms (Davidson, 1965; 1967a;b) that represent a sentence’s semantics by decom-
posing it recursively down to a set of atomic propositions (A) that collectively represent the entirety
of the semantics of the sentence, no more and no less (B). We implement the QG step as a Directed
Acyclic Graph (DAG) where the nodes represent the unique questions (C) and the directed edges
represent semantic dependencies between them (D). In the VQA validation step, these dependencies
ensure that if the answer to a question is negative, then all the dependent questions in the sub-graph
are skipped. DSG is implemented as a modular pipeline based on state-of-the-art Large Language
Models – LLMs (e.g., PaLM 2 (Anil et al., 2023), GPT-3.5/4 (OpenAI, 2022; 2023)) – for the first
QG stage. The second QA stage is handled by state-of-the-art VQA modules (Li et al., 2022; Chen
et al., 2023; Dai et al., 2023), where the dependent questions are skipped by VQA models accord-
ing to the structure in the dependency graph (Figure 2). We comparatively experiment with various
LLMs and VQA modules and present our pipeline with a combination of PaLM 2 340B (Anil et al.,
2023) and PaLI 17B (Chen et al., 2023). To further facilitate research in T2I alignment evaluation,
we collect DSG-1k, a fine-grained human-annotated benchmark with a diverse set of 1,060 prompts
(Table 1) with a balanced distribution of semantic categories and styles (Fig. 4). The prompts are
sourced from a wide range of existing public datasets.

Through comprehensive experimentation (Sec. 4), we found that (a) DSG addresses the aforemen-
tioned reliability issues well; (b) latest VQA models are capable to support the QG/A approach in
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Is there a 
motorcycle?

Are there 
some doors?

Is the 
motorcycle blue?

Are the doors 
painted?

Is the door paint 
chipped?

Is the 
motorcycle 
parked?

Is the 
motorcycle next to 
the doors?

Is there a 
motorcycle?

Are there 
some doors?

Is the 
motorcycle blue?

Are the doors 
painted?

Is the door paint 
chipped?

Is the 
motorcycle 
parked?

Is the 
motorcycle next to 
the doors?

(a) Score: 6/7 = 0.86 (b) Score: 3/7 = 0.43

Figure 2: DSG T2I alignment evaluation. The dependencies among questions avoid invalid queries
(e.g., there isn’t a motorcycle, so don’t ask about its color, in the right example).

some semantic categories but fail in others. Finally we case evaluate SoTA T2I models and thereby
demonstrating DSG’s strength in fine-grained diagnosis which helps advancing model development.

2 RELATED WORK

Single-summary scoring frameworks. The most common approaches for Text-to-Image (T2I)
generation include text-image embedding similarity scores from multimodal encoders (e.g., CLIP-
Score (Hessel et al., 2022) and R-precision (Xu et al., 2018; Park et al., 2021)) and text similarity
based on image captioning (Hong et al., 2018). These metrics are often uncalibrated (e.g., 0.2 CLIP-
Score might be high for pixel art but low for realistic photos). In addition, summarizing text and im-
age in single embeddings obscures the semantic granularity involved in T2I alignment. SOA (Hinz
et al., 2022) and DALL-Eval (Cho et al., 2023a) introduced object detection in validating text-image
alignment on a finer-grained scale (and naturally, calibration by object alignment accuracy). These
methods are however limited in validation scope, e.g., relations among objects and global stylistic
features often lie beyond the purview of object detection capabilities.

QG/A frameworks. Question Answering (QA)-based evaluation emerged early in text summa-
rization to gauge the amount of key information contained in a summary: manually in Narayan
et al. (2018), automatically in Durmus et al. (2020); Eyal et al. (2019), and more comprehensively
in Deutsch et al. (2021). In the multimodal domain, with advancing capabilities of large pre-trained
foundation models, a line of work has emerged around the idea of validating alignment by applying
Visual Question Answering (VQA) on questions generated from the prompt. This approach (col-
lectively referred to as QG/A) allows for more fine-grained evaluation (e.g., How many objects are
matching? Are relations and attributes correctly bound to specified objects?). TIFA (Hu et al., 2023)
generates questions with GPT-3 (Brown et al., 2020) in various semantic categories (e.g., color,
shape, counting) and validates with VQA modules such as mPLUG (Li et al., 2022). Yarom et al.
(2023) propose a similar approach with VQ2A (Changpinyo et al., 2022) as the question generator
and improved VQA model-human correlation through data synthesis and high quality negative sam-
pling. VPEval (Cho et al., 2023b) further refines the process by introducing object detection and
Optical Character Recognition (OCR) modules, and orchestrates the querying in the form of con-
trollable visual programming with ChatGPT (OpenAI, 2022). Our work follows the QG/A method-
ology, but it takes inspiration from formal semantics (Davidson, 1965) to address several nontrivial
reliability issues observed in prior work (e.g., duplicated and non-atomic question).

3 DAVIDSONIAN SCENE GRAPH

Briefly sketched, DSG is a set of T2I alignment validation questions structured in a (directed) scene
graph, produced from the prompt as the ground truth. The questions are posed to a pre-trained VQA
module in the context of the image evaluated. The final result consists of per-question answers and
an aggregated VQA accuracy score. Figure 2 illustrates the process.

Dependency-aware atomic decomposition of scene description. Like other QG/A-based T2I eval-
uation frameworks, given a text prompt t and a generated image i, we generate a set of validation
questions q and their expected answers a from t. We then obtain answers from VQA model ã to q
in the context of i. By comparing ã and a, we can compute an alignment score between t and i: the
closer ã and a are, the more aligned the image is to the prompt.
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Figure 3: Semantic category breakdown for TIFA-160 (manual) annotation. Entity: whole (entire
entity, e.g., chair), part (part of entity, e.g., back of chair). Attribute: color (e.g., red book), type
(e.g., aviator goggles), material (e.g., wooden chair), count (e.g., 5 geese), texture (e.g., rough
surface), text rendering (e.g., letters “Macaroni”), shape (e.g., triangle block), size (e.g., large
fence). Relation: spatial (e.g., A next to B); action (A kicks B). Global (e.g., bright lighting).
Appendix B presents details on per-category question counts.

“A blue motorcycle parked by 
paint chipped doors.”

