
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEMYSTIFYING ONLINE CLUSTERING OF BANDITS:
ENHANCED EXPLORATION UNDER STOCHASTIC AND
SMOOTHED ADVERSARIAL CONTEXTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The contextual multi-armed bandit (MAB) problem is crucial in sequential
decision-making. A line of research, known as online clustering of bandits, ex-
tends contextual MAB by grouping similar users into clusters, utilizing shared
features to improve learning efficiency. However, existing algorithms, which rely
on the upper confidence bound (UCB) strategy, struggle to gather adequate statis-
tical information to accurately identify unknown user clusters. As a result, their
theoretical analyses require several strong assumptions about the “diversity” of
contexts generated by the environment, leading to impractical settings, compli-
cated analyses, and poor practical performance. Removing these assumptions has
been a long-standing open problem in the clustering of bandits literature. In this
work, we provide two partial solutions. First, we introduce an additional explo-
ration phase to accelerate the identification of clusters. We integrate this general
strategy into both graph-based and set-based algorithms and propose two new
algorithms, UniCLUB and UniSCLUB. Remarkably, our algorithms require sub-
stantially weaker assumptions and simpler theoretical analyses while achieving
superior cumulative regret compared to previous studies. Second, inspired by the
smoothed analysis framework, we propose a more practical setting that eliminates
the requirement for i.i.d. context generation used in previous studies, thus en-
hancing the performance of existing algorithms for online clustering of bandits.
Extensive evaluations on both synthetic and real-world datasets demonstrate that
our proposed algorithms outperform existing approaches.

1 INTRODUCTION

The stochastic multi-armed bandit (MAB) problem is an online sequential decision-making problem,
where at each time step, the learner selects an action (a.k.a. arm) and observes a reward generated
from an unknown probability distribution associated with that arm. The goal of the learner is to
maximize cumulative rewards (or equivalently, minimize cumulative regrets) in the long run. The
contextual linear bandit problem (Li et al., 2010; Chu et al., 2011) extends the MAB framework by
associating each action with a feature vector and a corresponding unknown linear reward function.

Online clustering of bandits, first introduced by Gentile et al. (2014), generalizes contextual linear
bandits by utilizing preference relationships among users. It adaptively partitions users into clusters
and leverages the collaborative effect of similar users to enhance learning efficiency. This approach
has many applications in computational advertising, web page content optimization, and recommen-
dation systems (Li & Zhang, 2018). Different from conventional MAB problems that focus solely
on regret minimization, online clustering of bandits has two simultaneous goals. Firstly, it infers
the underlying cluster structures among users by sequentially recommending arms and receiving
user feedback. Secondly, based on the inferred clusters, it minimizes the cumulative regret along
the learning trajectory. These dual goals significantly influence the algorithm design, as the learner
must balance the accurate cluster inference and effective regret minimization.

Most existing studies such as Gentile et al. (2014); Li & Zhang (2018) employ an Upper Confidence
Bound (UCB)-based strategy (Abbasi-Yadkori et al., 2011) to balance exploration (for cluster in-
ference) and exploitation (for regret minimization). While this strategy is intuitive and standard for
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stochastic linear bandits, the least squares estimator used in the UCB strategy does not directly yield
a precise estimation of underlying parameters, leading to insufficient statistical information for clus-
ter inference. As a result, to ensure correct cluster inference, existing algorithms for clustering of
bandits require several strong assumptions on “data diversity” for their regret analysis, such as con-
texts being independently generated from a fixed random process (we refer to it as stochastic context
setting) with lower bounded minimum eigenvalue of a covariance matrix and upper bounded vari-
ance (See Section 3.2 for details). Unfortunately, these assumptions result in impractical settings,
overly complicated theoretical analysis, suboptimal regret incurred by cluster inference, and more
importantly, poor performance in practice. Based on these challenges, a natural question arises:

Can we design new algorithms or propose new settings for the online clustering
of bandits that eliminate the restrictive assumptions while achieving improved
theoretical regret and practical performance?

Several efforts have been made to relax these assumptions. However, previous attempts have not
addressed the fundamental issues, and some have resulted in deteriorated regret that grows exponen-
tially with the number of arms, in exchange for milder assumptions (See details in Section 2).

In this paper, we demystify the process of cluster inference and provide two (partial) solutions to
the aforementioned open problem. We show that merely employing a UCB algorithm is insufficient
for simultaneously achieving both cluster inference and regret minimization. Specifically, the lack
of sufficient exploration in a UCB-like strategy hinders efficient inference of the underlying cluster
structures. To tackle this problem, we propose two approaches, one focusing on algorithmic design
and the other on problem setup:

Algorithmic Design Perspective: We maintain the stochastic context setting as in Gentile et al.
(2014) (with some minor changes, see Section 3.1), and propose new algorithms with an additional
pure exploration phase before applying UCB, leading to more reasonable settings, significantly re-
laxed assumptions, simpler proofs, and improved cumulative regret. Intuitively, the additional ex-
ploration phase gathers more information about the underlying clusters, preventing the subsequent
UCB strategy from exploiting inaccurate clusters. This technique is quite general and applicable to
both graph-based (Gentile et al., 2014) and set-based (Li et al., 2019) algorithms. It may also be of
independent interest to other research on multi-objective MAB problems.
Problem Setup Perspective: We eliminate the need for stochastic context generation by proposing
a new setup based on the smoothed analysis framework (Spielman & Teng, 2004), where the con-
texts can be chosen by a “smoothed” adversary. This setting interpolates between two extremes: the
i.i.d. context generation used in Gentile et al. (2014) and the adversarial context generation used in
Abbasi-Yadkori et al. (2011). We show that with some minor changes, existing algorithms (such as
CLUB proposed by Gentile et al. (2014)) achieve better performance in this setting.

To the best of our knowledge, our work is the first to clarify the inferior results due to the restric-
tive assumptions in the clustering of bandits literature (Gentile et al., 2014), propose new algo-
rithms/settings to eliminate the assumptions, and obtain improved cumulative regrets.

Main contributions. Our contributions are highlighted as follows:

• Following the stochastic context setting established in Gentile et al. (2014), we propose two algo-
rithms: a graph-based algorithm UniCLUB based on CLUB (Gentile et al., 2014) and a set-based
algorithm UniSCLUB based on SCLUB (Li et al., 2019). Both algorithms incorporate an initial
exploration phase before the conventional UCB strategy. Benefiting from our design and novel
analysis techniques, we substantially relax the assumptions required in our theoretical analysis.

• We show that UniCLUB and UniSCLUB enjoy a regret bound of Õ
(
u d
γ̃2λx

+ d
√
mT

)
, where

the first term improves the state-of-the-art regret in existing literature (Gentile et al., 2014; Li &
Zhang, 2018; Li et al., 2019; Liu et al., 2022; Wang et al., 2023a;b), and the second term matches
the minimax near-optimal regret bound of contextual linear bandits (Abbasi-Yadkori et al., 2011).

• Besides the stochastic context setting, we propose a new setting called the smoothed adversarial
context setting, where in each round, the context is chosen by an adversary but is then randomly
perturbed. This setup is more practical and aligns more closely with the original setting of con-
textual linear bandits (Abbasi-Yadkori et al., 2011). We give two associated algorithms SACLUB,
SASCLUB and prove that they enjoy a regret of Õ

(
u d

γ2λ̃x
+ d

√
mT

)
where λ̃x = O

(
1

logK

)
.
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• We perform extensive evaluations on both synthetic and real-world datasets. The results demon-
strate that our algorithms outperform all the baseline algorithms, validating their effectiveness and
practical applicability in various settings.

Table 1 summarizes the comparison between our algorithms and existing studies with different as-
sumptions and cumulative regrets. References to the definitions of each variable are provided below
the table, with full definitions elaborated in Section 3.1. Detailed explanations of the diversity con-
ditions and regret analysis are given in Section 3.2 and Section 5.

Table 1: Comparison between our algorithms and existing studies with different design choices.

Algorithms Context

Generation
Diversity Assumption Regret incurred

by clustering
Constants

CLUB (Gentile et al., 2014),

CLUB-cascade (Li & Zhang, 2018),

SCLUB (Li et al., 2019), FCLUB (Liu et al., 2022)

i.i.d.

λmin(E[XXT]) = λx,

(zTX)2 is σ2-sub-Gaussian,

σ2 ≤ λ2
x

8 log(4K) .

Õ
(
u
(

d
γ2λx

+ 1
λ2
x

))
λx = O

(
1
d

)

RCLUMB, RSCLUMB (Wang et al., 2023a),

RCLUB-WCU (Wang et al., 2023b),

FedC3UCB-H (Yang et al., 2024)

i.i.d.
λmin(E[XXT]) = λx,

(zTX)2 is σ2-sub-Gaussian.
Õ
(
u
(

d

γ2λ̃x
+ 1

λ̃2
x

))
λ̃x = O

(
1

d2K+1

)

UniCLUB, UniSCLUB (Ours, Theorems 1 and 2) i.i.d.

λmin(E[XXT]) = λx,

The minimum gap between clusters

γ has a known lower bound γ̃.

Õ
(

ud
γ̃2λx

)
λx = O

(
1
d

)

SACLUB, SASCLUB (Ours, Theorem 4) Adversarial Gaussian noise perturbation Õ
(

ud

γ2λ̃x

)
λ̃x = O

(
1

logK

)
K, u, and d denote the number of arms, the number of users, and the dimension, respectively. γ and γ̃ are defined in Assumption 2.
X and λx are defined in Assumption 3. z ∈ Rd represents an arbitrary unit vector.

The rest of the paper is organized as follows. In Section 2, we review related work, emphasizing
the restrictive assumptions in the original setting and discussing prior attempts to eliminate these
assumptions. In Section 3, we present our solution for removing these assumptions in the orig-
inal setting. In Section 4, we introduce an alternative approach based on the smoothed analysis
framework, which aligns more closely with the original linear bandits setting (Abbasi-Yadkori et al.,
2011). Finally, in Section 5 and Section 6, we present the theoretical analysis and experiment results.

2 RELATED WORK

Our work is closely related to the literature of online clustering of bandits. Since the seminal work by
Gentile et al. (2014), which first formulated the clustering of bandits problem and proposed a graph-
based algorithm, there has been a line of follow-up studies. For example, Li et al. (2016) considers
the collaborative effects that arise from user-item interactions. Gentile et al. (2017) implements the
underlying feedback-sharing mechanism by estimating user neighborhoods in a context-dependent
manner. Li & Zhang (2018) consider the clustering of bandits problem in the cascading bandits
setting with random prefix feedback. Li et al. (2019) propose a set-based algorithm and consider
users with non-uniform arrival frequencies. Ban & He (2021) introduce local clustering which does
not assume that users within the same cluster share exactly the same parameter. Liu et al. (2022)
extend the clustering of bandits problem to the federated setting and consider privacy preservation.
Wang et al. (2023a;b) investigate clustering of bandits under misspecified and corrupted user models.

However, all of these studies adhere to Gentile et al. (2014)’s original setting and theoretical analy-
sis framework, which imposes several restrictive assumptions on the generation process of contexts,
such as (a) the feature vector of each arm is independently sampled from a fixed distribution; (b)
the covariance matrix constructed on specific context-action features is full rank with the minimum
eigenvalue greater than 0; and (c) the square of contexts projected in a fixed direction is sub-Gaussian
with bounded conditional variance. Constructing a natural context generation distribution that sat-
isfies all these assumptions simultaneously is highly challenging (if not impossible), and none of
the aforementioned papers provide any concrete examples. There have been some attempts to relax
these assumptions. For example, Wang et al. (2023a;b); Yang et al. (2024) propose a more relaxed
assumption regarding the variance of contexts. However, these approaches result in a regret that
grows exponentially with the number of arms K (as shown in Table 1). We refer interested readers
to more related works about leveraging similar assumptions in Appendix A.
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Our smoothed adversarial setting and algorithms SACLUB, SASCLUB are inspired by the smoothed
analysis framework, introduced by Spielman & Teng (2004). This framework studies algorithms
where some instances are chosen by an adversary, but are then perturbed randomly, representing an
interpolation between worst-case and average-case analyses. It was originally proposed to analyze
the running time of algorithms. Kannan et al. (2018) first introduce the “smoothed adversary” setting
in multi-armed bandits and study how the regret bound of greedy algorithms behave on smoothed
bandit instances. This setting has been extended to structured linear bandits (i.e., the unknown pref-
erence vector has structures such as sparsity, group sparsity, or low rank) (Sivakumar et al., 2020),
linear bandits with knapsacks (Sivakumar et al., 2022), and Bayesian regret (Raghavan et al., 2023).
All these studies show that the greedy algorithm almost matches the best possible regret bound. The
core idea is that the inherent diversity in perturbed data (contexts) makes explicit exploration unnec-
essary. In contrast to the analysis of greedy algorithms, our work introduces the smoothed analysis
framework into the clustering of bandits setting, where the UCB strategy lacks sufficient exploration
for identifying unknown user clusters. We demonstrate that the inherent diversity of contexts in the
smoothed adversary setting eliminates the impractical requirement for i.i.d. context generation and
enhances the cumulative regrets of existing algorithms (e.g., CLUB (Gentile et al., 2014)).

3 STOCHASTIC CONTEXT SETTING

In this section, we study the online clustering of bandits problem under the stochastic context setting,
building upon the seminal work of Gentile et al. (2014) but with substantially relaxed assumptions
and improved cumulative regrets. We begin by introducing the problem setting, which largely fol-
lows Gentile et al. (2014) with the stringent assumptions replaced by a mild assumption that the
minimum gap between clusters has a known lower bound. Then we provide the intuition of our key
techniques. Finally, we present our proposed algorithms.

3.1 PROBLEM SETTING

In the following, we use boldface letters for vectors and matrices. We denote [M ] := {1, . . . ,M}
for M ∈ N+. For any real vector x,y and positive semi-definite (PSD) matrix V , ∥x∥ denotes
the ℓ2 norm of x, ⟨x,y⟩ = xTy denotes the dot product of vectors, ⟨x,y⟩V = xTV y denotes the
weighted inner product, and ∥x∥V denotes the Mahalanobis norm

√
xTV x. We use λmin(·) and

λmax(·) to denote the minimum and maximum eigenvalue.

