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Abstract

Decades of experimental research based on simple, abstract stimuli has revealed
the coding principles of the ventral visual processing hierarchy, from the pres-
ence of edge detectors in the primary visual cortex to the selectivity for complex
visual categories in the anterior ventral stream. However, these studies are, by
construction, constrained by their a priori hypotheses. Furthermore, beyond the
early stages, precise neuronal tuning properties and representational transforma-
tions along the ventral visual pathway remain poorly understood. In this work, we
propose to employ response-optimized encoding models trained solely to predict
the functional MRI activation, in order to gain insights into the tuning properties
and representational transformations in the series of areas along the ventral visual
pathway. We demonstrate the strong generalization abilities of these models on
artificial stimuli and novel datasets. Intriguingly, we find that response-optimized
models trained towards the ventral-occipital and lateral-occipital areas, but not
early visual areas, can recapitulate complex visual behaviors like object catego-
rization and perceived image-similarity in humans. We further probe the trained
networks to reveal representational biases in different visual areas and generate
experimentally testable hypotheses.

1 Introduction

Understanding the nature of representations and computations in the visual system has been a
longstanding goal in neuroscience. Substantial progress been made by presenting model organisms
with simple, abstract stimuli like noise or sine-wave gratings and studying the evoked responses.
These carefully crafted experiments, for instance, revealed the presence of edge detectors in the
primary visual cortex [1l] and sparked the search for the ‘optimal input’ beyond early visual areas
across the visual cortical hierarchy. Significant efforts have also been made to understand the feature
complexity of tuning in V4 and IT neurons [2} |3, 4, 5]. Over the last two decades, through numerous
experiments, recording and analysis techniques, a conceptual understanding has emerged that early
visual areas extract low-level features like edges or curves, mid-level regions extract complex local
shapes, and high-level regions encode semantic categories, like faces or scenes [6, [7, 8,9, [10]. While
much of the details remain unknown, there is accumulating evidence that visual categorization occurs
in the ventral temporal cortex in humans [11]. This understanding was enabled by synthesizing
findings across different hypothesis-driven studies, most of them employing artificial stimuli atypical
of real-world vision, thus lacking ethological validity.
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Recently, deep convolutional neural networks (CNNs) optimized for computer vision (CV) tasks,
have emerged as the most accurate models of the primate ventral visual stream [[12, [13} [14, [15]].
Furthermore, these CV task-optimized models offer a hierarchical correspondence to visual areas
along the ventral stream: early CNN layers best predict V1, while intermediate and late layers
best predict V4 and IT [12, [16} [17, [18} [19} 20} 21, 22]]. They provide intelligibility in the form
of the goal-driven perspective, highlighting the functional role of representations [23]]. However,
we are far from a complete understanding of the top-down computational objectives (the battery
of ethologically-relevant tasks) that may have shaped neural representations through evolution or
experience-based learning; in the absence of right hypotheses, the task-optimized approach can fall
short. Studies have already revealed significant inconsistencies between these models and human
behavior and gaps remain in their respective robustness to distortions, image-level consistency
etc [24]]. Recently, the idea of using neural data in the model development process has gained
some traction, and demonstrated success in increasing both model-human behavior [25} 26l 27],
and model-brain alignment, while revealing novel insights about information processing in neural
systems [28} 129, 30,131} 32].

