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Abstract

Over the past few years, split learning has developed by leaps and bounds due to the shift
towards distributed computing and the demand for data privacy. To increase the scalability
of sequential split learning, scalable variants such as parallel split learning and split federated
learning have been proposed, which often entail huge computation and memory consump-
tion on the server side, limiting thus their scalability. Moreover, former aggregation-based
methods generally converge with inferior rate and quality due to factors such as client drift
and lag, whilst existing aggregation-free methods cannot really benefit from parallelism. In
this paper, we present a novel aggregation-free split learning paradigm termed CycleSL,
which can be integrated into existing algorithms to boost model performance while impos-
ing less resource consumption. Inspired by alternating coordinate descent, CycleSL models
the training task on the server side as a standalone higher-level machine learning task and
updates the server and client in cyclical turns through the reuse of smashed data. Benefit-
ing from feature resampling and alternating gradient steps, CycleSL has great potential to
advance model performance and robustness. We integrate CycleSL into previous algorithms
and benchmark them on four publicly available datasets with non-iid data distribution and
partial client attendance. Our results show that CycleSL can notably improve model per-
formance and convergence.

1 Introduction

As a distributed collaborative machine learning paradigm, split learning (SL, Gupta & Raskar (2018);
Vepakomma et al. (2018)), which is also called split neural network (SplitNN), has recently gained strong
momentum given the rapid development of distributed computing resources and the ever-growing demand
for data privacy. In this paper we limit our discussion to horizontal SL, which means the samples of clients
share the same feature space but are different in the sample space. Compared to centralized learning Soykan
et al. (2022), where both data storage and model training occur in a centralized manner, in SL, data is
distributed across a set of clients, and the training load is amortized between server and clients. A similar
concept is federated learning (FL, McMahan et al. (2017)), where each client holds a complete model copy
and trains its local model using its individual data while a server periodically aggregates client models. SL
is different from FL, as in SL, clients only train their models up to a cut layer and send extracted features,
which are also called smashed data, to a server, while the server completes the rest of the training without
requiring raw data and sends gradients back to clients for their local update. Through such a procedure, the
training load can be shared among participating entities without burdening one side too much, and primary
data privacy can be guaranteed, given that no data or model sharing is needed. Moreover, since SL shifts
a proportion of computation load to from clients to server side, it can be more practical in collaborative
computing in comparison to FL.

The canonical SL happens sequentially, meaning the server only pairs with one client each time. To be
the next one being serviced without a cold start, a client needs to retrieve the latest trained client part
model from the last coupled client, either through the server or a trusted third party or client-to-client peer
sharing. That said, the model trained in sequential SL is not essentially different from a model trained in
the centralized manner, except all hidden features in a client-to-server mini-batch come from the same data

1



Under review as submission to TMLR

Figure 1: The CycleSL pipeline. After collecting smashed data from clients, CycleSL first forms a global
feature dataset on the server side, which is regarded as input samples for a higher-level training task. Then
CycleSL resamples features from the dataset to train the server model. Only after the server model is
updated, the original feature batches are reused to compute gradients using the latest server model. Lastly,
the gradients are sent back to clients for their local update.

holder. This way, sequential SL is on par with centralized learning regarding model performance but suffers
from high latency due to poor scalability. To increase the scalability of sequential SL, many parallelized
variants of SL, which are often realized in combination with FL, have been introduced, such as parallel split
learning (PSL, Jeon & Kim (2020); Joshi et al. (2021); Lin et al. (2024b)), split federated learning (SFL
or SplitFed, Thapa et al. (2022); Lin et al. (2024a)), federated split learning (FSL, Turina et al. (2021);
Zhang et al. (2023)), and other forms of combinations Han et al. (2021); Pal et al. (2021); Abedi & Khan
(2023); Wu et al. (2023). These methods generally approach scalability by duplicating the server part model
or even the server itself, which could strongly stress the server. Further, due to the integration of FL,
they often unavoidably suffer from FL problems such as client drift Karimireddy et al. (2020); Charles &
Konečnỳ (2021); Wang et al. (2021). Consequently, they may yield worse convergence quality and rate than
sequential SL, which can be costly to compensate under distributed learning setup, especially in cross-device
scenario Kairouz et al. (2021).

In this paper, we propose a novel aggregation-free SL paradigm coined CycleSL, which can be integrated
into other scalable SL algorithms to improve model performance and convergence rate while imposing even
less resource burden on the server side, especially compared to aggregation-based methods. Firstly, inspired
by the model-as-sample strategy Wang et al. (2024), CycleSL models the training task on the server side as
a standalone higher-level machine learning task with the smashed data from clients as input samples, and
resamples mini-batches from the collected smashed data to counteract data heterogeneity. Then, CycleSL
adapts the inspiration from alternating (block) coordinate descent Luenberger et al. (1984) and performs
one step further on the server side, namely updates the server part and client part models in cyclical turns,
rather than in the common end-to-end manner Glasmachers (2017) in the same gradient backward flow. A
core advantage of such server-client alternating update is that it could bring in the benefits of coordinate
descent solutions and hence further counteract client drift. The main contributions of this work are four-fold:

• We present a perspective to model the server side training in split learning as a higher-level machine
learning task and regard the hidden representations from clients as input samples in a feature-as-
sample manner.

• We propose server-client cyclical update in split learning, which follows the alternating update
strategy of coordinate descent and can thus benefit from it. In this regard, we give a heuristic toy
example for the potential implicit regularization effect of our method.

• We introduce CycleSL, an aggregation-free split learning paradigm that realizes the aforementioned
two ideas and can be combined with other scalable split learning algorithms. We integrate CycleSL
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into three recent methods, including PSL, SFL, and SGLR, and suggest CyclePSL, CycleSFL, and
CycleSGLR accordingly.

• We benchmark the aforementioned methods on four publicly available datasets including FEMNIST,
CelebA, Shakespeare, and CIFAR-100, with non-iid data distribution across clients and a 5% client
attendance rate. Our results show that the cycle-version methods remarkably outperform their
originals on test performance.

To our best knowledge, we are the first to suggest the server side training as a standalone task and to harness
coordinate descent for server-client alternating update in SL. Our work addresses a new research gap in this
regard. We also publish our code for reproducibility1. By following our instructions, our results can be
replicated up to numerical error.