In the online clustering of bandit problem, there are u users, denoted by set [u] = {1, 2, . . . , u}.
Each user i ∈ [u] is associated with an unknown preference feature vector θi ∈ Rd with ∥θi∥2 ≤ 1.
There is an underlying cluster structure among all the users. Specifically, the users are separated
into m clusters I1, I2, . . . , Im (m ≪ u), where

⋃
i∈[m] Ii = [u] and Ii ∩ Ij = ∅ for i ̸= j,

such that users lying in the same cluster share the same preference feature vector (i.e., they have
similar behavior) and users lying in different clusters have different preference feature vector (i.e.,
they have different behavior). Formally, let θkdenote the common preference vector for cluster Ik
and j(i) ∈ [m] denote the index of the cluster that user i belongs to. In other words, for any user
i ∈ Ik, we have θi = θk = θj(i). The underlying partition of users and the number of clusters m
are unknown to the learner, and need to be learned during the algorithm.

The learning procedure operates as follows: At each round t = 1, 2, . . . , T , the learner receives a
user index it ∈ [u] and a finite set of arms At ⊆ A where |At| = K. Each arm a ∈ A is associated
with a feature vector xa ∈ Rd, and we denote Dt = {xa}a∈At

⊆ Rd. Dt is also called context.
When we need to emphasize the index of arms, we also denote At = {at,i}Ki=1 and Dt = {xt,i}Ki=1.
Then the learner assigns an appropriate cluster Vt for user it and recommends an arm at ∈ At based
on the aggregated data gathered from cluster Vt. After receiving the recommended arm, user it sends
a random reward rt ∈ [−1, 1] back to the learner. The reward is assumed to have a linear structure:
rt = xT

at
θit + ηt, where ηt is a zero-mean, 1-sub-Gaussian noise term.

Let a∗t = argmaxa∈At
xT
aθit be the optimal arm with the highest expected reward at time step t.

The goal of the learner is to minimize the expected cumulative regret defined as follows:

E[R(T )] = E

[
T∑

t=1

(
xT
a∗
t
θit − xT

at
θit

)]
,

4
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where the expectation is taken over both the arms (at) and users (it) chosen during the process.

We assume the users and clusters satisfy the assumptions as follows:
Assumption 1 (User uniformness). At each time step t, the user it is drawn uniformly from the set
of all users [u], independently over the past.
Assumption 2 (Well-separatedness among clusters). All users in the same cluster Ij share the same
preference vector θj . For users in different clusters, there is a fixed but unknown gap γ between
their preference vectors, with a known lower bound γ̃. Specifically, for any cluster indices i ̸= j,∥∥θi − θj

∥∥
2
≥ γ ≥ γ̃ > 0.

Remark 1. Unlike the original setting in Gentile et al. (2014), where the gap γ is completely un-
known, we assume that γ has a known lower bound γ̃. We emphasize that this adjustment is natural
and results in a more practical setting. On the one hand, the clustering of bandits problem intrinsi-
cally requires a lower bound for γ. Specifically, to ensure successful clustering, it is necessary to
have 1

γ2 ≪ T , where T is the total time horizon. Without this condition, no algorithm can effec-
tively identify the underlying clusters within time T .1 On the other hand, in real-world clustering
tasks, γ is usually a pre-defined parameter used to determine whether two items belong to the same
cluster (Ban & He, 2021; Ban et al., 2022). Therefore, incorporating a known lower bound for γ is
both reasonable and aligned with practical scenarios.
Remark 2. We also consider the case where γ is completely unknown. In this scenario, without the
stringent assumptions used in previous studies, algorithms are unable to determine whether cluster-
ing has been successful. As a result, we have to deal with the additional regret incurred by misclus-
tering, similar to the misspecified linear bandits setting (Ghosh et al., 2017), which typically leads to
regret that grows linearly with T (Lattimore et al., 2020). To overcome this challenge, we leverage
the structure of the clustering problem and propose a phase-based algorithm, Phase-UniCLUB,
with carefully designed phase lengths. We demonstrate that our algorithm achieves sublinear regret
of order Õ(T

2
3 ) (see details in Appendix D).

In the stochastic context setting, we assume the feature vectors (i.e., contexts) are independently
sampled from a fixed distribution, but we completely remove the restricted assumptions on the sub-
Gaussian distribution and variance of the arm generation process as mentioned in prior works.
Assumption 3 (Context diversity for stochastic contexts). At each time step t, the feature vectors
in Dt are drawn independently from a fixed distribution X with ∥X∥ ≤ L, and E[XXT] is of full
rank with minimum eigenvalue λx > 0.
Remark 3. Intuitively, the minimum eigenvalue indicates how “diverse” the distribution X is, de-
picting how certain the feature vectors span the full Rd space. Having a lower bound on the min-
imum eigenvalue means that X has non-zero variance in all directions, which is necessary for the
least squares estimator to converge to the true parameter. Note that Assumption 3 only maintains
the minimum eigenvalue assumption2 and completely removes the additional stringent assumptions
as in previous studies (Gentile et al., 2014; Li & Zhang, 2018; Li et al., 2019; Wang et al., 2023a;b;
Liu et al., 2022; Yang et al., 2024).

3.2 DIVERSITY CONDITIONS IN PREVIOUS STUDIES AND KEY TECHNIQUES

Before delving into detailed algorithms, we first examine the stringent statistical assumptions in
previous studies (Gentile et al., 2014; Li & Zhang, 2018; Li et al., 2019; Wang et al., 2023a;b; Liu
et al., 2022; Yang et al., 2024) and explain their necessity for the theoretical analysis of the existing
UCB-based algorithms. Then we provide insights on how these assumptions can be eliminated.

The key requirement of online clustering of bandits is the precise estimation of the preference vectors
θi for each user i, which is essential for correctly identifying the unknown user clusters. However,
the convergence of the least squares estimator relies on sufficiently diverse data. Intuitively, when
data points span a broad range of values and cover the spectrum of possible predictors, the model

1To distinguish between two hypotheses about the bias of a coin with a difference ∆ in their probabilities
of heads, approximately 1/∆2 samples are needed.

2This assumption is inevitable, since if the minimum eigenvalue is zero, the covariance matrix is not of full
rank, and thus θ cannot be uniquely determined.
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can better capture the true underlying relationships, leading to more reliable parameter estimates.
Mathematically, diverse data help ensure that user i’s design matrix Si,t =

∑
s∈[t]:is=i xas

xT
as

is
well-conditioned, resulting in a more stable matrix inverse, which in turn reduces the variance of the
estimated preference vector θ̂i = S−1

i,t

∑
s∈[t]:is=i rsxas . Therefore, all the previous studies rely

on the diverse stochastic context assumption (Assumption 3), which states that the feature vector
of each arm is drawn independently from a fixed distribution X with λmin(E[XXT]) = λx >
0. However, diverse contexts do not necessarily lead to a well-conditioned design matrix because
Assumption 3 only guarantees the diversity of arm set Dt, but not that the arms selected by the UCB
strategy are diverse. As a result, previous studies impose an additional assumption, requiring that
for any fixed unit vector z ∈ Rd, random variable (zTX)2 has sub-Gaussian tails with variance
parameter σ2 ≤ λ2

x

8 log(4K) . This assumption, however, contradicts the diverse stochastic context
assumption (Assumption 3), as the bounded variance condition restricts the diversity of X . In fact,
it is extremely difficult to construct a natural example of X such that all these assumptions are
satisfied simultaneously, and the aforementioned papers also do not provide any.

In summary, the key insight for eliminating the additional assumption is to ensure a well-conditioned
design matrix Si,t, i.e., the selected arms are sufficiently diverse. To this end, we introduce an
additional pure exploration phase which uniformly selects arms in the arm set Dt. In Lemma 2, we
will show that this explicit exploration guarantees that the minimum eigenvalue of the design matrix
Si,t grows linearly with the number of times user i appears.

3.3 ALGORITHMS FOR STOCHASTIC CONTEXT SETTING

For the stochastic context setting, we introduce two algorithms: a graph-based algorithm called
Uniform Exploration Clustering of Bandits (UniCLUB, Algorithm 1) and a set-based algorithm
called Uniform Exploration Set-based Clustering of Bandits (UniSCLUB, Algorithm 2). Due to
space constraints, we focus on UniCLUB in the main paper, leaving the details and regret analysis
of UniSCLUB in Appendix C.

As shown in Algorithm 1, inspired by the CLUB algorithm proposed in Gentile et al. (2014),
UniCLUB maintains a dynamic undirected graph Gt = ([u], Et) representing the current estimated
cluster structures of all users. The main difference is that UniCLUB includes an additional uniform
exploration phase to promote cluster identification. At the beginning, Gt is initialized as a complete
graph, indicating that all users are considered in a single cluster. Then at each round t, a user it ∈ [u]
comes to be served with a feasible arm set At from which the learner has to choose. The algorithm
operates in the following two phases depending on whether the current time step t ≤ T0, and the
arm selection strategy differs between these phases.

Pure exploration phase. In the first T0 rounds, the algorithm uniformly select arm at from At

(Line 4). This arm selection strategy ensures selecting sufficiently diverse arms so that the minimum
eigenvalue of the design matrix grows linearly in time (Lemma 2). In Lemma 3, we will show that
the phase length T0 is chosen to guarantee that this phase gathers sufficient statistics to estimate each
user’s preference vector and correctly infer the underlying user clusters with high probability.

Exploration-exploitation phase. After T0, the algorithm constructs the connected component Vt

containing user it in the graph Gt−1 (Line 6), and computes the estimated preference vector θ̂Vt,t−1

based on historical information associated with Vt using the least squares estimator with regulariza-
tion parameter λ > 0 (Line 8). The algorithm then recommends an arm using the upper confidence
bound (UCB) strategy (Abbasi-Yadkori et al., 2011) to balance exploration and exploitation (Line 9):

at = argmax
a∈At

θ̂T
Vt,t−1xa + β

√
xT
aM

−1

Vt,t−1xa,

where the first term is the estimated reward of arm a at time t and the second term is the confidence
radius of arm a at time t with parameter β =

√
d log(1 + TL2

dλ ) + 2 log( 1δ ) +
√
λ.

After receiving the feedback rt from user it, the learner updates the statistics for user it while
keeping other users’ statistics unchanged. Note that the estimated preference vector θ̂it is computed
using historical information associated with user it (Line 11). Finally, the algorithm updates the
inferred clusters by deleting edges in graph Gt−1 if it determines that two users belong to different

6
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Algorithm 1: UniCLUB: Uniform Exploration Clustering of Bandits
Input: λ, β, λx, δ, L, γ̃
Initialization: Let G0 = ([u], E0) be a complete graph.
Let Si,0 = 0d×d, bi,0 = 0d×1, Ti,0 = 0,∀i ∈ [u].

Define f(Ti,t) ≜ (
√
2 log(u/δ) + d log(1 +

Ti,tL2

λd ) +
√
λ)/
√

λ+ Ti,tλx/2.

Define T0 ≜ 16u log
(
u
δ

)
+ 4umax

{
8L2

λx
log
(
ud
δ

)
, 512d
γ̃2λx

log
(
u
δ

)}
.

1 for t = 1, 2, . . . do
2 Receive user index it and arm set At

3 if t ≤ T0 then
4 Select at uniformly at random from At

5 else
6 Find the connected component Vt for it in Gt−1

7 MVt,t−1 =
∑

i∈Vt
Si,t−1, MVt,t−1 = λI +MVt,t−1, bVt,t−1 =

∑
i∈Vt

bi,t−1

8 θ̂Vt,t−1 = M
−1

Vt,t−1bVt,t−1

9 Select arm at = argmaxa∈At
θ̂T
Vt,t−1xa + β

√
xT
aM

−1

Vt,t−1xa

10 Receive reward rt
11 Update statistics for user it, others remain unchanged:

Sit,t = Sit,t−1 + xat
xT
at
, bit,t = bit,t−1 + rtxat

Tit,t = Tit,t−1 + 1, θ̂it,t = (λI + Sit,t)
−1

bit,t
12 Delete edge (it, ℓ) ∈ Et−1 if∥∥∥θ̂it,t − θ̂ℓ,t

∥∥∥ > f(Tit,t) + f(Tℓ,t)

and obtain an updated graph Gt = ([u], Et)

clusters. Specifically, for every user ℓ ∈ [u] that has an edge to user it, the algorithm checks if
the distance between the estimated preference vectors of users ℓ and it exceeds a specific threshold
(Line 12). If so, the algorithm deletes the edge it, ℓ to split them apart and update the graph.

4 SMOOTHED ADVERSARIAL CONTEXT SETTING

Although UniCLUB offers significant theoretical improvements, it requires a change in the arm
selection strategy during its execution, which might not be desirable in some circumstances. Ad-
ditionally, the stochastic context setting necessitates an i.i.d. context generation process, which
might be impractical in real-world applications. To overcome these limitations, based on the in-
tuition in Section 3.2, we propose the smoothed adversarial context setting to eliminate the need
for explicit pure exploration. This setting interpolates between the two extremes: the i.i.d. context
generation in Gentile et al. (2014) and the adversarial context generation in Abbasi-Yadkori et al.
(2011). The intrinsic diversity of contexts makes explicit exploration unnecessary, thereby ensuring
a well-conditioned design matrix (Lemma 11). This approach allows existing algorithms in previ-
ous studies, such as CLUB (Gentile et al., 2014) and SCLUB (Li et al., 2019), which consistently
employ the UCB strategy, to perform more effectively.

4.1 PROBLEM SETTING

In the smoothed adversarial setting, we retain Assumption 1, while replacing Assumptions 2 and
3 with Assumptions 4 and 5, respectively. As detailed below, since there is no need to switch arm
selection strategies during execution, Assumption 4 follows the original assumption in Gentile et al.
(2014), which does not require knowledge of a lower bound for γ. Meanwhile, Assumption 5 allows
feature vectors (i.e., contexts) to be arbitrarily chosen by an adversary, but with some random pertur-
bation to ensure the resulting contexts remain sufficiently diverse. This approach maintains enough
data diversity to support effective learning while avoiding the need for explicit pure exploration.
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Assumption 4 (Well-separatedness among clusters). All users in the same cluster Ij share the same
preference vector θj . For users in different clusters, there is a fixed but unknown gap γ between
their preference vectors. Specifically, for any cluster indices i ̸= j,∥∥θi − θj

∥∥
2
≥ γ > 0.