In this study, we leverage recent advances in large-scale fMRI data collection [33] to train hypothesis-
agnostic computational models directly on neural data with novel predictive precision. Importantly,
the stimulus set employed in this study contains crowded images of multiple objects in their nat-
ural contexts, thus being more typical of everyday scenes and allowing us to characterize neural
representations and computations in rich, naturalistic conditions. We demonstrate the remarkable
ability of these “response-optimized” neural encoding models in reproducing the stimulus-response
relationship in voxels along the ventral visual stream for arbitrary images, equaling or surpassing
the unprecedented prediction performance of task-optimized models. We show that these models
generalize well to contexts that are vastly different from their training conditions (artificial stimuli,
novel subjects, etc.), providing a strong quantitative validation for the response-optimization approach
of building encoding models for neurobiological visual systems beyond the retina [34]. Our approach
further goes beyond prediction accuracy and aims to gain insights about neuronal tuning properties.
Specifically, we implement neural encoding models that disentangle the processing of the “what” and
the “where.” This allows us to reveal the selectivity of individual brain voxels along both location
and appearance dimensions. We first demonstrate that the estimated spatial topographic organization
from our neural encoding models exhibits remarkable agreement with the fine-scaled retinotopic
organization of the cortex, which is typically measured with dedicated, painstaking experimental
paradigms. We analyze the features that emerge in the neural encoding models to understand the tun-
ing properties of cortical voxels. This analysis suggests shape-biased tuning across the ventral visual
stream, increasing in complexity from Gabor-like features in V1, curves/angles in V2 to concentric
and complex shape processing in V4 and higher-order lateral-occipital and ventral-occipital ROIs
respectively. We also go beyond single-voxel analysis to characterize how representations evolve
along the ventral visual pathway. Probing the information encoded in model-predicted patterns of
activity reveals the monotonically increasing separability of category information along the ventral
stream hierarchy, strongly supporting the computational goal of the ventral visual stream as a visual
categorization system. We further demonstrate the correspondence between model representations (of
high-level visual areas) and mental representations (as assessed with human similarity judgements),
suggesting that these response-optimized models inherently capture human psychological judgements,
without any explicit supervision to do so. Furthermore, a principle components analysis reveals that
models of high-level visual ROIs capture complex stimulus dimensions like faces, bodies and shapes.
Our paper illustrates how neural encoding models trained on hypothesis-agnostic, naturalistic datasets
can be used to confirm neural phenomena characterized painstakingly using controlled experimental
paradigms that might be hard to replicate in individual subjects. More importantly, however, we show
how in silico experiments on neural encoding models can generate novel hypotheses and provide a
powerful framework for building broad, generalizable theories about neural information processing.

2 Materials and Methods

Natural Scenes Dataset A detailed description of the Natural Scenes Dataset (NSD [1_-]) is provided
elsewhere [33] (see also the Appendix). The dataset contains measurements of fMRI responses from
8 participants who each viewed 9,000—10,000 natural scenes. A special set of 1,000 images were

"http:/naturalscenesdataset.org
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shared across subjects; the remaining were mutually exclusive. We focused on modeling responses
within 5 visual cortical ROISs in the study. Three ROIs belonging to the retinoptic early visual cortex,
namely, V1v, V2v and hV4 were defined using a population receptive field (pRF) localizer scan
session [33]]. Two higher order ROIs, namely ventral-occipital areas (VO1-2) and lateral-occipital
areas (LO1-2) were delineated using a visual probabilistic atlas [35](Figure ).

Response-optimized neural encoding model We trained separate voxel-level neural encoding
models for each of the above regions with the same backbone architecture. Keeping the architecture
constant across visual areas ensured that differences in emergent representations are driven mainly
by the nature of response patterns. The predictive model comprises a convolutional neural network
(CNN) feature extractor shared across all subjects, but unique to specific visual areas. We employ a
linear readout model on top of the feature space to predict the responses of individual voxels in a
specific region. The linear readout is factorized into spatial and feature dimensions following [36]]
(Figure[TJA). This allows us to separate spatial tuning (the “where”) from feature tuning (the “what”).
The shared CNN feature extractor consists of four convolutional blocks, with each block comprising
the following feedforward computations: two 3 x 3 convolutional layers, each followed by an inner
batch norm, and a ReLU; and an anti-aliased AvgPool operation (stride = 2) at the end. We employ
E(2)-steerable convolutions in all our models to extract features invariant to orientation 37, |38]]. This
modeling choice is inspired by neural computations in early visual areas where groups of neurons are
known to perform similar computations, e.g., edge or curve detection, at different orientations. Each
convolutional layer contains 48 feature sets extracted at 8 orientations. Weights of the readout are a
computed as outer products between a spatial filter and a feature vector. The spatial filter further has
a positivity constraint (enforced using rectification) and is length-normalized for each voxel.

