
Lower Bounds and Optimal Algorithms for
Non-Smooth Convex Decentralized Optimization over

Time-Varying Networks

Dmitry Kovalev
Yandex Researh

dakovalev1@gmail.com

Ekaterina Borodich
MIPT∗

borodich.ed@phystech.edu

Alexander Gasnikov
Innopolis University, MIPT*, Skoltech†

gasnikov@yandex.ru

Dmitrii Feoktistov
Innopolis University‡, MSU§

feoktistovdd@my.msu.ru

Abstract

We consider the task of minimizing the sum of convex functions stored in a
decentralized manner across the nodes of a communication network. This problem
is relatively well-studied in the scenario when the objective functions are smooth,
or the links of the network are fixed in time, or both. In particular, lower bounds
on the number of decentralized communications and (sub)gradient computations
required to solve the problem have been established, along with matching optimal
algorithms. However, the remaining and most challenging setting of non-smooth
decentralized optimization over time-varying networks is largely underexplored, as
neither lower bounds nor optimal algorithms are known in the literature. We resolve
this fundamental gap with the following contributions: (i) we establish the first
lower bounds on the communication and subgradient computation complexities of
solving non-smooth convex decentralized optimization problems over time-varying
networks; (ii) we develop the first optimal algorithm that matches these lower
bounds and offers substantially improved theoretical performance compared to the
existing state of the art.

1 Introduction

In this paper, we study the decentralized optimization problem. Specifically, given a set of n compute
nodes connected through a communication network, our goal is to solve the following finite-sum
optimization problem with quadratic regularization:

min
x∈Rd

[
p(x) =

1

n

n∑
i=1

fi(x) +
r

2
∥x∥2

]
, (1)

where r ≥ 0 is a regularization parameter, and each function fi(x) : Rd → R is stored on the
corresponding node i ∈ {1, . . . , n}. Each node i can perform computations based on its local state
and data, and can directly communicate with other nodes through the links in the communication
network.

∗Moscow Institute of Physics and Technology
†Skolkovo Institute of Science and Technology
‡Research Center for Artificial Intelligence, Innopolis University, Innopolis, Russia
§Moscow State University

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Decentralized optimization problems find applications in a wide variety of fields. These include
network resource allocation (Beck et al., 2014), distributed model predictive control (Giselsson
et al., 2013), power system control (Gan et al., 2012), distributed spectrum sensing (Bazerque and
Giannakis, 2009), and optimization in sensor networks (Rabbat and Nowak, 2004). In addition,
such problems cover the supervised training of machine learning models through empirical risk
minimization, thus attracting significant interest from the machine learning community (Lian et al.,
2017; Ryabinin et al., 2021; Ryabinin and Gusev, 2020).

1.1 Time-varying Networks

In our paper, we focus on the setting in which the links in the communication network are allowed
to change over time. Such time-varying networks (Zadeh, 1961; Kolar et al., 2010) hold significant
relevance to many practical applications. For instance, in sensor networks, changes in the link
structure can be caused by the motion of sensors and disturbances in the wireless signal connecting
pairs of sensors. Similarly, in distributed machine learning, connections between compute nodes
can intermittently appear and disappear due to network unreliability (Ryabinin and Gusev, 2020).
Lastly, we anticipate that the time-varying setting will be supported by future-generation federated
learning systems (Konecnỳ et al., 2016; McMahan et al., 2017), where communication between pairs
of mobile devices or between mobile devices and servers will be affected by their physical proximity,
which naturally changes over time.

1.2 Convex Setting

In this work, we consider the decentralized optimization problem in the case when the objective
function is convex (or strongly convex). At first glance, it may seem that the convexity assumption is
restrictive and should not be considered. However, as we will see further, even in this fundamental
setting, the existing algorithmic developments are limited and have significant gaps that need to be
closed. Moreover, considering the convex optimization setting offers important benefits compared
to general non-convex functions. One such benefit is that convex optimization often serves as a
source of inspiration for the development of algorithms that turn out to be highly effective in solving
practical problems, even non-convex ones.

For example, state-of-the-art optimization algorithms such as Adam (Kingma and Ba, 2014) and
RMSProp (Hinton et al., 2012) employ the momentum trick, which is observed to be efficient for
numerous tasks, including the training of deep neural networks. However, from the perspective
of non-convex optimization theory, momentum is useless because, for non-convex problems, the
iteration complexity of the standard gradient method cannot be improved (Carmon et al., 2020). On
the other hand, it was theoretically proven that momentum substantially boosts the convergence speed
of the gradient method when applied to convex functions (Nesterov, 1983). In other words, convex
optimization theory suggests that the momentum trick should be used, while non-convex theory
suggests that it should not, and the former aligns much more closely with practical observations. A
similar situation can be seen with other state-of-the-art optimization methods, including distributed
local gradient methods (Mishchenko et al., 2022; Sadiev et al., 2022; Karimireddy et al., 2020), adap-
tive gradient methods (Duchi et al., 2011), etc. Such inconsistency between non-convex theoretical
convergence guarantees for optimization algorithms and their actual performance in practice can
be attributed to the fact that the class of non-convex functions is far too broad. This is why many
optimization research papers try to narrow down this class by considering additional assumptions such
as Polyak-Łojasiewicz condition (Karimi et al., 2016), bounded non-convexity (Carmon et al., 2018;
Allen-Zhu, 2018), quasi-strong convexity (Necoara et al., 2019), etc. However, these assumptions
can be seen as relaxations of the standard convexity property. Therefore, we naturally opt to focus on
the convex decentralized optimization problem, leaving potential generalizations for future work.

1.3 Related Work and Main Contributions

Decentralized optimization has been attracting a lot of attention for more than a decade. Plenty of
algorithms have been developed, including EXTRA (Shi et al., 2015), DIGing (Nedic et al., 2017),
SONATA (Scutari and Sun, 2019), NIDS (Li et al., 2019), APM-C (Li et al., 2018; Rogozin et al.,
2021), and many others. In recent years, the focus of the research community has shifted towards the
more complex task of finding, in some sense, the best possible algorithms for solving decentralized

2

Table 1: Summary of the existing state-of-the-art results in decentralized convex optimization.
Multiple paper references are provided for each problem setting: papers marked with ∗ provide
lower complexity bounds, and papers marked with † provide optimal algorithms that match the
corresponding lower bounds.

Smooth Setting Non-Smooth Setting

Fixed
Networks

Kovalev et al. (2020)†
Scaman et al. (2017)∗

Lan et al. (2020)†

Scaman et al. (2018)†∗

Time-Varying
Networks

Kovalev et al. (2021a)†∗

Li and Lin (2021)†
Algorithm 1 (this paper)†

Theorems 1 and 2 (this paper)∗

optimization problems (Scaman et al., 2017, 2018; Lan et al., 2020; Kovalev et al., 2020, 2021b,a,
2022; Hendrikx et al., 2021; Li et al., 2022; Li and Lin, 2021; Metelev et al., 2024). This task consists
of finding a lower bound on the complexity5 of solving a given subclass of decentralized problems
and finding an algorithm whose complexity matches this lower bound. Such algorithms are called
optimal because their complexity cannot be improved for a given problem class due to the established
lower bounds.

We discuss the four main classes of decentralized optimization problems that cover smooth6 and non-
smooth objective functions, and fixed and time-varying communication networks. We reference the
existing state-of-the-art research papers that collectively solve the task of finding optimal algorithms
for these classes. These papers are summarized in Table 1. In the case of smooth and strongly convex
objective functions and fixed communication networks, Scaman et al. (2017) established the lower
bounds on the number of communication rounds and the number of local gradient computations
required to find the solution. These lower bounds were matched by OPAPC algorithm of Kovalev
et al. (2020). In the case of smooth and strongly convex problems over time-varying networks,
lower complexity bounds were provided by Kovalev et al. (2021a), and two optimal algorithms were
developed: ADOM+ (Kovalev et al., 2021a) and AccGT (Li and Lin, 2021). In the case of non-smooth
convex problems over fixed networks, lower bounds were established by Scaman et al. (2018), and
two optimal algorithms were proposed: DCS (Lan et al., 2020) and MSPD (Scaman et al., 2018).