2 Related work

2.1 Scalable split learning

To improve the scalability of vanilla sequential SL, model parallelism has been introduced into SL, which
allows multiple clients to collaborate with the server simultaneously. The scalability is often realized through
model duplicates on the server side, with one server model clone pairing with one client during training,
whose parameters or gradients are later aggregated with the help of FL algorithms such as FedAvg McMahan
et al. (2017) or FedOpt Reddi et al. (2020). For instance, PSL Jeon & Kim (2020); Joshi et al. (2021) enables
multi-client connection by replicating the server part model and periodically averaging these model copies.
SFL Thapa et al. (2022), especially its first variant, SFLV1, does exactly the same on the server side while
also engaging a trusted third party (not necessarily the server itself) to aggregate the client part models.
In contrast, FSL Turina et al. (2021) engages multiple servers rather than multiple models on one server,
making the server-client connection more flexible. CPSL Wu et al. (2023) clusters clients into groups to
reduce the latency caused by sequential processing. Unlike the methods above, which generally work for
most feed-forward models, FedSL Abedi & Khan (2023) is specialized for recurrent neural networks.

A direct (negative) impact of parallelism based on model duplication is the extra computation and memory
consumption for server, particularly when the cut layer is shallow and most of the model parameters are kept
on the server side. As a consequence, the scalability can be strongly limited. Moreover, as most scalable SL
methods rely on federated aggregation, they often unavoidably suffer from FL problems. One of the most
challenging aspects is client drift Karimireddy et al. (2020); Charles & Konečnỳ (2021); Wang et al. (2021),
which describes the phenomena that local models converge towards local optima instead of global optimum
due to factors like data heterogeneity and data imbalance. This problem is especially challenging in cross-
device scenarios Kairouz et al. (2021), where a single user with a personal device like smartphone or tablet
and his personal data forms a client. Since each individual can have a unique data distribution, their local
optima could diverge to a large extent. The case could be even worsened for some SL algorithms like PSL,
where only the server model duplicates are aggregated while the client part models remain unsynchronized.
As a result, aggregation-based SL methods often converge with lower rate and worse quality than sequential
SL. The aggregation-free variants like SFLV2 (the second version of SFL Thapa et al. (2022)) address this
challenge by engaging only one server model and processing all clients one by one, which is in essence not
different from sequential SL on the server side and thus does not take advantage of parallelism. Client drift
can be further complicated by partial participation McMahan et al. (2017); Kairouz et al. (2021), which
means only a subset of clients can connect to the server in a round. This is especially an issue for methods
without model orchestration on the client side, like PSL, since clients who lag behind due to absence in the
last rounds may have a cold start with a less or even untrained local model.

More recently, a growing body of research aimed to address the aforementioned issues. For instance, EPSL Lin
et al. (2024b) aggregates the last layer gradients before propagation to reduce the computation burden on the
server side. SGLR Pal et al. (2021) averages gradients before sending them back to clients to mitigate client
divergence without client model aggregation. It further sets different learning rates for each end to better

1https://github.com/AnonymWriter/CycleSL. This repository is anonymized for review.
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adapt them. In Han et al. (2021), the authors reduced communication by utilizing localized loss functions
on each end. A common limitation of these methods lies in that they often still rely on model duplication
and aggregation, and thus their improvement can be strongly restricted in practice.

2.2 Coordinate descent

Coordinate descent is a classical optimization technique for multivariate functions. Given a multivariate
function, coordinate descent approaches its minimum by optimizing along each dimension at one time alter-
natively rather than along all directions jointly. This procedure is repeated iteratively, (randomly) cycling
through all the variables. According to Wright (2015), coordinate descent has multiple advantages, such as
simplicity, scalability, and efficiency for high dimensions and sparsity. Though less studied, the alternating
optimization mechanism of coordinate descent can result in a biased solution that resembles the effects of
implicit regularization under certain conditions Nakamura et al. (2021); Zhao et al. (2022). The idea of
coordinate descent and its application in machine learning can be traced back to the early days, covering
various domains such as linear sparse problems Daubechies et al. (2004), Lasso and Ridge regularization Fu
(1998), support vector machines Platt (1998), and matrix factorization Zhou et al. (2008). From the perspec-
tive of deep learning, techniques like layer-wise training Bengio et al. (2006); Hinton et al. (2006); Palagi &
Seccia (2020) can be regarded as its applications. Though serving different purposes, regularization methods
like dropout Hinton et al. (2012) also share some analogies with coordinate descent. More recently, (block)
coordinate descent has been studied as gradient-free optimizer Carreira-Perpinan & Wang (2014); Zhang
& Brand (2017); Zeng et al. (2019) as an alternative to gradient-based and second-order methods such as
stochastic gradient descent (SGD) and Newton’s method.

3 Methodology

Given the problems of former aggregation-based and -free scalable SL algorithms and the benefits of coordi-
nate descent, we introduce CycleSL, a novel aggregation-free SL mechanism that models the training of the
server part model as a standalone higher-level task and applies feature resampling to counteract client drift,
and updates the server and client part models in cyclical turns, following the alternating update strategy
of (block) coordinate descent instead of in the common end-to-end pattern. In this section, we stick to the
following notations. In a SL scenario with N ∈ N+ clients and T ∈ N+ epochs, let θC be the client model
and θS be the server model, respectively. We use superscript t ∈ [T ] to denote epoch and subscript i ∈ [N ]
to index client. We mark mini-batches using B, with superscripts x for samples, f for feature, and g for gra-
dients. Further we represent the objective function as L and the learning rate as η. The pipeline of CycleSL
is depicted in Figure 1, and its pseudo-code is proviced in Algorithm 1. As CycleSL is aggregation-free, it
requires significantly less computation and memory resources than other aggregation-based methods. An
overarching comparison between CycleSL and other SL paradigms regarding their mechanisms and costs is
given in Table 1.

3.1 Higher-level task with feature resampling

In the following, we illustrate our algorithm in detail, starting with the idea of standalone server-level task.
We observe that it is, in principle, hard to refrain aggregation-based scalable SL methods from the high
resource occupation due to their nature. One exception in this regard is SFLV2 (the second version of SFL),
where there is only one server with one model servicing all participating clients one by one, and it is, hence,
aggregation-free. However, in substance SFLV2 conducts sequential SL on the server side and does not
benefit much from client parallelization. Moreover, both existing aggregation-based and -free methods are
often inevitably influenced by client drift, as all smashed data in a client-to-server batch is extracted with
the same client model from samples of the same data holder. For this reason, the server model can be biased
towards a client’s local optima in each batch step. To alleviate this issue, we regard the smashed data sent
by clients to server as input samples for a standalone machine learning task at a higher level. A similar idea
was proposed in TurboSVM-FL Wang et al. (2024), where class embeddings from client models are taken
as samples in order to fit a secondary-level support vector classifier. To prevent the client-binding batch
problem, CycleSL resamples the collected smashed data into random batches that are not no longer bound
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Algorithm 1 The CycleSL framework.
Input: clients i ∈ [N ], client local datasets Di, client part models θi, server part model θS , objective
function L, learning rate η, SL rounds T .