Training and testing response-optimized encoding models We used 4 NSD subjects for training
and reserved the other 4 subjects for studying generalization. The first group collectively saw 37,000
natural scene images, including the 1,000 shared images. We used the 1,000 shared images for testing
our models and split the remaining stimulus set into 35,000 training and 2,000 validation images.
All parameters of the neural encoding model were optimized jointly to minimize the masked mean
squared error between the predicted and measured fMRI response. This loss allows us to propagate
errors through the shared CNN even if the subjects are not exposed to common stimuli since we can
exclude the subjects/voxels for which the target response is not present from the loss calculation. We
quantify ‘predictive accuracy’ on the test images as the Pearson’s correlation coefficient between the
predicted and measured fMRI response at each voxel. We also compare this against the noise-ceiling,
expressed as the signal-to-noise ratio when considering the response variability of each voxel across
3 repetitions per image (see Appendix A.5). Table A.1 provides a summary of all analyses methods
and baselines used for evaluating and interpreting the proposed response-optimized models.

Baseline models (a) Category ideal observer model: We fit a non-image-computable model
using human-generated annotations for NSD images (obtained from the MS-COCO database). The
input to the categorical model is a k-hot encoding vector corresponding to the 80 object categories
annotated in the database, where each element indicates the presence/absence of the corresponding
category in the image. We fitted 5 regularized linear regression models on this space to predict
voxel responses for held-out stimuli (Appendix A.8). (b) Task-optimized Models: We investigated
several DNN models, including AlexNet [39]], ResNet-50 [40]], DenseNet [41] and CORnet-s [42],
optimized for object recognition on the large-scale ImageNet dataset [43] (Appendix A.3, Table
A.2). Since these models can demonstrate lower prediction performance due to the domain shift
between ImageNet and NSD stimuli, we also employed a ResNet-50 architecture pre-trained for
object detection on the MS-COCO dataset [44] as an additional baseline (since NSD stimuli were
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drawn from the MS-COCO dataset). For CORnet-S, we pre-select the layer homologous to each
visual region and employ a spatial x feature factorized readout (same as the response-optimized
model) on top of the fixed feature backbone, allowing a more direct comparison to the proposed
model. For the remaining models, we followed the more standard procedure for fitting task-optimized
models to voxel responses based on a full linear readout. We extracted features from pre-trained
layers of each network and fitted /5 regularized linear regression models separately for each layer.
The regularization parameter was optimized independently for each subject, each layer, each model
and for voxels in each visual area by testing among 8 log-spaced values in [1e-4, 1e4]. For each visual
area and model, we identified the layer that best predicts responses on the validation set. These model
layers were used to quantify test performance. (c) Response-optimized (no rotation symmetries):
Here, we train response-optimized models with the same architecture as the proposed models but
without sharing weights across filter orientations.

Characterizing neural representations by behavioral comparisons: (a) Assessing separability
of category and semantic information along the visual hierarchy To probe the learned featural
tuning in the response-optimized model for each visual area, we used representational similarity
analysis (RSA) [45]. Here, we correlated the patterns of predicted activity between multiple
exemplars from different categories of stimuli to obtain a representational similarity matrix (RSM)
for each visual area. Further, we quantified the separability of categorical information within these
similarity matrices by computing a correlation coefficient (Kendall’s 7) between model RSMs against
a ground truth adjacency matrix defined by object category labels. Specifically, the elements of this
matrix are 1 if the corresponding two images belong to different categories and O if the images
belong to the same category. This analysis was first performed using a subset of 104 images from
the THINGS database [46] that belong to a pre-defined set of categories for ease of visualization.
These categories were chosen in accordance with previous fMRI studies employing RSA 48]
and include the following: {face, hand, elephant, cat, plant, fruit, car, tool}. Subsequently, we also
validated the obtained results using another large-scale vision dataset, namely ImageNet-16 [49].
We sampled 500 stimuli from each ImageNet-16 category, resulting in a total of 8,000 images and
computed the similarity between model RSMs and the categorical adjacency matrix following the
same approach described for the THINGS dataset. To assess visual information flow in relation to
high-level semantic understanding, we computed pairwise similarity between predicted responses for
held-out NSD images to construct model-predicted RSMs for each visual area. We constructed a
semantic RSM by correlating the 80-D binary category vectors (which indicate whether each category
was present in the image or not) for every pair of these NSD images and quantified agreement with
model-predicted RSMs using Kendall’s 7 (henceforth, termed the ‘NSD: Semantic’ analysis). We
computed this agreement using measured RSMs for all visual areas as well. In RSA described here
and anywhere else, error bars (95% CI) are computed by performing bootstrap sampling over voxels.