1. Entity - whole (motorcycle)
2. Entity - whole (doors)
3. Attribute - color (motorcycle, blue)
4. Attribute - state (doors, painted)
5. Attribute - state (door paint, chipped)
6. Attribute - state (motorcycle, parked)
7. Relation - spatial (motorcycle, doors, next to)

1. Independent
2. Independent
3. Needs 1 being true
4. Needs 2 being true
5. Needs 4 being true
6. Needs 1 being true
7. Needs 1 and 2 being true

1. Is there a motorcycle?
2. Are there some doors?
3. Is the motorcycle blue?
4. Are the doors painted?
5. Is the door paint chipped?
6. Is the motorcycle parked?
7. Is the motorcycle next to 

the doors?

Tuples → Dependencies

Tuples → Questions

Prompt → Tuples

DSG as a DAG

Is there a 
motorcycle?

Entity - whole

Are there 
some doors?

Entity - whole

Is the 
motorcycle blue?

Attribute - color

Are the doors 
painted?

Attribute - state

Is the door paint 
chipped?

Attribute - state

Is the 
motorcycle 
parked?

Attribute - state

Is the 
motorcycle next 
to the doors?

Relation - spatial

Figure 4: Automatic generation of DSG. We first generate semantic tuples from text prompt. Then
we generate questions and dependencies from the semantic tuples, in the form of DAG.

Inspired by Davidsonian Semantics (Davidson, 1965; 1967a;b), we represent t’s semantics as a
Directed Acyclic Graph (DAG), where the nodes are atomic propositions and edges are entailment
dependencies among them. An atomic proposition is a statement which (i) has a truth value that can
be verified against i, and (ii) cannot be further decomposed into constituent propositions with truth
values. A child proposition and its parent are in an entailment dependency if the truth of the parent
is necessary for the child to be considered. For the prompt “a blue motorcycle”, the proposition
“there is a motorcycle” is a parent of “the motorcycle is blue”: this dependent’s truth (i.e. whether
the motorcycle is blue) can only be evaluated if the parent is true (i.e. there is a motorcycle at all).

We identify four types of atomic propositions: entities, attributes, relationships, and globals. Each
type further subsumes detailed semantic categories (Fig. 3). We represent each of these with tu-
ples: entities and globals are 1-tuples (the entity or global feature itself), attributes are 2-tuples (the
attribute and the entity it refers to), and relationships are 3-tuples (relationship, subject entity, and
object entity). Each tuple can then be translated into an atomic question that can be fed to the VQA
module (Fig. 2). We call the resulting DAG Davidsonian Scene Graph (DSG).

Automatic generation of DSGs. We propose a three-step pipeline for automated generation of
DSGs (Fig. 4): Prompt → Tuples: A list of atomic semantic tuples is generated from the input
prompt, each of it with a numerical identifier. Tuples→Questions: Each semantic tuple is translated
into a natural language question with an expected binary yes/no answer. Tuples→ Dependencies:
The dependency between the tuples is established by generating pairs of parent-children identifiers.

Each step is implemented by an LLM given task-specific in-context examples: we prompt an LLM
with a preamble (with input and output sampled from manual annotations with fixed seeds) to elicit
tuple annotations of the same format for new inputs. The details on the preamble engineering is
in Appendix A. This three-step pipeline proved more effective than a single-step pipeline where an
LLM the whole DSG at once, since it allows us to include more task-specific in-context examples
for each stage (more than 20 vs. fewer than 10).

For a generation pipeline such that the question sets resulted fulfill the four reliability properties
(i.e., atomicity, full semantic coverage, uniqueness, and valid dependency; see Sec. 1) as faithfully
as possible, we conduct two layers of quality assurance. First, we ensure that all three human
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Table 1: DSG-1k overview. To comprehensively evaluate T2I models, DSG-1k provides 1,060
prompts covering diverse skills and writing styles sampled from different datasets.

Feature Source Sample Example

Assorted categories TIFA160
(Hu et al., 2023) 160 “A Christmas tree with lights and teddy bear”

Paragraph-type
captions

Stanford paragraphs
(Krause et al., 2017) 100

“There is a cat in the shelf. Under the shelf are two small
silver barbels. On the shelf are also DVD players and radio.
Beside the shelf is a big bottle of white in a wooden case.”

Localized Narratives
(Pont-Tuset et al., 2020) 100

“In this picture I can see food items on the plate, which is
on the surface. At the top right corner of the image those are
looking like fingers of a person.”

Counting CountBench
(Paiss et al., 2023) 100 “The view of the nine leftmost moai at Ahu Tongariki on

Easter Island”

Relations VRD
(Lu et al., 2016) 100

“person at table. person has face. person wear shirt. person
wear shirt. chair next to table. shirt on person. person wear
glasses. person hold phone”

Written by
T2I real users

DiffusionDB
(Wang et al., 2023) 100

“a painting of a huangshan, a matte painting by marc si-
monetti, deviantart, fantasy art, apocalypse landscape, matte
painting, apocalypse art”

Midjourney-prompts
(Turc & Nemade, 2022) 100

“furry caterpillar, pupa, screaming evil face, demon, fangs,
red hands, horror, 3 dimensional, delicate, sharp, lifelike,
photorealistic, deformed, wet, shiny, slimy”

Human poses PoseScript
(Delmas et al., 2022) 100

“subject is squatting, torso is leaning to the left, left arm is
holding up subject, right arm is straight forward, head is lean-
ing left looking forward”

Commonsense-
defying

Whoops
(Bitton-Guetta et al., 2023) 100 “A man riding a jet ski through the desert”

Text rendering DrawText-Creative
(Liu et al., 2023) 100 “a painting of a landscape, with a handwritten note that says

‘this painting was not painted by me”’

experts reach consensus that each question / question set is valid for the properties for in-context
examples. Second, we administer both automatic and human evaluation on the generated DSG
outputs (Sec. 4.1, Tab. 2).

DSG-1k dataset. We construct the DSG-1k prompts by combining publicly available prompts that
cover different challenges (e.g., counting correctly, correct color/shape/text/etc.) rendering, seman-
tic categories, and writing styles. The core of DSG-1k is TIFA160, from TIFA v1.0 (Hu et al.,
2023), which come with Likert-scale T2I alignment ratings by human annotators. While TIFA160
prompts come from different datasets, its size (160 prompts) limits the diversity of features, so we
sample 900 more prompts from 9 different datasets, covering different writing styles (e.g., short cap-
tions, paragraph-level captions, synthetic relation tuples, alt text, prompts written by real users), and
skills (e.g., text rendering, counting, relations), enabling evaluation of more diverse aspects of T2I
generation capabilities with source-specific scores. DSG-1k has 1,060 prompts in total (Table 1).
For the annotation details for DSG-1k, see Appendix B.