ClientFP (client i): # parallelizable
client i samples one mini-batch samples Bx

i ⊆ Di

client i computes features Bf
i ← θt

i(Bx
i )

return Bf
i

ClientBP (client i, gradients Bg
i ): # parallelizable

client i computes gradients regarding θt
i : ∇θt

i
Bg

i

client i locally updates θt+1
i ← θt

i − η∇θt
i
Bg

i

ServerGrad (features Bf , freeze):
if freeze is true then

server disables gradient tracking for θt+1
S

server computes loss ℓ← L(Bf , θt+1
S )

server computes gradients regarding Bf : ∇Bf ℓ
return ∇Bf ℓ

else
server enables gradient tracking for θt

S

server computes loss ℓ← L(Bf , θt
S)

server computes gradients regarding θt
S : ∇θt

S
ℓ

server updates θt+1
S ← θt

S − η∇θt
S
ℓ

end if

Main:
initialize θ0

1, θ0
2, ..., θ0

N and θ0
S

for t = 0, 1, ..., T − 1 do
sample a subset of clients St ⊆ [N ]
for client i ∈ St do
Bf

i ← ClientFP (i)
end for
server forms feature-as-sample dataset Df

S ←
⊎

i∈St
Bf

i

for server randomly resamples mini-batch Bf
S ⊆ Df

S do
ServerGrad (Bf

S , false)
end for
for client i ∈ St do
Bg

i ← ServerGrad (Bf
i , true) # parallelizable

ClientBP (i, Bg
i )

end for
end for

to clients. Mathematically, this procedure can be expressed as follows. After receiving feature batches Bf
i

from clients, previous SL paradigms generally updates server model using the batches directly:

θt+1
S ← θt

S − η∇θt
S
Li∼[N ](Bf

i , θt
S) (1)

In contrast, CycleSL first combines these feature batches and forms a global feature dataset on the server
side, then randomly resamples mini-batches Bf

S from the feature dataset and feeds them into the server
model for training:

Df
S ←

⊎
i∈[N ]

Bf
i , θt+1

S ← θt
S − η∇θt

S
LBf

S
∼Df

S
(Bf

S , θt
S) (2)
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Table 1: A comparison of SL methods regarding mechanisms and costs on the server side, given number of
participating clients N ∈ N+. k is a factor dependent on CycleSL setup and generally 1 ≤ k << N .

Sequential SL Agg-based scal. SL Agg-free scal. SL CycleSL
Sequential pairing yes no yes no
Model aggregation no yes no no
Benefit from scalability no yes no yes
Computation intensity O(1) O(N) O(1) O(1)
Memory consumption O(1) O(N) O(1) O(1)
Latency O(N) O(1) O(N) O(k)

A further benefit of this procedure lies in the reduction of computation and memory cost, since the server
part training is not aggregation-based. In addition, as the server part training is a complete standalone task
by itself, more flexible configurations of hyperparameters, such as learning rate decay and normalization
strategies, can be independently determined to improve model performance.

3.2 Server-client cyclical update

In the conventional SL pipeline, though the forward flow of hidden representations and the backward flow
of gradients are cut in the middle and transmitted between entities, the client part and server part models
are still updated with gradients computed from the same backward propagation, which follows an end-to-
end Glasmachers (2017) training paradigm in general. Since the server side training is isolated from the client
part as an independent task in CycleSL, we bring in the alternating update strategy of (block) coordinate
descent and suggest the cyclical training of server and client models. More precisely, after the server model
is optimized, CycleSL freezes the server part model so that no gradients will be computed for its parameters.
Then, CycleSL reuses the smashed data from clients and feeds them into the already updated server model
to calculate the gradients that will be sent back to clients. The server model shall be unfrozen afterwards.
In the next step, clients update their local models with the received gradients, and the next round of SL
will start. That said, the server and client part models can be regarded as two blocks in block coordinate
descent, which are optimized independently and alternatively in rounds. The server-client cyclical update
can also be interpreted as coordinate descent on composition function, where the complete network can be
then considered as a function composition θCS = θS ◦ θC with θCS(x) = θS(θC(x)). Mathematically, whilst
traditional SL algorithms update the client and server models "simultaneously", as they use the models at
time step t to compute gradients for both the client and server models:

θt+1
C ← θt

C − η∇θt
C
L(θt

C , θt
S) (3)

CycleSL updates the client model after the server model while respecting the latest update of the server
model:

θt+1
C ← θt

C − η∇θt
C
L(θt

C , θt+1
S ) (4)

There are multiple benefits of this update paradigm. First, since the gradients are only computed with
respect to one set of parameters each time (either the server part model or the smashed data), while the
other set does not trace gradient flow, the memory usage is not burdening. A further benefit lies in that
the gradient computation regarding smashed data can be easily parallelized, e.g., with one frozen clone of
the server model coupling with one client to accelerate the process. Thirdly, different from SFLV2, where
each client is actually paired with a server in a different status due to sequential coupling, in CycleSL,
all participating clients in one round couple with the identical server, thus alleviating the impact of client
drift. Furthermore, the block-wise alternating freeze-and-train training style can potentially benefit from the
merits of coordinate descent such as implicit regularization, as the optimized server model generally tends to
yield lower loss value compared to the unoptimized one, which could in turn lead to smaller gradient steps
on the client side. In this regard, we give a toy example of implicit regularization effect of CycleSL in the
following. The purpose of this example is not to serve as strict proof but as a heuristic.
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3.2.1 Toy example

Consider a simplified regression task in SL where both the client and server part models are a single linear
layer with one neuron. We further ignore activation functions and bias terms. Then, for a sample point
(x, y), its predicted value can be given as ŷ = wswcx, where wc and ws are the parameters of client and server
part models respectively. Consider mean squared error as a loss function, i.e., ℓ = (y− ŷ)2. Traditionally, SL
follows an end-to-end Glasmachers (2017) pattern, which means both wc and ws are updated in the same
gradient backward flow: w′

s ← ws − 2ηwcx(wswcx − y), w′
c ← wc − 2ηwsx(wswcx − y) where w′

c and w′
s

are the updated parameters and η > 0 is learning rate. In contrast, CycleSL updates ws and wc one after
another: w′

s ← ws − 2ηwcx(wswcx− y), w′
c ← wc − 2ηw′

sx(w′
swcx− y).

Comparing the two update strategies, it is clear that both are identical with respect to server side training,
while they respectively use the old and the new server models to update the client part model. We now
compare the two gradient steps for the client model, namely 2ηwsx(wswcx − y) and 2ηw′

sx(w′
swcx − y),

when approaching convergence. For simplicity, we limit our discussion to the case where all wc, ws, x, y > 0
and wswcx > y. All other cases can be analyzed similarly. Since wswcx > y, we expect that with a
proper choice of η, w′

s is reduced for a decently small step during server training, i.e., y
wcx < w′

s < ws

such that w′
swcx shrinks towards y. Observe the function f(ws) = wsx(wswcx − y) and its derivative

f ′(ws) = 2wswcx2− xy = x(wswcx− y + wswcx). When approaching convergence, i.e. wswcx− y → 0+, we
have f ′(ws) > 0, which means f(ws) is increasing in its neighborhood. Thus for y

wcx < w′
s < ws the following

applies: f(w′
s) < f(ws) ⇔ 2ηw′

sx(w′
swcx − y) < 2ηwsx(wswcx − y). That said, the alternating update

strategy of CycleSL could result in a smaller gradient step on the client side compared to the conventional
end-to-end paradigm when approaching convergence, which can serve as an implicit regularizer.

