
Under review as a conference paper at ICLR 2023

DISCO-DANCE:
LEARNING TO DISCOVER SKILLS WITH GUIDANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Unsupervised skill discovery (USD) allows agents to learn diverse and discrim-
inable skills without access to pre-defined rewards, by maximizing the mutual
information (MI) between skills and states reached by each skill. The most com-
mon problem of MI-based skill discovery is insufficient exploration, because each
skill is heavily penalized when it deviates from its initial settlement. Recent works
introduced an auxiliary reward to encourage the exploration of the agent via max-
imizing the state’s epistemic uncertainty or entropy. However, we have discov-
ered that the performance of these auxiliary rewards decreases as the environment
becomes more challenging. Therefore, we introduce a new unsupervised skill dis-
covery algorithm, skill discovery with guidance (DISCO-DANCE), which (1) se-
lects the guide skill which has the highest potential to reach the unexplored states,
(2) guide other skills to follow the guide skill, then (3) the guided skills are diffused
to maximize their discriminability in the unexplored states. Empirically, DISCO-
DANCE substantially outperforms other USD baselines on challenging environ-
ments including two navigation benchmarks and a continuous control benchmark.

1 INTRODUCTION

In recent years, Deep Reinforcement Learning (DRL) has shown great success in various complex
tasks, ranging from playing video games (Mnih et al., 2015; Silver et al., 2016) to complex robotic
manipulation (Andrychowicz et al., 2017; Gu et al., 2017). Despite their remarkable success, most
DRL models focus on training from scratch for every single task, which results in significant ineffi-
ciency. In addition, the reward functions adopted for training the agents are generally handcrafted,
acting as an impediment that prevents DRL to scale for various real-world tasks. For these reasons,
there has been an increasing interest in training task-agnostic policies without access to a pre-defined
reward function (Campos et al., 2020; Eysenbach et al., 2018; Gregor et al., 2016; Hansen et al.,
2019; Laskin et al., 2021; Liu & Abbeel, 2021; Sharma et al., 2019; Strouse et al., 2022; Park et al.,
2022; Laskin et al., 2022; Shafiullah & Pinto, 2022). This training paradigm falls in the category
of Unsupervised Skill Discovery (USD) where the goal of the USD is to acquire diverse and dis-
criminable behaviors, known as skills. These pre-trained skills can be utilized as useful primitives or
directly employed to solve various downstream tasks.

Most of the previous studies in USD (Achiam et al., 2018; Eysenbach et al., 2018; Gregor et al.,
2016; Hansen et al., 2019; Sharma et al., 2019) discover a set of diverse and discriminable skills
by maximizing the self-supervised, intrinsic motivation as a form of reward. Commonly, mutual
information (MI) between the skill’s latent variables and the states reached by each skill is utilized
as this self-supervised reward. However, it has been shown in recent research that solely maximizing
the sum of MI rewards is insufficient to explore the state space because the agent receives larger
rewards for visiting known states rather than for exploring the novel states asymptotically (Campos
et al., 2020; Liu & Abbeel, 2021; Strouse et al., 2022).

To ameliorate this issue, recent studies designed an auxiliary exploration reward that incentivizes
the agent when it succeeds in visiting novel states (Strouse et al., 2022; Lee et al., 2019; Liu &
Abbeel, 2021). However, albeit provided these auxiliary rewards, previous approaches do not often
work efficiently in complex environment. Fig. 1 conceptually illustrates how previous methods work
ineffectively in a simple environment. Suppose that the upper region in Fig. 1a is hard to reach
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Figure 1: Conceptual illustration of previous methods and DISCO-DANCE. Each skill is shown
with a grey-colored trajectory. Blue skill zi indicates an unconverged skill. Here, (b,c) illustrates
a reward landscape of previous methods, DISDAIN, APS, and SMM. (b) DISDAIN fails to reach
upper region due to the absence of a pathway to the unexplored states. (c) APS and SMM fail since
they do not provide exact direction to the unexplored states. On the other hand, (d), DISCO-DANCE
directly guides zi towards selected guide skill z∗ which has the highest potential to reach the unex-
plored states. Detailed explanation of the limitations of each baselines is described in Section 2.2.

with MI rewards, resulting in obtaining skills which are stuck in the lower-left region. To make
these skills explore the upper region, previous methods provide auxiliary exploration reward using
intrinsic motivation (e.g., disagreement, curiosity based bonus). However, since they do not indicate
exactly which direction to explore, it becomes more inefficient in challenging environments. We
detail the limitations of previous approaches in Section 2.2.

In response, we design a new exploration objective that aims to provide direct guidance to the
unexplored states. To encourage skills to explore the unvisited states, we first pick a guide skill
z∗ which has the highest potential to reach the unexplored states (Fig. 1(d-1)). Next, we select the
skills which will move towards a guide skill (e.g., relatively unconverged skills; receiving low MI
rewards). Then they are incentivized to follow the guide skill, aiming to leap over the region with
low MI reward (Fig. 1(c-4)). Finally, they are diffused to maximize their distinguisability (Fig. 1(c-
5)), resulting in obtaining a set of skills with high state-coverage. We call this algorithm as skill
discovery with guidance (DISCO-DANCE) and is further presented in Section 3. DISCO-DANCE
can be thought of as filling the pathway to the unexplored region with a positive dense reward.

In Section 4, we demonstrate that DISCO-DANCE outperforms previous approaches with auxiliary
exploration reward in terms of state space coverage and downstream task performances in two nav-
igation environments (2D mazes and Ant mazes), which have been commonly used to validate the
performance of the USD agent (Campos et al., 2020; Kamienny et al., 2021). Furthermore, we also
experiment in DMC (Tunyasuvunakool et al., 2020), and show that the learned set of skills from
DISCO-DANCE provides better primitives for learning general behavior (e.g., run, jump and flip)
compared to previous baselines.

2 PRELIMINARIES

In Section 2.1, we formalize USD and explain the inherent pessimism that arise in USD. Section 2.2
describes existing exploration objectives for USD and the pitfalls of these exploration objectives.
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2.1 UNSUPERVISED SKILL DISCOVERY AND INHERENT EXPLORATION PROBLEM

Unsupervised Skill Discovery (USD) aims to learn skills that can be further utilized as useful primi-
tives or directly used to solve various downstream tasks. We cast USD problem as discounted, finite
horizon Markov decision processM with states s ∈ S , action a ∈ A, transition dynamics p ∈ T ,
and discount factor γ. Since USD trains the RL agents to learn diverse skills in an unsupervised
manner, we assume that the reward given from the environment is fixed to 0. The skill is commonly
formulated by introducing a skill latent z ∈ Z to a policy π resulting in a latent-conditioned policy
π(a|s, z). Here, the skill’s latent variable z can be represented as an one-hot (i.e., discrete skill) or
a continuous vector (i.e., continuous skill). In order to discover a set of diverse and discriminable
skills, a standard practice is to maximize the mutual information (MI) between state and skill’s latent
variable I(S;Z) (Achiam et al., 2018; Eysenbach et al., 2018; Gregor et al., 2016; Hansen et al.,
2019; Sharma et al., 2019).