Our paper primarily focuses on the remaining and most challenging setting of non-smooth convex
decentralized optimization problems over time-varying networks. Only a few algorithms have been
developed for this setting, including the distributed subgradient method (D-SubGD) by Nedic and
Ozdaglar (2009), the subgradient-push method (SubGD-Push) by Nedić and Olshevsky (2014),
and ZOSADOM by Lobanov et al. (2023). Moreover, to the best of our knowledge, neither lower
complexity bounds nor optimal algorithms have been proposed in this setting. Consequently, in this
work, we close this significant gap with the following key contributions:

(i) We establish the first lower bounds on the number of decentralized communications and
local subgradient computations required to solve problem (1) in the non-smooth convex
setting over time-varying networks,

(ii) We show that our lower bounds are tight by developing the first optimal algorithm that
matches these lower bounds. The proposed algorithm has state-of-the-art theoretical com-
munication complexity, which outclasses the existing methods described in the literature.

2 Notation and Assumptions

In this paper, we are going to use the following notations: ⊗ denotes the Kronecker matrix product,
Ip denotes a p× p identity matrix, 1p = (1, . . . , 1)⊤ ∈ Rp, epj ∈ Rp for j ∈ {1, . . . , p} denotes the
j-th unit basis vector, where p ∈ {1, 2, . . .}. In addition, ∥·∥ denotes the standard Euclidean norm of
a vector, and ⟨·, ·⟩ denotes the standard scalar product of two vectors.

5By complexity, we mean, depending on the context, the number of subgradient computations or decentralized
communications required to solve the problem.

6A function is called smooth if it is continuously differentiable and has a Lipschitz-continuous gradient.

3

2.1 Objective Function

Further, we describe the assumptions that we impose on problem 1. As discussed in Section 1.2, we
assume the convexity of the objective function in problem (1). In particular, we assume that functions
f1(x), . . . , fn(x) are convex, which is formally described in Assumption 1.

Assumption 1. Each function fi(x) is convex. That is, for all x′, x ∈ Rd and τ ∈ [0, 1], the following
inequality holds:

fi(τx+ (1− τ)x′) ≤ τfi(x) + (1− τ)fi(x
′). (2)

In addition, we assume that the objective functions f1(x), . . . , fn(x) are Lipschitz continuous, which
is formalized in Assumption 2. This property is widely used in the theoretical analysis of non-smooth
optimization algorithms, such as the subgradient method (Nesterov, 2013), dual extrapolation method
(Nesterov, 2009), etc.
Assumption 2. Each function fi(x) is M -Lipschitz continuous for M ≥ 0. That is, for all x′, x ∈ Rd,
the following inequality holds:

|fi(x)− fi(x
′)| ≤ M∥x− x′∥. (3)

We also need the following Assumption 3, which ensures the existence of a solution to problem (1).
Note that in the strongly convex case (r > 0), the solution always exists and is unique. However, in
the convex case (r = 0), we need to explicitly assume the existence of a solution.
Assumption 3. There exists a solution x∗ ∈ Rd to problem (1) and a distance R > 0 such that

∥x∗∥ ≤ R. (4)

2.2 Decentralized Communication

Next, we formally describe the decentralized communication setting. The communication network
is typically represented by a graph G(V, E), where V = {1, . . . , n} is the set of compute nodes and
E ⊂ V × V is the set of links in the network. As mentioned earlier, we allow the communication
links to change over time. Thus, we introduce the continuous time parameter τ ≥ 0 and a set-valued
function E(τ) : R+ → 2V×V , which represents the time-varying set of edges.7 Our time-varying
network is then denoted as G(τ) = (V, E(τ)).
Decentralized communication is typically represented via a matrix-vector multiplication with the
so-called gossip matrix associated with the communication network (Scaman et al., 2017; Kovalev
et al., 2021a). In the time-varying setting, we represent the gossip matrix by a matrix-valued function
W(τ) : R+ → Rn×n, which satisfies the following Assumption 4.
Assumption 4. For all τ ≥ 0, the gossip matrix W(τ) ∈ Rn×n associated with the time-varying
communication network G(V, E(τ)) satisfies the following properties:

(i) W(τ)ij = 0 if i ̸= j and (j, i) /∈ E(τ),

(ii) W(τ)1n = 0 and W(τ)⊤1n = 0.

We also define the so-called condition number of the network χ ≥ 1, which indicates how well the
network G(τ) is connected (Scaman et al., 2017; Kovalev et al., 2021a). In particular, the communica-
tion complexity of most decentralized optimization algorithms depends on χ. Assumption 5 provides
the formal definition of this quantity.
Assumption 5. There exists a constant χ ≥ 1 such that the following inequality holds for all τ ≥ 0:

∥W(τ)x− x∥2 ≤ (1− 1/χ) ∥x∥2 for all x ∈ {(x1, . . . , xn) ∈ Rn :
∑n

i=1xi = 0} . (5)

3 Lower Complexity Bounds

3.1 Decentralized Subgradient Optimization Algorithms

In this section, we present the lower bounds on the number of decentralized communications and
the number of local subgradient computations required to solve problem (1). These lower bounds

7By 2V×V = {E : E ⊂ V × V} we denote the set of all subsets of V × V .

4

apply to a particular class of algorithms, which we refer to as the class of decentralized subgradient
optimization algorithms. This class can be seen as an adaptation of black-box optimization procedures
(Scaman et al., 2018) to the time-varying network setting, or an adaptation of first-order decentralized
optimization algorithms (Kovalev et al., 2021a) to the non-smooth optimization setting.

Non-smooth optimization algorithms typically perform incremental updates by computing the sub-
gradient of a given objective function. The set of all subgradients of a convex function, called the
subdifferential, can be multivalued in general. Thus, it is necessary to select the specific subgradient
that the algorithm will use. This is done by the subgradient oracle, which is described by Definition 1.

Definition 1. For each i ∈ V , a function ∇̂fi(x) : Rd → Rd is called a subgradient oracle associated
with the function fi(x) if, for all x ∈ Rd, it satisfies ∇̂fi(x) ∈ ∂fi(x). That is, for each i ∈ V and
for all x, x′ ∈ Rd, the following inequality holds:

fi(x
′) ≥ fi(x) + ⟨∇̂fi(x), x

′ − x⟩. (6)

Further, we provide the formal description of the class of decentralized subgradient optimization
algorithms in the following Definition 2.
Definition 2. An algorithm is called a decentralized subgradient optimization algorithm with the
subgradient computation time τsub > 0 and decentralized communication time τcom > 0 if it satisfies
the following constraints:

(i) Internal memory. At any time τ ≥ 0, each node i ∈ V maintains an internal memory,
which is represented by a set-valued function Mi(τ) : R+ → 2R

d

. The internal memory can
be updated by subgradient computation or decentralized communication, which is formally
represented by the following inclusion:

Mi(τ) ⊂ Msub
i (τ) ∪Mcom

i (τ), (7)

where set-valued functions Msub
i (τ),Mcom

i (τ) : R+ → 2R
d

are defined below.