4 Experiments

We integrated CycleSL into three recent scalable SL algorithms, including PSL Jeon & Kim (2020); Joshi
et al. (2021), SFL Thapa et al. (2022), and SGLR Pal et al. (2021), and introduced CyclePSL, CycleSFL,
and CycleSGLR accordingly. Particularly, CyclePSL is, in essence, identical as described in the Algorithm 1.
Counting in the two versions of SFL (SFLV1 and SFLV2) and FedAvg McMahan et al. (2017), We bench-
marked in total eight algorithms on four publicly available datasets. Our experiments were conducted on
a cluster with AMD EPYC 7763 64-Core and NVIDIA A100 80GB PCIe × 4. To ensure the robustness
and reliability of results, we replicated the experiments over 5 random seeds from {0, 1, 2, 3, 4} and reported
mean ± std for each metric. Our code is published 1 to promote reproducibility.

4.1 Datasets and tasks

We utilized four datasets from LEAF Caldas et al. (2018) and FL-bench Tan & Wang (2023), both of which
are standardized benchmark frameworks for FL. We chose these platforms because SL is closely related to
FL, and the platforms guarantee a great level of reproducibility by providing baseline model architectures,
hyperparameters, and data partition strategies. The chosen datasets were FEMNIST LeCun (1998); Cohen
et al. (2017), CelebA Liu et al. (2015), Shakespeare Shakespeare (2014); McMahan et al. (2017), and CIFAR-
100 Krizhevsky et al. (2009). An overview of the datasets is given in Table 2. The task of the FEMNIST
dataset is classification among 62 classes (10 digits, 26 lowercase letters, 26 uppercase letters) given 28× 28
grayscale handwriting images. The task of the CelebA dataset is smile detection, which is modeled as binary
classification given 84 × 84 RGB human face images. Both image classification tasks use CNN models. In
contrast, the Shakespeare dataset contains scripts from Shakespeare’s work, and the corresponding task is
next-character prediction based on sentences of length 80 with an LSTM model. The CIFAR-100 is also a
dataset for image classification and contains images of 100 classes.

We applied the model architectures suggested by LEAF for the first three tasks, and a ResNet9 He et al.
(2016) for the CIFAR-100 task. The model architectures were provided in the appendix. For the three image
classification tasks, we cut the CNN models in the middle so that both client and server part models have
similar numbers of layers. For the language processing task, we kept the embeddings and the LSTM cells on
the client side while having the projection head on the server side. We applied Adam optimizer for all tasks
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Table 2: An overview of datasets.

Dataset FEMNIST CelebA Shakespeare CIFAR-100
Task image classification smile detection next-char prediction image classification
Classes 62 2 80 100
Clients 3550 9343 1129 100
Samples per client 226.8 ± 88.9 21.4 ± 7.6 3743.3 ± 6212.3 600.0 ± misc

as it is less sensitive to learning rate compared to SGD, and followed the learning rates suggested by LEAF
unless they performed to be too small or large in the experiments. We determined batch sizes according to
data distribution among clients and left out clients who had too few samples and could not even fill a full
batch. For CIFAR-100, we kept batch size of 64 and conducted grid search for optimal learning rate. An
overview of the hyperparameters is provided in Table 8 in the appendix. The choice of optimizers, learning
rates, and batch sizes was identical for both clients and server across different SL algorithms in the same
task for a fair comparison.

In our benchmarks, we partitioned the data among clients in non-iid ways, which makes the experiments
more challenging and closer to real life. For FEMNIST, CelebA, and Shakespeare, we followed the fixed
non-iid distributions provided in LEAF. The CIFAR-100 dataset was partitioned using FL-bench, following
Dirichlet distribution Hsu et al. (2019) with different α values to emulate different levels of data heterogeneity
across clients. Smaller α implies stronger data heterogeneity. The visualizations of data distributions are
provided in the appendix. Further we emulated partial participation with a client attendance rate of 5%.
This means we randomly sampled 5% of clients in each round, and only these clients could connect with the
server. For all tasks, we conducted sample-wise data split Wang et al. (2021), which means for each client,
we had a proportion of samples reserved for test, rather than a held-out set of clients who never met the
server during training. The train-test split ratio was 90%-10% for all tasks. The main reason for applying
sample-wise data split is that for some SL algorithms like PSL and SGLR, there is no model aggregation
procedure on the client side, which means the held-out clients receive no updates throughout training, and
a test involving these clients is irrelevant.

Our experiments are notably distinct from previous ones, as all four datasets we used contain a great amount
of clients, and the data distribution among clients is strongly non-iid, whereas previous experiments often
engaged only few clients and little heterogeneity. In other words, our experiments are close to a cross-
device Kairouz et al. (2021) case where each client can be an individual user with a personal device like
smartphone or tablet and his personal data, whereas existing results were commonly obtained in cross-
silo scenarios where large-scale institutions like universities and hospitals act as clients. We believe that
the former is more challenging regarding scalability, data heterogeneity, and partial participation. Besides,
experiments in cross-device scenarios are more practical in collaborative computing due to the nature of SL.

4.2 Results

We ran our experiments for 600 epochs for the FEMNIST, CelebA, and Shakespeare tasks, and 1000 rounds
on the CIFAR-100 dataset. The obtained test metrics are summarized in Table 3, and the graphical visu-
alizations of test loss (cross entropy) were reported in Figure 2. Other metric plots were provided in the
appendix. We observed that for FEMNIST, the cycle-version algorithms outperformed all their originals,
especially the aggregation-based ones, to a large extent, while the best-performing method was CycleSFL. In
detail, CyclePSL, CycleSGLR, and CycleSFL respectively advanced the test accuracies of PSL, SGLR, and
SFLV1 from 52.5% to 83.3%, from 48.8% to 82.3%, and from 63.2% to 83.9%. Compared to the aggregation-
free method, namely SFLV2, CycleSFL also yielded an accuracy improvement of 1.1%. Another intriguing
finding is that CycleSL can also lead to an increase in model robustness and stability, as a decrease in
metric standard deviations can be observed for all metrics. For CelebA, since the task is simple (binary),
the non-cycle algorithms can already deliver good results. However, CyclePSL, CycleSGLR, and CycleSFL
still boosted model performance on average by 4.6%, 3.4%, and 1.3% regarding test accuracy. Moreover, we
found out that the improvement was obtained even in the case of overfitting, as can be inferred from the
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Table 3: Achieved test loss (cross entropy), accuracy, F1 score, and MCC (Matthews correlation coefficient).