(b) Assessing alignment with human perception We compared model representations against
behavioral data from a Multiple Arrangement task where participants interpreted 100 NSD images
and arranged them according to the similarity of their content (this dataset called ‘nsdmeadows’ was
released with NSD [33])). Critically, these images were not seen by any of the response-optimized
models. We constructed a model Representational Dissimilarity Matrix (RDM) for each visual ROI
using the correlation distance metric for quantifying pairwise dissimilarities between model-predicted
voxel responses. We compared model RDMs against human pairwise dissimilarity judgements using
the Kendall’s 7 coefficient and call this the ‘NSD: perception’ analysis.

3 Results

Response-optimized models approach the noise ceiling for prediction performance and gen-
eralize to novel subjects with low sample complexity We observed a remarkably high noise-
normalized prediction accuracy (~70-85%) using the proposed rotationally-symmetric response-
optimized model in all 5 visual ROIs, including the higher-order ROIs (LO1-2 and VO1-2) (Figure[2B,
Appendix Figure A.2, A.6). Next, we investigated the possible quantitative advantages of learning
a rotationally-symmetric feature space against the representations from a standard convolutional
architecture with no weight sharing across orientations. Importantly, we observe that the proposed
rotationally-symmetric convolutional architecture performs on par with a standard CNN (Figure 2A),
even outperforming the latter in certain visual ROIs, despite containing fewer parameters. This
suggests that sharing weights across filter orientations provides a strong inductive bias, allowing us
to fit expressive models efficiently. We further compared these models against ideal observer and
task-optimized models, and found that response-optimized models consistently outperform these
baselines in early visual areas. In high-level visual areas, the response-optimized model signifi-
cantly outperforms the ideal observer model, while performing on par with or even surpassing some
task-optimized models.

Next, we assessed how each of these predictive
models generalizes to the remaining set of 4 test
subjects. This analysis intended to compare the e g
statistical efficiency afforded by different repre- : N e
sentations [50]. As such, we examined the trend
of how much stimulus-response data the mod-
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Computational models generalize to OOD datasets We next investigated out-of-distribution
(OOD) test settings to understand the generalization behavior of response-optimized models. The
first OOD setting we consider is the NSD-synthetic experiment, comprising fMRI recordings to
synthetic stimuli (samples shown in Figure 3) from the same NSD subjects. As shown in Figure[3]
response-optimized models significantly outperform task-optimized models (except in region VO)
in this OOD domain (‘artificial’ stimuli), suggesting that the mapping from task-optimized DNN
features to voxel responses, was domain/dataset-specific. Response-optimized models, on the other
hand, allow for flexible OOD generalization. Generalization to other novel fMRI datasets, including
[51,152153]) is shown and discussed in the Appendix B.2.
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Figure 4: pRF estimation with response-optimized encoding models. A Scatter plots showing predicted
and localizer-estimated retinotopic parameters for all voxels in all 4 subjects (see Suppl. Methods for polar
angle metrics shown on scatter plots). Inset correlations are computed using voxels from all 4 subjects. B
Predicted and localizer-estimated retinotopic parameters visualized on cortical flatmaps. Bolded values on top
show subject-specific agreement. C Agreement between estimated and measured retinotopic maps as a function
of training examples (stimulus-response pairs) from novel subjects used to train their linear readout. Error bars
depict the 95% CI around estimated mean.