4 EXPERIMENTS AND DISCUSSION

This section covers the validation experiments we conduct in question generation and answer and
our T2I evaluation results on representative SoTA T2I models. In regards to QA, we focus on
pushing the limit on the direct VQA query strategy. A summary on the mixed technique involving
non-VQA modules (e.g., dedicated OCR module for text rendering) is in Appendix F.

4.1 QUESTION GENERATION

In the following, we evaluate the DSG questions in terms of how accurate they are (precision/recall),
how simple/straightforward they are (atomicity), whether they are overlapping each other (unique-
ness), and how accurate their inter-dependencies are.

Do generated DSG tuples match human annotations? Precision & Recall. Given a prompt,
a set of human-annotated semantic tuples T = {t1, . . . , t|T |}, and model-generated questions
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Data / Evaluator QG Method Precision (%) Recall (%)

TIFA160 (30 samples) / manual DSG (ours) 92.2 100.0
TIFA160 (160; full) / GPT-3.5 98.3 96.0

Data / Evaluator QG Method Atomicity (%) Uniqueness (%)

TIFA160 (30 samples) / manual
TIFA 78.5 65.4
VQ2A 3.9 89.5
DSG (ours) 96.5 97.5

TIFA160 (160; full) / GPT-3.5
TIFA - 73.4
VQ2A - 79.8
DSG (ours) - 90.5

Table 2: Evaluation of generated ques-
tions on TIFA160 prompts with man-
ual human evaluation (on 30 prompts)
and GPT-3.5 based automated evaluation
(on 160 prompts). Top: DSG achieves
high precision/recall. Bottom: DSG and
higher atomicity and uniqueness than the
baseline question generation methods.

Q = {q1, . . . , q|Q|}; let µt,q be 1 if q matches t (e.g., q = “is there a motorcycle?” matches t =
(entity - motorcycle)). From the tuples and questions, we can calculate precision =

∑
µt,q/|Q| and

recall =
∑
µt,q/|T |. The evaluation is done both manually and automatically. For the former, we

sample 30 prompts from TIFA160 and ask 3 domain experts to provide match judgments (µt,q). For
the automatic evaluation, we apply an LLM (GPT-3.5 (OpenAI, 2022)) to generate question-tuple
matching by showing in-context examples (see Appendix A for details).

We report results in Table 2 (top). Overall, the DSG questions are close to perfect in matching
the source semantic tuples, in both manual (precision 92.2% / recall 100%) and automatic evalua-
tions (precision 98.3% / recall 96.0%). On examining manual annotations, we observe three types
of mismatches: Granularity of relation decomposition, e.g.,, in “A table topped with bags of lug-
gage and purses.”, the human annotation holds the relationship between the purses and table as
implicit, whereas DSG includes the question explicitly. Granularity in referential scope, e.g.,, in
“[...] two wheels [...] one behind the other”, the human annotation considers the wheels a single en-
tity, whereas DSG generates questions both about front and back wheels. Subjective details, e.g.,, in
“A group of giraffes are gathered together in their enclosure.”, the possessive relationship the enclo-
sure is the giraffes’ isn’t included in the human annotation whereas DSG produces “is the enclosure
theirs (the giraffes)?”. The matter with granularity is relatively minor but subjectivity deserves a
dedicated solution as a valid QG/A method should distinguish between the details that can/cannot
be visually verified and exclude the latter.

Are the questions simple and not overlapping each other? Atomicity & Uniqueness. A question
is atomic if it only asks about one fact (an entity/attribute/relation), e.g., “is this a motorcycle?” is
atomic whereas “is this a blue motorcycle?” is not (asks about the entity “motorcycle” and its color
attribute “blue”). We ask two experts to make a judgment on the same 30 prompt samples above,
and calculate the percentage of atomic questions for TIFA, VQ2A, and DSG. We observe that LLMs
do not yield reliable answers to this concept yet. We define uniqueness as the proportion of unique
questions in a question set. For example, in Q = {“is there a motorcycle?”, “what type of vehicle is
this?”}, the questions are duplicates, thus uniqueness is 1/2 = 0.5.

We report results in Table 2 (bottom) both for manual evaluation on 30 samples (3 expert annotators)
and automatic one on all of TIFA160. Overall, DSG achieves strong performance in keeping ques-
tions atomic (easier to obtain unambiguous answers) and unique (thereby avoiding skewing metric
calculation). For atomicity, we observe a large number of non-atomic questions in VQ2A, leading
to very low atomicity of (3.9%), e.g., “A human is right to what?” points to all entities to the right
of the person. This frequently causes the VQA model to give a valid answer which happens to not
match the ground truth. For uniqueness, VQ2A and DSG fare relatively better. Figure 9 in appendix
exemplifies disagreement between auto and human evals.

Are the question dependencies valid? DSG produces parent-child annotations where the child
question is only valid (as a VQA query) if the answer to the parent question is positive (e.g., “is the
motorcycle blue?” is only valid if the answer to “is there a motorcycle?” is positive). We formulate
the evaluation as binary judgments for all parent-child pairs, and conduct it manually on 30 samples
(3 expert annotators) and automatically on the full TIFA160. In the automatic evaluation, we check
whether the entity/attribute/relation mentioned in the parent is also included in the child. On the
30 samples from TIFA160, the valid ratio is 100%. For the full TIFA160, barring a few failure
cases with parsing errors, the ratio remains close to perfect, at 99%. Given the qualitative benefit
of dependency annotations in avoiding incurring invalid VQA answers, this result strongly supports
the reliability of DSG in this regard.
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VQA models QG methods

TIFA VQ2A DSG

mPLUG-large 0.352/0.259 0.212/0.164 0.463/0.380
Instruct-BLIP 0.460/0.360 0.426/0.352 0.442/0.364
PaLI 0.431/0.323 0.207/0.157 0.571/0.458

Table 3: Per-item evaluation of VQA
models combined with different QG
methods. We compare Spearman’s ρ and
Kendall’s τ correlation between VQA
score and human 1-5 Likert scores on
TIFA160 prompts. The correlation sec-
tion in Appendix E further contextualizes
the results with single-summary metric
(e.g., CLIPScore) results.