(ii) Subgradient computation. At any time τ ≥ 0, each node i ∈ V can update its internal
memory Mi(τ) by computing the subgradient ∇̂fi(x) of the function fi(x), which takes
time τsub. That is, for all τ ≥ 0, the set Msub

i (τ) is defined as follows:

Msub
i (τ) =

{
span({x, ∇̂fi(x) : x ∈ Mi(τ − τsub)}) τ ≥ τsub

∅ τ < τsub
. (8)

(iii) Decentralized communication. At any time τ ≥ 0, each node i ∈ V can update its internal
memory Mi(τ) by performing decentralized communication across the communication
network, which takes time τcom. That is, for all τ ≥ 0, the set Mcom

i (τ) is defined as follows:

Mcom
i (τ) =

{
span

(⋃
(j,i)∈E(τ)Mj(τ − τcom)

)
τ ≥ τcom

∅ τ < τcom
. (9)

(iv) Initialization and output. At time τ = 0, each node i ∈ V must initialize its internal
memory with the zero vector, that is, Mi(0) = {0}. At any time τ ≥ 0, each node i ∈ V
must specify a single output vector from its internal memory, xo,i(τ) ∈ Mi(τ).

3.2 Lower Bounds

Now, we are ready to present the lower bounds on the execution time τ ≥ 0 required to find an
ϵ-approximate solution8 to problem (1) by any algorithm satisfying Definition 2. Theorem 1 provides
the lower bound in the strongly convex case (r > 0), and Theorem 2 provides the lower bound in the
convex case (r = 0). These lower bounds naturally depend on the precision ϵ > 0, the parameters of
the problem, including the Lipschitz constant M > 0, the regularization parameter r ≥ 0, the distance
R > 0, and the parameters of the network, including the condition number χ ≥ 1, communication
time τcom > 0, and subgradient computation time τsub > 0.

8A vector x ∈ Rd is called an ϵ-approximate solution to problem (1) if p(x)− p(x∗) ≤ ϵ.

5

Table 2: Lower bounds on the communication complexity of solving problem (1) in the centralized
(Arjevani and Shamir, 2015), decentralized fixed network (Scaman et al., 2018), and decentralized
time-varying network (Theorems 1 and 2) settings.

Setting

Strongly convex Ω (M/
√
rϵ) Ω

(√
χM/

√
rϵ
)

Ω (χM/
√
rϵ)

Convex Ω (MR/ϵ) Ω
(√

χMR/ϵ
)

Ω (χMR/ϵ)

Centralized Fixed networks9 Time-varying networks

Theorem 1. For arbitrary parameters M, r, ϵ, τcom, τsub > 0 and χ ≥ 1, there exists an optimization
problem of the form (1) satisfying Assumptions 1, 2 and 3, corresponding subgradient oracles given
by Definition 1, a time varying network G(τ) = (V, E(τ)), and a corresponding time-varying gossip
matrix W(τ) satisfying Assumptions 4 and 5, such that at least the following time τ is required to
reach precision p(xo,i(τ)) − p(x∗) ≤ ϵ by any decentralized subgradient optimization algorithm
satisfying Definition 2:

τ ≥ Ω

(
τcom · χM√

rϵ
+ τsub ·

M2

rϵ

)
. (10)

Theorem 2. For arbitrary parameters M,R, ϵ, τcom, τsub > 0 and χ ≥ 1, there exists an optimiza-
tion problem of the form (1) with zero regularization (r = 0) satisfying Assumptions 1, 2 and 3,
corresponding subgradient oracles given by Definition 1, a time varying network G(τ) = (V, E(τ)),
and a corresponding time-varying gossip matrix W(τ) satisfying Assumptions 4 and 5, such that at
least the following time τ is required to reach precision p(xo,i(τ))− p(x∗) ≤ ϵ by any decentralized
subgradient optimization algorithm satisfying Definition 2:

τ ≥ Ω

(
τcom · χMR

ϵ
+ τsub ·

M2R2

ϵ2

)
. (11)

The proofs of Theorems 1 and 2 can be found in Appendix B. Further, we provide a brief and informal
description of the main theoretical ideas that underlie these proofs:

(i) We select a specific “hard” instance of problem (1). In particular, we choose the objective
function of the form p(x) = a

∑d−1
j=1 |⟨edj+1 − edj , x⟩| − a⟨ed1, x⟩+ r

2∥x∥
2, which was used

by Arjevani and Shamir (2015); Scaman et al. (2018) in the proof of lower bounds on the
communication complexity in centralized and fixed-network settings. One can show that the
gap p(x)− p(x∗) is lower-bounded by a positive constant as long as the last component of
the vector x is zero, and it takes Ω(τsub · d) time to break this bound due to the constraint on
the subgradient updates (8).

(ii) We split the objective function between two nodes of a star-topology network with a time-
varying central node, which was previously utilized by Kovalev et al. (2021a) in the proof of
lower bounds for optimizing smooth functions. One can show that it takes Ω(n) = Ω(χ)
communications to exchange information between the two selected nodes due to the time-
varying center. This contrasts with the fixed path-topology network used by Scaman
et al. (2017, 2018), where such an exchange would take Ω(n) = Ω(

√
χ) communications.

Moreover, using the constraint (8), we can show that it takes Ω(τcom · nd) time to make the
last component of the vector x nonzero and break the lower bound on the gap p(x)− p(x∗),
thanks to the way we split the objective function.

(iii) Based on the above considerations, we show that the total execution time required to solve
the problem is lower-bounded by Ω (τcom · nd+ τsub · d). Thus, we obtain the desired results
by making a specific choice of the dimension d, network size n, and other parameters of
problem (1).

3.3 Comparison with the Lower Bounds in Centralized and Fixed Network Settings

We compare the lower complexity bounds for solving non-smooth convex optimization problems
in the three main distributed optimization settings: centralized, decentralized fixed network, and

9Scaman et al. (2018) do not provide any lower complexity bounds in the strongly convex setting. However,
the desired lower bound on the communication complexity can be obtained by extending their analysis.

6

Algorithm 1
1: input: x0 = x−1 = x̃0 ∈ (Rd)n, y0 = y0 ∈ (Rd)n, z0 = z0 ∈ L⊥, m0 ∈ (Rd)n

2: parameters: K,T ∈ {1, 2, . . .}, {(αk, βk, γk, σk, λk, τ
k
x , η

k
x, η

k
y , η

k
z , θ

k
z)}K−1

k=0 ⊂ R10
+

3: for k = 0, 1, . . . ,K − 1 do
4: yk = αky

k + (1− αk)y
k, zk = αkz

k + (1− αk)z
k

5: gky = ∇yG(yk, zk), gkz = ∇zG(yk, zk), where function G(y, z) is defined in eq. (12)
6: g̃kz = (Wk ⊗ Id)g

k
z , ĝkz = (Wk ⊗ Id)(g

k
z +mk),

where Wk denotes the gossip matrix W(τ) at the current time τ
7: yk+1 = yk − ηky (g

k
y + x̂k+1), zk+1 = zk − ηkz ĝ

k
z , x̂k+1 = xk + γk(x̃

k − xk−1)

8: yk+1 = yk + αk(y
k+1 − yk), zk+1 = zk − θkz g̃

k
z , mk+1 = (ηkz/η

k+1
z)(mk + gkz − ĝkz)

9: xk,0 = xk

10: for t = 0, 1, . . . , T − 1 do
11: gk,tx = (∇̂f1(x

k,t
1), . . . , ∇̂fn(x

k,t
n))

12: xk,t+1 = xk,t − ηkx
(
gk,tx + βkx

k,t+1 − yk+1 + τkx (x
k,t+1 − xk)

)
13: xk+1 = σkx

k,T +(1−σk)x̃
k+1, x̃k+1 = 1

T

∑T
t=1 x

k,t, xk+1 = αkx̃
k+1+(1−αk)x

k

14: (xK
a , yKa , zKa) = (

∑K
k=1 λk)

−1
∑K

k=1 λk(x
k, yk, zk)

15: output: xK
o = 1

n

∑n
i=1 x

K
a,i ∈ Rd, where (xK

a,1, . . . , x
K
a,n) = xK

a ∈ (Rd)n

decentralized time-varying network. The lower subgradient computation complexity bounds coincide
in these cases (Nesterov (2013),Scaman et al. (2018),Theorems 1 and 2). However, the situation with
the communication complexity is different. See Table 2 for a summary.