I(Z, S) = −H(Z|S) +H(Z) = Ez∼p(z),s∼π(z)[log p(z|s)− log p(z)] (1)

Since directly computing the posterior p(z|s) is intractable, a learned parametric model qϕ(z|s),
which we call discriminator, is introduced to derive the lower-bound of the MI instead.

I(Z, S) ≥ Ĩ(Z, S) = Ez∼p(z),s∼π(z)[log qϕ(z|s)− log p(z)] (2)

Then, the lower bound is maximized by optimizing the skill policy π(a|s, z) via any RL algorithm
with reward log qϕ(z|s)− log p(z) (referred to as rskill). Note that each skill-conditioned policy gets
different reward for visiting the same state (i.e., rskill(zi, s) ̸= rskill(zj , s)). It results in learning skills
which visit different states, making them discriminable.

However, maximizing the MI objective is insufficient to fully explore the environment due to an
inherent pessimism of its objective (Campos et al., 2020; Liu & Abbeel, 2021; Strouse et al., 2022).
When the discriminator qϕ(z|s) succeeds to distinguish the skills, the agent receives larger rewards
for visiting known states rather than for exploring the novel states. This lowers the state coverage
of a given environment, suggesting that there are limitations in discovering what skills are available
(i.e., achieving a set of skills that only reach in a limited state space).

Therefore, recent studies in USD provide auxiliary rewards to overcome pessimistic exploration.

2.2 PREVIOUS EXPLORATION BONUS AND ITS LIMITATIONS

DISDAIN (Strouse et al., 2022) trains an ensemble of N discriminators and rewards the agent
for their disagreement, represented as H( 1

N

∑N
i=1 qϕi(Z|s)) − 1

N

∑N
i=1 H(qϕi(Z|s)). Since states

which have not been visited frequently will have high disagreement among discriminators, DIS-
DAIN implicitly encourages the agent to move to novel states. However, since such exploration
bonus is a consumable resource that diminishes as training progresses, most skills will not benefit
from this if other skills reach these new states first and earn the bonus reward.

We illustrate this problem in Fig. 1b. Suppose that all skills remain in the lower left states, which
are easy to reach with MI rewards. Since the states in lower left region is accumulated in the replay
buffer, disagreement between discriminators remains low (e.g., low exploration reward in lower left
region). Therefore, there will be no exploration reward left in these states. This impedes zi from
escaping its current state to unexplored states, as shown in Fig. 1b-4.

On the other hand, SMM encourages the agent to visit the states where it has not been before using
learned density model dθ (Lee et al., 2019). APS incentivizes the agent to maximize the marginal
state entropy via maximizing the distance of the encoded states fθ(st) between its k nearest neighbor
fk
θ (st) (Liu & Abbeel, 2021).

rSMM
exploration ∝ − log dθ(s)

rAPS
exploration ∝ log ||fθ(s)− fk

θ (s)||
(3)

These rewards push each skill out of its converged states (in Fig. 1c). However, they still do not
provide a specific direction on where to move in order to reach unexplored states. Therefore, in
a difficult environment with a larger state space, it is known that these exploration rewards can
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operate inefficiently (Campos et al., 2020; Ecoffet et al., 2019). In the next section, we introduce a
new exploration objective for USD which addresses these limitations and outperforms prior methods
on challenging environments.

3 METHOD

Unlike previous approaches, we design a new exploration objective where the guide skill z∗ directly
influences other skills to reach explored regions. DISCO-DANCE consists of two stages: (i) selecting
guide skill z∗ and the apprentice skills which will be guided by z∗, and (ii) providing guidance to
apprentice skills via guide reward, which will be described in Section 3.1 and 3.2, respectively.

3.1 SELECTING GUIDE SKILL AND APPRENTICE SKILLS
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Figure 2: Guide skill selection. An illustration of a random walk process which finds the skill with
a highest potential that can reach an unexplored states.

Guide skill. We recall that our main objective is to obtain a set of skills that provides high state
space coverage. To make other skills reach unexplored state, we define the guide skill z∗ as the skill
which is most adjacent to the unexplored states. One naive approach in selecting the guide skill is to
choose the skill whose terminal state is most distant from the other skills’ terminal state (e.g., blue
skill in Fig. 2.1). However, such selection process does not take into account whether the guide skill’s
terminal state is neighboring promising unexplored states. In order to approximate whether a skill’s
terminal state is near potentially unexplored states, we utilize a random walk process (Fig. 2). To
be specific, when there are P skills, (i) we first perform R random walks from each skill’s terminal
state and collect a total of PR number of random walk arrival states. Repeat (i) process for M times,
collect PRM number of states in total. (ii) Then we pinpoint the state in the lowest density region
among the collected random walk arrival states and select the skill which that state originated from
as the guide skill z∗. For (ii), one could use any algorithm to measure the density of the random walk
state distribution. For our experiments, we utilize simple k nearest neighbor algorithm,

z∗ := argmax
p∈{1,...,P}

max
r∈{1,...,RM}

1

k

∑
sjpr∈Nk(spr)

||spr − sjpr||2

where spr = r-th random walk arrival state of skill p
Nk(·) = k-nearest neighbors

(4)

In practice, in environment with long-horizon such as DMC, our random walk process may cause
sample inefficiencies. Therefore, we present an efficient random walk process which we describe
in detail in Appendix E. Further ablation experiments on how to select guide skills are available in
Section 4.4.1.

Apprentice skills. We select apprentice skills as the skills with low discriminability (i.e., skill zi
with low qϕ(z

i|s); which fails to converge) and move them towards the guide skill. If most of the
skills are already well discriminable (i.e., high MI rewards), we simply add new skills and make
them as apprentice skills. This will leave converged skills intact and send new skills to unexplored
states. Since the total number of skills is gradually increasing as the new skills are added, this would
bring the side benefit of not relying on pre-defined number of total skills as a hyperparameter.

We note that adding new skills during training is generally difficult to apply to previous algorithms,
because the new skills will also face the pessimistic exploration problem. The new skills simply
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Figure 3: Qualitative results of the guiding procedure in (a) navigation and (b) continuous control.

converge by overlapping with existing skills (e.g., left lower room in Fig 3), which exacerbates
the situation (i.e., reducing discriminator accuracy without increasing the state coverage). In Ap-
pendix D, we empirically show that this curriculum procedure brings benefit to our methods, while
the improvement over the baselines are marginal.