VQA models DSG-1k Question Types

Entity Attribute Relation Global Overall

mPLUG-large 81.4 61.3 74.7 45.6 72.1
Instruct-BLIP 79.6 59.5 72.0 48.3 70.4
PaLI 83.0 62.3 77.2 47.2 73.8

Table 4: VQA-Human Answer
match accuracy on three T2I gener-
ation models on DSG-1k prompts,
averaged over questions. We use
DSG-PaLM2 questions.

4.2 QUESTION ANSWERING

With questions properly generated, a good VQA module is expected to answer the questions in high
alignment to human answers. Following previous work (Hu et al., 2023; Yarom et al., 2023; Cho
et al., 2023b), we first investigate the correlation between VQA accuracy and Likert human ratings
(1-5) of text-image pairs. In addition, we examine per-question answers from VQA modules vs.
human raters. We collect per-item (text-image pair) for TIFA160 prompts, and per-question human
judgments for the full DSG-1k prompts. A per-item judgment is a 1-5 Likert text-image consistency
scale, and a per-question judgment is a binary (DSG and VQ2A questions) or multi-choice (TIFA
questions) answers. For per-item judgment, following Hu et al. (2023), we use the five text-to-image
generation models: three versions of Stable Diffusion (SD) v1.1/v1.5/v2.1 (Rombach et al., 2022),
minDALL-E (Kim et al., 2021), and VQ-diffusion (Gu et al., 2022) on TIFA160 prompts. For per-
question judgment, we collect three answers per questions on three text-to-image generation models:
Stable Diffusion v2.1, Imagen* (Saharia et al., 2022), and MUSE* (Chang et al., 2023) (see Sec. 4.3
for details of Imagen* and MUSE*). See Appendix H for the annotation UI. Leveraging the rich
annotations collected, we conduct both per-item (VQA-human Likert score correlation) and per-
question evaluation (VQA-human matching accuracy). For specific VQA modules, we experiment
with three state-of-the-art models PaLI (Chen et al., 2023), mPLUG-large (Ye et al., 2023), and
Instruct-BLIP (Dai et al., 2023). In addition, we present supporting evidence for the value of DSG
dependency annotations (as presented here) in an ablation study in Appendix D.1.

Per-item eval. In Table 3, we report the correlation between the average VQA scores and human
(1-5 Likert) ratings on per-item text-image alignment, measured with Spearman’s ρ and Kendall’s τ .
We find that DSG+PaLI combination achieves the best correlation (ρ = 0.563, τ = 0.458) which is
also strong on the absolute scale (conventionally interpreted as “moderate to strong” correlation). As
DSG questions achieve the highest correlations among all QG methods, we use the DSG questions
for the per-question evaluation of VQA described below.

Per-question eval. Table 4 summarizes the proportion of matching questions between VQA mod-
els and human raters. Overall, PaLI performs the best with 73.8% matching ratio, slightly
higher than mPLUG-large and Instruct-BLIP. Breaking down by broad semantic categories (i.e.,
entity/attribute/relation/global), the all three VQA models output more accurate answers
to entity questions than attributes/relations/global questions.

Table 5 further looks at the detailed semantic categories. For entities, the matching ratio is high
(and at similar level) for both whole (e.g., cat) and part (e.g., neck of a cat). Similar observation
is made for relations between spatial and action. The metric distributes unevenly for attributes:
visually explicit categories such as color, texture, etc. are relatively much easier to handle than
abstract / higher-order ones like count and text rendering. For text rendering in particular,
the model-human matching ratios are (well) below 40% (the “random” ratio for the multichoice
questions which are primarily binary). The observation, we believe, supports the view that training
data scaling for recent large VQA models does not translate well into helping them learn “deep
semantics” which are visually more implicit (e.g., PaLI does not handle text rendering better than
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Table 5: VQA-Human answer match accuracy on images from T2I generation models on DSG-
1k prompts, by fine-grained semantic categories. We use DSG-PaLM2 questions and images
generated by 3 T2I models: SDv2.1, Imagen*, and MUSE*. ent: entity, rel: relation, att: attribute.

VQA models DSG-1k Question types

(ent) whole (rel) spatial (att) state (ent) part (global) (att) color (rel) action (att) type

mPLUG-large 80.9 75.4 60.5 83.8 45.6 81.4 70.2 52.6
Instruct-BLIP 78.5 72.3 60.7 84.3 48.3 78.8 70.1 53.7
PaLI 82.6 78.3 62.8 84.6 47.2 83.6 70.3 55.5

(att) count (att) text rendering (att) material (att) shape (att) style (att) texture (att) size -

mPLUG-large 67.2 24.9 56.9 54.6 23.6 69.4 75.2 -
Instruct-BLIP 63.6 14.1 53.3 53.0 21.1 64.7 67.6 -
PaLI 67.4 13.7 59.1 53.9 21.1 70.4 72.4 -

Figure 5: Questions involving subjectivity or domain knowledge. For subjectivity, in addition to the
frequent VQA-human disagreement, consensus among human raters is hard to achieve. e.g.,, how
detailed should the image be to count as “highly detailed”? For domain knowledge, depending on
their knowledge, average human raters may find it difficult to give reliable judgments for this type
of questions. e.g., what counts as “breath of the wild” or “Studio Ghibli” styles?

mPLUG-large despite the size advantage and superior performance in visual explicit categories such
as color or shape.). Table 5 also reveals the difficulties of VQA models in dealing with questions
in categories like material, shape, style, etc. Manually examining model predictions, we believe
the issue primarily lies with a) subjectivity and b) domain knowledge. For subjectivity, e.g., human
raters often disagree with VQA on if an objective is “made of alloy” (material), whether it is
“roundish” (shape), or whether a painting is “highly detailed” (style); and they also disagree
among themselves. For domain knowledge, it is generally impractical to assume the average human
rater possesses the knowledge required to make an objective judgment. Fig. 5 exemplifies.

4.3 TEXT-TO-IMAGE EVALUATION

We compare three recent T2I generation models: SD v2.1 (Rombach et al., 2022), Imagen* (Saharia
et al., 2022), and MUSE* (Chang et al., 2023),1 by measuring the average VQA scores calculated
by our DSG. In addition to the global average scores, we calculate the scores on subsets of prompts
(Table 1) of DSG-1k to understand how prompt styles affect the performance of the models. In
particular, through this experiment, we intend to understand the extent to which the QG/A approach
is reliable in automating T2I alignment evaluation. For the evaluation of T2I generation models, we
use the best QG+QA combination from the evaluations described above: DSG questions + PaLI.