Theorems 1 and 2 imply that the communication complexity in the decentralized time-varying network
setting is proportional to the network condition number χ. In contrast, the communication complexity
in the fixed network setting is proportional to

√
χ, which reflects the fact that time-varying networks

are more difficult to deal with compared to fixed networks. In particular, there was a long-standing
conjecture that the “upgrade” from the factor χ to the factor

√
χ in communication complexity is

impossible in the time-varying network setting. Only recently, this conjecture was proved for smooth
functions by Kovalev et al. (2021a), and now we resolve this open question in the non-smooth case as
well.

4 Optimal Algorithm

In this section, we develop an optimal algorithm for solving the non-smooth convex decentralized
optimization problem (1) over time-varying networks. The design of our algorithm relies on a specific
saddle-point reformulation of the problem, which we describe in the following section.

4.1 Saddle-Point Reformulation

Let functions F (x) : (Rd)n → R and G(y, z) : (Rd)n × (Rd)n → R be defined as follows:

F (x) =

n∑
i=1

fi(xi) +
rx
2
∥x∥2 and G(y, z) =

ryz
2

∥y + z∥2, (12)

where x = (x1, . . . , xn) ∈ (Rd)n, and rx, ryz > 0 are some constants that satisfy
rx + 1/ryz = r. (13)

Consider the following saddle-point problem:

min
x∈(Rd)n

max
y∈(Rd)n

max
z∈(Rd)n

[Q(x, y, z) = F (x)− ⟨y, x⟩ −G(y, z)] s.t. z ∈ L⊥, (14)

where L⊥ ⊂ (Rd)n is the orthogonal complement to the so-called consensus space L ⊂ (Rd)n,
defined as follows:

L = {(x1, . . . , xn) : x1 = . . . = xn}, L⊥ = {(x1, . . . , xn) :
∑n

i=1xi = 0}. (15)
One can show that the saddle-point problem (14) is equivalent to the minimization problem (1). This
is justified by the following Lemma 1. The proof of the lemma can be found in the Appendix A.

7

Lemma 1. Problem (14) is equivalent to problem (1) in the following sense:

min
x∈(Rd)n

max
y∈(Rd)n

max
z∈L⊥

Q(x, y, z) = n · min
x∈Rd

p(x). (16)

The saddle-point reformulation of the form (14) was first introduced by Kovalev et al. (2020, 2021a)
to develop optimal decentralized algorithms for optimizing smooth functions. However, these are
not applicable to the non-smooth case. To the best of our knowledge, the only attempt to adapt the
reformulation (14) to the non-smooth setting was made by Lobanov et al. (2023). However, their
results have significant downsides, which we discuss in Section 4.3.

4.2 New Algorithm and its Convergence

Now, we present Algorithm 1 for solving problem (1). We provide upper bounds on the number of
decentralized communications K and the number of subgradient computations K×T required to find
an ϵ-approximate solution to the problem. Theorems 3 and 4 provide the upper bounds in the strongly
convex (r > 0) and convex (r = 0) cases, respectively. The proofs can be found in Appendix D. The
total execution time of Algorithm 1 is upper-bounded as τ = O (τcom ·K + τsub ·K × T), where
the communication time τcom > 0 and the subgradient computation time τsub > 0 are described
in Definition 2. This upper-bound on the execution time cannot be improved because of the lower
bounds established in the previous Section 3. Therefore, Algorithm 1 is an optimal algorithm for
solving problem (1).

Theorem 3. Under Assumptions 1, 2, 3, 4 and 5, let r > 0 (strongly convex case). Then Algorithm 1
requires K = O

(
χM√
rϵ

)
decentralized communications (line 6 of Algorithm 1) and K×T = O

(
M2

rϵ

)
subgradient computations (line 11 of Algorithm 1) to reach precision p(xK

o)− p(x∗) ≤ ϵ.

Theorem 4. Under Assumptions 1, 2, 3, 4 and 5, let r = 0 (convex case). Then Algorithm 1 requires
K = O

(
χMR

ϵ

)
decentralized communications (line 6 of Algorithm 1) and K × T = O

(
M2R2

ϵ2

)
subgradient computations (line 11 of Algorithm 1) to reach precision p(xK

o)− p(x∗) ≤ ϵ.

The design of Algorithm 1 is based on the fundamental Forward-Backward algorithm (Bauschke and
Combettes, 2011). Let E = (Rd)n × (Rd)n × L⊥ be a Euclidean space, and consider a monotone
operator A(u) : E → E and a maximally-monotone multivalued operator B(u) : E → 2E defined as
follows:

A(u) =

[
∇yG(y, z)

P∇zG(y, z)

0
]
, B(u) =

[
∂F (x)− y

x
0

]
, (17)

where u = (x, y, z) ∈ E, and P = (In − (1/n)1n1
⊤
n)⊗ Id ∈ Rnd×nd is the orthogonal projection

matrix onto L⊥. Then problem (14) is equivalent to the following monotone inclusion problem:

find u ∈ E such that 0 ∈ A(u) +B(u). (18)

The basic Forward-Backward algorithm iterates uk+1 = (id + B)−1(uk − A(uk)), where id is
the identity operator and (id + B)−1 denotes the inverse of the operator id(u) + B(u), which is
called resolvent. Algorithm 1 can be obtained by making the following major modifications to these
iterations:

(i) We accelerate the convergence of the Forward-Backward algorithm using Nesterov accelera-
tion (Nesterov, 1983). Although this mechanism cannot be applied to the general monotone
inclusion problem (18), Kovalev et al. (2020) showed that it can be used when the operator
A(u) is equal to the gradient of a smooth convex function, which is true in our case.

(ii) Computation of the operator A(u) requires multiplication with the matrix P. This, in turn,
requires an exact averaging of a vector, which is difficult to do over the time-varying network.
Kovalev et al. (2021b) showed that this obstacle can be tackled with the Error-Feedback
mechanism for decentralized communication, which we also utilize.

(iii) At each iteration of the algorithm, we have to compute the resolvent, which requires solving
an auxiliary subproblem minx maxy

τx
2 ∥x− xk∥2 + F (x)− ⟨y, x⟩ − τy

2 ∥y − yk∥2. This
problem cannot be solved exactly, so we have to find an approximate solution using an

8

Table 3: The execution time τ required to find an ϵ-approximate solution to the decentralized
optimization problem (1) by the following algorithms: D-SubGD (Nedic and Ozdaglar, 2009),
SubGD-Push (Nedić and Olshevsky, 2014), ZO-SADOM (Lobanov et al., 2023), and Algorithm 1
(this paper). Decentralized communication and subgradient computation complexities are marked
with green and yellow colors, respectively. For D-SubGD, the complexity is not provided because the
algorithm converges only to a neighborhood of the solution. For SubGD-Push, poly(M,R, d) denotes
a certain polynomial in M,R, d. For ZO-SADOM, the differences from the optimal complexities are
highlighted in red color.

Algorithm Strongly-convex case complexity Convex case complexity

D-SubGD

SubGD-Push

ZO-SADOM τcom ·
χMd1/4 log 1

ϵ√
rϵ

+ τsub ·
M2d log 1

ϵ

rϵ
τcom ·

χMRd1/4 log 1
ϵ

ϵ
+ τsub ·

M2R2d log 1
ϵ

ϵ2

Algorithm 1 τcom · χM√
rϵ

+ τsub ·
M2

rϵ
τcom · χMR

ϵ
+ τsub ·

M2R2

ϵ2

Lower Bounds τcom · χM√
rϵ

+ τsub ·
M2

rϵ
τcom · χMR

ϵ
+ τsub ·

M2R2

ϵ2

N/A

τcom ·
poly(M,R, d) · n2n log2 1

ϵ

ϵ2
+ τsub ·

poly(M,R, d) · n2n log2 1
ϵ

ϵ2

additional “inner” algorithm based on the subgradient method (Nesterov, 2013) and the
Chambolle-Pock operator splitting (Chambolle and Pock, 2011). We also have to conduct
a careful analysis to find an efficient way to combine the inner and the “outer” Forward-
Backward algorithms and avoid unnecessary waste of subgradient calls.