3.2 PROVIDING DIRECT GUIDANCE VIA AUXILIARY REWARD

After selecting the guide skill z∗ and apprentice skills, we now formalize the exploration objective,
considering two different aspects: (i) objective of the guidance, and (ii) the degree of the guidance. It
is crucial to account for these desiderata since strong guidance will lead apprentice skills to simply
imitate the guide skill z∗ whereas the weak guidance will not be enough for skills to overcome
pessimistic exploration.

In response, we propose a exploration objective that enables our agent to learn with guidance. We
integrate these considerations into a single soft constraint as

maximize
θ

Ezi∼p(z),s∼πθ(zi)

[
rskill − rguide

]
where rskill = log qϕ(z

i|s)− log p(zi),

rguide = −α I
(
qϕ(z

i|s) ≤ ϵ
)
(1− qϕ(z

i|s))DKL(πθ(a|s, zi)||πθ(a|s, z∗)).

(5)

As we describe in Section 3.1, we select skills with low discriminator accuracy (i.e., I(qϕ(zi|s) ≤ ϵ))
as apprentice skills. For (i), we minimize the KL-divergence between the apprentice skill and the
guide skill policy (i.e., DKL(πθ(a|s, zi)||πθ(a|s, z∗))). For (ii), the extent to which the apprentice
skills are encouraged to follow z∗, can be represented as the weight to the KL-divergence. We set
the weight as 1− qϕ(z

i|s), to make the skills with low discriminator accuracy to be guided more.

Fig. 3 shows that this guidance boosts skill learning for both navigation environment and continuous
control environment. In navigation task (Fig. 3a), the skill in the upper left is selected as a guide
through the random walk process and the apprentice skills stuck in the lower left are directly dragged
into the unexplored states by guide skill. In addition, in a continuous control environment (Fig. 3b),
the skill that learned to run is selected as the guide skill, leading the apprentice skills that are barely
moving. Then the apprentice skills learns to run, in an instant. This salient observation suggests that
the concept of guidance can be utilized, even for non-navigation tasks. In Section 4.4.2, we show
that all three component of rguide are necessary through additional experiments.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Environments We evaluate DISCO-DANCE on three different types of environments: 2D naviga-
tion, Ant Maze, and Deepmind Control Sutie (DMC). Fig 4.(a) illustrates five different layouts in
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(a) 2D Maze (b) Ant Maze (c) DMC
Empty Y W S Bottleneck Ant Empty Ant U Ant Π Cheetah Quadruped

Figure 4: Three environments to evaluate skill discovery algorithms. (a) Fully-continuous 2D
mazes with various layouts, (b) High dimensional ant navigation tasks and (c) Continuous control
environment with diverse downstream tasks.

2D navigation environment. The layout becomes more challenging from empty maze to bottleneck
maze (i.e., Easy-Empty, Normal-Y, W, S, Hard-Bottleneck). These environment has been commonly
used for testing the exploration ability of skill-learning agents (Campos et al., 2020; Kamienny et al.,
2021). The agent determines where it should move given the current x, y coordinates (2-dimensional
state, action space). Fig 4.(b) shows three different layouts of AntMaze environment from (Chane-
Sane et al., 2021; Nasiriany et al., 2019) which aims to evaluate the effectiveness of algorithm with
high-dimensional input. In Antmaze, the state space consists of joint angles, joint velocity and the
center of mass and the action space consists of torques of each joint. Following previous work (Ey-
senbach et al., 2018; Sharma et al., 2019), we restrain the input of the discriminator as x,y coordi-
nates since the main goal in navigation environments is to learn a set of skills which are capable to
cover the majority of the state space. Fig 4.(c) displays two different environment in DMC, Cheetah
and Quadruped. DMC is selected to evaluate the algorithm’s capability of learning general skills.
Following URLB (Laskin et al., 2021), we consider eight different tasks (e.g., walk, run, jump, flip).

Evaluation We use the state space coverage and downstream task performances as our main metrics.
To measure the state coverage, we discretize the x and y axes of the environment into 10 buckets
(i.e., total 100 buckets) and count the number of buckets reached by learned skills (Fig. 4.a,b).
For 2D mazes, we trained each algorithm with 2M training steps for easy and medium levels, 5M
training steps for hard level (Fig. 4a). For Ant mazes, we trained for 5M training steps for the
high-dimensional Ant navigation tasks (Fig. 4b). For DMC, after 2M steps of pretraining with USD
algorithms, we first select the skill with maximum downstream task reward, and then finetune 100k
steps for each task. (Fig. 4c). For detailed explanation, see Appendix B.1. Bold scores in Table
indicate the best model performance and underlined scores indicate the second best.

Baselines We compare DISCO-DANCE with DIAYN (Eysenbach et al., 2018), which is the most
widely used baseline in USD. We also compare DISCO-DANCE with SMM (Lee et al., 2019),
APS (Liu & Abbeel, 2021) and DISDAIN (Strouse et al., 2022). We note that all baselines and
DISCO-DANCE utilize discrete skills, except APS which utilizes continuous skills. In downstream
tasks, we compare baselines with random init baseline that is initialized from scratch. We use SAC as
the backbone RL algorithm (Haarnoja et al., 2018). We train DIAYN, APS and SMM using the code
and hyperparameters provided by URLB (Laskin et al., 2021). In addition, we re-implement DIS-
DAIN by strictly following the details of the paper. Additional details are available in Appendix B.

4.2 NAVIGATION ENVIRONMENTS

4.2.1 2D MAZES

Table 1: State space coverages of DISCO-DANCE and baselines on 2D maze. The results are
averaged over 5 random seeds accompanied with a standard deviation.

Models Empty Y W S Bottleneck
DIAYN 100.00±0.00 71.20 ±5.07 71.40 ±4.62 53.80±7.01 53.00±4.36
SMM 100.00±0.00 89.60±6.50 74.20±6.22 57.20±7.46 57.20±6.10
APS 95.80±4.55 90.20 ±5.02 74.20±10.62 77.60 ±7.50 61.80± 15.06
DISDAIN 100.00 ±0.00 82.40 ±3.91 84.80±11.30 61.80±7.33 60.60±2.51
DISCO-DANCE 100.00±0.00 99.00±1.41 94.80±3.49 83.00±1.22 87.40±11.59

Table 1 summarizes the performance of skill learning algorithms on the 2D maze environments.
Through our empirical results, we observe the following results: methods that utilize an auxiliary
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reward (i.e., SMM, APS, and DISDAIN) outperform DIAYN for every maze, showing that the aux-
iliary exploration rewards encourage the agent to visit unseen states. However, we find out that
previous studies provide less benefit on the performance as the layout becomes complicated. As we
mentioned in section 2.2, we empirically discover that auxiliary exploration reward approaches are
less useful when the environments getting more complicated. In contrast, for each 2D maze environ-
ment, DISCO-DANCE has negligible performance reduction with increased layout complexity. In
addition, DISCO-DANCE outperforms previous methods in every 2D maze environment, exhibiting
the largest performance gap against baselines in the most complex environment, bottleneck maze.