Tab. 6 summarizes our results. Overall, PaLI predictions match human ratings in ranking model
performance as Imagen* ' MUSE* > SD v2.1. The score scaling however shows PaLI is overly
optimistic (∼ 80% accuracy) per human ratings (∼ 60% accuracy). Observing the results per data
sources, PaLI ratings track humans’ closely in the categories [TIFA160, Paragraph, Relation,

1Imagen* and MUSE* are model variants based on the Imagen (Saharia et al., 2022) and Muse (Chang
et al., 2023) models, but parameterized differently and trained on internal data sources.
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Table 6: Comparison of three T2I models: SD v2.1 vs. Imagen* vs. MUSE* in VQA scores by
different DSG-1k prompt sources. QG: DSG-PaLM2; QA: both PaLI and human raters.

T2I models DSG-1k Prompt Sources

TIFA-160 Paragraph Relation Counting Real users Poses Commonsense-defying Text Overall

Answerer: PaLI
SD v2.1 88.1 85.1 34.4 70.4 89.7 89.6 84.4 83.7 80.5
Imagen* 95.1 92.1 40.6 72.1 91.1 89.3 82.8 86.0 83.9
MUSE* 92.5 91.8 39.5 72.5 89.7 90.2 84.9 86.5 83.4

Answerer: Human
SD 80.1 74.9 27.2 48.0 46.9 59.5 69.6 50.8 59.1
Imagen* 88.0 86.2 32.8 47.0 49.4 73.1 79.6 56.4 66.2
MUSE* 86.3 85.5 31.2 45.2 44.2 69.4 73.4 52.8 63.1

Figure 6: Judgment matching between VQA (PaLI here) and human raters in text (text rendering)
questions. Example 1: Match, only account for ∼30% of the cases. Example 2: Mismatch, prag-
matics – humans interpret the question as “does the sign ONLY say ‘no dogs’?”. Example 3 & 4:
Mismatch, VQA almost invariably answer YES as long as some text is present.

Commonsense-defying] (the difference is explainable with PaLI’s good yet imperfect VQA accu-
racy (Tab. 4, at 73.8%)), while being considerably higher in categories [Counting, Real users,
Text]. For Counting, even the latest VQA models struggle to count reliably to 5: we found PaLI is
incorrect in ∼ 40% of the cases (corroborated by recent research e.g., Paiss et al. (2023)). For Text,
both T2I and VQA models fail the majority of the time (Fig. 6 exemplifies). In general, VQA per-
formance is much lower in more abstract / semantically higher-order categories like these (Tab. 16
presents further evidence with accuracy by fine-grained categories). For Real users, our findings
coincide with Sec. 4.2: Subjectivity. Many prompts involve details such as “is the cyberpunk city
highly detailed?”, “is the art elegant?” which lead to both VQA-human disagreement as well as
disagreement among human raters. Domain knowledge. Some semantic elements are not reliably
judgeable even by human raters, e.g., “is this image 8k”, etc. Fig. 5 exemplifies. Based on the
results, we believe a) for model-level eval on semantically more concrete categories, current VQA
models are capable to support QG/A approach, yet b) at the level of particular semantic details (in
particular the “difficult categories” shown above), the VQA predictions are yet sufficiently reliable.

5 CONCLUSION

The QG/A framework (Hu et al., 2023; Yarom et al., 2023; Cho et al., 2023b) leverages the power of
pretrained LLMs and VQAs to have enabled much more fine-grained (thus informative) diagnostics
in T2I evaluation. However, they have various reliability issues, such as duplicated, invalid, and
ambiguous questions. In this work, inspired by formal semantics (Davidson, 1965; 1967a;b), we
propose Davidsonian Scene Graph (DSG), a QG/A approach to present a solution. Comprehensive
experimentation and human evaluation demonstrate that DSG better addresses the reliability issues
than previous work. In addition, its fine-grained question typing allows for even more in-depth
diagnostics. Finally, we collect a benchmark dataset DSG-1k to facilitate research in this area. Our
work casts light on future directions in the QG/A framework: In both QG and QA, we observe
that (a) subjectivity and domain knowledge may lead to model-human as well as human-human
disagreement, and (b) some semantic categories remain beyond the capabilities of existing SoTA
VQA models (e.g., text rendering).
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6 STATEMENTS

6.1 ETHICS STATEMENT

Our work involves human evaluation where human raters are hired from a Google’s crowdsourc-
ing platform, and asked to look at images and and text prompts then answer questions regarding
text-image grounding. This work was carried out by participants who are paid contractors. Those
contractors received a standard contracted wage, which complies with living wage laws in their
country of employment. Due to global privacy concerns, we cannot include more details about our
participants, e.g., estimated hourly wage or total amount spent on compensation.

6.2 REPRODUCIBILITY STATEMENT

All the experiments involving publicly available packages and tools are reproducible (the main text
and appendix provide necessary details). This includes

• GPT-3.5 (OpenAI, 2022) based precision, recall, and uniqueness evaluation described in Tab. 2;
• VQA query results in Tab. 4, and Tab. 5 with mPLUG-large (Ye et al., 2023) and Instruct-

BLIP (Dai et al., 2023);
• Stable Diffusion (Rombach et al., 2022) produced images used in all parts of Sec. 4.3.

The other LLMs and VQAs used, specifically PaLM2 (Anil et al., 2023) and PaLI (Chen et al.,
2023) are not yet released. Further, the human evaluation results may not be exactly reproduced due
to the use of different human raters, however the general trend should retain to the extent that the
conclusions drawn in this work should not be impacted.
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A LLM PREAMBLES

Fig. 7 presents the preambles for the three-stage automatic DSG generation pipeline, with
PaLM2 (Anil et al., 2023).

Fig. 8 presents the preambles for question evaluation in precision, recall, and uniqueness, with
GPT-3.5 (OpenAI, 2022).

Tuple generation
Task: given input prompts, describe each scene with skill-specific tuples. Do not
generate same tuples again. Do not generate tuples that are not explicitly described in
the prompts.
output format: id | tuple
${HUMAN ANNOTATION EXAMPLES}

Question generation
Task: given input prompts and skill-specific tuples, re-write tuple each in natural
language question.
output format: id | question
${HUMAN ANNOTATION EXAMPLES}

Dependency generation
Task: given input prompts and tuples, describe the parent tuples of each tuple.
output format: id | dependencies (comma separated)
${HUMAN ANNOTATION EXAMPLES}

Figure 7: The preambles for the three-step automatic DSG generation pipeline.