Assumption 5 (Context diversity for adversarial contexts). At each time step t, the feature vector
xa ∈ Dt for each arm a ∈ At is drawn by a “smoothed” adversary, meaning that the adversary first
chooses an arbitrary vector µa ∈ Rd with ∥µa∥ ≤ 1, then samples a noise vector εa ∈ Rd from a
truncated multivariate Gaussian distribution where each dimension is truncated within [−R,R], i.e.,
εa ∼ N (0, σ2I) conditioned on |(εa)j | ≤ R,∀j ∈ [d]. And the feature vector xa = µa + εa.

Remark 4. The truncation in Assumption 5 is used to guarantee that the length of each feature
vector is bounded, which is a standard requirement in the linear bandits literature. In fact, if we
are only concerned with high-probability regret, we can also use a Gaussian distribution (without
truncation) and show that the length of each feature vector is bounded with high probability. Note
that Assumption 5 is more similar to the original linear bandit setting (Abbasi-Yadkori et al., 2011),
except that we require each arm to be perturbed by Gaussian noise. It remains an open problem
whether a fully adversarial setting can be achieved.

4.2 ALGORITHMS FOR SMOOTHED ADVERSARIAL CONTEXT SETTING

Our proposed algorithms for the smoothed adversarial context setting, SACLUB and SASCLUB, are
essentially CLUB (Gentile et al., 2014) and SCLUB (Li et al., 2019) with λx replaced by λ̃x and
L replaced by 1 +

√
dR in the edge deletion threshold. Due to space constraints, we omit the full

details of SACLUB and SASCLUB here, but the complete proofs are provided in Appendix E.

5 THEORETICAL ANALYSIS

In this section, we present the theoretical results of our algorithms, with detailed proofs provided in
Appendices B, C, D, and E. For clarity, we ignore the constants but they are fleshed out in the proofs.
Note that λx appears in the denominator of the regret expressions. This is due to the assumption of
bounded contexts (∥X∥2 is bounded) in the stochastic context setting, resulting in λx = O(1/d),
and therefore it is important to track the dependency of our regret bounds on λx.

Theorem 1 (Regret of UniCLUB). Under the stochastic context setting (Assumptions 1, 2, 3), the
expected regret of the UniCLUB (Algorithm 1) satisfies:

E[R(T )] = O

(
ud

γ̃2λx
log(T ) + d

√
mT log(T )

)
.

Theorem 2 (Regret of UniSCLUB). Under the stochastic context setting (Assumptions 1, 2, 3), the
expected regret of the UniSCLUB (Algorithm 2) satisfies:

E[R(T )] = O

(
ud

γ̃2λx
log(T ) + d

√
mT log(T )

)
.

Remark 5. Our results comprise two components: the first term is associated with cluster identifica-
tion, and the second term aligns with the minimax near-optimal regret of linear contextual bandits.
Notably, thanks to the careful design of UniCLUB and UniSCLUB, our results enhance the first
term by Õ(u/λ2

x), offering a significant improvement over existing studies, as detailed in Table 1.

Theorem 3 (Regret of Phase-UniCLUB). Under the stochastic context setting (Assumptions 1, 2,
3), but γ̃ is unknown, the expected regret of algorithm Phase-UniCLUB (Algorithm 5) satisfies:

E[R(T )] = O

(
ud

γ2λ2
x

log(T ) +

(
ud

λx

) 1
3

T
2
3 log

1
3 (T ) + d

√
mT log(T )

)
.

Remark 6. Without knowledge of γ̃ (i.e., a lower bound of γ), Phase-UniCLUB suffers a regret
of order Õ(d

√
mT + d

1
3T

2
3 ). As noted in Remark 2, this deteriorated result is expected since the

8
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algorithm has to contend with the issue of misclustering, similar to the challenges seen in misspeci-
fied linear bandits (Ghosh et al., 2017; Lattimore et al., 2020). Despite this challenge, we carefully
design the phase lengths to exploit the property of clustering and achieve sublinear regret, which is a
significant improvement over the linear regret typically expected in misspecified linear bandits. We
emphasize that, as discussed in Remark 1, γ not only has an intrinsic lower bound but also is typi-
cally predefined in real-world applications. Therefore, our study of the scenario where γ̃ is unknown
is primarily of theoretical interest. Further details about the algorithm can be found in Appendix D.

Theorem 4 (Regret of SACLUB and SASCLUB). Under the smoothed adversarial context setting
(Assumptions 1, 4, 5), the expected regrets of SACLUB and SASCLUB both satisfy:

E[R(T )] = O

(
ud

γ2λ̃x

log(T ) + d
√
mT log(T )

)
,

where λ̃x = c1
σ2

logK for some constant c1.

Remark 7. For the smoothed adversarial context setting, we prove that the intrinsic diversity of
contexts guarantees a lower bound on the minimum eigenvalue of E

[
xatx

T
at

]
(Lemma 11). This

allows us to apply techniques similar to those used in the stochastic context setting to get this result.

6 PERFORMANCE EVALUATION

In this section, we present the evaluation results of our algorithms. We focus on the stochastic
context setting in the main paper since the smoothed adversarial setting serves mainly for theoreti-
cal analysis, and algorithms SACLUB/SASCLUB are minor modifications of CLUB (Gentile et al.,
2014)/SCLUB (Li et al., 2019). Nonetheless, we provide detailed evaluations of the smoothed ad-
versarial setting and an ablation study on different arm set sizes and user numbers in Appendix G.

6.1 EXPERIMENT SETUP

We compare our algorithms against the following state-of-the-art algorithms for clustering of ban-
dits: (1) LinUCB-One: LinUCB (Li et al., 2010) with a single preference vector shared across all
users. (2) LinUCB-Ind: LinUCB (Li et al., 2010) with separate preference vectors estimated for each
user. (3) CLUB (Gentile et al., 2014): A graph-based algorithm that consistently employs the UCB
strategy. (4) SCLUB (Li et al., 2019): A set-based algorithm with improved practical performance.
In addition to these clustering-based baselines, we also evaluate our approach against two graph-
based algorithms from a related but distinct setting in Appendix G: GOB.Lin (Cesa-Bianchi et al.,
2013), which incorporates user similarities using Laplacian regularization, and GraphUCB (Yang
et al., 2020), which utilizes the random-walk Laplacian matrix to encode user relationships. Note
that neither GOB.Lin nor GraphUCB explicitly performs clustering. All the experiments were con-
ducted on a device equipped with a 3.60 GHz Intel Xeon W-2223 CPU and 32GB RAM. Each
experiment was repeated over 5 random seeds, and the results are reported with confidence intervals
calculated by dividing the standard deviation by the square root of the number of seeds.

6.2 DATASETS GENERATION AND PREPROCESSING

In our experiments, we employ one synthetic dataset and three real-world datasets, MovieLens-
25M (Harper & Konstan, 2015), Last.fm (Cantador et al., 2011), and Yelp (Yelp, 2023). We generate
the synthetic dataset and preprocess the real-world datasets following the same method in previous
studies (Zhang et al., 2020; Li et al., 2024; Dai et al., 2024a;b).

To generate the synthetic dataset, we set the dimension d = 50, the number of users u = 200,
and the total number of arms |A| = 5, 000. The feature vector xa ∈ Rd of each arm a ∈ A and
the preference vector θi ∈ Rd for each user i ∈ [u] are generated by independently sampling each
dimension from a uniform distribution U(−1, 1) and then normalizing to unit length.

For the real-world datasets, MovieLens-25M, Last.fm, and Yelp, we regard movies/artists/businesses
as arms. We extract a subset of |A| = 5, 000 arms with the most quantity of user-assigned rat-
ings/tags, and a subset of u = 200 users who assign the most quantity of ratings/tags. Using the data
extracted above, we create a feedback matrix R of size u× |A|, where each element Ri,j represents

9
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the user i’s feedback to arm j. We assume that the user’s feedback is binary. For the MovieLens
and Yelp datasets, a user’s feedback for a movie/business is 1 if the user’s rating is higher than 3.
For the Last.fm dataset, a user’s feedback for an artist is 1 if the user assigns a tag to the artist. We
generate feature vectors and preference vectors by decomposing R using Singular Value Decompo-
sition (SVD) as R = ΘSAT, where Θ = {θi}i∈[u], and A = {xa}a∈A. Then the top d = 50

dimensions of these vectors associated with the highest singular values in S are extracted.

6.3 EXPERIMENT RESULTS

In the experiment, to incorporate user clustering, we randomly select 50 users and partition them
into 10 clusters. For each cluster j, we calculate the mean preference vector across all users within
that cluster to serve as θj . Note that the number of clusters is unknown to the algorithms. At each
round t, we uniformly draw a user it from the 50 users, and randomly select 100 arms from A to
form the arm set At. The results are presented in Figure 1.

As shown in Figure 1, the algorithms that employ user clustering significantly outperform LinUCB-
Ind and LinUCB-One, which do not consider the similarity among users or cluster users. More
importantly, our graph-based algorithm UniCLUB consistently outperforms the graph-based base-
line CLUB, and our set-based algorithm UniSCLUB is better than the set-based baseline SCLUB
across all four datasets. It is important to note that the modest advantage of UniCLUB/UniSCLUB
over CLUB/SCLUB is both expected and reasonable, given the logarithmic improvement in the re-
gret upper bound. The results demonstrate the effect of uniform exploration and the robustness of
our proposed algorithms across various datasets. More evaluation under the smoothed adversarial
context setting and ablation study can be found in Appendix G.
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Figure 1: Comparison of cumulative regrets in the stochastic context setting.

7 LIMITATIONS AND FUTURE WORK

In this section, we discuss this work’s limitations and potential directions for future research. First,
the open problem of removing the restrictive assumptions in Gentile et al. (2014) remains partially
unresolved. While we have eliminated the stringent assumptions in the stochastic context setting,
we still require an additional (albeit mild) assumption that the gap between different clusters γ has
a known lower bound. Without assuming any knowledge of γ, our algorithm Phase-UniCLUB
achieves a deteriorated regret of Õ(T 2/3). Second, the smoothed adversarial context setting assumes
that the contexts are randomly perturbed. Developing a fully assumption-free solution for the online
clustering of bandits problem or proofing its impossibility, both in the stochastic and adversarial
context settings, remains an open challenge, which we plan to explore in future work.

8 CONCLUSION

In this paper, we proposed two new algorithms for online clustering of bandits, UniCLUB and
UniSCLUB, which incorporate an additional pure exploration phase to enhance the identification
of user clusters. Notably, our algorithms require significantly weaker assumptions while achieving
superior cumulative regret compared to previous studies. Furthermore, we introduced the smoothed
adversarial context setting, which interpolates between i.i.d. and fully adversarial context gener-
ation. We showed that with minor modifications, existing algorithms perform better in this new
setting. Finally, we conducted extensive evaluations to validate the effectiveness of our methods.
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Tor Lattimore, Csaba Szepesvári, and Gellért Weisz. Learning with good feature representations in
bandits and in rl with a generative model. In Proceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org, 2020.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th International Conference
on World Wide Web, WWW ’10, pp. 661–670, 2010.

Shuai Li and Shengyu Zhang. Online clustering of contextual cascading bandits. In Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applica-
tions of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances
in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18, 2018.

Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. Collaborative filtering bandits. In Proceed-
ings of the 39th International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’16, pp. 539–548, 2016. ISBN 9781450340694.

Shuai Li, Wei Chen, Shuai Li, and Kwong-Sak Leung. Improved algorithm on online clustering
of bandits. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19, pp. 2923–2929. International Joint Conferences on Artificial Intelligence
Organization, 7 2019.

Zhuohua Li, Maoli Liu, and John C.S. Lui. Fedconpe: Efficient federated conversational bandits
with heterogeneous clients. In Proceedings of the Thirty-Third International Joint Conference on
Artificial Intelligence, IJCAI-24. International Joint Conferences on Artificial Intelligence Orga-
nization, 2024.

Xutong Liu, Haoru Zhao, Tong Yu, Shuai Li, and John Lui. Federated online clustering of bandits.
In The 38th Conference on Uncertainty in Artificial Intelligence, 2022.

Manish Raghavan, Aleksandrs Slivkins, Jennifer Wortman Vaughan, and Zhiwei Steven Wu. Greedy
algorithm almost dominates in smoothed contextual bandits. SIAM Journal on Computing, 52(2):
487–524, 2023.

Vidyashankar Sivakumar, Steven Wu, and Arindam Banerjee. Structured linear contextual bandits:
A sharp and geometric smoothed analysis. In Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 9026–9035.
PMLR, 13–18 Jul 2020.

Vidyashankar Sivakumar, Shiliang Zuo, and Arindam Banerjee. Smoothed adversarial linear contex-
tual bandits with knapsacks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepes-
vari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 20253–20277.
PMLR, 17–23 Jul 2022.

Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. ACM, 51(3):385–463, may 2004. ISSN 0004-5411.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computa-
tional Mathematics, 12(4):389–434, August 2011. ISSN 1615-3383.

Zhiyong Wang, Jize Xie, Xutong Liu, Shuai Li, and John C.S. Lui. Online clustering of bandits
with misspecified user models. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023a.

Zhiyong Wang, Jize Xie, Tong Yu, Shuai Li, and John C.S. Lui. Online corrupted user detection and
regret minimization. In Thirty-seventh Conference on Neural Information Processing Systems,
2023b.

Weiqiang Wu, Jing Yang, and Cong Shen. Stochastic linear contextual bandits with diverse contexts.
In Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statis-
tics, volume 108 of Proceedings of Machine Learning Research, pp. 2392–2401. PMLR, 26–28
Aug 2020.

Hantao Yang, Xutong Liu, Zhiyong Wang, Hong Xie, John C. S. Lui, Defu Lian, and Enhong Chen.
Federated contextual cascading bandits with asynchronous communication and heterogeneous
users. Proceedings of the AAAI Conference on Artificial Intelligence, 38(18):20596–20603, Mar.
2024.

Kaige Yang, Laura Toni, and Xiaowen Dong. Laplacian-regularized graph bandits: Algorithms and
theoretical analysis. In Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pp. 3133–
3143. PMLR, 26–28 Aug 2020.

Yelp. Yelp Dataset — yelp.com. https://www.yelp.com/dataset, 2023. [Accessed 21-
05-2024].

Xiaoying Zhang, Hong Xie, Hang Li, and John C.S. Lui. Conversational contextual bandit: Algo-
rithm and application. In Proceedings of The Web Conference 2020, WWW ’20, pp. 662–672,
2020.

