
Reproducibility study of the Value Equivalence principle for
Model Based Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

Grimm et al. [2020] introduces and studies the concept of equivalence for Reinforcement Learning models with respect3

to a set of policies and value functions. It further shows that this principle can be leveraged to find models constrained4

by representational capacity, which are better than their maximum likelihood counterparts.5

Methodology6

The code for this project is closed sourced. Therefore, we re-implemented the three sets of experiments (including the7

baseline) and the authors’ custom environments. All experiments were performed using Google Colab and required a8

total of 160 hours of Google Colab GPU.9

Results10

Since all the results in the original paper are presented in graphical form, we cannot provide precise numbers. For11

experiments with span(V) ≈ V̈ , our results match the reported results. For experiments with span(V) ≈ Ṽ and linear12

function approximation, our results for both the baseline and the author’s method diverge from the reported graphs.13

For experiments with span(V) ≈ Ṽ and neural networks, our results follow the reported trend, but not always with the14

same values.15

What was easy16

Even though we had to re-implement everything from scratch, the general pipeline for all experiments was straight-17

forward and well described in the original paper. The environments used for all three experiments were reasonably18

straightforward.19

What was difficult20

Grimm et al. [2020] is a combination of theory and experiments. It is crucial to understand the theorems presented in21

the paper, requiring a solid knowledge of linear algebra. For experiments with linear function approximation, feature22

selection was made using k-means which depends heavily on centroids’ initialisations. It takes a significant amount of23

time to repeatedly apply k-means on a large set of data to find the best fit (more than 10 hours for 10,000 initialisations24

on a dataset of 1,000,000). For these experiments, we also found that the given learning rate did not learn a good model25

(see figure 1).26

Communication with original authors27

We contacted the author for multiple queries related to custom environments, hyper-parameters, feature selections and28

other minute experimental details via email. The author replied to all of them thoroughly and in a reasonable time.29

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



1 Introduction30

Grimm et al. [2020] introduces the principle of Value Equivalent models with respect to a set of policies and value31

functions. Consider, Π to be a set of policies and V to be a set of functions from S → R. Any two models m and m̃ are32

value equivalent with respect to Π and V if and only if, for all π ∈ Π and all ν ∈ V , the following is true.33

Tπν = T̃πν

Tπ is the bellman operator of the MDP with respect to policy π.34

The space of models which are value equivalent to the true model of the MDP, with respect to Π and V , is called35

M(Π,V). The main argument of the paper is that we can aptly choose V and Π and exploit the Value Equivalence36

Principle to find models inM(Π,V) which are simpler and save computation and memory.37

2 Scope of reproducibility38

Grimm et al. [2020] shows that it is possible to exploit some structure and define the sets V and Π for training models39

using the Value Equivalence principle. And that these models perform better than Maximum Likelihood models under40

rank constraints.41

Exploiting structure in the problem: The set of true value functions of an MDP forms a polytype V̈ (Dadashi et al.42

[2019]). To span as much of the polytype as possible, we define V to contain true value functions νπ associated with43

random deterministic policies π.44

Exploiting structure in the solution: In most applications of model based RL, value functions or policies are45

represented using function approximation. Suppose the agent can only represent policies π ∈ Π̃ and value functions46

ν ∈ Ṽ , then any model belonging to the setM(Π̃, Ṽ) is as good as the true model of the MDP.47

We aim to verify these claims by using rank constrained models to compare the performance of Value Equivalence and48

Maximum Likelihood Estimation.49

3 Methodology50

We re-implement the training, evaluation, and custom environments for all the authors’ experiments using the experi-51

mental pipeline and environment description provided in the appendix of Grimm et al. [2020].52

3.1 Experimental setup and code53

The total reproducibility can be divided into three type of experiments:54

• span(V) ≈ V̈ and finite state space (4.1.1).55

• span(V) ≈ Ṽ and finite state space, using linear function approximation (4.1.2).56