Method Metric FEMNIST CelebA Shakespeare CIFAR(iid) CIFAR(α=1.0) CIFAR(α=0.5) CIFAR(α=0.1)

PSL

Loss 2.050 ± 0.235 0.648 ± 0.076 3.349 ± 0.133 2.784 ± 0.036 2.638 ± 0.077 2.570 ± 0.083 1.906 ± 0.206
Accu 0.525 ± 0.046 0.809 ± 0.013 0.167 ± 0.052 0.331 ± 0.026 0.351 ± 0.005 0.368 ± 0.016 0.559 ± 0.051
F1 0.200 ± 0.037 0.808 ± 0.013 0.006 ± 0.001 0.280 ± 0.016 0.280 ± 0.017 0.280 ± 0.029 0.336 ± 0.041

MCC 0.506 ± 0.048 0.617 ± 0.026 0.000 ± 0.001 0.325 ± 0.027 0.344 ± 0.005 0.359 ± 0.016 0.542 ± 0.049

SGLR

Loss 2.246 ± 0.248 0.487 ± 0.063 3.336 ± 0.110 2.786 ± 0.043 2.628 ± 0.081 2.581 ± 0.067 1.878 ± 0.187
Accu 0.488 ± 0.051 0.826 ± 0.022 0.143 ± 0.064 0.319 ± 0.019 0.360 ± 0.034 0.372 ± 0.016 0.572 ± 0.042
F1 0.168 ± 0.036 0.825 ± 0.023 0.006 ± 0.001 0.262 ± 0.023 0.291 ± 0.028 0.285 ± 0.016 0.353 ± 0.041

MCC 0.467 ± 0.053 0.653 ± 0.046 0.001 ± 0.001 0.312 ± 0.019 0.354 ± 0.034 0.363 ± 0.016 0.556 ± 0.040

SFLV1

Loss 1.355 ± 0.089 0.217 ± 0.019 1.908 ± 0.101 2.309 ± 0.078 2.253 ± 0.077 2.350 ± 0.090 2.484 ± 0.177
Accu 0.632 ± 0.021 0.905 ± 0.011 0.454 ± 0.027 0.415 ± 0.032 0.423 ± 0.026 0.416 ± 0.012 0.388 ± 0.062
F1 0.383 ± 0.028 0.905 ± 0.011 0.147 ± 0.015 0.346 ± 0.027 0.361 ± 0.020 0.339 ± 0.039 0.252 ± 0.039

MCC 0.618 ± 0.022 0.811 ± 0.021 0.404 ± 0.030 0.410 ± 0.033 0.417 ± 0.026 0.410 ± 0.012 0.380 ± 0.060

SFLV2

Loss 0.509 ± 0.039 0.225 ± 0.023 1.860± 0.128 2.062 ± 0.132 1.943 ± 0.125 1.963 ± 0.084 1.910 ± 0.077
Accu 0.828 ± 0.010 0.906 ± 0.009 0.455± 0.032 0.475 ± 0.041 0.493 ± 0.030 0.480 ± 0.013 0.489 ± 0.039
F1 0.701 ± 0.016 0.906 ± 0.010 0.156 ± 0.026 0.417 ± 0.041 0.422 ± 0.028 0.409 ± 0.051 0.331 ± 0.036

MCC 0.822 ± 0.010 0.814 ± 0.017 0.407± 0.035 0.471 ± 0.041 0.489 ± 0.030 0.474 ± 0.013 0.479 ± 0.042

FedAvg

Loss 1.629 ± 0.071 0.249 ± 0.053 2.337 ± 0.141 2.343 ± 0.068 2.416 ± 0.045 2.551 ± 0.111 2.990 ± 0.166
Accu 0.567 ± 0.019 0.904 ± 0.017 0.374 ± 0.035 0.411 ± 0.030 0.392 ± 0.021 0.372 ± 0.012 0.296 ± 0.035
F1 0.293 ± 0.014 0.903 ± 0.017 0.082 ± 0.020 0.342 ± 0.032 0.321 ± 0.012 0.293 ± 0.037 0.169 ± 0.021

MCC 0.550 ± 0.020 0.812 ± 0.030 0.314 ± 0.042 0.405 ± 0.030 0.386 ± 0.021 0.365 ± 0.012 0.285 ± 0.037

Cycle-
PSL

Loss 0.610 ± 0.031 0.687 ± 0.058 5.044 ± 0.187 2.456 ± 0.103 2.328 ± 0.177 2.161 ± 0.121 1.405 ± 0.222
Accu 0.833 ± 0.016 0.855 ± 0.012 0.108 ± 0.021 0.393 ± 0.016 0.422 ± 0.047 0.465 ± 0.024 0.650± 0.058
F1 0.687 ± 0.022 0.854 ± 0.011 0.011 ± 0.001 0.332 ± 0.028 0.350 ± 0.046 0.370 ± 0.030 0.436± 0.033

MCC 0.827 ± 0.017 0.710 ± 0.024 0.000 ± 0.002 0.387 ± 0.017 0.416 ± 0.047 0.458 ± 0.025 0.637± 0.057

Cycle-
SGLR

Loss 0.619 ± 0.060 0.548 ± 0.037 5.343 ± 0.347 2.402 ± 0.073 2.290 ± 0.159 2.093 ± 0.051 1.385± 0.219
Accu 0.823 ± 0.019 0.860 ± 0.013 0.080 ± 0.014 0.401 ± 0.018 0.427 ± 0.045 0.472 ± 0.029 0.638 ± 0.047
F1 0.678 ± 0.031 0.860 ± 0.012 0.011 ± 0.001 0.342 ± 0.031 0.348 ± 0.049 0.376 ± 0.031 0.436 ± 0.044

MCC 0.817 ± 0.019 0.721 ± 0.025 0.000 ± 0.001 0.395 ± 0.019 0.421 ± 0.045 0.465 ± 0.029 0.624 ± 0.046

Cycle-
SFL

Loss 0.489± 0.031 0.205± 0.018 2.078 ± 0.091 1.923± 0.062 1.875± 0.085 1.850± 0.079 1.825 ± 0.131
Accu 0.839± 0.008 0.918± 0.005 0.437 ± 0.017 0.491± 0.027 0.502± 0.026 0.522± 0.031 0.522 ± 0.029
F1 0.710± 0.006 0.917± 0.006 0.169± 0.016 0.433± 0.040 0.426± 0.023 0.434± 0.042 0.344 ± 0.041

MCC 0.834± 0.008 0.835± 0.011 0.390 ± 0.018 0.486± 0.027 0.497± 0.027 0.517± 0.031 0.511 ± 0.032

Figure 2: Test loss (cross entropy) for each task.

test loss on CelebA task. When PSL and SGLR and their cycle-versions were overfitted (increase in test
loss, but other metrics weren’t negatively impacted), the cycle-version methods still yielded lower test loss
at earlier rounds. Whilst not being the best-performing method for all metrics on Shakespeare, CycleSFL
delivered the highest F1 score and was still on par with SFL with respect to other metrics. For CIFAR-
100, we observed that the cycle-version methods generally surpassed their originals across different levels of
heterogeneity. Particularly, CycleSFL, which was commonly the best performing method, improved the test
accuracy from 47.5% to 49.1% in iid case, from 49.3% to 50.2% when α = 1.0, from 48.0% to 52.2% when
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Table 4: Minimal epochs required to reach certain test accuracy for each task (45% for FEMNIST, 75% for
CelebA, 35% for Shakespeare, 30% for CIFAR-100). Smaller is better.