The design of Algorithm 1 shares some similarities with the algorithm of Kovalev et al. (2021a) such
as (i) and (ii) above. However, Kovalev et al. (2021a) simply add the gradient ∇F (x) to the operator
A(u) and use the accelerated version of the Forward-Backward algorithm, which we obviously cannot
do as the function F (x) is not smooth. Instead, we have to put the subdifferential ∂F (x) into the
operator B(u) and follow (iii) above. Part (iii), in turn, shares some similarities with the algorithm of
Lan et al. (2020). However, Lan et al. (2020) simply have a zero operator A(u) = 0, which makes (i)
and (ii) above unnecessary in their case. In contrast, we cannot make such simplifications because we
work in the much more complicated setting of time-varying networks.

4.3 Comparison with the Existing Results

One could naturally expect that the existing optimal algorithms, originally developed for fixed
networks, such as DCS (Lan et al., 2020) and MSPD (Scaman et al., 2018), could be applied to
solve problem (1) over time-varying networks. However, this is not the case, which is justified
by the lack of corresponding theoretical guarantees and was shown empirically by Kovalev et al.
(2021b). Therefore, we have to consider only those algorithms that were specifically developed for
the time-varying network setting.

We provide a comparison of our Algorithm 1 with the existing state-of-the-art decentralized methods
for solving convex non-smooth optimization problems over time-varying networks in Table 3.10

These include D-SubGD (Nedic and Ozdaglar, 2009), SubGD-Push (Nedić and Olshevsky, 2014),
and ZO-SADOM (Lobanov et al., 2023). The first two algorithms have poor performance: D-SubGD
converges only to limited precision, and SubGD-Push converges at a slow rate of O(log2(1/ϵ)/ϵ2),
which does not match even the iteration complexity of the standard centralized subgradient method,
let alone the improved complexity of Algorithm 1. The complexity of ZO-SADOM is also worse
than the lower bounds. Moreover, the theoretical results of Lobanov et al. (2023) have substantial
drawbacks compared to ours:

10We ignore universal constants in Table 3 like in the O(·) and Ω(·) notation.

9

(i) Lobanov et al. (2023) do not provide any theoretical insights or innovations in the analysis
of their algorithm. In particular, they use the randomized smoothing technique (Duchi
et al., 2012) to obtain a smooth approximation of the objective p(x), and apply the existing
algorithm of Kovalev et al. (2021a) to minimize this approximation. In contrast, we develop
a new algorithm that directly works with the original non-smooth objective p(x).

(ii) ZO-SADOM has extra factors d1/4 log(1/ϵ) and d log(1/ϵ) in the decentralized communi-
cation and subgradient computation complexities, respectively, compared to the optimal
complexity of our Algorithm 1. Thus, the performance of ZO-SADOM can be poor when
applied, for instance, to large-scale machine learning problems in which the dimension d
can be huge.

Acknowledgments and Disclosure of Funding

This research has been financially supported by The Analytical Center for the Government of the
Russian Federation (Agreement No. 70-2021-00143 01.11.2021, IGK 000000D730324P540002).

References
Allen-Zhu, Z. (2018). Natasha 2: Faster non-convex optimization than sgd. Advances in neural

information processing systems, 31.

Arjevani, Y. and Shamir, O. (2015). Communication complexity of distributed convex learning and
optimization. Advances in neural information processing systems, 28.

Bauschke, H. H. and Combettes, P. L. (2011). Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. Springer Science & Business Media.

Bazerque, J. A. and Giannakis, G. B. (2009). Distributed spectrum sensing for cognitive radio
networks by exploiting sparsity. IEEE Transactions on Signal Processing, 58(3):1847–1862.

Beck, A., Nedić, A., Ozdaglar, A., and Teboulle, M. (2014). An O(1/k) gradient method for network
resource allocation problems. IEEE Transactions on Control of Network Systems, 1(1):64–73.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. (2018). Accelerated methods for nonconvex
optimization. SIAM Journal on Optimization, 28(2):1751–1772.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. (2020). Lower bounds for finding stationary
points i. Mathematical Programming, 184(1):71–120.

Chambolle, A. and Pock, T. (2011). A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of mathematical imaging and vision, 40:120–145.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7).

Duchi, J. C., Bartlett, P. L., and Wainwright, M. J. (2012). Randomized smoothing for stochastic
optimization. SIAM Journal on Optimization, 22(2):674–701.

Gan, L., Topcu, U., and Low, S. H. (2012). Optimal decentralized protocol for electric vehicle
charging. IEEE Transactions on Power Systems, 28(2):940–951.

Giselsson, P., Doan, M. D., Keviczky, T., De Schutter, B., and Rantzer, A. (2013). Accelerated
gradient methods and dual decomposition in distributed model predictive control. Automatica,
49(3):829–833.

Hendrikx, H., Bach, F., and Massoulie, L. (2021). An optimal algorithm for decentralized finite-sum
optimization. SIAM Journal on Optimization, 31(4):2753–2783.

Hinton, G., Srivastava, N., and Swersky, K. (2012). Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent. Cited on, 14(8):2.

10

Karimi, H., Nutini, J., and Schmidt, M. (2016). Linear convergence of gradient and proximal-gradient
methods under the polyak-łojasiewicz condition. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23,
2016, Proceedings, Part I 16, pages 795–811. Springer.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., and Suresh, A. T. (2020). Scaffold:
Stochastic controlled averaging for federated learning. In International conference on machine
learning, pages 5132–5143. PMLR.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kolar, M., Song, L., Ahmed, A., and Xing, E. P. (2010). Estimating time-varying networks. The
Annals of Applied Statistics, pages 94–123.

Konecnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon, D. (2016). Federated
learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492, 8.

Kovalev, D., Beznosikov, A., Sadiev, A., Persiianov, M., Richtárik, P., and Gasnikov, A. (2022).
Optimal algorithms for decentralized stochastic variational inequalities. Advances in Neural
Information Processing Systems, 35:31073–31088.

Kovalev, D., Gasanov, E., Gasnikov, A., and Richtarik, P. (2021a). Lower bounds and optimal
algorithms for smooth and strongly convex decentralized optimization over time-varying networks.
Advances in Neural Information Processing Systems, 34:22325–22335.

Kovalev, D., Salim, A., and Richtárik, P. (2020). Optimal and practical algorithms for smooth and
strongly convex decentralized optimization. Advances in Neural Information Processing Systems,
33:18342–18352.

Kovalev, D., Shulgin, E., Richtárik, P., Rogozin, A. V., and Gasnikov, A. (2021b). Adom: Accelerated
decentralized optimization method for time-varying networks. In International Conference on
Machine Learning, pages 5784–5793. PMLR.

Lan, G., Lee, S., and Zhou, Y. (2020). Communication-efficient algorithms for decentralized and
stochastic optimization. Mathematical Programming, 180(1):237–284.

Li, H., Fang, C., Yin, W., and Lin, Z. (2018). A sharp convergence rate analysis for distributed
accelerated gradient methods. arXiv preprint arXiv:1810.01053.

Li, H. and Lin, Z. (2021). Accelerated gradient tracking over time-varying graphs for decentralized
optimization. arXiv preprint arXiv:2104.02596.

Li, H., Lin, Z., and Fang, Y. (2022). Variance reduced extra and diging and their optimal acceleration
for strongly convex decentralized optimization. Journal of Machine Learning Research, 23(222):1–
41.

Li, Z., Shi, W., and Yan, M. (2019). A decentralized proximal-gradient method with network
independent step-sizes and separated convergence rates. IEEE Transactions on Signal Processing,
67(17):4494–4506.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and Liu, J. (2017). Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. Advances in neural information processing systems, 30.