• span(V) ≈ Ṽ and infinite state space, using neural networks (4.1.3).57

We used the Catch environment for the first two experiments and the CartPole environment for the last one. The authors58

have used a custom Four-Rooms environment as well, which has been uploaded to our Github repository and can be59

easily used by future practitioners. Our entire code is available at https://github.com/RajGhugare19/VE-principle-for-60

model-based-RL61

3.2 Hyperparameters62

The authors have provided all the hyper-parameters in the appendix. We found that for experiments with span(V) ≈ Ṽ63

and linear function approximation, the specified learning rate (5 · 10−5) did not work. After doing a learning rate search,64

we found that 5 · 10−2 works best for these experiments (see figure 1).65

3.3 Computational requirements66

We carried out all the experiments on the free GPUs from Google Colab. The GPU memory requirements and the total67

GPU hours required by every experiment are provided below.68

2

https://github.com/RajGhugare19/VE-principle-for-model-based-RL
https://github.com/RajGhugare19/VE-principle-for-model-based-RL
https://github.com/RajGhugare19/VE-principle-for-model-based-RL


Figure 1:

Table 1: Compute Requirements per experiment

Experiment CUDA memory (MB) GPU training time (hrs)

span(V) ≈ Ṽ and infinite state space 1600 8
span(V) ≈ Ṽ and finite state space 600 0.25
span(V) ≈ V̈ and finite state space 560 0.25

4 Results69

In experiments with span(V) ≈ V̈ and span(V) ≈ Ṽ with neural networks, we found that the Value Equivalence models70

consistently performed better than the baseline, under rank constraints. For experiments with span(V) ≈ Ṽ with linear71

function approximation we couldn’t reproduce the results for both Value Equivalence training as well as the baseline.72

Although using a different evaluation technique for linear value function approximation, we show new results that73

convey the superiority of Value Equivalent models under constraints.74

4.1 Results reproducing original paper75

4.1.1 Result 176

The results from table 2 support the claim that Value Equivalence training converges towards a value equivalent model77

in a rank constrained space, i.e. a space with lesser span, when enforcing value equivalence with the value function78

polytype (span(V) ≈ V̈).79

Table 2: span(V) ≈ V̈ and Catch environment

Table 3: rank 40

Our Results Reported Results
size V VE MLE VE MLE

40 9.898 4.929 9.8 4.8
35 9.879 4.929 9.8 4.8
30 9.883 4.929 9.8 4.8
25 9.894 4.929 9.8 4.8
20 9.817 4.929 9.8 4.8
15 8.876 4.929 9.8 4.8
10 8.527 4.929 8.9 4.8
5 7.720 4.929 7.9 4.8
2 6.926 4.929 6.3 4.8

Table 4: size V (# of policies) = 10

Our Results Reported Results
rank VE MLE VE MLE

20 9.479 4.303 8.5 5.1
30 9.883 5.975 9.4 4.3
40 8.527 4.929 9.6 6.2
50 8.914 8.002 9.8 9.1

100 9.049 9.887 9.8 9.6
150 9.089 9.910 9.9 9.9
200 9.895 9.910 9.9 9.9
250 8.053 9.910 9.9 9.9

The results are average state values corresponding to the policies formed using respective models.80

3



4.1.2 Result 281

We followed the given pipeline and performed several experiments, the code for which can be found in our repository.82

However, the values corresponding to the resulting policies for both VE and MLE models were highly stochastic and83

did not reflect the authors’ results.84

To further evaluate the experiments with span(V) ≈ Ṽ and linear function approximation we use Double DQN where85

the action value function is a linear function approximator (see table 5).86

The results clearly show that the Value Equivalence Principle can exploit the fact that the agent can only represent linear87

value functions. They also support the claim that under rank constraints, agents trained using the VE principle perform88

substantially better.89

Table 5: Additional results for span(V) ≈ Ṽ and Catch environment

Table 6: size V (width) = 50

rank VE MLE

20 6.34 3.96
30 9.13 6.06
40 10.0 7.74
50 9.2 7.85

100 9.93 5.93
150 10.0 9.45
200 9.15 6.39
250 9.54 10.0

Table 7: rank 40

size V VE MLE

20 4.89 4.69
30 10.0 8.04
40 8.19 7.16
50 10.0 7.61

100 8.89 8.93
150 9.07 8.24
200 9.27 9.53
250 7.83 8.97

4.1.3 Result 390

The results from table 8 indicate that even when the set Ṽ consists of neural networks, the Value Equivalent models91