13

https://www.yelp.com/dataset


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MORE DISCUSSIONS ON RELATED WORK

Leveraging data diversity (i.e., conditions refer to the minimum eigenvalue of a design matrix) in
stochastic linear contextual bandits has two lines of research. The first line involves using additional
“diversity conditions” to improve cumulative regrets. For example, Bastani et al. (2021) introduce a
condition for the disjoint-parameter case, and prove that a non-explorative greedy algorithm achieves
O(log T ) problem-dependent regret on a 2-arm bandit instance. Hao et al. (2020) give a condition
and prove a constant problem-dependent regret for LinUCB in the shared-parameter case. Wu et al.
(2020) show that under some diversity conditions, LinUCB achieves constant expected regret in the
disjoint-parameter case. Ghosh & Sankararaman (2022) use a condition similar to Gentile et al.
(2014) and achieve a problem-independent logarithmic regret for linear contextual bandits. The
second line of research focuses on achieving concurrent statistical inference and regret minimization
(i.e., multi-objective MAB). This involves performing additional tasks on top of regret minimization,
such as clustering (Gentile et al., 2014), model selection (Chatterji et al., 2020; Ghosh et al., 2021a),
personalization (Ghosh et al., 2021b), and exploration under safety constraints (Amani et al., 2019).

B THEORETICAL ANALYSIS OF UNICLUB

Lemma 1. With probability at least 1− δ for any δ ∈ (0, 1), ∀t ∈ [T ] and ∀i ∈ [u],

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤

√
2 log

(
u
δ

)
+ d log

(
1 +

Ti,tL2

λd

)
+
√
λ√

λ+ λmin(Si,t)
.

Proof. Fix a user i ∈ [u], for all t ∈ [T ], we have

θ̂i,t − θj(i) =

λI +
∑

τ∈[t]:iτ=i

xaτ
xT
aτ

−1 ∑
τ∈[t]:iτ=i

xaτ
(xT

aτ
θj(i) + ητ )

− θj(i)

=

λI +
∑

τ∈[t]:iτ=i

xaτx
T
aτ

−1λI +
∑

τ∈[t]:iτ=i

xaτx
T
aτ

θj(i) +
∑

τ∈[t]:iτ=i

xaτ ητ − λθj(i)

− θj(i)

=θj(i) + (λI + Si,t)
−1

∑
τ∈[t]:iτ=i

xaτ ητ − λ(λI + Si,t)
−1θj(i) − θj(i)

=S
−1

i,t

∑
τ∈[t]:iτ=i

xaτ
ητ − λS

−1

i,t θ
j(i),

where we denote Si,t ≜ λI + Si,t = λI +
∑

τ∈[t]:iτ=i xaτ
xT
aτ

.

For any vector x ∈ Rd,

xT
(
θ̂i,t − θj(i)

)
= xTS

−1

i,t

∑
τ∈[t]:iτ=i

xaτ ητ − λxTS
−1

i,t θ
j(i)

=

〈
xT,

∑
τ∈[t]:iτ=i

xaτ
ητ

〉
S

−1
i,t

− λ
〈
x,θj(i)

〉
S

−1
i,t

.

Therefore, by the Cauchy–Schwarz inequality,

∣∣∣xT
(
θ̂i,t − θj(i)

)∣∣∣ ≤ ∥x∥
S

−1
i,t


∥∥∥∥∥∥

∑
τ∈[t]:iτ=i

xaτ
ητ

∥∥∥∥∥∥
S

−1
i,t

+ λ∥θj(i)∥
S

−1
i,t

 (1)

Next, we bound the two terms in the parenthesis. For the first term, consider the σ-algebra Ft =
σ(i1,xa1

, η1, . . . , it,xat
, ηt, it+1,xat+1

), where it and xat
are Ft−1-measurable, and ηt is Ft-

measurable. Let {Ft}∞t=1 be a filtration. By applying Theorem 1 of Abbasi-Yadkori et al. (2011)
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and using the union bound over all users i ∈ [u], we have that for all i ∈ [u] and for all t ∈ [T ], with
probability ≥ 1− δ,∥∥∥∥∥∥

∑
τ∈[t]:iτ=i

xaτ
ητ

∥∥∥∥∥∥
S

−1
i,t

≤

√√√√2 log

(
udet(Si,t)

1
2 det(λI)−

1
2

δ

)

≤

√
2 log

(u
δ

)
+ d log

(
1 +

Ti,tL2

λd

)
,

where we use the standard derivation due to Lemma 16: det(Si,t) ≤
(

tr(Si,t)
d

)d
≤
(
λ+

Ti,tL
2

d

)d
and the fact that det(λI) = λd.

For the second term, by the property of the Rayleigh quotient, for any invertible PSD matrix V and
non-zero vector w, we have

∥w∥2
V −1

∥w∥22
=

wTV −1w

wTw
≤ λmax(V

−1) =
1

λmin(V )
.

Therefore, by the fact that λmin(Si,t) ≥ λ, and the assumption that ∥θj(i)∥2 ≤ 1, we have

λ∥θj(i)∥
S

−1
i,t

≤
√
λ∥θj(i)∥2 ≤

√
λ. (2)

Plugging in x = Si,t

(
θ̂i,t − θj(i)

)
to Equation (1), we have∣∣∣xT

(
θ̂i,t − θj(i)

)∣∣∣ = ∥∥∥θ̂i,t − θj(i)
∥∥∥2
Si,t

≤
∥∥∥Si,t

(
θ̂i,t − θj(i)

)∥∥∥
S

−1
i,t

(√
2 log

(u
δ

)
+ d log

(
1 +

Ti,tL2

λd

)
+

√
λ

)

=
∥∥∥θ̂i,t − θj(i)

∥∥∥
Si,t

(√
2 log

(u
δ

)
+ d log

(
1 +

Ti,tL2

λd

)
+

√
λ

)
.

Again, by the property of the Rayleigh quotient, for any PSD matrix V and non-zero vector w,

λmin(V ) ≤ wTV w

wTw
=

∥w∥2V
∥w∥22

=⇒ ∥w∥2 ≤ ∥w∥V√
λmin(V )

.

Therefore, dividing
∥∥∥θ̂i,t − θj(i)

∥∥∥
Si,t

on both sides and applying the above inequality, we get

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤

√
2 log

(
u
δ

)
+ d log

(
1 +

Ti,tL2

λd

)
+
√
λ√

λmin(Si,t)

≤

√
2 log

(
u
δ

)
+ d log

(
1 +

Ti,tL2

λd

)
+
√
λ√

λ+ λmin(Si,t)
,

where in the last inequality we use λmin(λI + Si,t) ≥ λmin(λI) + λmin(Si,t), due to Weyl’s
inequality.

Lemma 2. In the uniform exploration phase of Algorithm 1, with probability at least 1− δ for any
δ ∈ (0, 1), if Ti,t ≥ 8L2

λx
log
(
ud
δ

)
for all users i ∈ [u], we have

λmin(Si,t) ≥
λxTi,t

2
,∀i ∈ [u].
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Proof. To apply the matrix Chernoff bound (Lemma 12), we first verify the required two condi-
tions for the self-adjoint matrices xaτ

xT
aτ

for any τ ∈ [t]. First, due to the generation process
of feature vectors, xaτ

xT
aτ

is independent and obviously positive semi-definite. Second, by the
Courant-Fischer theorem, we have

λmax(xaτ
xT
aτ
) = max

w:∥w∥=1
wTxaτ

xT
aτ
w = max

w:∥w∥=1
(wTxaτ

)2 ≤ max
w:∥w∥=1

∥w∥2∥xaτ
∥2 ≤ L2.

According to Algorithm 1, in the uniform exploration phase, for all τ ∈ [t], aτ is uniformly selected
in Aτ . Also, by Assumption 3, all the feature vectors in Aτ are independently sampled from X ,
therefore by Lemma 15, xaτ follows the same distribution as X .

So for a fixed user i ∈ [u], we can compute

µmin = λmin

 ∑
τ∈[t]:iτ=i

E[xaτx
T
aτ
]

 = λmin

(
Ti,t E[XXT]

)
= Ti,tλx,

where the last equality is due to the minimum eigenvalue in Assumption 3. Now applying
Lemma 12, we get for any ε ∈ (0, 1),

Pr [λmin(Si,t) ≤ (1− ε)Ti,tλx] ≤ d

[
e−ε

(1− ε)1−ε

]Ti,tλx/L
2

.

Choosing ε = 1
2 , we get

Pr

[
λmin(Si,t) ≤

Ti,tλx

2

]
≤ d
(√

2e−
1
2

)Ti,tλx/L
2

.

Letting the RHS be δ
u , we get Ti,t =

L2 log(ud
δ )

λx(
1
2−log(2))

. Therefore, for any fixed user i ∈ [u],

λmin(Si,t) ≥ Ti,tλx

2 holds with probability at least 1 − δ
u when Ti,t ≥ 8L2

λx
log
(
ud
δ

)
. The proof

follows by a union bound over all users i ∈ [u].

Lemma 3. With probability at least 1− 3δ, Algorithm 1 can cluster all the users correctly after

T0 ≜ 16u log
(u
δ

)
+ 4umax

{
8L2

λx
log

(
ud

δ

)
,
512d

γ̃2λx
log
(u
δ

)}
. (3)

Proof. Combining Lemma 1 and Lemma 2, we have with probability at least 1 − 2δ, when Ti,t ≥
8L2

λx
log
(
ud
δ

)
for all users i ∈ [u],

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤

√
2 log

(
u
δ

)
+ d log

(
1 +

Ti,tL2

λd

)
+
√
λ√

λ+ λmin(Si,t)

≤

√
2 log

(
u
δ

)
+ d log

(
1 +

Ti,tL2

λd

)
+
√
λ√

λ+ Ti,tλx/2
≜ f(Ti,t),∀i ∈ [u].

Next, we find a sufficient time step Ti,t such that the following holds:

f(Ti,t) ≜

√
2 log

(
u
δ

)
+ d log

(
1 +

Ti,tL2

λd

)
+
√
λ√

λ+ Ti,tλx/2
≤ γ̃

4
. (4)

We assume λ ≤ 2 log
(
u
δ

)
+ d log

(
1 +

Ti,tL
2

λd

)
, which typically holds. Then a sufficient condition

for Equation (4) is

2 log
(
u
δ

)
+ d log

(
1 +

Ti,tL
2

λd

)
λ+ Ti,tλx/2

≤ γ̃2

64
.
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To make the above equation to hold, it suffices to let

2 log
(
u
δ

)
Ti,tλx/2

≤ γ̃2

128
and

d log
(
1 +

Ti,tL
2

λd

)
Ti,tλx/2

≤ γ̃2

128
.

The first inequality holds when Ti,t ≥
512 log(u

δ )

γ̃2λx
. For the second inequality, by some basic arithmetic

(Lemma 14), a sufficient condition is Ti,t ≥ 512d
γ̃2λx

log
(

256L2

γ̃2λλx

)
. By choosing δ such that u

δ ≥ 256L2

γ̃2λλx
,

we get a sufficient condition for Equation (4): Ti,t ≥ 512d
γ̃2λx

log
(
u
δ

)
.

In summary, in the uniform exploration phase of Algorithm 1, with probability at least 1 − 2δ for
some δ > 0, when

Ti,t ≥ max

{
8L2

λx
log

(
ud

δ

)
,
512d

γ̃2λx
log
(u
δ

)}
,∀i ∈ [u] (5)

we have
∥∥∥θ̂i,t − θj(i)

∥∥∥
2
≤ f(Ti,t) ≤ γ̃

4 for all users i ∈ [u].

Because of Assumption 1, users arrive uniformly, so by Lemma 13 and a union bound over all users
i ∈ [u], Equation (5) holds for all i ∈ [u] with probability at least 1− δ when

t ≥ T0 ≜ 16u log
(u
δ

)
+ 4umax

{
8L2

λx
log

(
ud

δ

)
,
512d

γ̃2λx
log
(u
δ

)}
.

Therefore, with probability 1− 3δ, we have
∥∥∥θ̂i,t − θj(i)

∥∥∥
2
≤ f(Ti,t) ≤ γ̃

4 ,∀i ∈ [u] when t ≥ T0.

Next, we show that under this condition, the algorithm will cluster all the users correctly. To guar-
antee this, we need to verify two aspects: (1) if users k, ℓ are in the same cluster, then the algorithm
will not delete edge (k, ℓ); (2) if users k, ℓ are not in the same cluster, then the algorithm will delete
edge (k, ℓ). We show the contrapositive of (1): if edge (k, ℓ) is deleted, then users k, ℓ are not in the
same cluster. Due to the triangle inequality and the deletion rule in Algorithm 1, we have∥∥∥θj(k) − θj(ℓ)

∥∥∥
2
≥
∥∥∥θ̂k,t − θ̂ℓ,t

∥∥∥
2
−
∥∥∥θ̂k,t − θj(k)

∥∥∥
2
−
∥∥∥θ̂ℓ,t − θj(ℓ)

∥∥∥
2

≥
∥∥∥θ̂k,t − θ̂ℓ,t

∥∥∥
2
− f(Tk,t)− f(Tℓ,t) > 0.

So by Assumption 2,
∥∥θj(k) − θj(ℓ)

∥∥
2
> 0 implies that users k, ℓ are not in the same cluster. For

(2), we show that if
∥∥θj(k) − θj(ℓ)

∥∥
2
≥ γ̃, the algorithm will delete edge (k, ℓ). By the triangle

inequality, ∥∥∥θ̂k,t − θ̂ℓ,t

∥∥∥
2
≥
∥∥∥θj(k) − θj(ℓ)

∥∥∥
2
−
∥∥∥θ̂k,t − θj(k)

∥∥∥
2
−
∥∥∥θ̂ℓ,t − θj(ℓ)

∥∥∥
2

≥ γ̃ − γ̃

4
− γ̃

4
=

γ̃

2
≥ f(Tk,t) + f(Tℓ,t),

which triggers Algorithm 1 to delete edge (k, ℓ).

Lemma 4. With probability at least 1− 4δ, for all t > T0, we have∣∣∣xT
a

(
θ̂Vt,t−1 − θj(it)

)∣∣∣ ≤ β∥xa∥M−1
Vt,t−1

≜ Ca,t,

where β =
√
d log(1 + TL2

dλ ) + 2 log( 1δ ) +
√
λ.