Method FEMNIST CelebA Shakespr CIFAR(iid) CIFAR(α=1.0) CIFAR(α=0.5) CIFAR(α=0.1)
PSL 459 255 > 600 > 1000 > 1000 > 1000 476
SGLR 517 244 > 600 > 1000 > 1000 > 1000 476
SFLV1 184 39 154 293 253 289 342
SFLV2 8 31 105 131 118 149 162
FedAvg 287 65 386 335 337 488 > 1000
CyclePSL 8 94 > 600 584 552 526 422
CycleSGLR 10 94 > 600 581 534 532 395
CycleSFL 6 29 98 116 107 132 162

α = 0.5, and from 48.9% to 52.2% when α = 0.1, respectively, compared to the second best method SFLV2.
Another noticeable finding is that with the increase of data heterogeneity (α decreases), algorithms that do
not require model aggregation on the client side like PSL and SGLR began to overtake the aggregation-based
methods, which could be attributed to model personalization on the client side Tan et al. (2022). Still, the
cycle-verion methods, namely CyclePSL and CycleSGLR, maintained their dominance over PSL and SGLR
vastly, with an increase in test accuracy from 55.9% to 65.0% and from 57.2% to 63.8% under extreme data
heterogeneity (α = 0.1).

CycleSL is also promising in terms of convergence rate. We measured the convergence speed of each algorithm
by recording the first time that their test accuracies surpassed certain thresholds (45% for FEMNIST, 75%
for CelebA, 35% for Shakespeare, 30% for CIFAR-100) in Table 4. We could learn from the tables and
figures that the cycle-version methods commonly converged at (much) earlier stages, especially compared
to their aggregation-based originals, unless the original methods failed to converge, while CycleSFL was
overall the fastest algorithm in this benchmark across all tasks. For instance, on the FEMNIST dataset,
PSL, SGLR, and SFLV1 only started to make noticeable progress in test loss after 100 epochs, whereas their
cycle-versions CyclePSL, CycleSGLR, and CycleSFL almost reached their convergence around 100th round.
Similar phenomena can be observed for other tasks as well. Especially for the CelebA task, although PSL
and SGLR started to overfit after roughly 300 and 400 rounds, CyclePSL and CycleSGLR still delivered
lower test loss at earlier time points.

4.3 Ablation study

4.3.1 Impact of cut layer

In contrast to FL, in SL, the choice of cut layer plays an key role for many factors such as model performance,
computation overhead, transmission cost, and privacy risk. In the following, we mainly concentrated on the
impact of cut layer on model performance, and carried out ablation study on the CIFAR-100 dataset using
the ResNet9 model with different levels of data heterogeneity. To simplify the experiments, we employed
solely one algorithm, namely CycleSFL, and explored the influence of block-wise cut point rather than layer-
wise. The ResNet9 model contains 4 convolutional blocks, 2 residual blocks, and 1 projection head. Therefore
there are totally 6 different possible cut positions. We then cut the model at each possible point and recorded
the achieved test accuracy in Table 5. As can be inferred from the table, a shallower cut point can lead
to better model performance. We attributed this to that since in CycleSL there is only one model on the
server side, the impact of data heterogeneity and client drift mostly resides in client models. In such a case,
a reduced model complexity on the client side, i.e., a shallower cut layer, would help improve convergence.
However, the choice of cut layer is a complex bargain game between clients and server involving many other
factors like privacy and transmission overhead. For example, a shallower cut layer may lead to data leak, as
input data can be easier reconstructed due to stronger correlation between input data and activations. For
detailed analysis in this regard, we direct readers to relevant works Yan et al. (2022); Wu et al. (2023); Kim
et al. (2023).
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Table 5: Impact of cut layer on CycleSFL test accuracy for the CIFAR-100 task.

Cut iid α = 1.0 α = 0.5 α = 0.1
1 0.531±0.039 0.558±0.026 0.542±0.008 0.547±0.037
2 0.517±0.027 0.533±0.043 0.516±0.023 0.531±0.050
3 0.487±0.035 0.511±0.020 0.500±0.027 0.511±0.040
4 0.475±0.017 0.479±0.019 0.479±0.030 0.496±0.019
5 0.443±0.020 0.466±0.033 0.460±0.017 0.468±0.029
6 0.427±0.030 0.414±0.027 0.412±0.013 0.376±0.048

Table 6: Impact of server epoch on CycleSFL test accuracy for the CIFAR-100 task.

Epoch iid α = 1.0 α = 0.5 α = 0.1
1 0.487±0.013 0.518±0.025 0.502±0.021 0.518±0.039
2 0.503±0.014 0.520±0.010 0.522±0.024 0.587±0.041
4 0.464±0.013 0.497±0.030 0.472±0.038 0.587±0.033
8 0.477±0.020 0.497±0.029 0.498±0.034 0.622±0.053

4.3.2 Impact of server epoch

In the original FL work McMahan et al. (2017), the authors suggested a simple but effective way to boost
convergence, namely by allowing clients to train for multiple epochs before aggregation. In CycleSL, since
the training on the server side is modelled as a standalone task, similar strategy can be applied on the server
side, namely allowing the server to train its model for multiple rounds before computing gradients for clients.
To this end, we investigated the impact of server epoch on model performance on the CIFAR-100 dataset
with different levels of data distribution heterogeneity among clients. For simplicity we merely benchmarked
one method, namely CycleSFL, with the number of server training epochs scaling from 1 to 8. The obtained
test accuracy was listed in Table 6. From the table we can observe that when data heterogeneity is not
drastic (iid, α = 1.0, α = 0.5), the increase of server training pass from 1 to 2 generally led to better model
performance. However, further increment of server round resulted in a decrease of test accuracy. In contrast,
under extreme distribution heterogeneity (α = 0.1), the increase of server epoch up to 8 can consistently
improve model performance. We believed that the choice of server training round in CycleSL is a trade-off
between model personalization Tan et al. (2022) and regularization, as a more trained server part model
would yield lower objective value and hence smaller gradient steps for clients, which in turn motivates client
models to converge to similar local optima but reduces local model personalization. In general, the increment
of server training epoch is associated with better model performance when both the number of epochs and
data heterogeneity are not high.