Precision
Task: a model generated questions to check semantics of images generated from prompts.
Given prompts (ground-truth), tuples that decompose the prompts (ground-truth), and
questions generated by the model, check the ids of the questions that are not entailed
with the tuples. entailed questions: id of questions | ids of tuples entailed with each
question wrong questions: ids of questions that are not entailed with GT tuples.

Recall
Task: a model generated questions to check semantics of images generated from prompts.
Given prompts (ground-truth), tuples that decompose the prompts (ground-truth), and
questions generated by the model, check the ids of tuples are covered by the questions.
covered tuples: id of tuples | ids of questions covering each tuple missed tuples: ids of
missed tuples

Uniqueness
Task: a model generated questions to check semantics of images generated from prompts.
Given prompts (ground-truth), and questions generated by the model, check the ids of
duplicated questions. output format: ids of duplicated questions

Figure 8: The preambles for the automatic evaluation of questions in precision/recall/uniqueness.

B DSG-1K DATASET DETAILS

Images. We generate images from the prompts in DSG-1k using three recent SoTA text-to-image
models (SoTA at the time of experimentation): Imagen* (Saharia et al., 2022), MUSE* (Chang et al.,
2023), and SD v2.1 (Rombach et al., 2022). Imagen* and SD are denoisng diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020). MUSE* is an encoder-decoder model with parallel image
decoding steps. In total, we provide 3×1,060=3,180 model-generated images. For fair comparison
with uniform model evaluation and human annotation, we also make use of the generated images
published by TIFA for TIFA160. This includes SD v1.1, v1.5 (Rombach et al., 2022), minDALL-
E (Kim et al., 2021), and VQ-diffusion (Gu et al., 2022).
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Questions, Answers and Alignment Scores. On TIFA160 prompts, a set of three human experts
manually and independently generate the semantic tuples and their dependencies (scene graph).
Then, with the LLM-based DSG generation pipeline (Sec. 3), we generate DSG (semantic tuples,
questions, and dependencies) on the entire DSG-1k prompts. We show the generated questions
together with the generated images to human annotators to (i) annotate their validity (e.g., it is not
valid to ask whether the motorbike is red if there is no motorbike in the image) and (ii) answer the
valid questions with Yes or No. We also answer the same questions with automatic VQA models,
specifically mPLUG-large (Ye et al., 2023), Instruct-BLIP (Dai et al., 2023), and PaLI (Chen et al.,
2023). Following TIFA, we ask human annotators to collect 1-to-5 Likert-scale scores about T2I
alignment on TIFA160 for seven models, for a total of 7 × 160 = 1,120 text-image pairs. In
experiments, we use human Likert annotations to measure the correlation between human and QG/A
judgments.

Additional Statistics. The #questions tables below complement Fig. 3 on the statistics for DSG-1k.
In particular, the counts demonstrate the by-category analyses are valid in size statistically.

DSG-1k entity attribute relation global

# questions 3,398 2,251 2,082 527

Table 7: DSG-1k statistics: The number of questions per broad semantic category.

ent-whole ent-part att-state att-color att-type att-material att-count

# questions 2,751 647 930 427 244 98 190

att-size att-texture att-text rendering att-shape rel-spatial rel-scale global

# questions 85 79 110 88 1,808 274 527

Table 8: DSG-1k statistics: The number of questions per detailed semantic category. ent: entity,
rel: relation, att: attribute.

Text: A chair in the corner on a boat.
Questions generated by TIFA
q1 | is there a chair in the corner?
q2 | is this a boat?
q3 | what type of vehicle is this?
q4 | is the chair in the corner?
q5 | is the chair on the boat?
GPT-3.5 eval:
Questions 1 and 4 are duplicates because they both ask about the
presence and location of the chair in the corner. duplicates:
q1,q4
uniqueness = n unique / n total = 4/5 = 0.8
Human eval:
duplicates: (q1,q4), (q2, q3)
uniqueness = n unique / n total = 3/5 = 0.6

Text: an ostrich standing on a couch.
Questions generated by DSG
q1 | Is there an ostrich?
q2 | Is there a couch?
q3 | Is the ostrich standing?
q4 | Is the ostrich on the couch?
GPT-3.5 eval:
Questions 3 and 4 are duplicates because they both ask about
the ostrich’s position. duplicates: q3,q4
uniqueness = n unique / n total = 3/4 = 0.75
Human eval:
duplicates: None
uniqueness = n unique / n total = 4/4 = 1.0

Figure 9: Automatic uniqueness evaluation: despite the general high agreement between GPT-3.5 and human,
GPT-3.5 is sometimes distracted by text overlap to err. Left: duplidates q2 & 3 differ in wording. Right: q3 &
4 are similar in wording but are unique questions.

C INVALID VQA QUERY EXAMPLES

Fig. 10 provide examples of invalid VQA queries described in Sec. 1. In the bottom right image,
VQA model answered “No” to the question “is there a car?”, but the VQA model answered “Yes” to
the question “is the car playing soccer?”. Such examples are more common when T2I model miss
entities (more frequent in weaker models we evaluated, such as minDALL-E and VQ-Diffusion).
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Figure 10: Examples of invalid VQA queries where a dependent question gets positive answer when
its root question gets negative. For example, in the bottom right image, VQA model answered “No”
to the question “is there a car?”, but the VQA model answered “Yes” to the question “is the car
playing soccer?”. Such examples are more common when T2I model miss entities (more frequent
in weaker models we evaluated, such as minDALL-E and VQ-Diffusion). Fundamentally however
this is an issue of posing invalid queries to VQA that should not be posed in the first place.

D DSG ABLATION

D.1 WAYS TO UTILIZE DEPENDENCY

We ablate on three ways in which DSG questions are administrated to VQA modules based on
question dependencies.

1. DSG. This is the method we present in the main text – if the answer to a parent question is
NO, all the answers to its child questions are counted as NO as well (e.g., “is there a bike?”
NO→ “is the bike blue?” := NO).

2. DSG (drop). If the answer to a parent question is NO, drop its child questions by not
counting their answers towards the calculaton of the VQA accuracy for the text-image
pair item.