(e) DISCO-DANCE(a) DIAYN (b) DISDAIN (c) SMM (d) APS

Figure 5: Visualization of the learned skills on bottleneck maze. Multiple rollouts by each skill
discovery algorithm.

Fig. 5 illustrates multiple rollouts of various skills learned in the 2D bottleneck maze. For the 2D
bottleneck maze, the upper left room is the most difficult region to reach since it the agents need to
pass multiple narrow pathways. While other baselines methods are not able to effectively explore
the upper left region, only DISCO-DANCE is able to fully cover the environment.

4.2.2 ANT MAZES

Table 2: State space coverages of DISCO-
DANCE and baselines on Ant Maze. The results
are averaged over 5 random seeds.

Models Ant Empty-maze Ant U-maze Ant Π-maze
DIAYN 74.80±15.74 50.40±10.50 22.80±4.55
SMM 99.80±0.45 63.00±7.58 27.20±5.93
APS 73.40±33.49 61.20±3.96 27.4±8.79
DISDAIN 54.40±33.06 35.60±28.50 19.40±11.19
DISCO-DANCE 96.40±0.89 72.00±8.12 34.60±5.08

Table 2 reports the state coverage of DISCO-
DANCE and baselines. We find that among
baselines, only SMM gets better performance
than DIAYN. We speculate that additional re-
ward signal may interrupt the agent to converge
in high-dimensional environment. Empirically,
DISCO-DANCE shows superior performance
to the baselines where it achieves the best state-
coverage performance in high-dimensional en-
vironments which contains obstacles (i.e., Ant
U-maze and Π-maze) and gets competitive results against SMM with a marginal performance gap
in the environment without any obstacle (i.e., Ant Empty-maze).

DISCO-DANCE Random init DIAYN DISDAIN APS SMM

Ant U-maze Ant Π-maze

Figure 6: Accelerating learning with policy ini-
tialization. Curves are averaged over 9 random
seeds with a standard deviation.

In addition, we conduct an experiment to eval-
uate whether the learned skills could be a good
starting point for downstream task which aims
to reach goals (Fig. 6). We set the farthest re-
gion from the initial state as the goal state (the
most difficult configurations) following Chane-
Sane et al. (2021) and measure the success
rate of reaching the established goal state. For
methods with discrete skills, we select the skill
with the maximum return (i.e., skill whose state
space is closest to the goal state) and initialize
the policy and value network with the selected
skill. We then fine-tune the initialized agent to maximize the reward (i.e., minimize distance to goal
state) with 1M training steps. For methods with continuous skills, we follow the fine-tuning proce-
dure in APS (Liu & Abbeel, 2021).

In Ant U-maze, DISCO-DANCE outperforms prior methods including random init in terms of sam-
ple efficiency, and successfully reaches the goal-state with only 100k interactions. In the most chal-
lenging environment, Ant Π-maze, only DISCO-DANCE was able to succeed in reaching the goal
state within 1M environment interactions. We also observe that baselines underperform in com-
parison with random init. As shown in URLB on continuous control tasks (Laskin et al., 2021),
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we conjecture that task-specific training might be more efficient than transferring general behavior.
Additional details about the finetuning tasks are available in Appendix B.1.

4.3 DEEPMIND CONTROL SUITE

Figure 7: Performance comparisons on Deepmind Control Suite. Aggregate statistics and perfor-
mance profiles with 95% bootstrap confidence interval are provided (Agarwal et al., 2021), which
are calculated across 72 seeds (3 pretrained models × 3 seeds × 8 tasks) for all algorithms.

To demonstrate that DISCO-DANCE can also effectively learn the general skills in environments
other than navigation related environments, we conduct additional experiments on Deepmind Con-
trol Suite (DMC) (Tunyasuvunakool et al., 2020). Fig. 7 shows the performance comparisons on
DMC across 8 tasks with 9 seeds. As shown in Fig. 3b, we find that the concept of guidance boosts
the skill learning process in the continuous control environment, achieving comparably good results
in comparison with other baselines. Note that the performance of baselines with discrete skills are
equal or less than the randomly initialized SAC, similarly to Ant mazes (Fig. 6). We suspect that
the current finetuning strategy widely used in USD research for discrete skills (only finetune one
selected skill among all skills) is not able to properly evaluate the performance of the obtained set of
skills on downstream tasks. We believe that new finetuning methods that can fully leverage the char-
acteristics of skills learned through USD will be an exciting direction for future work. We provide
the full performance table at Section F.

4.4 ABLATION STUDIES

To further understand the role of each model components we perform two ablation studies: ablation
of (1) the guide skill selection and (2) the importance of the KL coefficient in Eq. 5.

w/ KL coefficient w/o KL coefficientRandom walk Terminal states 

(b) KL coefficient(a) Guide skill selection

Figure 8: (a) Comparing state coverage with random walk guide skill selection and terminal state
guide skill selection process. (b) Importance of KL coefficient in Eq.5.

4.4.1 GUIDE SKILL SELECTION PROCESS

Random walk

Terminal states 

Figure 9: Qualitative results for differ-
ent guide skill selection processes.

We empirically compare our random walk guide skill se-
lection process with the most distant terminal state guide
skill selection process, in 2D bottleneck maze and AntU
maze. Results in Fig. 8a shows that the random walk guide
selection process is superior to the terminal state guide se-
lection process in terms of state coverage. We also provide
qualitative results where the terminal state guide selection
process fails to select the skill which is closest to the un-
explored region as the guide skill while the random walk
guide selection process successfully finds the appropriate
guide skill in Fig. 9.
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4.4.2 KL COEFFICIENT

We further conduct an ablation study to show the importance of the KL coefficient in the DISCO-
DANCE objective. Specifically, we report the state coverage performance of DISCO-DANCE when
trained without the KL coefficient, I

(
qϕ(z

i|s) < ϵ
)
·(1−qϕ(zi|s)) in Equation 5 (i.e., KL coefficient

as 1), to figure out the influence of guiding only apprentice skills (i.e.,g make all other skills as
apprentice skills). Fig 8b shows that guiding too many skills could degrade performance in high-
dimension environment and that it is important to only select unconverged skills as apprentice skills
for effective learning.