with rank constraints tend to perform better than the baseline. However, as we reduce the constraints, the performance92

of the VE models seems to deteriorate.93

Table 8: span(V) ≈ Ṽ and CartPole environment

Table 9: rank 10

Our Results Reported Results
size Ṽ VE MLE VE MLE

32 987.4 446.5 780 600
64 664.7 560.9 800 620
128 994.8 959.8 710 800
256 418.8 994.1 700 890
500 980.87 628.66 600 830

1000 945.3 562.61 650 810

Table 10: size V (width) = 128

Our Results Reported Results
rank VE MLE VE MLE

2 152.9 112.3 180 60
4 524.2 224.7 780 100
6 981.0 726.6 800 400
8 994.3 927.1 790 690
10 994.8 959.8 800 740
12 880.7 981.9 690 700
14 684.5 972.3 700 760
16 842.7 974.2 690 780
20 671.1 993.8 800 800

These results are average returns for 100 consecutive episodes corresponding to the best policies formed using Double94

DQN.95

4.2 Results beyond original paper96

We used a different evaluation technique for the results of table 5. Instead of using approximate policy iteration with97

LSTD, we used Double DQN with linear action-value function approximators. The hyper-parameters used for this can98

be found in table 11.99

4



Table 11:

Hyper-parameters Values

DQN learning rate 10−3

size of experience replay 104

total iterations 106

DQN learning frequency 2

5 Discussion100

Our results support the existence of Value Equivalent models in lower-dimensional spaces and the ability of Value101

Equivalence training to converge to these models.102

Even though we were not able to reproduce the results for experiments with span(V) ≈ Ṽ with linear function103

approximation, we have a few likely reasons behind this rather than the failure of VE models.104

• The performance of both the VE and baselines models depend highly on the feature formation, which was105

done using k-means. The results of k-means are heavily dependent on the initialisation of centroids.106

• The evaluation method not only diverged for the VE models but also for MLE models.107

• Table 5 suggests that the problem could lie in the authors’ evaluation technique, i.e. LSTD with approximate108

policy iteration.109

5.1 What was easy110

The paper’s experiments were easy to follow and code, as the authors have divided the entire pipeline into different111

stages with clear descriptions for every stage.112

5.2 What was difficult113

Some points were left out or not evident in the original paper, and we had to ask the authors to get them cleared.114

• Feature formation for experiments with span(V) ≈ Ṽ and linear function approximation was done by applying115

k-means on a set of 106 states collected using a random policy.116

• The size of experience replay used in the paper was 106.117

• Rank constrained matrices where optimised by applying gradient descent to the parameters FD and FK .118

5.3 Future work119

Grimm et al. [2020] uses rank constraints for Neural Networks in experiments with span(V) ≈ Ṽ . For experiments120

with ranks greater than 8, constraints on the first and last layer are effectively removed. This is because these layers121

each have one dimension, which is smaller than 8. It would be interesting to use other constraints like positive-semi122

definiteness (Lezcano-Casado [2019]) along with rank constraints to compare the performance of VE and MLE models.123

References124

Robert Dadashi, Adrien Ali Taïga, Nicolas Le Roux, Dale Schuurmans, and Marc G. Bellemare. The value function125

polytope in reinforcement learning. CoRR, abs/1901.11524, 2019. URL http://arxiv.org/abs/1901.11524.126

Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value equivalence principle for model-based127

reinforcement learning, 2020.128

Mario Lezcano-Casado. Trivializations for gradient-based optimization on manifolds. In Advances in Neural Information129

Processing Systems, NeurIPS, pages 9154–9164, 2019.130

5

http://arxiv.org/abs/1901.11524

	Introduction
	Scope of reproducibility
	Methodology
	Experimental setup and code
	Hyperparameters
	Computational requirements

	Results
	Results reproducing original paper
	Result 1
	Result 2
	Result 3

	Results beyond original paper

	Discussion
	What was easy
	What was difficult
	Future work