3. DSG (w/o dep). Disregarding the dependency annotation and factoring in the answers to
all questions equally in VQA accuracy calculation.

In gist, we found
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A. In relation to the correlation between VQA accuracy (auto) and 1-5 Likert judgments (hu-
man), the different ways to handle dependency does not lead to significant effect. Tab. 9.

B. In the per-question VQA-human matching accuracy, on the other hand, utilizing dependen-
cies (with either DSG or DSG (drop) improves performance substantially. Tab. 10.

Based on the observation, we argue that A as an aggregated reflection on the general correlational
trend does not tell the whole story – B on the other hand indicates that human raters do implicitly
take the question dependency into consideration, which highlights the value of incorporating de-
pendencies in improving the reliability and interpretability of automatic evaluation results on the
fine-grained per-item/question level.

VQA models DSG DSG (drop) DSG (w/o dep)

mPLUG-large 0.463/0.380 0.462/0.370 0.464/0.378
Instruct-BLIP 0.442/0.363 0.437/0.358 0.436/0.355
PaLI 0.571/0.458 0.561/0.451 0.570/0.457

Table 9: DSG ablation wrt. the correlation (Spearman’s ρ / Kendall’s τ ) between VQA accuracy
and human 1-5 Likert score.

VQA models DSG DSG (drop) DSG (w/o dep)

mPLUG-large 72.1 69.9 64.7
Instruct-BLIP 70.4 68.4 64.0
PaLI 73.8 71.4 65.2

Table 10: DSG ablation wrt. the per-question VQA-human matching accuracy.

D.2 BY-CATEGORY ABLATION FOR TIFA, VQ2A, AND DSG

TIFA160 comes with 4 data splits:

(a) COCO. General purpose;
(b) PaintSkill. Focuses on spatial relations.
(c) PartiPrompts. Focuses on attributional failure cases observed (per Yu et al. (2022));
(d) DrawBench. Focuses on compositionality.

Leveraging the full human annotations on TIFA160, we ablate across TIFA, VQ2A, and DSG on
the data splits in the correlation between VQA results and human Likert judgments, as a further
breakdown and extension for Tab. 3. Tab. 11 summarizes the results.

COCO PaintSkill PartiPrompts DrawBench Overall

TIFA 0.30/0.22 0.56/0.40 0.49/0.37 0.59/0.46 0.43/0.32
VQ2A 0.17/0.13 0.25/0.17 0.28/0.21 0.45/0.37 0.21/0.16
DSG 0.53/0.42 0.64/0.53 0.61/0.49 0.56/0.44 0.57/0.46

Table 11: Ablation by data split for TIFA160 across QG/A methods on the correlation between VQA
score and human 1-5 Likert score (Spearman’s ρ / Kendall’s τ ). The VQA model used: PaLI.

E ADDITIONAL QG/QA/T2I EVALUATION RESULTS

Single-summary metric context. To contextualize the correlation results between VQA scores and
human 1-5 Likerts (Tab. 3) in a wider context with single-summary metrics (e.g., CLIPScore), we
present the correlation results between the single-summary scores investigated in TIFA (Hu et al.,
2023) with the human scores we collected.2 Following Hu et al. (2023), we report 5 single-summary

2Note: The results reported in the Table 2 in Hu et al. (2023) are not directly applicable – as the human
scores are collected with different human raters.
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metrics: BLEU-4, ROUGE-L, METEOR, SPICE, (with BLIP-2 Captioning) and CLIPScore (with
CLIP ViT-B/32), in Tab. 12. While some single-summary correlations are higher than TIFA / VQ2A
in some configurations, DSG, on the other hand, results in much higher correlations with all VQA
module (see Tab. 3 for details).

Metric BLEU-4 ROUGE-L METEOR SPICE CLIPScore

ρ/τ 0.261/0.183 0.342/0.239 0.379/0.269 0.329/0.236 0.276/0.191

Table 12: Spearman (ρ) / Kendall (τ ) correlation between single-summary metrics and human 1-5
Likerts on TIFA160 prompts (across the same 5 models per Hu et al. (2023)).

QG evaluation. In Fig. 9, we show some example mismatch case of human evaluation and GPT-3.5
based automatic evaluation on uniqueness, described in Sec. 4.1.

QA evaluation. In Table 13, we also summarize the VQA-human match accuracy by DSG-1k data
sources. The trend matches the observation in the by-category results in Table 4 and 5.

VQA models DSG-1k Prompt Sources

TIFA-160 Paragraph Relation Counting Real users Poses Commonsense-defying Text

mPLUG-large 86.4 84.7 80.4 65.7 46.1 69.0 80.4 60.3
Instruct-BLIP 86.3 83.6 71.1 60.2 47.3 69.9 81.0 57.0
PaLI 87.9 86.4 84.9 66.1 47.6 69.7 82.4 60.3

Table 13: VQA-Human answer match accuracy on 3 T2I generation models on DSG-1k prompts,
by data sources/segments. We use DSG-PaLM2 questions.

minDALL-E VQ-Diffusion SD v1.1 SD v1.5 SD v2.1 Imagen*

3.839 3.608 3.731 3.990 4.146 4.399

Table 14: Avg. Likert (1-5) on T2I generation models on TIFA160 prompts.

T2I evaluation. Table 14 shows the average Likert (1-5) scores of T2I generation models on
TIFA160 prompts. Table 15 and Table 16 present VQA-human correlation and accuracy results
by fine-grained semantic categories. In Table 15, we calculate for categories with ≥ 30 samples and
keep results with p < 1e− 4.

F EXPERIMENTS ON MIXED QA EVALUATION MODELS

In the QG/A framework, in relation to question answering specifically, an alternative strategy has
been explored in concurrent work. One prominent representative is VPEval (Cho et al., 2023b),
where non-VQA modules are applied in corresponding semantic categories – specifically a) object
detection (OD) for counting, and b) optical character recognition (OCR) for text rendering.

Concretely, for evaluation queries measuring counting skill (e.g., “Are there five Halloween ban-
ners?”), an OD module detect bounding boxes with the target object name mentioned in the ques-
tion. The queries are answered as ‘yes’ if the number of detected bounding boxes is equal to the
number mentioned in the question. For evaluation queries measuring text rendering skill (e.g., “Do
the letters say ‘Contour’?”), an OCR module on detects text from images. The queries are answered
as ‘yes’ if the target text is captured.