5 RELATED WORK

Previous research in Unsupervised Skill Discovery. Several approaches have been made to learn a
set of useful skills in fully-unsupervised manner. Since MI based method suffers from inherent pes-
simism, EDL (Campos et al., 2020) decomposes training procedure, first explores the environment
with SMM (Lee et al., 2019), and then utilize a VAE to discover skills. Since they completely sepa-
rate between the exploration phase and skill learning phase, EDL relies heavily on the performance
of exploration module. CIC (Laskin et al., 2022) uses noise contrastive estimation (NCE) (Gutmann
& Hyvärinen, 2010) to enable learning high-dimensional skills for diverse behaviors. LSD (Park
et al., 2022) utilizes Lipschitz-constrained regularization term to learn dynamic behaviors, and has
shown that it works well in downstream task in a zero-shot manner. DISk (Shafiullah & Pinto, 2022)
aims to learn diverse skills which can quickly adapt to a non-stationary environment. To achieve
this, Disk learns skills in an incremental fashion, which encourages a new skill to be consistent
within itself and to be diverse from the previous skills. UPSIDE (Kamienny et al., 2021) utilizes a
hierarchical tree-structure which execute multiple skills sequentially to reach distant states. Further
discussion of the differences between DISCO-DANCE and UPSIDE are available in Appendix G.

Guidance based exploration in RL. Go-Explore (Ecoffet et al., 2021; 2019) stores the visited states
in the buffer and starts re-exploration from the samples states in the buffer to boost the exploration
process. DISCO-DANCE and Go-Explore share a similar motivation that the agent guides itself:
DISCO-DANCE learns from other skills and Go-Explore learns from previous experiments that
have reached a novel states. Another line of guided exploration is to utilize a KL-regularization
between the policy and the demonstration (i.e., guide) (Chane-Sane et al., 2021; Pertsch et al., 2020).
SPIRL (Pertsch et al., 2020) which is an offline supervised skill discovery method, denotes action
sequences as skill(z) and learns the skill prior p(z|s) using offline data. For finetuning, it reduces
the KL divergence between the agent’s policy and the skill prior as an auxiliary reward to accelerate
exploration for the new task. RIS (Chane-Sane et al., 2021) has been proposed to stimulate efficient
exploration for goal-conditioned RL, where reaching a distant goal is challenging due to the sparse
rewards. RIS efficiently learns to reach distant goals by imitating the policy that aims to reach a
subgoal generated between its position and distant goal, which makes the rewards more accessible.

6 CONCLUSION

In this paper, we introduce DISCO-DANCE, a novel, efficient exploration strategy for USD. It di-
rectly guides the skills towards the unexplored states, by forcing them to follow the guide skill. We
provide quantitative and qualitative experimental results which demonstrates that DISCO-DANCE
outperforms existing methods in two navigation benchmarks and a continuous control benchmark.

Although not thoroughly studied in this paper, we think that there is still enough room for improve-
ment in finetuning strategies (Laskin et al., 2021). Since USD learns many different task-agnostic
behaviors, a new fine-tuning strategy that can take advantage of these points would make the down-
stream task performances more powerful. Also, while this paper focuses on learning discrete skills,
the concept of our guide and explore can be extended to continuous skill spaces. DISCO-DANCE
can easily be extended to jointly work with other algorithms which aim to learn diverse behavioral
patterns (Achiam et al., 2018). Since DISCO-DANCE accelerates the exploration process, such al-
gorithms can benefit by learning skills from a wider reachable state-space. Finally, discussion of
limitation and future directions are available in Appendix H.
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Reproducibility Statement To ensure reproducibility, we provide a (i) pseudo-code and implemen-
tation detail in Appendix A, (ii) all hyperparameters in Table 3, (iii) thorough explanation of three
environments in Appendix B.1, and (iv) implementation details of other baselines in Appendix B.2.
We will share the self-contained code when the discussion period opens.
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Torres. Explore, discover and learn: Unsupervised discovery of state-covering skills. In Interna-
tional Conference on Machine Learning, pp. 1317–1327. PMLR, 2020.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In International Conference on Machine Learning, pp. 1430–1440.
PMLR, 2021.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. Proc. the International Conference on Learning Rep-
resentations (ICLR), 2018.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international confer-
ence on robotics and automation (ICRA), pp. 3389–3396. IEEE, 2017.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, pp. 297–304. PMLR, 2010.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. Proc. the International
Conference on Machine Learning (ICML), pp. 1861–1870, 2018.

Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. Proc. the
International Conference on Learning Representations (ICLR), 2019.

Pierre-Alexandre Kamienny, Jean Tarbouriech, Alessandro Lazaric, and Ludovic Denoyer. Direct
then diffuse: Incremental unsupervised skill discovery for state covering and goal reaching. Proc.
the International Conference on Learning Representations (ICLR), 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

10



Under review as a conference paper at ICLR 2023

Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Ler-
rel Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark. Proc. the
Advances in Neural Information Processing Systems (NeurIPS), 2021.

Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel. Cic:
Contrastive intrinsic control for unsupervised skill discovery. arXiv preprint arXiv:2202.00161,
2022.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdi-
nov. Efficient exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In Proc. the Interna-
tional Conference on Machine Learning (ICML), 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Soroush Nasiriany, Vitchyr H. Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. Proc. the Advances in Neural Information Processing Systems (NeurIPS), 2019.

Seohong Park, Jongwook Choi, Jaekyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-
constrained unsupervised skill discovery. Proc. the International Conference on Learning Repre-
sentations (ICLR), 2022.

Karl Pertsch, Youngwoon Lee, and Joseph J Lim. Accelerating reinforcement learning with learned
skill priors. CoRL, 2020.

Nur Muhammad Shafiullah and Lerrel Pinto. One after another: Learning incremental skills for a
changing world. Proc. the International Conference on Learning Representations (ICLR), 2022.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. Proc. the International Conference on Learning Representations
(ICLR), 2019.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

DJ Strouse, Kate Baumli, David Warde-Farley, Vlad Mnih, and Steven Hansen. Learning more skills
through optimistic exploration. Proc. the International Conference on Learning Representations
(ICLR), 2022.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh
Merel, Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dmcontrol :
Softwareandtasksforcontinuouscontrol.Software Impacts, 2020.

11



Under review as a conference paper at ICLR 2023

A DETAILS OF DISCO-DANCE

Algorithm 1: Skill Discovery through Guidance

1 Initialize replay buffer D, skills z1, ..., zn, KL coefficient α, discriminator accuracy cutoff ϵ
2 Initialize policy πθ(a|s, z), Skill discriminator qϕ(z|s)
3 for k = 1, 2, ... do
4 Collect experience in D using πθ in the environment
5 Sample batch (st, at, st+1, z) ∼ D
6 if Most existing skills are discriminable enough then
7 Select guide skill z∗ ← find guide skill(πθ, z

1, ..., zn)
8 rskill = log qϕ(z|st+1)− log p(z)

9 rguide = −I
(
qϕ(z

i|s) < ϵ
)
· (1− qϕ(z|s)) ·DKL(πθ(at|st, z)||πθ(at|st, z∗))

10 r = rskill + α · rguide
11 Update πθ to maximize sum of r
12 Update qϕ to maximize log qϕ(z|st)

The full DISCO-DANCE algorithm is shown in Algorithm 1. We list the implementation details of
below.