Proof. Assume that after T0, the underlying clusters are identified correctly, meaning that Vt is the
true cluster that contains user it, i.e., Vt = Ij(it) then we have

θ̂Vt,t−1 − θj(it) =

λI +
∑

τ∈[t−1]:iτ∈Vt

xaτx
T
aτ

−1 ∑
τ∈[t−1]:iτ∈Vt

rτxaτ

− θj(it)
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=

λI +
∑

τ∈[t−1]:iτ∈Vt

xaτx
T
aτ

−1 ∑
τ∈[t−1]:iτ∈Vt

xaτ

(
xT
aτ
θit + ητ

)− θj(it) (6)

=M
−1

Vt,t−1

λI +
∑

τ∈[t−1]:iτ∈Vt

xaτx
T
aτ

θit − λθit +
∑

τ∈[t−1]:iτ∈Vt

xaτ ητ

− θj(it)

=− λM
−1

Vt,t−1θit +M
−1

Vt,t−1

∑
τ∈[t−1]:iτ∈Vt

xaτ
ητ ,

where we denote MVt,t−1 = λI + MVt,t−1. Equation (6) is because Vt is the true cluster that
contains it, thus by Assumption 2, θiτ = θit ,∀iτ ∈ Vt. Therefore, we have∣∣∣xT

a

(
θ̂Vt,t−1 − θj(it)

)∣∣∣ ≤ λ
∣∣∣xT

aM
−1

Vt,t−1θ
j(it)

∣∣∣+
∣∣∣∣∣∣xT

aM
−1

Vt,t−1

∑
τ∈[t−1]:iτ∈Vt

xaτ
ητ

∣∣∣∣∣∣
=λ

∣∣∣∣〈xa,θ
j(it)

〉
M

−1
Vt,t−1

∣∣∣∣+
∣∣∣∣∣∣∣
〈
xa,

∑
τ∈[t−1]:iτ∈Vt

xaτ
ητ

〉
M

−1
Vt,t−1

∣∣∣∣∣∣∣
≤λ∥xa∥M−1

Vt,t−1

∥∥∥θj(it)
∥∥∥
M

−1
Vt,t−1

+ ∥xa∥M−1
Vt,t−1

∥∥∥∥∥∥
∑

τ∈[t−1]:iτ∈Vt

xaτ ητ

∥∥∥∥∥∥
M

−1
Vt,t−1

(7)

≤∥xa∥M−1
Vt,t−1

√
λ+

∥∥∥∥∥∥
∑

τ∈[t−1]:iτ∈Vt

xaτ
ητ

∥∥∥∥∥∥
M

−1
Vt,t−1

, (8)

where Equation (7) is by the Cauchy–Schwarz inequality and Equation (8) is derived by Equa-
tion (2). Following Theorem 1 in Abbasi-Yadkori et al. (2011), with probability at least 1− δ, for a
fixed user i ∈ [u], we have∥∥∥∥∥∥

∑
τ∈[t−1]:iτ∈Vt

xaτ
ητ

∥∥∥∥∥∥
M

−1
Vt,t−1

≤

√√√√2 log

(
det(MVt,t−1)

1
2 det(λI)−

1
2

δ

)

=

√
2 log

(
1

δ

)
+ log

(
det(MVt,t−1)

det(λI)

)

≤

√
2 log

(
1

δ

)
+ d log

(
1 +

TL2

λd

)
, (9)

where in Equation (9), we use det(λI) = λd and by Lemma 16, we get

det(MVt,t−1) ≤
(
tr(MVt,t−1)

d

)d

=

 tr(λI) + tr

(∑
τ∈[t−1]
iτ∈Vt

xaτx
T
aτ

)
d


d

≤
(
λd+ TL2

d

)d

.

Since the clusters are correctly identified after T0 with probability at least 1 − 3δ (Lemma 3), and
Equation (9) holds with probability at least 1 − δ. By plugging Equation (9) into Equation (8) and
collecting high probability events, we conclude the proof.

Lemma 5. Under the high probability event in Lemma 3, for any cluster j ∈ [m], we have
T∑

t=T0+1
it∈Ij

min

{
1, ∥xat∥

2

M
−1
Ij ,t−1

}
≤ 2d log

(
1 +

TL2

λd+ 4L2

)
,

where M
−1

Ij ,t−1 ≜ λI +
∑

τ∈[t−1]:iτ∈Ij
xaτ

xT
aτ

= λI +
∑

τ∈[t−1] 1{iτ ∈ Ij}xaτ
xT
aτ

.
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Proof. The proof mainly follows Lemma 9 in Abbasi-Yadkori et al. (2011), but we improve the
bound by leveraging Lemma 2.

Consider the covariance matrix of cluster Ij after time T , we have

det
(
MIj ,T

)
=det

(
MIj ,T−1 + 1{iT ∈ Ij}xaT

xT
aT

)
=det

(
M

1
2

Ij ,T−1

(
I +M

− 1
2

Ij ,T−11{iT ∈ Ij}xaT
xT
aT

M
− 1

2

Ij ,T−1

)
M

1
2

Ij ,T−1

)
=det

(
MIj ,T−1

)
det

(
I + 1{iT ∈ Ij}M

− 1
2

Ij ,T−1xaT

(
M

− 1
2

Ij ,T−1xaT

)T)
=det

(
MIj ,T−1

)(
1 + 1{iT ∈ Ij}

∥∥∥M− 1
2

Ij ,T−1xaT

∥∥∥2) (10)

=det
(
MIj ,T−1

)(
1 + 1{iT ∈ Ij}∥xaT

∥2
M

−1
Ij ,T−1

)
=det(MIj ,T0)

T∏
t=T0+1

(
1 + ∥xat∥

2

M
−1
Ij ,t−1

)
, (11)

where Equation 10 is due to the property that all the eigenvalues of a matrix of the form I + xxT

are one except one eigenvalue, which is 1 + ∥x∥2. And Equation 11 is by telescoping.

Since we assume the high probability event in Lemma 3 happens, when t > T0, we have

Ti,t ≥ max

{
8L2

λx
log

(
ud

δ

)
,
512d

γ̃2λx
log
(u
δ

)}
≥ 8L2

λx
log

(
ud

δ

)
,∀i ∈ [u].

Note that MIj ,T0
= λI +

∑T0

τ=1:iτ∈Ij
xaτ

xT
aτ

= λI +
∑

i∈Ij
Si,T0

. So by Lemma 2, we have

tr
(
MIj ,T0

)
= tr

λI +
∑
i∈Ij

Si,T0


≥ λd+

∑
i∈Ij

λx

2

8L2

λx
log

(
ud

δ

)
≥ λd+ 4L2 log

(
ud

δ

)
(12)

Therefore, taking logarithms on both sides of Equation (11), we have

log
(
det
(
MIj ,T

))
= log(det

(
MIj ,T0

)
) +

T∑
t=T0+1

log

(
1 + ∥xat∥

2

M
−1
Ij ,t−1

)
. (13)

Since x ≤ 2 log(1 + x) for x ∈ [0, 1], by Equation 13, we get

T∑
t=T0+1

min

{
1, ∥xat

∥2
M

−1
Ij ,t−1

}
≤ 2

T∑
t=T0+1

log

(
1 + ∥xat

∥2
M

−1
Ij ,t−1

)
= 2
[
log
(
det
(
MIj ,T

))
− log

(
det
(
MIj ,T0

))]
(14)

≤ 2

[
d log

(
tr(MIj ,T )

d

)
− d log

(
tr
(
MIj ,T0

)
d

)]
(15)

≤ 2

[
d log

(
λd+ TL2

d

)
− d log

(
λd+ 4L2 log

(
ud
δ

)
d

)]
(16)

≤ 2d log

(
1 +

TL2

λd+ 4L2

)
.

where Equation (14) uses Equation (13). Equation (15) uses the determinant-trace inequality
Lemma 16. Equation (16) uses Equation (12).
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Theorem 1 (Regret of UniCLUB). Under the stochastic context setting (Assumptions 1, 2, 3), the
expected regret of the UniCLUB (Algorithm 1) satisfies:

E[R(T )] = O

(
ud

γ̃2λx
log(T ) + d

√
mT log(T )

)
.

Proof. Define events:

E1 = {all users are correctly clustered after T0}.

E2 =
{∣∣∣xT

a

(
θ̂Vt,t−1 − θj(it)

)∣∣∣ ≤ β∥xa∥M−1
Vt,t−1

,∀t ≥ T0

}
.

Let E = E1 ∩ E2. By Lemma 3 and 4, E happens with probability at least 1 − 4δ. Then let δ = 1
T

and by the law of total expectations:

E[R(T )] = E[R(T ) | E ] Pr [E ] + E[R(T ) | Ec] Pr [Ec]

≤ E[R(T ) | E ]× 1 + T × 4

T
. (17)

It remains to bound E[R(T ) | E ], i.e., the expected cumulative regret conditioned on event E .

Assume E happens, by the bounded reward assumption, we can upper bound the regret in the first
T0 rounds by T0. After T0, the instantaneous regret at round t satisfies:

Rt = xT
a∗
t
θj(it) − xT

at
θj(it)

= xT
a∗
t

(
θj(it) − θ̂Vt,t−1

)
+
(
xT
a∗
t
θ̂Vt,t−1 + Ca∗

t ,t

)
−
(
xT
at
θ̂Vt,t−1 + Cat,t

)
+ xT

at

(
θj(it) − θ̂Vt,t−1

)
− Ca∗

t ,t
+ Cat,t

≤ Ca∗
t ,t

+ Cat,t − Ca∗
t ,t

+ Cat,t = 2Cat,t,

where the inequality is due to Lemma 4 and the UCB arm selection strategy of our algorithm.

Therefore, we can bound the cumulative regret conditioned on event E as follows:

R(T ) =

T∑
t=1

Rt =

T0∑
t=1

Rt +

T∑
t=T0+1

Rt

≤ T0 +

T∑
t=T0+1

min{2, Rt} (18)

≤ T0 +

m∑
j=1

∑
T0<t≤T
it∈Ij

min
{
2, 2β∥xat

∥
M

−1
It,t−1

}
(19)

≤ T0 + 2β

m∑
j=1

∑
T0<t≤T
it∈Ij

min
{
1, ∥xat

∥
M

−1
It,t−1

}

≤ T0 + 2β

m∑
j=1

√√√√TIj

∑
T0<t≤T
it∈Ij

min
{
1, ∥xat

∥2
M

−1
It,t−1

}
(20)

≤ T0 + 2β

m∑
j=1

√
TIj

√
2d log

(
1 +

TL2

λd+ 4L2

)
(21)

≤ T0 + 2β
√
mT

√
2d log

(
1 +

TL2

λd+ 4L2

)
(22)

≤ T0 + 2

(√
d log

(
1 +

TL2

dλ

)
+ 2 log

(
1

δ

)
+
√
λ

)√
2dmT log

(
1 +

TL2

λd+ 4L2

)
, (23)
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where Equation (18) uses Rt ≤ 2. Equation (19) uses Lemma 4. Equation (20) uses the Cauchy-
Schwarz inequality, and we denote the number of times cluster j is selected as TIj

. Equation (21)
uses Lemma 5. And Equation (22) is due to the Cauchy-Schwarz inequality and

∑m
j=1 TIj

= T .

Let δ = 1
T and plug Equations (23) and (3) into Equation (17), we have

E[R(T )] ≤ 4 + T0 + 2

(√
d log

(
1 +

TL2

dλ

)
+ 2 log(T ) +

√
λ

)√
2dmT log

(
1 +

TL2

λd+ 4L2

)
≤ 4 + 16u log(uT ) + 4umax

{
8L2

λx
log(udT ),

512d

γ̃2λx
log(uT )

}
+ 2

(√
d log

(
1 +

TL2

dλ

)
+ 2 log(T ) +

√
λ

)√
2dmT log

(
1 +

TL2

λd+ 4L2

)
= O

(
ud

γ̃2λx
log(T ) + d

√
mT log(T )

)
.

C THE SET-BASED ALGORITHM UNISCLUB

C.1 DETAILS OF THE UNISCLUB ALGORITHM

In this section, we introduce a set-based algorithm named Uniform Exploration Set-based Clustering
of Bandits (UniSCLUB), which is inspired by SCLUB Li et al. (2019). Instead of using a graph
structure to maintain the clustering information, SCLUB uses a set structure for the same purpose.
UniSCLUB inherits the set structure from SCLUB, but incorporates the uniform exploration to
enhance its performance. The set structure not only supports the split operations which are similar
to those in the graph structure, but also enables the merging of two clusters when the algorithm
identifies that their estimated preference vectors are closely aligned. By allowing for both split and
merge operations, UniSCLUB can adapt to the underlying clusters more flexibly and expedite the
overall clustering process.

The details of UniSCLUB are shown in Algorithm 2. The algorithm maintains information at two
levels. At the cluster level, a cluster index J contains the indices of currently existing clusters,
and for each cluster j ∈ J , the algorithm maintains the set of users Cj in this cluster and other
corresponding information such as the estimated preference vector θ̂j . Initially, there is only a single
cluster containing all users. At the user level, for each user i, the algorithm maintains the estimated
preference vector θ̂i,t at round t and other corresponding information. Additionally, all users and
clusters are associated with a “checked” or “unchecked” status to indicate the estimation accuracy of
their preference vectors. UniSCLUB proceeds in phases (Line 1) and each phase s ∈ N+ consists
of 2s−1 rounds. At the beginning of each phase, all users revert to the “unchecked” status (Line 2).
When a user first appears in a phase, it will be marked as “checked” (Line 14). A cluster is marked as
”checked” once all its users are checked. The algorithm will only consider merging checked clusters,
so as to avoid premature merging because of inaccurate preference vector estimation. At round t,
a user it comes with a set At of items (Line 4). If t ≤ 2T0 (with T0 defined in Equation (24)),
UniSCLUB uniformly selects the arm at from At (Line 9). Otherwise, it determines the cluster
j to which the user it belongs and selects the item at based on the cluster information (Lines 6
and 7). The algorithm updates the corresponding information of both the user and the cluster after
receiving the feedback of the selected item (Lines 10 to 12). Then the algorithm determines whether
any split or merge operations are necessary (Lines 13 and 15). If the estimated preference vector of
any user within the cluster j diverges from that of user it, the algorithm will split it from the cluster
(Algorithm 3). If the estimated preference vectors of two checked clusters are closely aligned, a
merge operation will be performed (Algorithm 4) .