5 Discussion

5.1 Application and future work

As CycleSL can be easily combined with other scalable SL methods, its applications can be valuable in
practice. Particularly, the choice of foundation algorithm could be determined according to the specific case.
For instance, when client side aggregation is risky due to privacy concerns or model personalization is wished,
CyclePSL and CycleSGLR can be employed. In contrast, if a performant model and faster convergence are
desired, CycleSFL is a good option. Given its low burden and high scalability, CycleSL can be particularly
beneficial in cross-device cases where the number of participating clients is large and the computing resource
per client is generally limited, such as in edge computing scenarios. Moreover, since the server part training
is an isolated task in CycleSL, an independent and flexible setting for hyperparameters such as model split,
regularization method, and aggregation frequency Lin et al. (2024a) could be applied to further advance
model performance and convergence rate. Due to its robustness and implicit regularization effect, CycleSL
is more tolerant of hyperparameters such as learning rates and batch sizes, which can be costly to tune,
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especially in privacy-sensitive scenarios. The feature resampling strategy of CycleSL lays the foundation for
future works like ensemble learning and knowledge distillation in SL, which has already become popular in the
context of FL Lin et al. (2020); Attota et al. (2021); Wu et al. (2024). From the perspective of optimization
theory, CycleSL can be regarded as coordinate descent on function composition, whilst the research for its
convergence property like Nesterov (2013); Richtárik & Takáč (2014); Zeng et al. (2019) is in an early stage.
Further study is needed in this regard. The impact of model cut point on specific cycle-version method also
awaits further investigation. In addition, since smashed data from clients is regarded as input samples for
a standalone task in CycleSL, client selection or reinforcement based on client features could be a further
research direction. To this end, techniques like sample-wise or client-wise attention mechanisms Cheng et al.
(2021) for smashed data may be considered. It should also be noticed that for simplicity we restrict our
discussion to SL with label sharing Gupta & Raskar (2018); Vepakomma et al. (2018) in this work, meaning
that there is only one split point and clients send both extracted features and labels to server. The methods
can be easily extended to SL without label sharing with two or even more model cut points on demand.

5.2 Limitations

The integration of CycleSL can notably reduce the memory and computation burden on the server side over
the aggregation-based algorithms. One drawback of CycleSL is that its latency and computation burden
is larger than SFLV2, as SFLV2 only conducts forward and backward propagation once on the server side,
whereas the smashed data is fed into the server part model twice in CycleSFL. However, the memory cost
of CycleSFL is lower compared to SFLV2, since CycleSFL only computes gradients with respect to one set
of parameters each time while the other set is frozen. And the latency and computation can be lightened
with proper choice of hyperparameters such as batch size for the second-stage task. Another limitation of
CycleSL is that the combination of CycleSL and other scalable algorithms may inherit the problems of those
methods themselves. For instance, we learnd from the test loss on the CelebA dataset that PSL and SGLR
began to overfit after roughly 300 and 400 iterations, respectively. Although the integration of CycleSL
brought a decrease in test loss at early rounds, CyclePSL and CycleSGLR did not refrain from overfitting.
Similarly, if the original algorithm fails to converge, the incorporation of CycleSL may not converge as well,
as can be inferred from the results of CyclePSL and CycleSGLR on the Shakespeare dataset. Further, an
imbalanced model split could lead to suboptimal performance of CycleSL, as CycleSFL, with only a single
linear layer on the server side, cannot outperform SFL in the Shakespeare task.

5.3 Privacy concern

The integration of CycleSL into other scalable SL methods does not require any additional data or model
transfer. Therefore, the privacy claims of the original algorithms still apply, and the former privacy-
enhancing mechanisms, like differential privacy and k-anonymity, would still work. Furthermore, considering
its aggregation-free property, we believe CycleSL is more robust against client-level noise injection than the
aggregation-based methods and has a good potential to improve the privacy-utility trade-off, as handling
noisy models is, in general, a harder task than handling noisy samples. Moreover, since the smashed data
is resampled on the server side and not client-binding anymore, the noise in the hidden representations
could be compensated over features from different clients. Random resampling can also contribute to model
robustness and stability. The impact of malicious participants could also be reduced with such a procedure.

6 Conclusion

In this work, we presented a novel aggregation-free scalable SL algorithm called CycleSL, which models the
server part training as a standalone higher-level task and benefits from coordinate descent. Particularly,
CycleSL applies resampling to smashed data to counteract client drift in the higher-level task, and updates
the server and clients in cyclical turns, as inspired by coordinate descent. CycleSL can be combined with
other scalable SL methods to boost model performance and reduce resource consumption. By integrating
CycleSL into existing methods, including PSL, SGLR, and SFL, we introduced CyclePSL, CycleSGLR,
and CycleSFL accordingly. Our results show that CycleSL can notably improve model performance and
convergence.
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Appendix

A Implementation

We implemented in total eight SL/FL algorithms, including PSL, SFLV1, SFV2, SGLR, FedAvg, CyclePSL,
CycleSFL, and CycleSGLR. All methods were implemented with PyTorch. An overview of our experiment en-
vironment is given in Table 7. Additionally we provided the code for sequential SL (SSL) and its cycle-version
(CycleSSL). Since they are not scalable methods, we excluded them from benchmark. Our implementation
can be found on https://github.com/AnonymWriter/CycleSL (This repository is anonymized for review).
By following the instructions we provided, our experiment results should be completely reproducible up to
numerical error.

B Randomness

To ensure the robustness and reliability of results, we replicated the experiments for five times, with each time
being initialized with a different and unique random seed from {0, 1, 2, 3, 4}. The random seed was fed to all
libraries which can potentially be influenced by randomness in the beginning, including numpy.random.seed,
torch.manual_seed, and random.seed. We reported all our metrics in form of mean ± std over the five
seeds.

C Environment

The benchmarks were conducted on a computer with AMD EPYC 7763 and NVIDIA A100 80GB PCIe. All
SL algorithms were implemented in PyTorch. An overview of the hardware and software of our environment
is given in Table 7. It should be noticed that although we conducted the experiments on a powerful machine,
we have tried to optimize our code so that it can be run on a normal PC as well, even without dedicated
GPU.

Table 7: Experiment environment by April 29th, 2025.