• Entropy term in SAC Haarnoja et al. (2018) can be seen as KL divergence between the
policy and uniform distribution with a constant Pertsch et al. (2020) (H(π(·|st, zt)) ∝
−DKL(π(·|st, zt)||U(·)). Instead of replacing the entropy term with guide term in DISCO-
DANCE, we found that using both term simultaneously helped stabilize learning by enjoy-
ing the advantage of maximum entropy RL.

• We utilize a KL-regularization between the overlapping skill and the guide skill policy.
However, the guide skill policy changes during training. To improve the stability of our
method, we use a separate target policy network for the guide skill. More precisely, when
we select the guide skill, we clone the policy network to obtain a target policy network and
use the target network for generating the fixed guide skill policy outputs.

• For adding new skills, we need to define hyperparameters: when to extend skills and how
many to increase. We gradually extend skills as the discriminator converges. In detail, count
the number of skills that have low discriminator accuracy (i.e., less than ϵ) and if the number
is less than the threshold (i.e., ρ), extend ρ skills.

• As the number of skills is gradually increasing, the discriminator struggles to learn due to
the sparse update for each skill by the decreased probability of sampling each skill. We
mitigate this issue by resorting a skill sampling scheme where each skill sampling weight
is proportionate to its discriminator error (e.g., skills with high discriminator error are more
likely to be sampled

• When extending new skills, we initialize their policy weights with the guide skill policy
weights rather than random weights as in SPIRL Pertsch et al. (2020). This accelerates
exploration by encouraging the newly added skills to directly reach the unexplored regions.

• After following the guide skill, the overlapped skills need to get diffused to maximize their
distinguishability. When getting diffused, KL divergence between the overlapped skills and
the guide skill becomes larger. To allow this, the skills get the same KL divergence when
the KL divergence is lower than a threshold (i.e., η).

• We include the number of timesteps used in guide skill selection in the total pretraining
timesteps. We measure the state coverage with the checkpoints of each pretrained model
with earlier timesteps. For example, in 2D bottleneck maze, 135, 000 samples are used
for selecting guide skill, therefore we report the state coverage with model checkpoints at
t = 4, 500, 000 (<5M - 135,000).

• For Antmaze, we select 3 pretrained models among 5 random seeds and fine-tuned each
model for 3 random seeds. In Fig 6, All curves are averaged over 9 random seeds (3 pre-
trained models × 3 seeds for all algorithms.
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B FURTHER DETAILS ON ENVIRONMENTS AND HYPERPARAMETERS

B.1 ENVIRONMENTS AND EVALUATION

2D maze The width and height of easy and medium level mazes are both 5, and 10 for hard level
maze Campos et al. (2020); Kamienny et al. (2021). There is no explicit terminal state, and episode
ends only when the maximum timestep (30 for easy and medium levels and 50 for hard level) is
reached.

Ant maze The width and height of U maze are (7,7) and Empty, Π-shaped maze are (8,8) re-
spectively Chane-Sane et al. (2021); Nasiriany et al. (2019). Similar to 2d-maze, episode ends
only when the maximum timestep (400 for every mazes) is reached. For goal-reaching down-
stream tasks, we design a distance between current state and goal state as a penalizing reward (i.e.,
−1× distance = reward). In detail, directly computing distance with x,y coordinates might be inac-
curate because there can be obstacles (i.e., walls) between two states. Therefore, we design a reward
function that returns the actual distance that goes around when there is an obstacle between two
states. Then, we normalize the reward to set the lowest value as −1.

Deepmind Control Suite We conduct our environment in a total of eight downstream tasks pro-
vided by URLB (Laskin et al., 2021). In detail, we utilize four tasks each in two continuous control
domains: Run, Run backward, Flip, and Flip backward for Cheetah and Jump, Run, Stand, and Walk
for Quadruped. Following the convention of Laskin et al. (2021), we define expert score as the per-
formance of randomly initialized SAC for 2M timestep, whereas only 100k timesteps for finetuning
are allowed. For DIAYN, SMM, DISDAIN and DISCO-DANCE (discrete skills), we finetune the
skill with maximum downstream task reward (same as Ant mazes). For APS (continuous skill),
we first randomly select an arbitrary skill z and rollout episodes, then solve thde linear regression
problem to select the task-specific skill z (following same protocol in APS paper). After the skill is
selected for finetuning, for all algorithms, selected skill is fine-tuned for 100K steps. Note that this
is different from URLB in that the skill selection process is not included in 100K, but this is still a
fair comparison as all algorithms use the same number of interactions (samples) to select skills.

B.2 HYPERPARAMETERS

Detailed hyperparameters of our method DISCO-DANCE are listed in the table 3.

Table 3: Hyperparameters used in DISCO-DANCE.

Hyperparameter 2D maze Ant maze DMC
Hidden dim 128 1024 1024
Batch size 64 512 1024

Skill trajectory length easy, normal: 30 400 1000hard: 50
Initial number of skill 30 10 10
Replay buffer size 106 106 106

Optimizer Adam Adam Adam
Discriminator learning rate 3× 10−4 3× 10−4 3× 10−4

Critic learning rate 3× 10−4 3× 10−4 3× 10−4

Actor learning rate 3× 10−4 3× 10−4 3× 10−4

RL algorithm Soft Actor Critic Soft Actor Critic Soft Actor Critic
discount γ 0.99 0.99 0.99
Entropy coef (β) 0.2 0.6 0.2
Select guide K nearest neighbor K nearest neighbor K nearest neighbor
KL coef (α) 10−4 10−4 10−4

Number of skills to extend 5 5 5
Extending threshold ρ 5 5 5
Accuracy threshold ϵ 0.5 0.5 0.5
KL threshlod (η) 10 10 10
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We construct a two-layer MLP with 128 (2D maze) or 1024 (Ant maze, DMC) hidden units, and
use adam Kingma & Ba (2014) optimizer with 3 × 10−4 learning rate. For each skill, we sam-
ple 50 (bottleneck maze), 400 (Ant maze), 1000 (DMC) length trajectory and train the agent with
SAC Haarnoja et al. (2018) using 64 (2D maze), 512 (Ant maze), 1024 (DMC) batch size. We set
the discount factor γ as 0.99 and the SAC entropy coefficient β as 0.2 for 2D maze and DMC, 0.6
for Ant maze.

For DISDAIN, we search the number of ensembles from [5, 10, 20, 40] and disdain reward coeffi-
cient from [10, 50, 100]. We train DISDAIN using 40 size of ensembles and set DISDAIN reward
weight as 100, for all environments. We also train separate Q-funcetions for rskill and rdisdain and add
two Q-values with weight 0.7 (reward = rskill + 0.7 rdisdain) following (Strouse et al., 2022) .