Since no clustering information is utilized during the uniform exploration period, UniSCLUB can
only update the user-level information. Then the algorithm clusters all users at round 2T0, and
continues updating both user and cluster information subsequently. This implementation makes
UniSCLUB more efficient and robust compared to SCLUB.
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Algorithm 2: UniSCLUB: Uniform Exploration Set-based Clustering of Bandits
Input: λ, β, λx, δ, L, γ̃
Initialization: Initialize the cluster indexes by J = {1}.
Let M1 = 0d×d,M

1
= λI, b0 = 0d×1, T

0 = 0, C1 = [u].
Let Si,0 = 0d×d, bi,0 = 0d×1, Ti,0 = 0,∀i ∈ [u].

Define f(Ti,t) = (
√
2 log(u/δ) + d log(1 +

Ti,tL2

λd ) +
√
λ)/
√

λ+ Ti,tλx/2.

Define T0 ≜ 16u log
(
u
δ

)
+ 4umax

{
8L2

λx
log
(
ud
δ

)
, 512d
γ̃2λx

log
(
u
δ

)}
.

1 for s = 1, 2, . . . do
2 Mark every user unchecked for each cluster.
3 for t = 2s−1, . . . , 2s − 1 (terminate when t > T ) do
4 Receive user index it and arm set At

5 if t > 2T0 then
6 Find the cluster j ∈ J satisfying it ∈ Cj

7 Select arm at = argmaxa∈At
(θ̂j)Txa + β

√
xT
a (M

j
)−1xa

8 else
9 Select at uniformly at random from At

10 Receive reward rt
11 Update statistics for user it, others remain unchanged:

Sit,t = Sit,t−1 + xat
xT
at
, bit,t = bit,t−1 + rtxat

Tit,t = Tit,t−1 + 1, θ̂it,t = (λI + Sit,t)
−1

bit,t
12 Update statistics for cluster j, others remain unchanged:

M j = M j + xat
xT
at
, bj = bj + rtxat

T j = T j + 1, M
j
= M j + λI, θ̂j = (M

j
)−1bj

13 Run Split
14 Mark user it as checked
15 Run Merge

Algorithm 3: Split

1 if ∃i′ ∈ Cj s.t.
∥∥∥θ̂it,t − θ̂i′,t

∥∥∥ > f(Tit,t) + f(Ti′,t) then
2 Split user it from the cluster j:

M j = M j − Sit,t, bj = bj − bit,t, T j = T j − Tit,t, Cj = Cj \ {it}
M

j
= M j + λI, θ̂j = (M

j
)−1bj

3 Generate a new cluster j′ containing only user it:

M j′ = Sit,t, bj
′
= bit,t, T j′ = Tit,t, Cj′ = {it} M

j′

= M j′ + λI, θ̂j′ = θ̂it,t
4 J = J ∪ {j′}

C.2 THEORETICAL ANALYSIS OF UNISCLUB

Theorem 2 (Regret of UniSCLUB). Under the stochastic context setting (Assumptions 1, 2, 3), the
expected regret of the UniSCLUB (Algorithm 2) satisfies:

E[R(T )] = O

(
ud

γ̃2λx
log(T ) + d

√
mT log(T )

)
.

Proof. From Lemma 6, Algorithm 2 will have correct clusers after 2T0 with probability ≥ 1− 3δ.
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Algorithm 4: Merge
1 for any two checked clusters j1, j2 ∈ J do
2 if

∥∥∥θ̂j1 − θ̂j2

∥∥∥ < f(T j1) + f(T j2) then
3 Merge clusters j1 and j2:

M j1 = M j1 +M j2 , bj1 = bj1 + bj2 , T j1 = T j1 + T j2 , Cj1 = Cj1 ∪ Cj2

M
j1

= M j1 + λI, θ̂j1 = (M
j1
)−1bj1

4 J = J \ {j2}

Based on Lemma 6 and with T0 replaced by 2T0, we can derive the counterparts of Lemma 4 and
Lemma 5. Then, similar to the proof of Theorem 1, we have

E[R(T )] ≤ 4 + 2T0 + 2

(√
d log

(
1 +

TL2

dλ

)
+ 2 log(T ) +

√
λ

)√
2dmT log

(
1 +

TL2

λd+ 4L2

)
≤ 4 + 32u log(uT ) + 8umax

{
8L2

λx
log(udT ),

512d

γ̃2λx
log(uT )

}
+ 2

(√
d log

(
1 +

TL2

dλ

)
+ 2 log(T ) +

√
λ

)√
2dmT log

(
1 +

TL2

λd+ 4L2

)
= O

(
ud

γ̃2λx
log(T ) + d

√
mT log(T )

)
.

Lemma 6. With probability at least 1−3δ, Algorithm 2 can cluster all the users correctly after 2T0,
where

T0 ≜ 16u log
(u
δ

)
+ 4umax

{
8L2

λx
log

(
ud

δ

)
,
512d

γ̃2λx
log
(u
δ

)}
. (24)

Proof. From Lemma 3, with probability at least 1 − 3δ, we have
∥∥∥θ̂i,t − θj(i)

∥∥∥
2
≤ f(Ti,t) ≤

γ̃
4 ,∀i ∈ [u], when t ≥ T0.

We now show that under this condition, Algorithm 2 will split well, i.e, the current clusters are
subsets of true clusters. To guarantee this, at round t, for the user it and the corresponding cluster
j, we need to verify that: (1) if the current cluster j is a subset of the ground-truth cluster of user it,
then user it will not be split from the cluster j. (2) if the current cluster j contains users that are not
in the same ground-truth cluster as user it, then user it will be split from the cluster j.

To prove (1), we show the contrapositive of (1): if user it is split from the cluster j, the cluster j
contains users such that it and these users are from different ground-truth clusters.

If user it is split from the cluster j by Algorithm 3, i.e., there exists some user i′ ∈ Cj such that∥∥∥θ̂it,t − θ̂i′,t

∥∥∥ > f(Tit,t) + f(Ti′,t), due to the triangle inequality, we have

∥θj(it) − θj(i′)∥2 ≥ ∥θ̂it,t − θ̂i′,t∥2 − ∥θ̂it,t − θj(it)∥2 − ∥θ̂i′,t − θj(i′)∥2
≥ ∥θ̂it,t − θ̂i′,t∥2 − f(Tit,t)− f(Ti′,t) > 0.

By Assumption 3,
∥∥∥θj(it) − θj(i′)

∥∥∥
2
> 0 implies that users it, i′ are not in the same true cluster.

To prove (2), we show that if there exists some user i′ ∈ Cj and
∥∥∥θj(it) − θj(i′)

∥∥∥
2
> γ̃, we have∥∥∥θ̂it,t − θ̂i′,t

∥∥∥
2
≥
∥∥∥θj(it) − θj(i′)

∥∥∥
2
−
∥∥∥θ̂it,t − θj(it)

∥∥∥
2
−
∥∥∥θ̂i′,t − θj(i′)

∥∥∥
2
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> γ̃ − γ̃

4
− γ̃

4
=

γ̃

2
≥ f(Tit,t) + f(Ti′,t),

which satisfies the condition of splitting. Thus, user it will be split out from the current cluster j.

Therefore, when t > T0, each existing cluster at t will not contain users from different true clusters.

Now we show that Algorithm 2 will merge well so that only correct clusters remain. For two checked
clusters j1 and j2, we need to verify that: (1) if j1 and j2 are not merged, they are from different
true clusters. (2) if j1 and j2 are merged, they are from the same true cluster.

We only consider the case where the existing clusters are subsets of ground-truth clusters because
of splitting. For convenience, we denote the true preference vectors of clusters j1 and j2 by θj1 and
θj2 , which is reasonable since each of they only contains users with the same preference vector.

To prove (1), if j1 and j2 are not merged, i.e.,
∥∥∥θ̂j1 − θ̂j2

∥∥∥ ≥ f(T j1) + f(T j2), by the triangle
inequality, we have

∥θj1 − θj2∥2 ≥ ∥θ̂j1 − θ̂j2∥2 − ∥θ̂j1 − θj1∥2 − ∥θ̂j2 − θj2∥2
≥ ∥θ̂j1 − θ̂j2∥2 − f(T j1)− f(T j2) > 0,

which implies that j1 and j2 are from two different true clusters.

To prove (2), we show a contraction: if j1 and j2 are merged, but they are from different true clusters,
i.e., ∥θj1 − θj2∥2 > γ̃, we have

∥θ̂j1 − θ̂j2∥2 ≥ ∥θj1 − θj2∥2 − ∥θ̂j1 − θj1∥2 − ∥θ̂j2 − θj2∥2

≥ γ̃ − f(T j1)− f(T j2) ≥ γ̃

2
≥ (f(T j1) + f(T j2)),

because that f(T j1) + f(T j2) ≤ γ̃
2 . However, this contradicts the condition of merging. Therefore,

if j1 and j2 are merged, they are from the same true cluster.

We double the time T0 to 2T0 to ensure that all users in each cluster can be checked and provide
sufficient time for the split and merge operations. Therefore, after 2T0, all the clusters are the
ground-truth clusters with probability at least 1− 3δ.

D THE PHASE-BASED ALGORITHM WITHOUT KNOWLEDGE OF γ

D.1 DETAILS OF THE PHASE-UNICLUB ALGORITHM

In this section, we provide an algorithm Phase-UniCLUB (in Algorithm 5) for the online cluster-
ing of bandits when the preference vectors’ distance γ between clusters is completely unknown. We
also theoretically provide an upper bound of its regret in Theorem 3.

For convenience, we first define the following notations used in Phase-UniCLUB:

T ′
0 ≜ 16u log

(u
δ

)
+ 4u · 8L

2

λx
log

(
ud

δ

)
, T (s) ≜ 4u · 512d

2−sλx
log
(u
δ

)
. (25)

Same as UniCLUB (in Algorithm 1), Phase-UniCLUB also maintains a dynamic undirected graph
Gt = ([u], Et) over all users for the purpose of clustering. However, to cope with the unknown γ,
Phase-UniCLUB leverages the idea of the doubling trick. Specifically, as depicted in Algorithm 5,
the algorithm first runs for T ′

0 rounds with uniform exploration (Line 1 to Line 5). Then, it proceeds
in phases. For each phase s = 0, 1, . . ., we divide it into two subphases: (1) the first subphase
(named the exploration subphase), consisting of T (s) rounds, where Phase-UniCLUB selects an
item uniformly from the item set for each coming user (Line 11); (2) the second subphase (named the
UCB subphase), containing (2s/2 − 1)T (s) rounds, where Phase-UniCLUB identifies the cluster
of each coming user (Line 13) and selects an item based on the estimated preference vector of the
cluster (Line 16). Meanwhile, in each round, after receiving the reward feedback (Line 17), the
algorithm updates statistics for user it (Line 18), and determine whether to delete any edge between
it and its neighbors (Line 19).
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Algorithm 5: Phase-UniCLUB: Phase-based Uniform Exploration Clustering of Bandits
Input: λ, β, λx, δ, L
Initialization: Let G0 = ([u], E0) be a complete graph.
Let Si,0 = 0d×d, bi,0 = 0d×1, Ti,0 = 0,∀i ∈ [u].

Define f(Ti,t) = (
√
2 log(u/δ) + d log(1 +

Ti,tL2

λd ) +
√
λ)/
√

λ+ Ti,tλx/2.
1 for t = 1, 2, . . . , T ′

0 do
2 Receive user index it and arm set At

3 Select at uniformly at random from At

4 Receive reward rt

5 Update statistics for user it: Sit,t, bit,t, Tit,t, θ̂it,t

6 for s = 0, 1, . . . do
7 for τ = 1, 2, . . . , 2

s
2 · T ′

s (terminate when t > T ) do
8 t = t+ 1
9 Receive user index it and arm set At

10 if τ ≤ T ′
s then

11 Select at uniformly at random from At

12 else
13 Find all neighbors of user it in Gt−1 and include it to form the cluster Vt

14 MVt,t−1 =
∑

i∈Vt
Si,t−1, MVt,t−1 = λI +MVt,t−1

15 bVt,t−1 =
∑

i∈Vt
bi,t−1, θ̂Vt,t−1 = M

−1

Vt,t−1bVt,t−1, TVt,t−1 =
∑

i∈Vt
Ti,t

16 Select arm at = argmaxa∈At
θ̂T
Vt,t−1xa + β

√
xT
aM

−1

Vt,t−1xa

17 Receive reward rt

18 Update statistics for user it: Sit,t, bit,t, Tit,t, θ̂it,t
19 Delete edge (it, ℓ) ∈ Et−1 if∥∥∥θ̂it,t − θ̂ℓ,t

∥∥∥ > f(Tit,t) + f(Tℓ,t)

and obtain an updated graph Gt = ([u], Et)

Due to insufficient information about the distance gap γ, Phase-UniCLUB keeps uniformly ex-
ploring users’ item sets. Unlike UniCLUB, Phase-UniCLUB distributes the uniform exploration
across all phases. During the exploration subphase of each phase s, Phase-UniCLUB focuses on
estimating the users’ preference vectors to a precision level of γs. In the subsequent UCB subphase,
it clusters users based on the current precision level. If γs > γ, there is a risk of users being incor-
rectly assigned to clusters they are not belonging to. To mitigate this risk of misclustering, when a
user appears, Phase-UniCLUB only identifies the neighbors of the user to form a cluster, rather
than finding the user’s entire connected component as in UniCLUB. Additionally, with carefully
chosen phase lengths, the regret of Phase-UniCLUB can be bounded sublinearly. The approach
of identifying only neighbors is also applied in Wang et al. (2023a), but to avoid misclustering due
to model misspecification. Moreover, Phase-UniCLUB achieves better regret bound compared to
that in Wang et al. (2023a). While their regret term associated with this error is linear with respect
to T , ours scales as T 2/3.

D.2 THEORETICAL ANALYSIS OF PHASE-UNICLUB

To bound the cumulative regret of Phase-UniCLUB, we present the following lemmas.

Lemma 7. Denote γs ≜ 2−
s
2 and Cp =

√
2λx

1024ud . With probability at least 1 −
3 log2

(
Cp

T
log (u/δ) + 1

)
δ, after the exploration subphase in any phase s = 0, 1, . . ., for all users

i ∈ [u], we have ∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤ γs

4
.
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Proof. According to Lemma 3, with probability ≥ 1 − 3δ, after the exploration subphase in phase
s = 0, 1, . . ., for any user i ∈ [u], we have∥∥∥θ̂i,t − θj(i)

∥∥∥
2
≤ γs

4
.