Learned spatial masks reproduce the fine-grained retinotopic organization of early visual cortex
The factorized readout in the proposed model allows us to separate spatial and feature selectivity.
We characterized the spatial tuning of early visual areas by estimating the population receptive field
(pRF) from the learned spatial masks of the proposed response-optimized model; we compare the
estimated parameters against measurements from the independent NSD pRF localizer experiment
that uses artificial stimuli. The pRF is defined as the region of the visual field within which a stimulus
results in increased aggregated activity across a population of neurons, as reflected in fMRI. Based
on the analysis of these data, each brain voxel’s retinotopic organization can be described with three
parameters: the pRF location in polar coordinates (polar angle and eccentricity), and size. Using
the voxel-wise spatial mask of the readout in our encoding model, we estimated the pRF location as
the average of the coordinates weighted by the learned spatial mask value at each grid location. To
compare the estimated eccentricity against the corresponding measurements from pRF localizers,
henceforth called ‘eccentricity agreement’, we calculated the Pearson’s correlation coefficient between
the measured and predicted eccentricity arrays in each ROI. To compare the estimated polar angle
values against corresponding measurements from pRF localizer scans, henceforth called ‘polar angle
agreement’, we adopted a measure from circular statistics called circular correlation coefficient [54],
due to the circular nature of angular data (Appendix A.4). It is important to note that the encoding
models do not account for the spatial locations of target voxels. Despite this, the estimated spatial
topographic organization from the encoding models exhibits remarkable levels of agreement with
the fine-scaled retinotopic organization of the cortex without any explicit supervision to do so
(Figure @JA,B): eccentricity agreement € [0.48-0.79] for all 4 subjects whereas the polar angle
agreement € [0.70-0.82]. We further compared this agreement on the estimated pRF parameters
for the held-out set of 4 NSD subjects by varying the quantity of data used to estimate their linear
readouts from the fixed convolutional core of the response-optimized model (pre-trained on the
initial set of 4 subjects). We find that while the agreement increases with the sample size used to
fit readouts, even with much fewer samples (e.g. 100), we can still characterize the retinotopic
organization (Figure [[C). This is better than the retinotopic agreement observed for the CORnet-
S model (which also employed a factorized readout, enabling characterization of spatial tuning
(Appendix Figure A.8)). Previously, retinotopic organization of the human visual cortex has been
dominantly studied with spatially modulated stimuli. While encoding models have been shown to
be broadly useful for characterizing retinotopy [55}131]], a precise quantification of the agreement
between model-estimated and localizer-estimated retinotopic parameters, as well as the effect of
sample sizes on this agreement, has been lacking. Here, we present an alternate approach based
on naturalistic stimulation and response-optimized encoding models to delineate subject-specific
retinotopic maps and precisely quantify the agreement. Remarkably, the retintopic organization
estimated from the proposed encoding models is even more spatially smooth than the localizer-based
organization, despite not being informed by anatomy.

Response-optimized models characterize transformations of image representations along the
visual cortical hierarchy
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(a) Monotonically increasing alignment with human perception along the ventral visual stream
We evaluated models on behavioral data from a Multiple Arrangement task where participants
arranged NSD images according to the similarity of their content. This behavioral analysis of neural
network models (Figure[5]A) suggests that higher visual areas (LO and VO) more strongly capture
human perceptual patterns and image semantics than early visual areas and this quantitative agreement
increases monotonically along the ventral visual hierarchy (‘NSD perception’ and ‘NSD semantics’
analysis discussed in Methods). Importantly, responses patterns in their respective models group
semantically similar categories together, as shown in the t-SNE plot for model-predicted RDM (region
VO). For instance, faces are all clustered in the bottom right of the t-SNE plot and scenes group
together in the left (Figure[5A), despite wide variations in the visual appearance of these categories.
This is remarkable, given that the models received no supervision from perceptual/semantic measures.
Human behavioral data (‘nsdmeadows’) appears very similar and is shown in Appendix Figure
A.10. This suggests that these models, solely optimized for high-level visual cortical response
prediction — without any semantic supervision — can even serve as powerful models for uncovering
the structure of mental representations. Intriguingly, the representational structure of predicted
responses exhibits stronger agreement with perceived similarity than the representational structure
of measured responses. This suggests that both the perceptual and semantic information are likely
more explicit in predicted responses (even for held-out data) than measured responses. One possible
explanation is that fMRI measures of brain activity have undesired noise components and predictive
models, in particular, response-optimized models as shown here, can denoise this fMRI activity (see
also Appendix Figure A.3).