For APS, we search the value of k (i.e., number of neighbors in k nearest neighbor algorithm) from
[5, 10] and the dimension of skills from [5, 10]. For 2d-mazes, we utilize 10 for k and 5 for skill
dimensions. For Ant mazes, we utilize 5 for k and 5 for skill dimensions. For DMC, we utilize 12
for k and 10 for skill dimensions.

For SMM, we strictly follow the implementation detail from the paper. We search the entropy coef-
ficient from [0.0005, 0.005, 0.01, 0.1, 0.25, 0.5, 1]. We utilize entropy coefficient as 0.1 for 2D maze
and Antmaze, 0.01 for DMC.

For the methods using the curriculum approach, we use the initial number of skills 30 for the 2D
maze, and 10 for the Antmaze and DMC. During training, count the number of skills in which
discriminator accuracy is less than the threshold ϵ = 0.5, and if it is less than the extending threshold
ρ = 5, extend 5 number of skills.

C ADDITIONAL ABLATION STUDIES

w/ KL coefficient w/o KL coefficient ϵ = 0.5 ϵ = 0.7

(a) Guided initialization (b) Threshold sensitivity

ϵ = 0.3

Figure 10: Ablation studies. (a) Guided initialization. (b) Sensitivity to the accuracy threshold.

During the curriculum learning procedure, we initialize the weights of newly added skills using the
guide skill to directly reach the unexplored states. To analyze the importance of initialization, we
compare this approach to an ablation that training from scratch. In Fig 10(a), initializing the weights
by using the guide skill makes the performance better. We speculate that guide initialization is di-
rectly minimizing the kl divergence with guide skill, it makes the agent start with the maximum
guide reward. In order to further analyze the sensitivity of the accuracy threshold ϵ, we conduct an
ablation study. We vary the accuracy threshold ϵ from {0.3, 0.5, 0.7} and fix the remaining hyperpa-
rameters. In Fig 10(b), we observe that the performance of DISCO-DANCE is robust to the accuracy
threshold ϵ.

D COMPARING CURRICULUM APPROACH EFFECTS ON USD METHODS

To demonstrate DISCO-DANCE is highly compatible with increasing the number or skills during
training, we also combine the curriculum approach to the baselines which utilize discrete skill spaces
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Figure 11: Gradually increasing the number of skills for DISCO-DANCE, DIAYN, and DIS-
DAIN. (a) Qualitative results on bottleneck maze and Ant Π-maze. Colored skills indicate new skills
and grey skills are previously converged skills. (b) Training curves on each environment.

for comparison. In order to empirically verify whether previous approaches can also benefit from
curriculum procedure, we combined the curriculum approach mentioned in Section 3.1 to DIAYN
and DISDAIN . As shown in Fig. 11a, we discover that DIAYN and DISDAIN are not able to benefit
from curriculum learning and that the newly added skills are mainly rooted near the initial starting
point. This results in making the covered state space more crowded, so the curriculum approach not
only does not help to cover more state spaces, but exacerbate the situation by reducing discriminator
accuracy without increasing the state coverage. However for DISCO-DANCE, the newly added
skills are able to directly reach unexplored regions with the aid of the guide skill.

E EFFICIENT RANDOM WALK PROCESS

Our random walk process in Section 3.1 is as follows

1. After performing rollout for all P learned skills till the terminal state, we perform R random
walks and collect P ∗ R number of random arrival states (R is a hyper-parameter and we
set R as 0.2 * time horizon T for all environments). Repeat this process a total of M times.

2. Pinpoint the state in the lowest density region among the P ∗R ∗M number of states. We
measure the density of the states using the k nearest neighbors.

3. Select the skill which that state originated from.

The number of environment steps in the random walk process is P ∗ (T +0.2T )∗M . Therefore, the
total number of environment steps performed during the random walk process in pretraining stage
is,

(Ninitial + (Ninitial + δ) + (Ninitial + 2 ∗ δ) + ..+ (Nfinal − δ)) ∗ (T + 0.2T ) ∗M
where Ninitial is the number of initial skills, δ is the number of skills to extend when most of the
existing skills are converged (e.g., number of skills are 10 → 15 → 20 → . . . → 50 → 55 when
Ninitial=10, δ=5, Nfinal=55). Note that Nfinal is the number of skills when the pretraining is ended (not
predefined as a hyperparameter).

However, in long-horizon environment such as DMC (1000 timesteps), our random walk process
can cause non-negligible sample inefficiencies. Thus, we further present an efficient random walk
process that approximates an original random walk process with a simple approach. The detailed
process is as follows:

1. During pretraining, if the skill satisfies qϕ(zi|sT ) < ϵ in the terminal state sT (i.e., which
is not an apprentice skill), additionally perform R random walk steps and store the random
arrival states at the temporary buffer (queue).
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2. When selecting guide skill, instead of rolling out all skills, select the state in the lowest
density region among the states at the temporary buffer.

3. Select the skill which that state originated from.

Since there are no additional environment steps when selecting the guide skill, the efficient random
walk process can significantly reduce the number of environment steps compared to the original ver-
sion (added environment steps are 0.2T per trajectory (only if its skill satisfies accuracy threshold),
whereas original random walk process requires P × (T + 0.2T ) ×M ). In Fig 7 and Table 4, we
empirically show that the efficient random walk process still achieves comparably good scores on
DMC.

F FULL RESULTS ON DEEPMIND CONTROL SUITE TASKS

Table 4: Performance comparison of DISCO-DANCE and baselines on DMC. Bold scores indicate
the best model performance and underlined scores indicate the second best. The results are averaged
over 9 random seeds with a standard deviation.

Models Cheetah Quadruped Avg
Run Run Backward Flip Flip Backward Jump Run Stand Walk

Random Init 399.80±67.55 384.82±17.46 700.02±17.87 715.07±9.26 383.41±210.83 150.40±80.84 450.59±180.30 147.74±209.65 416.48
DIAYN 394.57±104.86 412.92±10.96 642.96±60.67 534.23±112.17 278.22±133.28 261.78±139.92 512.27±209.39 344.41±256.60 422.67
SMM 389.47±125.42 455.61±26.24 633.63±66.35 513.66±68.78 215.52±254.95 99.81±98.38 289.02±257.68 106.83±99.95 337.94
APS 612.72±32.95 427.14±117.07 622.92±60.41 683.66±60.86 407.71±341.72 174.82±177.37 658.20±362.10 386.52±353.54 496.79
DISDAIN 22.15±9.89 18.74±6.73 283.08±25.22 269.58±31.58 626.26±99.13 285.43±121.70 820.57±151.74 479.03±162.28 350.60
DISCO-DANCE 521.79±85.73 418.25±16.07 671.44±50.56 599.48±50.81 612.88±193.82 331.32±147.09 700.89±283.58 339.17±324.73 524.40

Table 4 summarizes the full results for each task in DMC. We can observe that DISCO-DANCE gets
first or second performance in seven out of eight tasks. In contrast, other baselines show leading per-
formance only for a few tasks (i.e., DISDAIN underperforms in cheetah domain tasks). We can find
out DISCO-DANCE outperforms other baselines and random init in terms of average performance,
and this indicates that DISCO-DANCE learned more general behaviors through guidance.