Denote the number of phases for Phase-UniCLUB by Np. Since phase s contains 2s/2T ′
s rounds,

Np is the maximum integer satisfying

T ′
0 +

Np−1∑
s=0

2s/2 · 4u · 512d

2−sλx
log
(u
δ

)
≤ T.

By some calculations, we have

Np ≤ 2

3
log2

(√
2λx(T − T ′

0)

1024ud log u
δ

+ 1

)
= log2

(
Cp(T − T ′

0)

log u
δ

+ 1

)
,

where we denote Cp =
√
2λx

1024ud .

Applying a union bound over all phases, we have that with probability at least 1 −
3 log2

(
Cp

T
log (u/δ) + 1

)
δ, after the exploration subphase in any phase s = 0, 1, . . ., for all users

i ∈ [u], ∥θ̂i,t − θj(i)∥2 ≤ γs

4 holds.

Lemma 8. With probability at least 1 − 3 log2

(
Cp

T
log (u/δ) + 1

)
δ, in any phase s, for two users

i1, i2 ∈ Vt, we have ∥∥∥θj(i1) − θj(i2)
∥∥∥
2
≤ γs.

Proof. In phase s, for any two users i1, i2 ∈ Vt, it satisfies
∥∥∥θ̂i1,t − θ̂i2,t

∥∥∥ ≤ f(Ti1,t) +

f(Ti2,t). By the Cauchy–Schwarz inequality and Lemma 8, with probability at least 1 −
3 log2

(
Cp

T
log (u/δ) + 1

)
δ, we have∥∥∥θj(i1) − θj(i2)
∥∥∥
2
≤
∥∥∥θj(i1) − θ̂i1,t

∥∥∥
2
+
∥∥∥θ̂i2,t − θj(i2)

∥∥∥
2
+
∥∥∥θ̂i1,t − θ̂i2,t

∥∥∥
2

≤ γs
4

+
γs
4

+ f(Ti1,t) + f(Ti2,t) ≤ γs.

Lemma 9. With probability at least 1− 4 log2

(
Cp

T
log (u/δ) + 1

)
δ, in any phase s, we have∣∣∣xT

a

(
θ̂Vt,t−1 − θj(it)

)∣∣∣ ≤ Ca,t +
2L2γs
λx

1{γs > γ},

where Ca,t ≜ β∥xa∥M−1
Vt,t−1

and β =
√

d log(1 + TL2

dλ ) + 2 log( 1δ ) +
√
λ.

Proof. In phase s, the confidence radius for users’ preference vectors is γs

4 . If γs > γ, user it may
be mistakenly grouped into the wrong cluster, i.e., Vt ̸= Vj(it). Accounting for this error, we analyze
the following two cases:

Case 1: user it is correctly clustered, i.e., Vt = Vj(it). Same as Lemma 4, we have∣∣∣xT
a

(
θ̂Vt,t−1 − θj(it)

)∣∣∣ ≤ β∥xa∥M−1
Vt,t−1

,

with probability 1− 4 log2

(
Cp

T
log (u/δ) + 1

)
δ.
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Case 2: user it is mistakenly clustered, i.e., Vt ̸= Vj(it), which happens when γs > γ. Then,

θ̂Vt,t−1 − θj(it) =

λI +
∑

τ∈[t−1]:iτ∈Vt

xaτx
T
aτ

−1 ∑
τ∈[t−1]:iτ∈Vt

rτxaτ

− θj(it)

=

λI +
∑

τ∈[t−1]:iτ∈Vt

xaτ
xT
aτ

−1 ∑
τ∈[t−1]:iτ∈Vt

xaτ

(
xT
aτ
θiτ + ητ

)− θj(it)

=M
−1

Vt,t−1

 ∑
τ∈[t−1]:iτ∈Vt

xaτ
xT
aτ
(θiτ − θit) +

∑
τ∈[t−1]:iτ∈Vt

xaτ
xT
aτ
θit +

∑
τ∈[t−1]:iτ∈Vt

xaτ
ητ

− θj(it)

=M
−1

Vt,t−1

λI +
∑

τ∈[t−1]:iτ∈Vt

xaτx
T
aτ

θit − λθit +
∑

τ∈[t−1]:iτ∈Vt

xaτ ητ

− θj(it)

+M
−1

Vt,t−1

∑
τ∈[t−1]:iτ∈Vt

xaτ
xT
aτ
(θiτ − θit)

=− λM
−1

Vt,t−1θ
j(it) +M

−1

Vt,t−1

∑
τ∈[t−1]:iτ∈Vt

xaτ ητ +M
−1

Vt,t−1

∑
τ∈[t−1]:iτ∈Vt

xaτx
T
aτ
(θiτ − θit),

where we denote MVt,t−1 = λI +MVt,t−1.

Then from Lemma 4, we have

∣∣∣xT
a

(
θ̂Vt,t−1 − θj(it)

)∣∣∣ ≤ β∥xa∥M−1
Vt,t−1

+

∣∣∣∣∣∣xT
aM

−1

Vt,t−1

∑
τ∈[t−1]:iτ∈Vt

xaτx
T
aτ
(θiτ − θit)

∣∣∣∣∣∣. (26)

Now we bound the second term in Equation (26).∣∣∣∣∣∣xT
aM

−1

Vt,t−1

∑
τ∈[t−1]:iτ∈Vt

xaτ
xT
aτ
(θiτ − θit)

∣∣∣∣∣∣
≤∥xa∥2

∥∥∥M−1

Vt,t−1

∥∥∥
2

∥∥∥∥∥∥
∑

τ∈[t−1]:iτ∈Vt

xaτx
T
aτ
(θiτ − θit)

∥∥∥∥∥∥
2

(27)

≤L
∥∥∥M−1

Vt,t−1

∥∥∥
2

∑
τ∈[t−1]:iτ∈Vt

∥∥xaτ
xT
aτ

∥∥
2
∥θiτ − θit∥2 (28)

≤Lγsλmax(M
−1

Vt,t−1)
∑

τ∈[t−1]:iτ∈Vt

∥∥xaτx
T
aτ

∥∥
2

(29)

≤Lγs

∑
τ∈[t−1]:iτ∈Vt

L

λmin(MVt,t−1)
(30)

≤Lγs
TVt,t−1L

λxTVt,t−1/2 + λ
(31)

≤2L2γs
λx

,

where ∥M−1

Vt,t−1∥2 and
∥∥xaτ

xT
aτ

∥∥
2

are the spectral norm of matrix M
−1

Vt,t−1 and xaτ
xT
aτ

. Equa-
tion (27) is because of the Cauchy–Schwarz inequality and the induced matrix norm inequality.
Equation (28) is due to ∥xa∥2 ≤ L and the induced matrix norm inequality. Equation (29) fol-
lows Lemma 8 and that M

−1

Vt,t−1 is PSD. Equation (30) is because of
∥∥xaτ

xT
aτ

∥∥
2
= L and Equa-

tion (31) follows Lemma 2.
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Therefore, we have∣∣∣xT
a

(
θ̂Vt,t−1 − θj(it)

)∣∣∣ ≤ β∥xa∥M−1
Vt,t−1

+
2L2γs
λx

1{γs > γ}.

Combining the two cases, we finish the proof of Lemma 9.

Now we can prove the regret upper bound of Phase-UniCLUB.
Theorem 3 (Regret of Phase-UniCLUB). Under the stochastic context setting (Assumptions 1, 2,
3), but γ̃ is unknown, the expected regret of algorithm Phase-UniCLUB (Algorithm 5) satisfies:

E[R(T )] = O

(
ud

γ2λ2
x

log(T ) +

(
ud

λx

) 1
3

T
2
3 log

1
3 (T ) + d

√
mT log(T )

)
.

Proof. For any round t in the UCB subphase of any phase s, with probability at least 1 −
4 log2

(
Cp

T
log (u/δ) + 1

)
δ, we have

Rt = xT
a∗
t
θj(it) − xT

at
θj(it)

= xT
a∗
t

(
θj(it) − θ̂Vt,t−1

)
+
(
xT
a∗
t
θ̂Vt,t−1 + Ca∗

t ,t

)
−
(
xT
at
θ̂Vt,t−1 + Cat,t

)
+ xT

at

(
θj(it) − θ̂Vt,t−1

)
− Ca∗

t ,t
+ Cat,t

≤ Ca∗
t ,t

+
2L2γs
λx

1{γs > γ}+ Cat,t +
2L2γs
λx

1{γs > γ} − Ca∗
t ,t

+ Cat,t

= 2Cat,t +
4L2γs
λx

1{γs > γ},

where the inequality is due to Lemma 9 and the UCB arm selection strategy of our algorithm.

Denote the regret in phase s by R(s). With the same probability, for any phase s, we have

R(s) ≤ T (s) +

T ′
0+

∑s
p=0 2p/2T (p)∑

t=T ′
0+

∑s−1
p=0 2p/2T (p)+T (s)+1

Rt

≤ T (s) +
4L2γs
λx

1{γs > γ} · (2s/2 − 1)T (s) +

T ′
0+

∑s
p=0 2p/2T (p)∑

t=T ′
0+

∑s−1
p=0 2p/2T (p)+T (s)+1

2Cat,t.

Summing up the regret over all phases, we obtain

R(T ) ≤ T ′
0 +

Np−1∑
s=0

R(s)

≤ T ′
0 +

Np−1∑
s=0

(
T (s) +

4L2γs
λx

1{γs > γ} · (2s/2 − 1)T (s)

)
+

T∑
t=T ′

0+1

2Cat,t

≤ T ′
0 +

Np−1∑
s=0

(
T (s) +

4L2γs
λx

1{γs > γ} · (2s/2 − 1)T (s)

)
+ 2β

√
2mTd log

(
1 +

TL2

λd+ 4L2

)
,

(32)

where Equation (32) follows Lemma 5 and the proof of Theorem 1.

Now we bound the second term in Equation (32),
Np−1∑
s=0

(
T (s) +

4L2γs
λx

· (2s/2 − 1)T (s)

)
≤

Np−1∑
s=0

(
T (s) +

4L2γs
λx

1{γs > γ} · 2s/2T (s)

)
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=

Np−1∑
s=0

(
1 +

4L2

λx
1{γs > γ}

)
T (s) (33)

≤

((
Cp(T − T ′

0)

log(uδ )
+ 1

) 2
3

+
8L2

γ2λx

)
2048ud log(uδ )

λx
,

where Equation (33) is due to γs = 2−
s
2 .

Then, with probability at least 1− 4 log2

(
Cp

T
log (u/δ) + 1

)
δ, we have

R(T ) ≤ T ′
0 + 2β

√
2mTd log

(
1 +

TL2

λd+ 4L2

)
+

((
Cp(T − T ′

0)

log(uδ )
+ 1

) 2
3

+
8L2

γ2λx

)
2048ud log(uδ )

λx
.

Recall that T ′
0 = 16u log

(
u
δ

)
+ 4u · 8L2

λx
log
(
ud
δ

)
and Cp =

√
2λx

1024ud . Let δ = 1
T and by the law of

total expectations, we have

E[R(T )] ≤ T ′
0 + 2β

√
2mTd log

(
1 +

TL2

λd+ 4L2

)
+

((
Cp(T − T ′

0)

log(uδ )
+ 1

) 2
3

+
8L2

γ2λx

)
2048ud log(uT )

λx

+ 4 log2

(
Cp

T

log (u/δ)
+ 1

)
δ · T

≤ 16u log(uT ) + 4u · 8L
2

λx
log(udT ) + 2β

√
2mTd log

(
1 +

TL2

λd+ 4L2

)

+

((
Cp(T − T ′

0)

log(uδ )
+ 1

) 2
3

+
8L2

γ2λx

)
2048ud log(uT )

λx
+ 4 log2

(
Cp

T

log (uT )
+ 1

)

= O

(
ud

γ2λ2
x

log(T ) +

(
ud

λx

) 1
3

T
2
3 log

1
3 (T ) + d

√
mT log(T )

)
.

E THEORETICAL ANALYSIS OF SACLUB AND SASCLUB

Lemma 10. Under the smoothed adversary setting, SACLUB and SASCLUB have the following
lower bound on the expected minimum eigenvalue of xat

xT
at

:

λmin

(
E
[
xat

xT
at

])
≥ c1

σ2

logK
≜ λ̃x,

where c1 is some constant.

Proof. Fix a time t. Let Q be a unitary matrix that rotates θ̂it,t to align it with the x-axis, retain-
ing its magnitude but zeroing out all components other than the first component, i.e., Qθ̂it,t =

(∥θ̂it,t∥, 0, 0, . . . , 0). Such Q always exists because it just rotates the space. According to the

UCB arm selection strategy, xat = argmaxa∈At

(
θ̂T
it,t

xa + Ca,t

)
, where Ca,t = β∥xa∥M−1

Vt,t−1
.

Denote the i-th arm in At as at,i, we have

λmin

(
E
[
xat

xT
at

])
=λmin

(
E
[
xxT

∣∣∣ x = argmax
a∈At

(
θ̂T
it,txa + Ca,t

)])
= min

w:∥w∥=1
wT E

[
xxT

∣∣∣ x = argmax
a∈At

(
θ̂T
it,txa + Ca,t

)]
w
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= min
w:∥w∥=1

E
[
(wTx)2

∣∣∣ x = argmax
a∈At

(
θ̂T
it,txa + Ca,t

)]
≥ min

w:∥w∥=1
Var

[
wTx

∣∣∣ x = argmax
a∈At

(
θ̂T
it,txa + Ca,t

)]
= min

w:∥w∥=1
Var

[
(Qw)TQx

∣∣∣ x = argmax
a∈At

(
(Qθ̂it,t)

TQxa + Ca,t

)]
(34)

= min
w:∥w∥=1

Var

[
wTQx

∣∣∣ x = argmax
a∈At

(∥∥∥θ̂it,t∥∥∥(Qxa)1 + Ca,t

)]
(35)

= min
w:∥w∥=1

Var

[
wTQε

∣∣∣ ε = argmax
εt,i:i∈[K]

(
(Qµt,i +Qεt,i)1 +

Cat,i,t

∥θ̂it,t∥

)]
(36)

= min
w:∥w∥=1

Var

[
wTε

∣∣∣ ε = argmax
εt,i:i∈[K]

(
(Qµt,i + εt,i)1 +

Cat,i,t

∥θ̂it,t∥

)]
(37)

where Equation (34) uses the property of unitary matrices: QTQ = I . Equation (35) applies
matrix Q so only the first component is non-zero and we use the fact that minimizing over Qw is
equivalent to over w. Equation (36) follows because each arm x = µ + ε and adding a constant a
to a random variable does not change its variance. Equation (37) is due to the rotation invariance of
symmetrically truncated Gaussian distributions.