Lobanov, A., Veprikov, A., Konin, G., Beznosikov, A., Gasnikov, A., and Kovalev, D. (2023). Non-
smooth setting of stochastic decentralized convex optimization problem over time-varying graphs.
Computational Management Science, 20(1):48.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics,
pages 1273–1282. PMLR.

11

Metelev, D., Chezhegov, S., Rogozin, A., Kovalev, D., Beznosikov, A., Sholokhov, A., and Gasnikov,
A. (2024). Decentralized finite-sum optimization over time-varying networks. arXiv preprint
arXiv:2402.02490.

Mishchenko, K., Malinovsky, G., Stich, S., and Richtárik, P. (2022). Proxskip: Yes! local gradient
steps provably lead to communication acceleration! finally! In International Conference on
Machine Learning, pages 15750–15769. PMLR.

Necoara, I., Nesterov, Y., and Glineur, F. (2019). Linear convergence of first order methods for
non-strongly convex optimization. Mathematical Programming, 175:69–107.

Nedić, A. and Olshevsky, A. (2014). Distributed optimization over time-varying directed graphs.
IEEE Transactions on Automatic Control, 60(3):601–615.

Nedic, A., Olshevsky, A., and Shi, W. (2017). Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633.

Nedic, A. and Ozdaglar, A. (2009). Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48–61.

Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of
convergence O(1/k2). In Dokl. Akad. Nauk. SSSR, volume 269, page 543.

Nesterov, Y. (2009). Primal-dual subgradient methods for convex problems. Mathematical program-
ming, 120(1):221–259.

Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media.

Rabbat, M. and Nowak, R. (2004). Distributed optimization in sensor networks. In Proceedings of
the 3rd international symposium on Information processing in sensor networks, pages 20–27.

Rogozin, A., Lukoshkin, V., Gasnikov, A., Kovalev, D., and Shulgin, E. (2021). Towards accelerated
rates for distributed optimization over time-varying networks. In Optimization and Applications:
12th International Conference, OPTIMA 2021, Petrovac, Montenegro, September 27–October 1,
2021, Proceedings 12, pages 258–272. Springer.

Ryabinin, M., Gorbunov, E., Plokhotnyuk, V., and Pekhimenko, G. (2021). Moshpit sgd:
Communication-efficient decentralized training on heterogeneous unreliable devices. Advances in
Neural Information Processing Systems, 34:18195–18211.

Ryabinin, M. and Gusev, A. (2020). Towards crowdsourced training of large neural networks
using decentralized mixture-of-experts. Advances in Neural Information Processing Systems,
33:3659–3672.

Sadiev, A., Kovalev, D., and Richtárik, P. (2022). Communication acceleration of local gradient
methods via an accelerated primal-dual algorithm with an inexact prox. Advances in Neural
Information Processing Systems, 35:21777–21791.

Scaman, K., Bach, F., Bubeck, S., Lee, Y. T., and Massoulié, L. (2017). Optimal algorithms for
smooth and strongly convex distributed optimization in networks. In international conference on
machine learning, pages 3027–3036. PMLR.

Scaman, K., Bach, F., Bubeck, S., Massoulié, L., and Lee, Y. T. (2018). Optimal algorithms for
non-smooth distributed optimization in networks. Advances in Neural Information Processing
Systems, 31.

Scutari, G. and Sun, Y. (2019). Distributed nonconvex constrained optimization over time-varying
digraphs. Mathematical Programming, 176:497–544.

Shi, W., Ling, Q., Wu, G., and Yin, W. (2015). Extra: An exact first-order algorithm for decentralized
consensus optimization. SIAM Journal on Optimization, 25(2):944–966.

Zadeh, L. A. (1961). Time-varying networks, i. Proceedings of the IRE, 49(10):1488–1503.

12

Appendix
A Proof of Lemma 1

The orthogonal complement L⊥ to the consensus space L is given as follows:

L⊥ =
{
(x1, . . . , xn) ∈ (Rd)n : x1 + . . .+ xn = 0

}
. (19)

Let us perform the maximization of Q(x, y, z) in the variable y ∈ (Rd)n:

max
y∈(Rd)n

Q(x, y, z)
(a)
= max

y∈(Rd)n
F (x) + ⟨y, x⟩ −G(y, z)

(b)
= F (x) + max

y∈(Rd)n

[
⟨y, x⟩ − ryz

2
∥y + z∥2

]
= F (x) +

1

2ryz
∥x∥2 − ⟨x, z⟩,

where (a) uses the definition of Q(x, y, z) eq. (14); (b) uses the definition of G(y, z) in eq. (12). Next,
we perform maximization in the variable z ∈ L⊥:

max
z∈L⊥

max
y∈(Rd)n

Q(x, y, z) = max
z∈L⊥

[
F (x) +

1

2ryz
∥x∥2 − ⟨x, z⟩

]
= F (x) +

1

2ryz
∥x∥2 + max

z∈L⊥
[−⟨x, z⟩]

= F (x) +
1

2ryz
∥x∥2 + IL(x),

where IL(x) : (Rd)n → R is the indicator function, which is defined as follows:

IL(x) = max
z∈L⊥

[−⟨x, z⟩] =
{
0 x ∈ L
+∞ otherwise

. (20)

Now, we can rewrite the saddle-point problem (14) as follows

min
x∈(Rd)n

max
y∈(Rd)n

max
z∈L⊥

Q(x, y, z)
(a)
= min

x∈(Rd)n
max
z∈L⊥

max
y∈(Rd)n

Q(x, y, z)

(b)
= min

x∈(Rd)n
F (x) +

1

2ryz
∥x∥2 + IL(x)

(c)
= min

x∈(Rd)n

n∑
i=1

(
fi(xi) +

rx + 1/ryz
2

∥xi∥2
)
+ IL(x)

(d)
= min

x∈(Rd)n

n∑
i=1

(
fi(xi) +

r

2
∥xi∥2

)
+ IL(x)

(e)
= n · min

x∈Rd
p(x).

where (a) uses the fact that we can exhange the order of the two consecutive maximizations; (b) uses
the previous equation; (c) uses the definition of F (x) in eq. (12); (d) uses eq. (13); (e) uses the
definition of p(x) in eq. (1) and the definition of IL(x).

13

B Proof of Theorems 1 and 2

B.1 The Hard Instance of Problem (1)

Compute nodes. In this proof, we consider the case when χ ≥ 3. The case χ < 3 can be proven
using the fixed-network argument of Scaman et al. (2018). We choose n = 3⌊χ/3⌋, which implies
that n ≥ 3 and n mod 3 = 0. We also divide the set of nodes V = {1, . . . , n} into the following
three disjoint subsets: V1 = {1, . . . , n/3}, V2 = {n/3+1, . . . , 2n/3} and V3 = {2n/3+1, . . . , n}.