(b) Monotonically increasing separability of category information along the ventral visual
stream Task-optimized computational models have suggested that the ventral stream hierarchy
‘untangles’ representations through a sequence of processing steps, so that representations of objects
and categories that are inseparable at the initial processing stage (e.g., V1) become untangled at
the last stage of the hierarchy [56] 23]. Here, we present a strong evidence for this increased
separability through hypothesis-agnostic response-optimized models. Previous studies have shown
that the representational geometry for the same set of stimuli varies systematically across different
cortical areas, providing a useful signature for how information is transformed across different
cortical processing streams [56]]. Here, we employ the representational similarity analysis (RSA)
framework to relate emergent representations in response-optimized models of difference brain
regions against a ground truth adjacency matrix defined by object category labels. Keeping model



architecture the same, simply by changing the response targets for an encoding model from voxels
in visual areas V1 through LO-VO, we observe a drastic change in the geometry of the extracted
representation. The increasingly prominent block-diagonal structure in the RSMs along the ventral
visual stream (Figure 5[C), consistent with categorical distinctions in the THINGS dataset, highlights
that the distributed activity patterns to exemplars of the same category become increasingly more
similar; and patterns to exemplars of different categories become progressively dissimilar along
the processing stream, strongly supporting the computational goal of the ventral visual stream as
a categorization system. We also quantified the separability of categorical information in different
visual areas (Figure[5]B). Here again, we see that this finding regarding increasing separability of
categorical information holds across both datasets containing different visual categories.

Response-optimized models reveal high-level visual information within ventral-occipital cortex
Next, we wanted to discover what kinds of features emerge in the ventral-occipital region model and
whether they are capable of discriminating between complex categories. Instead of looking at all
model neurons emulating voxels, we built a compact neural representational space by passing a large
stimulus set (~27,000 images from the THINGS database [46]]) through the predictive models and
then performing Principal Components Analysis (PCA) on the predicted responses of this network
(Appendix A.6). Visualizing the images from top concept categories that elicit highest and lowest
activation of individual principal components (PCs) reveals complex stimulus dimensions: the first
PC, which explained ~ 49% of the variance in responses strongly separates faces, animals and
bodies from inanimate objects, despite vast variations in the visual appearance of images within
sub-categories. The second PC, accounting for ~ 16% variance, distinguished objects based on their
shape (circular vs. rectilinear), suggesting that such shape features are important for VO. Importantly,
these features do not emerge when the same analysis is applied to early visual ROIs (V1-V4).

Response-optimized models exhibit
a shape bias A striking known dis-
crepancy between human and ma-
chine vision is the shape vs. tex-
ture bias: human classification deci-
sions are shape-biased whereas CNNs
trained for CV tasks tend to classify
images by texture [57, 58]. We study
whether the shape bias of humans is
reflected in response-optimized mod-
els of cortical regions that subserve
visual categorization in humans. We
first train a linear layer on top of
the predicted responses of response-
optimized models to map these re-
sponses to visual categories in the
ImageNet-16 database [57] using a
small subset of this database. We then
assess the transfer performance of
response-optimized models for clas-
sification on held-out stimuli from the
ImageNet-16 dataset as well as the
Silhouette dataset described in [57]]
(Appendix A.10). We find that the
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classification performance is signif-
icantly better than what would be
expected from the same network ar-
chitecture with a random initializa-
tion (Figure [6B), suggesting that the
brain response-optimization objective
yields effective representations. Fur-
ther, this classification performance is

Figure 6: A Maximally activating images for 4 model neurons
(emulating brain voxels) in each visual ROI model, generated us-
ing the image synthesis procedure. B Shape bias analysis. Top
and middle barplots show the transfer performance of response-
optimized models and MS-COCO trained object classifier on the
ImageNet-16 and Silhouette datasets. Bottom plot shows the shape
bias of all response-optimized and task-optimized encoding models
and the MS-COCO trained multi-label object classification network.