Hardware Specification
CPU AMD EPYC 7763 64-Core
GPU NVIDIA A100 80GB PCIe×4
Memory 1TB

Software Version
OS Ubuntu 22.04.5 LTS
Python 3.12.7 by Anaconda
PyTorch 2.5.1 for CUDA 12.4
Scikit-Learn 1.6.0
WandB 0.19.1

D Hyperparameters

For FEMNIST, CelebA, and Shakespeare, we followed the hyperparameters suggested by LEAF, especially
the learning rates, unless they performed to be too small or too large in the experiment. For CIFAR-100, we
kept batch size of 64 and conducted grid search for learning rate in range of {1e−5, 1e−4, 1e−3, 1e−2, 1e−1}
for each algorithm. The overall best performing learning rate was 1e− 4. An overview of hyperparameters
is given in Table 8.

E Model architecture

For FEMNIST, CelebA, and Shakespeare, we followed the model structures as suggested by LEAF
(https://github.com/TalwalkarLab/leaf/tree/master/models), which are CNN, CNN, and LSTM, re-
spectively. For the two CNN models, we cut them in the middle such that client and server parts have
similar numbers of layers. For the LSTM model, we kept the embeddings and recurrent cells on the client
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Table 8: Details of hyperparameters (consistent for clients and server across SL methods unless specifically
mentioned).

Dataset FEMNIST CelebA Shakespeare CIAFR-100
Batch Size 32 16 32 64
Optimizer Adam Adam Adam Adam
Learning Rate 3e− 4 1e− 2 3e− 2 1e− 4

while the projection head on the server. The model architectures, sources, and cut points are summarized
in Tables 9–11 respectively.

Table 9: CNN architecture for the FEMNIST task. Source: https://github.com/TalwalkarLab/leaf/
blob/master/models/femnist/cnn.py.

Layer Specification
Input shape 1× 28× 28
Conv2d kernel size 5, in/out channel 1/32, same padding
ReLU -
MaxPooling kernel size 2, stride 2
Conv2d kernel size 5, in/out channel 32/64, same padding
ReLU -
MaxPooling kernel size 2, stride 2
Cut Layer client/server cut point
Flatten -
Linear in/out dimension 3136/2048
ReLU -
Linear in/out dimension 2048/62

Table 10: CNN architecture for the CelebA task. Source: https://github.com/TalwalkarLab/leaf/blob/
master/models/celeba/cnn.py.

Layer Specification
Input shape 3× 84× 84
Conv2d kernel size 3, in/out channel 3/32, same padding
BatchNorm2d -
MaxPolling kernel size 2, stride 2
ReLU -
Conv2d kernel size 3, in/out channel 32/32, same padding
BatchNorm2d -
MaxPolling kernel size 2, stride 2
ReLU -
Cut Layer client/server cut point
Conv2d kernel size 3, in/out channel 32/32, same padding
BatchNorm2d -
MaxPolling kernel size 2, stride 2
ReLU -
Conv2d kernel size 3, in/out channel 32/32, same padding
BatchNorm2d -
MaxPolling kernel size 2, stride 2
ReLU -
Flatten -
Linear in/out dimension 800/2
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Table 11: LSTM architecture for the Shakespeare task. Source: https://github.com/TalwalkarLab/leaf/
blob/master/models/shakespeare/stacked_lstm.py.

Layer Specification
Embedding number of embeddings 80, dimension 8
LSTM 3n/hidden dimension 8/256, hidden layers 2
Cut Layer client/server cut point
Linear in/out dimension 256/80

For the CIFAR-100 task, we adopted an ResNet9 network He et al. (2016). Our implementation
followed https://www.kaggle.com/code/kmldas/cifar10-resnet-90-accuracy-less-than-5-min?
scriptVersionId=38462746&cellId=28). ResNet9 contains four convolutional blocks, two residual blocks,
and a projection head. To balance the number of layers, we kept two convolutional blocks and one residual
block on the client side, while the rest and the projection head on the server side. Implementation details
can be found in https://github.com/AnonymWriter/CycleSL/blob/main/models.py. In the ablation
study, we further investigated the influence of cut point on CycleSL. The corresponding results were
discussed in subsection 4.3.1.

F Data distribution

The histograms of number of samples per client of the FEMNIST, CelebA, and Shakespeare datasets are
given in Figure 3. Particularly, the CIFAR-100 dataset was partitioned with Dirichlet distribution using
different α values to emulate different levels of data heterogeneity across clients (smaller α implies stronger
data heterogeneity). The partition was done via FL-bench Tan & Wang (2023). The impact of α on label
distribution can be observed in Figure 4.

(a) FEMNIST (b) CelebA (c) Shakespeare

Figure 3: Histograms of number of samples per user for the FEMNIST, CelebA, and Shakespeare datasets.

(a) iid (b) α = 1.0 (c) α = 0.5 (d) α = 0.1

Figure 4: Label distributions among clients in CIFAR-100 (smaller α implies stronger data heterogeneity).
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G Additional results

G.1 Metric plots

The test metrics, inlcluding loss (cross entropy), accuracy, F1 score, and MCC (Matthews correlation coef-
ficient), were plotted in Figures 5–11, respectively. It should be noticed that although some methods like
PSL and SGLR overfitted for CelebA (increase in test loss), metrics like accuracy and F1 score were not
negatively impacted. Hence we still reported metrics around 600th epoch.

Figure 5: Test metrics for the FEMNIST task.

Figure 6: Test metrics for the CelebA task.

Figure 7: Test metrics for the Shakespeare task.

Figure 8: Test metrics for the CIFAR-100 task (iid).
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Figure 9: Test metrics for the CIFAR-100 task (α = 1.0).

Figure 10: Test metrics for the CIFAR-100 task (α = 0.5).

Figure 11: Test metrics for the CIFAR-100 task (α = 0.1).

G.2 Ablation study - impact of cut layer and server round

The impact of cut layer (block-wise) on CycleSFL test loss on the CIFAR-100 dataset is plotted in Figure 12.
And the influence of server epoch on CycleSFL test loss on the CIFAR-100 dataset is visualized in Figure 13.

(a) iid (b) α = 1.0 (c) α = 0.5 (d) α = 0.1

Figure 12: Impact of cut layer on CycleSFL test loss on CIFAR-100.
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(a) iid (b) α = 1.0 (c) α = 0.5 (d) α = 0.1

Figure 13: Impact of server epoch on CycleSFL test loss on CIFAR-100.

21


	Introduction
	Related work
	Scalable split learning
	Coordinate descent

	Methodology
	Higher-level task with feature resampling
	Server-client cyclical update
	Toy example


	Experiments
	Datasets and tasks
	Results
	Ablation study
	Impact of cut layer
	Impact of server epoch


	Discussion
	Application and future work
	Limitations
	Privacy concern

	Conclusion
	Implementation
	Randomness
	Environment
	Hyperparameters
	Model architecture
	Data distribution
	Additional results
	Metric plots
	Ablation study - impact of cut layer and server round