Objective functions. We fix an arbitrary odd integer d ∈ {3, 5, 7, . . .} and define functions
f1(x), . . . , fn(x) : Rd → R as follows:

fi(x) =


a
∑(d−1)/2

j=1 h2j−1(x)− a⟨x, ed1⟩ i ∈ V1

a
∑(d−1)/2

j=1 h2j(x) i ∈ V2

0 i ∈ V3

, (21)

where a > 0 is an arbitrary constant and functions h1(x), . . . , hd−1(x) : Rd → R are defined as
follows:

hj(x) =
∣∣⟨x, edj+1 − edj ⟩

∣∣. (22)
Consequently, the objective function p(x) in problem (1) is given as follows:

p(x) =
a

3

d−1∑
j=1

hj(x)−
a

3
⟨ed1, x⟩+

r

2
∥x∥2. (23)

We also define the subgradient oracles ∇̂f1(x), . . . , ∇̂fn(x) : Rd → Rd as follows:

∇̂fi(x) =


a
∑(d−1)/2

j=1 ∇̂h2j−1(x)− aed1 i ∈ V1

a
∑(d−1)/2

j=1 ∇̂h2j(x) i ∈ V2

0 i ∈ V3

, (24)

where ∇̂h1(x), . . . , ∇̂hd−1(x) : Rd → Rd are the subgradient oracles associated with functions
h1(x), . . . , hd−1(x), defined as follows:

∇̂hj(x) =


edj+1 − edj ⟨edj+1, x⟩ > ⟨edj , x⟩
0 ⟨edj+1, x⟩ = ⟨edj , x⟩
edj − edj+1 ⟨edj+1, x⟩ < ⟨edj , x⟩

. (25)

Time-varying network. We choose the time-varying network G(τ) = (V, E(τ)) to be a star-
topology undirected graph with the time-varying center node ic(τ) ∈ V . Formally, we define the
edges of the time-varying network E(τ) ⊂ V × V as follows:

E(τ) =
⋃

i∈V,i̸=ic(τ)

{(i, ic(τ)), (ic(τ), i)}. (26)

We also specify the center node ic(τ) at a given time τ ≥ 0 as follows:

ic(τ) = 2n/3 + 1 + (⌊τ/τcom⌋ mod n/3) . (27)

We choose the time-varying gossip matrix W(τ) ∈ Rn×n to be the Laplacian matrix of the graph
G(τ). Formally, W(τ) is defined as follows:

W(τ)ij =
1

n


0 i ̸= j and (i, j) /∈ E(τ)
−1 i ̸= j and (i, j) ∈ E(τ)
degi(τ) i = j

, (28)

where degi(τ) denotes the degree of the node i ∈ V in the graph G(τ), i.e.,

degi(τ) = |{j : (i, j) ∈ E(τ)}|. (29)

One can observe, that the time-varying gossip matrix W(τ) satisfies Assumption 4, in particular,
kerW(τ) = kerW(τ)⊤ = span({1n}). Moreover, one can show that W(τ) is a symmetric matrix,
and λmax(W(τ)) = 1 and λ+

min(W(τ)) = 1/n ≥ 1/χ. Hence, W(τ) satisfies Assumption 5.

14

B.2 Auxiliary Lemmas

Further, we define linear spaces K0, . . . ,Kd ⊂ Rd as follows:

K0 = {0} and Kj = span
(
{ed1, . . . , edj}

)
for j ∈ {1, . . . , d}. (30)

In order to prove Theorems 1 and 2, we will use the following auxiliary lemmas. The proofs of
these lemmas can be found in Appendix C. Furthermore, the proof of Theorem 1 is contained in
Appendix B.3, and the proof of Theorem 2 is contained in Appendix B.4.
Lemma 2. For all τ ≥ 0, the following statements hold:

(i) Let i ∈ V1. Then, for all j ∈ {1, . . . , (d− 1)/2},

Mi(τ) ⊂ K2j implies Msub
i (τ + τsub) ⊂ K2j . (31)

(ii) Let i ∈ V2. Then, for all j ∈ {0, . . . , (d− 1)/2},

Mi(τ) ⊂ K2j+1 implies Msub
i (τ + τsub) ⊂ K2j+1. (32)

(ii) Let i ∈ V3. Then, for all j ∈ {0, . . . , d},

Mi(τ) ⊂ Kj implies Msub
i (τ + τsub) ⊂ Kj . (33)

The proof of Lemma 2 is contained in Appendix C.1.
Lemma 3. Let k ∈ {0, . . . , n(d− 1)/6− 1}. Then, for all τ < (k + 1)τcom, the following inclusion
holds:

Mi(τ) ⊂
{
K2p+2 i ∈ V1 or (i ∈ V3 and i ≤ 2n/3 + q + 1)

K2p+1 i ∈ V2 or (i ∈ V3 and i > 2n/3 + q + 1)
, (34)

where p = ⌊3k/n⌋ and q = k mod (n/3).

The proof of Lemma 3 is contained in Appendix C.2.
Lemma 4. Let functions f1, . . . , fn(x) be defined by eq. (21). Then problem eq. (1) has a unique
solution x∗ ∈ Rd, which is given as follows:

x∗ =
a

3rd
1d. (35)

Moreover, for all x ∈ Kd−1, the following inequality holds:

p(x)− p(x∗) ≥ a2

18rd
. (36)

The proof of Lemma 4 is contained in Appendix C.3.

B.3 Proof of Theorem 1

Decentralized communication. Lemma 3 implies that Mi(τ) ⊂ Kd−1 as long as τ < τcom ·n(d−
1)/6. Hence, Lemma 4 implies eq. (36) for all x ∈ Mi(τ) as long as τ < τcom · n(d− 1)/6. Let the
constant a > 0 be chosen as follows:

a =
M

2
√
d
. (37)

Then, each function fi(x) defined by eq. (21) is M -Lipschitz. Indeed, the case i ∈ V3 is trivial. In
the case when i ∈ V1, we can prove the M -Lipschitz continuity of fi(x) as follows:

fi(x)− fi(x
′) = a

(d−1)/2∑
j=1

(∣∣⟨x, ed2j − ed2j−1⟩
∣∣− ∣∣⟨x′, ed2j − ed2j−1⟩

∣∣)− a⟨x− x′, ed1⟩

≤ a

(d−1)/2∑
j=1

∣∣⟨x− x′, ed2j − ed2j−1⟩
∣∣+ a

∣∣⟨x− x′, ed1⟩
∣∣

15

≤ a

(d−1)/2∑
j=1

(∣∣⟨x− x′, ed2j⟩
∣∣+ ∣∣⟨x− x′, ed2j−1⟩

∣∣)+ a
∣∣⟨x− x′, ed1⟩

∣∣
= a

d−1∑
j=1

∣∣⟨x− x′, edj ⟩
∣∣+ a

∣∣⟨x− x′, ed1⟩
∣∣

≤ 2a

d∑
j=1

∣∣⟨x− x′, edj ⟩
∣∣ ≤ 2a

√
d∥x− x′∥ ≤ M∥x− x′∥.

In the case when i ∈ V2, we can prove the M -Lipschitz continuity of fi(x) similarly.

Without loss of generality, we assume ϵ ≤ M2/(576r) and define d ∈ {3, 5, . . .} as follows:

d = 2

⌊
M

12
√
rϵ

⌋
− 1. (38)

Using eqs. (37) and (38), for all τ < τcom · n(d− 1)/6 and x ∈ Mi(τ), we obtain

p(x)− p(x∗) ≥ M2

36rd2
> ϵ.

Hence, to reach precision p(x)− p(x∗) ≤ ϵ for some x ∈ Mi(τ), it is necessary that τ satisfies

τ ≥ τcom · n(d− 1)

6

= τcom ·
⌊χ
3

⌋(⌊ M

12
√
rϵ

⌋
− 1

)
≥ τcom · χ

3

(
M

12
√
rϵ

− 1

)
= Ω

(
τcom · Mχ√

rϵ

)
.

(39)

Subgradient computation. We also need to prove that to reach precision p(x) − p(x∗) ≤ ϵ for
some x ∈ Mi(τ), it is necessary that τ satisfies

τ ≥ Ω

(
τsub ·

M2

rϵ

)
. (40)

We can do this by providing an extended version of our hard problem instance, described in Ap-
pendix B.1. In particular, we consider the following instance of problem (1):

min
(x,x′)∈Rd×Rd′

1

n

n∑
i=1

(fi(x) + f ′
i(x

′)) +
r

2
∥x∥2 + r

2
∥x′∥2, (41)

where functions f1(x), . . . , fn(x) : Rd → R are defined in Appendix B.1 by eq. (21), and functions
f ′
1(x

′), . . . , f ′
n(x

′) : Rd′ → R are defined as follows:

f ′
i(x

′) = b max
j∈{1,...,d′}

⟨ed
′

j , x′⟩, (42)

where b > 0 is some constant. Then, by choosing an appropriate subgradient oracle ∇̂f ′
i(x

′)
associated with each function f ′

i(x
′) (see Section 3.2.1 of Nesterov (2013)) we can obtain both lower

bounds (39) and (40), which concludes the proof.