G COMPARISON WITH UPSIDE

DISCO-DANCE and UPSIDE (Kamienny et al., 2021) have similar motivation, alleviating the in-
herent pessimism problem. Both of their strategies can be summarized as “agent guides itself” (i.e.,
existing skills help new/unconverged skills to explore). In DISCO-DANCE, guide skill encourages
apprentice skills (unconverged skills) to explore unexplored states by minimizing the KL divergence
between guide skill and apprentice skills. While DISCO-DANCE learns a set of single skills, UP-
SIDE learns tree-structured policy which is composed of multiple skill segments.

Fig 12 illustrates an example where a total of 8 skills are learned. When learning the policy in the
unsupervised pretraining stage, UPSIDE (1) selects the skill with the largest discriminator accuracy
among the leaf node skills (e.g., z = 4), (2) adds new skills as its children nodes (e.g., z = 7, 8), (3)
freeze the parent skills (e.g., z = 1, 4 are not trained) and only train newly added skills, and (4) iter-
atively repeat these procedures to construct the tree-structured policies (Fig 12(b)). This makes the
fundamental difference between DISCO-DANCE and UPSIDE, that UPSIDE requires sequential
execution from ancestors’ skills to child skill in a top-down manner due to its tree-structured
skill policies. For example, if we want to run skill z = 8, UPSIDE needs to execute skills sequen-
tially (z = 1 → 4 → 8) for T timesteps, where T is a hyperparameter that decides how dense the
generated tree will be.

One of the key objectives of unsupervised skill discovery is to utilize the learned skills as a useful
primitive at the fine-tuning stage. However, these sequential executions of UPSIDE bring signif-
icant inefficiency at the finetuning stage, due to the following reason. Suppose the given down-
stream task is to reach the goal state as fast as possible where the distance from the goal state and
total execution time is given as a penalty (Fig 12). Since z = 8 is the skill with minimum distance
from the goal, DISCO-DANCE selects skill z = 8 and finetunes π(a|s, z = 8) to optimize given re-
ward functions (Fig 12(a)). However, for UPSIDE to finetune z = 8, we need to finetune z = 1, 4, 8
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(b) UPSIDE:
Finetune only leaf skill 𝑧 = 8

(c) UPSIDE:
Finetune 𝑧 = 1, 4, 8 simultaneously

(a) DISCO-DANCE:
Finetune skill 𝑧 = 8

Tree structure broken

Figure 12: Conceptual illustration of (1) learned skills of DISCO-DANCE and UPSIDE, and
(2) goal-reaching downstream task. Black edge represents skill and black circle represents the
terminal states of its skill. (a) After unsupervised pretraining, DISCO-DANCE obtains a set of skills
that can be used individually without the need for each skill to be used together. In finetuning stage,
DISCO-DANCE selects skill z = 8 (i.e., skill with highest downstream task reward) and finetunes
the skill to reach goal fastly. (b) However, to execute z = 8, UPSIDE requires sequential execution
of its all ancestors skills (i.e., executing z = 1, 4, 8 sequentially). In finetuning stage, UPSIDE is
not able to learn optimal policy since the ancestors skills are kept fixed during finetuning. (c) If
we finetune ancestors skills simultaneously, the tree structure learned in pretraining phase will be
broken, which makes finetuning unstable and difficult.

simultaneously (Fig 12(c)). In that case, the tree-structured skill policies learned in the pretraining
stage is broken during the finetuning stage. That is, the dictionary {‘z = 8′ : [1, 4, 8]} cannot be
used anymore because executing z = 1 for T timesteps does not move the agent to the original
z = 1 terminal nodes (red × in Fig 12(c)). This means that the skill tree learned in pretraining can
no longer be used, leading to ineffecient finetuning.

To avoid this limitation, UPSIDE only finetuned the leaf skill in the original paper (i.e., freeze
ancestors z = 1, 4 and only finetunes z = 8 in Fig 12(b)). However, this would be still ineffective
because the fixed ancestors z = 1, 4 are not the optimal solution to solve the given downstream
task (green lines from <start> to z = 4 nodes in Fig 12(b)). The problem becomes more serious
in a long-horizon environment such as DMC (where horizon is 1000) if we freeze all the pretrained
ancestors skills and finetune only the last leaf skill. In contrast, DISCO-DANCE selects a single skill
to finetune which can be executed independently, so it does not suffer from the above problem.

H LIMITATIONS AND FUTURE DIRECTIONS

DISCO-DANCE may cause cost (sample) inefficiency when measuring the density of the state dis-
tribution in environment with high dimensional input, such as control from pixel observations. In
this case, we could utilize the downscaling technique (e.g., cell representation in Go-Explore) to
reduce computational costs.

For the guide skill selection process to work stably, the termination state should be reliably reached.
Therefore, when the stochasticity of the environment is too large, it would not be easy to select a
guide skill only with the simple random walk process we proposed. We leave it as future work for
alleviating such difficulties.
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I VISUALIZATION OF LEARNED SKILLS

DISCO-DANCE

diayn disdain smm aps

…

DISCO-DANCE

diayn disdain smm aps

…

(a) Empty maze

(b) Y maze

Figure 13: Qualitative visualization of the learned skills on Emtpy maze and Y maze. Visual-
ization of multiple rollouts of learned skills by baseline models. For DISCO-DANCE, we visualize
our curriculum precedure during training. Bold red lines indicate the guide skill.
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DISCO-DANCE

diayn disdain smm aps

…

DISCO-DANCE

diayn disdain smm aps

…

(a) W maze

(b) S maze

Figure 14: Qualitative visualization of the learned skills on W maze and S maze. Visualization
of multiple rollouts of learned skills by baseline models. For DISCO-DANCE, we visualize our
curriculum precedure during training. Bold red lines indicate the guide skill.
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DISCO-DANCE

diayn disdain smm aps

…

DISCO-DANCE

diayn disdain smm aps

…

DISCO-DANCE

diayn disdain smm aps

…

(a) Ant Empty-maze

(b) Ant U-maze

(c) Ant Π-maze

Figure 15: Qualitative visualization of the learned skills on Ant Empty-maze, Ant U-maze, and
Ant Π-maze. Visualization of multiple rollouts of learned skills by baseline models. For DISCO-
DANCE, we visualize our curriculum precedure during training. Bold red lines indicate the guide
skill.
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Figure 16: Qualitative visualization of the learned skills in cheetah domain in DMC. DISCO-
DANCE learned 100 skills without reward function. To effectively show how diverse skills DISCO-
DANCE learned, we select 17 skills based on x coordinate of each skill’s terminal state.
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