Since εt,i ∼ N (0, σ2I) conditioned on |(εt,i)j | ≤ R,∀j ∈ [d], by the property of (truncated) multi-
variate Gaussian distributions, the components of εt,i can be equivalently regarded as d independent
samples from a (truncated) univariate Gaussian distribution, i.e., (εt,i)j ∼ N (0, σ2) conditioned on
|(εt,i)j | ≤ R,∀j ∈ [d]. Therefore, we have

Var
[
wTε

]
= Var

[
d∑

i=1

wiεi

]
=

d∑
i=1

w2
i Var [εi] ,

where the exchanging of variance and summation is due to the independence of εi. Therefore, let
pt,i = (Qµt,i)1 +

Cat,i,t

∥θ̂it,t∥
, we can write

min
w:∥w∥=1

Var

[
wTε

∣∣∣ ε = argmax
εt,i:i∈[K]

((εt,i)1 + pt,i)

]

= min
w:∥w∥=1

d∑
j=1

w2
j Var

[
εj

∣∣∣ ε = argmax
εt,i:i∈[K]

((εt,i)1 + pt,i)

]

= min
w:∥w∥=1

{
w2

1 Var

[
ε1

∣∣∣ ε = argmax
εt,i:i∈[K]

((εt,i)1 + pt,i)

]

+

d∑
j=2

w2
j Var

[
εj

∣∣∣ ε = argmax
εt,i:i∈[K]

((εt,i)1 + pt,i)

]
= min

w:∥w∥=1

w2
1 Var

[
ε1

∣∣∣ ε = argmax
εt,i:i∈[K]

((εt,i)1 + pt,i)

]
+

d∑
j=2

w2
j Var[εj ]


= min

w:∥w∥=1

{
w2

1 Var

[
ε1

∣∣∣ ε = argmax
εt,i:i∈[K]

((εt,i)1 + pt,i)

]
+ (1−w2

1)σ
2

}

=min

{
Var

[
ε1

∣∣∣ ε = argmax
εt,i:i∈[K]

((εt,i)1 + pt,i)

]
, σ2

}
≥ c1

σ2

logK
,
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where in the last inequality, we use Lemma 15 and Lemma 14 in Sivakumar et al. (2020) and get

Var

[
ε1

∣∣∣ ε = argmax
εt,i:i∈[K]

((εt,i)1 + pt,i)

]
≥ Var

[
ε1

∣∣∣ ε = argmax
εt,i:i∈[K]

(εt,i)1

]
≥ c1

σ2

logK
.

Lemma 11. Under the smoothed adversarial setting, for algorithms SACLUB and SASCLUB,
with probability at least 1 − δ for any δ ∈ (0, 1), if Ti,t ≥ 8(1+

√
dR)2 log(K)
c1σ2 log

(
ud
δ

)
=

8(1+
√
dR)2

λ̃x
log
(
ud
δ

)
for all users i ∈ [u], we have

λmin(Si,t) ≥
c1σ

2Ti,t

2 logK
=

λ̃xTi,t

2
,∀i ∈ [u],

where c1 is some constant and λ̃x ≜ c1σ
2

logK .

Proof. The proof follows the same techniques as Lemma 2. The main difference lies in two aspects:
(1) in the smoothed adversary setting, the length of feature vectors is bounded by 1 +

√
dR instead

of L. Therefore, λmax(xaτx
T
aτ
) ≤ (1 +

√
dR)2. (2) the computation of µmin needs to refer to

Lemma 10.

Specifically, to compute µmin, by the super-additivity of the minimum eigenvalue (due to Weyl’s
inequality) and Lemma 10, we have

µmin = λmin

 ∑
τ∈[t]:iτ=i

E[xaτ
xT
aτ
]

 ≥
∑

τ∈[t]:iτ=i

λmin

(
E[xaτ

xT
aτ
]
)
≥ Ti,tc1

σ2

logK
.

On the other hand, we have

µmax = λmax

 ∑
τ∈[t]:iτ=i

E[xaτx
T
aτ
]


So by Lemma 12, we have for any ε ∈ (0, 1),

Pr

[
λmin(Si,t) ≤ (1− ε)Ti,tc1

σ2

logK

]
≤ Pr [λmin(Si,t) ≤ (1− ε)µmin]

≤ d

[
e−ε

(1− ε)1−ε

]µmin/(1+
√
dR)2

≤ d

[
e−ε

(1− ε)1−ε

] Ti,tc1σ2

log(K)(1+
√

dR)2

,

where the last inequality is because e−x is decreasing. Then the proof follows by the same derivation
as Lemma 2, except that λx is replaced by λ̃x ≜ c1σ

2

logK .

Theorem 4 (Regret of SACLUB and SASCLUB). Under the smoothed adversarial context setting
(Assumptions 1, 4, 5), the expected regrets of SACLUB and SASCLUB both satisfy:

E[R(T )] = O

(
ud

γ2λ̃x

log(T ) + d
√
mT log(T )

)
,

where λ̃x = c1
σ2

logK for some constant c1.

Proof. For algorithm SACLUB, similar to the proof of Theorem 1 under the stochastic context set-
ting, we need to derive the counterparts of Lemma 3, Lemma 4, and Lemma 5 under the smoothed
adversary setting according to Lemma 10 and Lemma 11. The proofs use almost the same techniques
with λx replaced by λ̃x. Similarly, the proof for algorithm SASCLUB requires the counterparts of
Lemmas used in the proof of Theorem 2, thus we skip the details.
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F TECHNICAL INEQUALITIES

We present the technical inequalities used throughout the proofs. For inequalities from existing
literature, we provide detailed references for readers’ convenience.

Lemma 12 (Matrix Chernoff, Corollary 5.2 in Tropp (2011)). Consider a finite sequence {Xk}
of independent, random, self-adjoint matrices with dimension d. Assume that each random matrix
satisfies

Xk ⪰ 0 and λmax(Xk) ≤ R almost surely.

Define

Y :=
∑
k

Xk and µmin := λmin(E[Y ]) = λmin

(∑
k

E[Xk]

)
.

Then, for any δ ∈ (0, 1),

Pr

[
λmin

(∑
k

Xk

)
≤ (1− δ)µmin

]
≤ d

[
e−δ

(1− δ)1−δ

]µmin/R

.

Lemma 13 (Lemma 8 in Li & Zhang (2018)). Let x1, x2, . . . , xn be independent Bernoulli random
variables with mean 0 < p ≤ 1

2 . Let δ > 0, B > 0, then with probability at least 1− δ,

t∑
s=1

xs ≥ B, ∀t ≥ 16

p
log

(
1

δ

)
+

4B

p
.

Lemma 14. For a > 0, b > 0, ab ≥ 1, if t ≥ 2a log(ab), then

t ≥ a log(1 + bt).

Proof. Since t increases faster than a log(1 + bt), it suffices to prove t ≥ a log(1 + bt) for t =
2a log(ab). Equivalently, we only need to show:

2a log(ab) ≥ a log(1 + 2ab log(ab)) = a log(ab) + a log
(
2 log

(
e−2abab

))
,

which follows by observing that ab ≥ 2 log(e−2abab) = 1
ab + 2 log(ab) holds when ab ≥ 1.

Lemma 15. Let X1, X2, . . . , Xn be a sequence of n independent and identically distributed (i.i.d.)
random variables, each following a distribution P . Let Y be a random variable that is uniformly
selected from the set {X1, X2, . . . , Xn}, then Y follows the same distribution P .

Proof. It suffices to show Pr[Y ∈ A] = Pr[X1 ∈ A] for any measurable set A. By the law of total
probability, we can express the probability that Y falls into the set A as:

Pr[Y ∈ A] =

n∑
i=1

Pr[Y ∈ A | Y = Xi] Pr[Y = Xi]

=

n∑
i=1

Pr[Xi ∈ A] Pr[Y = Xi]

= Pr [X1 ∈ A] ,

where we use the fact that Xi are i.i.d. and Pr [Y = Xi] = 1/n.

Lemma 16 (Determinant-trace inequality, Lemma 10 in Abbasi-Yadkori et al. (2011)). Suppose
X1,X2, . . . ,Xt ∈ Rd and for any 1 ≤ s ≤ t, ∥Xs∥2 ≤ L. Let V t = λI+

∑t
s=1 XsX

T
s for some

λ > 0. Then,

det(V t) ≤
(
λ+

tL2

d

)d

.
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G MORE EXPERIMENTS

G.1 EVALUATION UNDER THE SMOOTHED ADVERSARIAL CONTEXT SETTING

To implement the smoothed adversarial contexts, for each arm in the synthetic dataset and three real-
world recommendation system datasets, we add a Gaussian noise vector sampled from N (0, I/10).
As illustrated in Figure 2, for all the datasets, SACLUB and SASCLUB (which are essentially adapted
versions of CLUB and SCLUB) outperform LinUCB-Ind and LINUCB-One. Additionally, under
the smoothed adversarial setting, LinUCB-Ind and LINUCB-One exhibit more significant fluctua-
tions compared to SACLUB and SASCLUB, highlighting the increased complexity of the smoothed
adversarial setting relative to the stochastic setting. This corroborates our theoretical results, show-
ing that with some minor changes, the existing algorithms CLUB and SCLUB can be extended to
the more practical smoothed adversarial setting, which is closer to the original setting of contextual
linear bandits (Abbasi-Yadkori et al., 2011).
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Figure 2: Comparison of cumulative regrets under the smoothed adversarial context setting.

G.2 CUMULATIVE REGRET WITH DIFFERENT ARM SET SIZES

Under the stochastic context setting, we evaluate the impact of the arm set size |At| = K by ad-
justing K = 80, 100, 120, 140 using the Yelp dataset, since it has the largest number of users. As
demonstrated in Figure 3, there is no substantial amplification of the cumulative regrets as the arm
set size K increases. This observation validates our theoretical results (Theorems 1 and 2), where
the regret upper bounds of UniCLUB and UniSCLUB do not involve K.
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Figure 3: Comparison of cumulative regrets with different arm set sizes.

G.3 CUMULATIVE REGRET WITH DIFFERENT USER NUMBERS

To examine the effect of the number of users, we adjust the number of users u = 40, 50, 60, 70
while keeping the number of clusters m = 10 using the Yelp dataset. As shown in Figure 4, our
proposed algorithms exhibit significant advantages compared to the baselines. Additionally, as the
number of users increases, the cumulative regrets also increase. This is expected because a larger
number of users poses a greater challenge in learning their preference vectors and identifying the
cluster structures.
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Figure 4: Comparison of cumulative regrets with different numbers of users.

G.4 COMPARISON WITH NON-CLUSTERING-BASED BASELINES

In this subsection, we compare our algorithms with two additional graph-based baseline algorithms,
GOB.Lin (Cesa-Bianchi et al., 2013) and GraphUCB (Yang et al., 2020), within the stochastic con-
text setting. While both GOB.Lin and GraphUCB leverage user similarities to enhance preference
estimation, their methodologies fundamentally differ from ours (and all the other clustering-based
algorithms) in two aspects: (1) Neither GOB.Lin nor GraphUCB assume the existence of user clus-
ters or explicitly perform clustering, and (2) both algorithms assume prior knowledge of a user
relationship graph. Additionally, it is worth noting that both GOB.Lin and GraphUCB have signif-
icantly higher computational complexity compared to clustering-based algorithms, as they require
operations such as multiplication and inversion of high-dimensional matrices of size Rud×ud for
item recommendation, where u is the number of users and d is the feature dimension. In contrast,
clustering-based algorithms (including ours) only involve matrix manipulations of size Rd×d.

For the experiments, due to the high computational overhead of GOB.Lin and GraphUCB, we ran-
domly select 20 users (instead of 50 as in other experiments) and divide them into 4 clusters. At
each round t, a user it is uniformly drawn from the 20 users, and 20 items are randomly sampled
from the full set of arms to form the arm set At. For GOB.Lin and GraphUCB, the user graph is
constructed by connecting users within the same cluster.

The cumulative regret results are shown in Figure 5. Both LinUCB-One and LinUCB-Ind exhibit
significantly higher cumulative regret than the other algorithms that incorporate user similarity.
Among all the clustering-based algorithms, our algorithms UniCLUB and UniSCLUB consistently
outperform their respective counterparts, CLUB and SCLUB, across all four datasets, demonstrating
the effectiveness of our proposed uniform exploration strategy. When compared to the new base-
lines, UniSCLUB achieves superior performance compared to GOB.Lin and GraphUCB across all
four datasets, and UniCLUB also outperforms GOB.Lin. Although GraphUCB slightly surpasses
UniCLUB on the Last.fm dataset and achieves competitive results on the synthetic dataset, it incurs
higher regret on the Movielens and Yelp datasets compared to UniCLUB. These results align with
expectations, as our setting assumes that users are clustered, which allows clustering-based methods
to explicitly exploit this structure for improved performance.
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Figure 5: Comparison of cumulative regrets with more baselines.

To demonstrate computational complexity, we also measure the average running time of all algo-
rithms across datasets, with the results summarized in Table 2. As shown in the table, GOB.Lin and
GraphUCB exhibit significantly higher average running times, exceeding those of other baselines by
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more than an order of magnitude. In contrast, our algorithms, UniCLUB and UniSCLUB, achieve
computational efficiency comparable to that of the other baseline methods.

Table 2: Comparison of average running time (in seconds).

Datasets

Time(s) Algorithms
LinUCB-One LinUCB-Ind CLUB SCLUB UniCLUB UniSCLUB GraphUCB GOB.Lin

Synthetic 2.79 2.61 3.02 7.70 3.02 8.28 128.32 204.55

MovieLens 9.78 9.62 10.11 16.96 9.96 16.80 117.25 214.96

Yelp 9.81 9.59 10.17 15.05 10.19 12.13 119.86 216.35

Last.fm 4.66 1.44 5.00 12.18 5.00 12.42 106.04 231.25
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