better using models of intermediate and high-level visual areas (V4, LO and VO) than early visual ar-
eas, even approaching the transfer performance of an MS-COCO-trained object classification network



with the same architecture (Figure[6B,top, see Appendix A.10 for model details), providing further
support for the separability of categorical information in high-level, but not early visual cortex [[11]].
The LO model has the highest classification performance on the Silhouette dataset (which solely
contain shape information), consistent with and providing further evidence for previous hypotheses
that LO tracks object shape information [59]. We then evaluate the classification performance of this
mapped response-optimized model on the diagnostic texture-shape cue conflict dataset [57] to assess
whether the model makes its categorization decisions based on shape or texture (Appendix A.10). We
follow [57] and define shape bias as the percentage of times the model classifies an image based on
its shape over texture, provided it returned either the correct shape or correct texture label for the
image. A model is shape-biased if its shape bias> 50%. We observed that all response-optimized
models exhibit a shape bias (Figure [6B [bottom], Appendix Figure A.1), with this metric ranging
from 56.7-69.4%, suggesting that representations within the ventral visual stream are likely biased
towards shapes than textures. This is in stark contrast to standard CV models which show a texture
bias, for e.g., the same architecture trained for multi-label object classification on MS-COCO shows a
strong texture bias and performs significantly worse on the Silhouettes dataset (Figure [6B, gray bar),
suggesting that the distribution of NSD stimuli (which are drawn from MS-COCO) is not sufficient
to drive the shape bias and the training objective (matching to neural responses rather than object
category labels) matters. Further, as shown in Figure 6B (bottom), it is not the linear mapping to
neural response but the way features are optimized that explains the differing shape/texture bias of
task-optimized and response-optimized encoding models. We next performed a feature visualization
analysis to find visual patterns that maximally activate individual model neurons emulating brain
voxels in response-optimized encoding models. Following [60], we start with a random noise input
x for each model neuron ¢ and iteratively update the input along the gradient % to synthesize
inputs that would result in higher and higher predicted activation a; for that neuron (Appendix A.9).
Visual inspection shows that the features increase in complexity as we go from early to high-level
visual ROI models: simple edge-like features or high-low frequency detectors are seen in V1, curves
and edges are seen in V2, more complex curvatures in V4 and finally, fully-formed complex shapes
like concentric hexagons are seen in LO and VO (Fig.[6]A, Appendix Fig. A.7). We also validated this
increased complexity using quantitative measures based on compression ratios (Appendix Table A.3).

4 Discussion

In this study, we leveraged the large sample size and natural variation represented in the Natural
Scenes Dataset to train deep neural networks directly on the brain response. Concurrently, recent
papers [31}30] have also demonstrated that when trained with large amounts of data such as NSD,
the response-optimization approach can perform competitively with state-of-the-art task-optimized
models (discussed in more detail in Appendix C.1). We studied model generalization in various
settings: from synthetic stimuli to novel fMRI datasets with different preprocessing. Our results
recapitulated key features of early visual areas (e.g. their precise retinotopic organization) and
representational properties in higher level areas. We also demonstrated that response-optimized
models can capture human behavior, including not only object categorization, but also other fine-
grained measures such as perceived image similarity. The response-optimization approach, in
principle, allows exploring infinite paths in the model space, and when optimized properly, converging
towards one that explains maximum possible variance in the data. Since any features that emerge
in these optimized networks are a result of optimization to match neural targets, unconfounded by
any other supervision signal, these models can provide stronger tests about the visual representations
within different visual areas.

In terms of human object categorization behavior, our models lack significantly compared to
ImageNet-supervised DNN models. While part of this may be due to the domain shift, the re-
stricted transfer learning setting (a single linear layer mapping), small size of the transfer set or
simply the coarse spatial resolution of fMRI, this gap is worth exploring. Further, using neural data to
build better models for other communities (e.g. computer vision) is another scientifically fascinating
direction and can develop reinforcing cycles. Studies have shown that explicitly encouraging neural
networks to build representations similar V1 representations can improve their robustness under
noise and adversarial attacks [61,162]. In a similar vein, regularization with high-level visual cortical
activity might help grant models brain-like biases (e.g. shape bias) and close the gap between human
and machine vision. Alternatively, probing the connections in response-optimized models, which
already exhibit a shape bias, using model pruning and attribution methods can yield a mechanistic
understanding of the shape bias in neural activity and reveal principles that may enable CV models



to attain similar representations. Recent studies have inspired optimism that studying connection
weights to reveal underlying computational principles may be tractable [34,163]].
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