Overall, with the assistance of domain-specific models, we observe difference performance in the
VQA-human alignment: slightly lower performance with OD (Tab. 17), and noticeable (yet not
categorically substantial) bump with OCR (Tab. 18). The results are consistent with the findings in
Cho et al. (2023b).
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Table 15: VQA-Human correlation. VQA: proportion of correct answers; Human: 1-5 Likert. Split
by fine-grained semantic categories, measured with Spearman’s ρ and Kendall’s τ . ent: entity, rel:
relation, att: attribute. (Data: TIFA160; Categories: DSG-1k question types).

VQA models DSG-1k Question types

(ent) whole (rel) spatial (att) state (ent) part (global) (att) color (rel) action (att) type

PaLI 0.499/0.397 0.518/0.423 0.401/0.330 0.410/0.332 0.243/0.213 0.291/0.267 0.389/0.311 0.359/0.310

(att) count (att) text rendering (att) material (att) shape (att) style (att) texture (att) size -

PaLI 0.346/0.319 - - - - - - -

Table 16: T2I model VQA accuracy (SD v2.1 / Imagen* / MUSE*) (averaged over text-image
items). By fine-grained semantic categories. Questions generated with DSG-PaLM2, answered
with both PaLI and human. ent: entity, rel: relation, att: attribute.

T2I models DSG-1k Question types

(ent) whole (rel) spatial (att) state (ent) part (global) (att) color (rel) action (att) type

Answerer: PaLI
SD v2.1 81.9 63.8 85.9 84.4 90.7 76.8 73.9 78.2
Imagen* 85.3 71.2 87.6 87.6 90.7 87.4 78.3 81.9
MUSE* 83.8 70.1 88.0 88.2 93.1 87.1 75.0 80.2

Answerer: Human
SD v2.1 68.2 46.3 52.6 76.1 48.9 67.3 46.9 44.7
Imagen* 74.3 58.6 62.1 84.2 50.0 78.2 62.0 46.8
MUSE* 71.4 55.8 58.3 81.3 46.2 78.7 54.6 41.6

(att) count (att) text rendering (att) material (att) shape (att) style (att) texture (att) size

Answerer: PaLI
SD v2.1 73.5 70.6 73.2 82.0 79.6 71.8 80.0
Imagen* 80.1 70.6 81.4 86.0 77.6 94.9 85.7
MUSE* 77.3 72.5 78.4 88.0 83.7 89.7 94.3
Answerer: Human
SD v2.1 44.9 5.1 40.7 45.3 14.6 47.4 53.2
Imagen* 49.7 1.8 51.2 55.6 17.6 72.4 63.1
MUSE* 47.9 3.0 51.5 46.1 15.7 56.9 62.2

OD for counting. Across TIFA, VQ2A, and PaLI, we compare direct VQA query with the al-
ternative query strategy with OWLv2-base-patch16 (Minderer et al., 2023) on the DSG-1k split
dedicated to counting – CountBench (Paiss et al., 2023). The result is summarized in Tab. 17.

VQA models direct VQA query (ours) +OD for counting

mPLUG-large 65.7 64.1 (-1.6)
Instruct-BLIP 60.2 58.9 (-1.3)
PaLI 66.1 64.9 (-1.2)

Table 17: VQA-human matching accuracy of VQA models with direct VQA query vs. +OD (w/
VPEval). Data split: CountBench.

OCR for text rendering. Similar to the experiment with OD, on the DSG-1k split on text
rendering – DrawText (Liu et al., 2023), we again compare direct VQA query with the alternative
query strategy with EasyOCR (Jaided AI, 2023) integrated per VPEval. The result is summarized in
Tab. 18.

VQA models direct VQA query (ours) +OCR for text rendering

mPLUG-large 60.3 64.5 (+4.2)
Instruct-BLIP 57.0 63.5 (+6.5)
PaLI 60.3 66.8 (+6.5)

Table 18: VQA-human matching accuracy of VQA models with direct VQA query vs. +OCR (w/
VPEval). Data Split: DrawText.
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G PSEUDOCODE OF T2I EVALUATION WITH DSG.

Algorithm 1 shows Python pseudocode demonstrating the T2I evaluation pipeline with DSG.

Algorithm 1 Python pseudocode of T2I evaluation with DSG
PROMPT_TUPLE = """Task: given input prompts,
describe each scene with skill-specific tuples ...
"""

PROMPT_DEPENDENCY = """Task: given input prompts and tuples,
describe the parent tuples of each tuple ...
"""

PROMPT_QUESTION = """Task: given input prompts and skill-specific tuples,
re-write tuple each in natural language question ...
"""

def generate_dsg(text, LLM):
"""generate DSG (tuples, dependency, and questions) from text"""
# 1) generate atomic semantic tuples
# output: dictionary of {tuple id: semantic tuple}
id2tuples = LLM(text, PROMPT_TUPLE)
# 2) generate dependency graph from the tuples
# output: dictionary of {tuple id: ids of parent tuples}
id2dependency = LLM(text, id2tuples, PROMPT_DEPENDENCY)
# 3) generate questions from the tuples
# output: dictionary of {tuple id: ids of generated questions}
id2questions = LLM(text, id2tuples, PROMPT_QUESTION)
return id2tuples, id2dependency, id2questions

def evaluate_image_dsg(text, generated_image, VQA, LLM):
"""evaluate a generated image with DSG"""
# 1) generate DSG from text
id2tuples, id2dependency, id2questions = generate_dsg(text, LLM)
# 2) answer questions with the generated image
id2scores = {}
for id, question in id2questions.items():

answer = VQA(generated_image, question)
id2scores[id] = float(answer == 'yes')

# 3) zero-out scores from invalid questions
for id, parent_ids in id2dependency.items():

# zero-out scores if parent questions are answered 'no'
any_parent_answered_no = False
for parent_id in parent_ids:

if id2scores[parent_id] == 0:
any_parent_answered_no = True
break

if any_parent_answered_no:
id2scores[id] = 0

# 4) calculate the final score by averaging
average_score = sum(id2scores.values()) / len(id2scores)
return average_score

H HUMAN EVALUATION SETUP

Fig. 11 and Fig. 12 exemplify the data collection UI used in our human answer/rating collection.
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Figure 11: UI for data collection in per-question human judgment annotation.

Figure 12: UI for data collection in per-item human judgment annotation (1-5 Likert consistency
rating).
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