16

B.4 Proof of Theorem 2

Our proof of Theorem 2 is very similar to the proof of Theorem 1 with the following differences. Let
function hδ(x) : Rd → R be the Huber function, which is defined as follows:

hδ(x) =

d∑
j=1

hj
δ(⟨e

d
j , x⟩), where hj

δ(t) =

{
1
2 t

2 |t| ≤ δ

δ|t| − 1
2δ

2 |t| > δ
. (43)

Note that function hδ(x) is continuously differentiable and (
√
dδ)-Lipschitz continuous.

In the proof of Theorem 3 we used functions f1(x), . . . , fn(x) defined in eq. (21) of Appendix B.1.
Here we use a slightly different choice, that is, functions f1(x), . . . , fn(x) are defined as follows:

fi(x) = hδ(x) +


a
∑(d−1)/2

j=1 h2j−1(x)− a⟨x, ed1⟩ i ∈ V1

a
∑(d−1)/2

j=1 h2j(x) i ∈ V2

0 i ∈ V3

. (44)

Consequently, our hard instance of problem (1), which is described in Appendix B.1, turns into the
following:

min
x∈Rd

p(x) = a

3

d−1∑
j=1

hj(x)−
a

3
⟨ed1, x⟩+ chδ(x)

 , (45)

where c > 0 is some constant, and functions h1(x), . . . , hd−1(x) are defined in eq. (22).

One can show that Lemmas 2 and 3 still hold true. We can also replace Lemma 4 with the following
Lemma 5. The proof of this lemma is a trivial extension of the proof of Lemma 4, which uses the fact
that ∇(12∥·∥

2)(x∗) = ∇hδ(x
∗) as long as δ and x∗ are defined by eq. (46) and eq. (47), respectively.

Lemma 5. Let δ be defined as follows:
δ =

a

3cd
. (46)

Problem eq. (45) has a solution x∗ ∈ Rd, which is given as follows:

x∗ =
a

3cd
1d. (47)

Moreover, for all x ∈ Kd−1, the following inequality holds:

p(x)− p(x∗) ≥ a2

18cd
. (48)

One can also show that each function fi(x) defined in eq. (44) is Mf -Lipschitz continuous, where
Mf is defined as follows:

Mf = 2a
√
d+ cδ

√
d = 2a

√
d+ a/(3

√
d) ≤ 3a

√
d. (49)

Let us choose a and c as follows:

a =
M

3
√
d

and c =
M

9Rd
. (50)

This choice of a and c implies Mf ≤ M and ∥x∗∥ ≤ R. Moreover, eq. (48) implies

p(x)− p(x∗) ≥ MR

18d
(51)

as long as x∗ ∈ Kd−1. Next, without loss of generality we can assume ϵ ≤ (MR)/72 and choose
d ∈ {3, 5, . . .} as follows:

d = 2

⌊
MR

36ϵ

⌋
− 1, (52)

which, for all x ∈ Mi(τ), implies
p(x)− p(x∗) > ϵ

as long as τ satisfies

τ ≥ τcom · n(d− 1)

6
= Ω

(
τcom · MRχ

ϵ

)
, (53)

which concludes the proof.

17

C Proofs of Lemmas from Section B.2

C.1 Proof of Lemma 2

Statement (i). Let i ∈ V1 and x ⊂ K2j for j ∈ {1, . . . , (d− 1)/2}. Then for l ≥ 2j +1 we obtain
⟨edl+1 − edl , x⟩ = 0, which implies ∇̂hl(x) = 0 due to eq. (25). Hence, we obtain the following:

1
a∇̂fi(x)

(a)
= ∇̂h1(x) + ∇̂h3(x) + · · ·+ ∇̂hd−2(x)− ed1
(b)
= ∇̂h1(x) + ∇̂h3(x) + · · ·+ ∇̂h2j−1(x)− ed1
(c)
⊂ span

(
{ed1, ed2} ∪ · · · ∪ {ed2j−1, e

d
2j}
)

(d)
⊂ K2j ,

where (a) uses eq. (24); (b) uses the fact that ∇̂hl(x) = 0 for l ≥ 2j+1; (c) uses eq. (25); (d) uses the
definition of K2j in eq. (30). Hence, Mi(τ) ⊂ K2j implies Msub

i (τ + τsub) ⊂ K2j by the definition
of Msub

i (·) in eq. (8).

Statement (ii). Let i ∈ V2 and x ⊂ K2j+1 for j ∈ {0, . . . , (d − 1)/2}. Then for l ≥ 2j + 2

we obtain ⟨edl+1 − edl , x⟩ = 0, which implies ∇̂hl(x) = 0 due to eq. (25). Hence, we obtain the
following:

1
a∇̂fi(x)

(a)
= ∇̂h2(x) + ∇̂h4(x) + · · ·+ ∇̂hd−1(x)

(b)
= ∇̂h2(x) + ∇̂h4(x) + · · ·+ ∇̂h2j(x)

(c)
⊂ span

(
{ed2, ed3} ∪ · · · ∪ {ed2j , ed2j+1}

)
(d)
⊂ K2j ,

where (a) uses eq. (24); (b) uses the fact that ∇̂hl(x) = 0 for l ≥ 2j + 2; (c) uses eq. (25); (d) uses
the definition of K2j+1 in eq. (30). Hence, Mi(τ) ⊂ K2j+1 implies Msub

i (τ + τsub) ⊂ K2j+1 by the
definition of Msub

i (·) in eq. (8).

Statement (iii). This statement is trivially implied by the definition of ∇̂fi(x) in eq. (24) and the
definition of Msub

i (·) in eq. (8).

C.2 Proof of Lemma 3

We prove the lemma using the induction on k.

Base case: k = 0. In this case, we assume τ < (k + 1)τcom = τcom. Hence, for all i ∈ V , we
obtain Mcom

i (τ) = ∅ and Mi(τ) ⊂ Msub
i (τ). Using Lemma 2 and the fact that Mcom

i (τ) = ∅, we
can easily obtain

Mi(τ) ⊂ Msub
i (τ) ⊂


K2 i ∈ V1

K1 i ∈ V2

K0 i ∈ V3

,

which implies the desired eq. (34) for k = p = q = 0.

Induction hypothesis. Let k′ ∈ {0, 1, 2, . . .}. We assume that eq. (34) holds for all τ < (k′ +
1)τcom, that is,

Mi(τ) ⊂
{
K2p′+2 i ∈ V1 or (i ∈ V3 and i ≤ 2n/3 + q′ + 1)

K2p′+1 i ∈ V2 or (i ∈ V3 and i > 2n/3 + q′ + 1)
, (54)

where p′ = ⌊3k′/n⌋ and q′ = k′ mod (n/3).

18

Induction step. We assume that the induction hypothesis (54) is true. Our goal is to prove that
eq. (34) holds for k = k′ + 1. When 0 ≤ τ < kτcom, the desired eq. (34) is implied by the induction
hypothesis (54). Thus, we can assume kτcom ≤ τ < (k + 1)τcom. Further, we consider two cases:
q ̸= 0 and q = 0.

Induction step, case q ̸= 0. In this case, p = p′ and q = q′ + 1.

Part (i). First, we consider the case

kτcom ≤ τ < min{(k + 1)τcom, kτcom + τsub}. (55)

Equation (55) implies τ − τsub < (k′ + 1)τcom and τ − τcom < (k′ + 1)τcom. Using the induction
hypothesis (54) and the fact that p′ = p and q′ = q − 1, we get

Mi(τ − τsub), Mi(τ − τcom) ⊂
{
K2p+2 i ∈ V1 or (i ∈ V3 and i ≤ 2n/3 + q)

K2p+1 i ∈ V2 or (i ∈ V3 and i > 2n/3 + q)
. (56)

Hence, using Lemma 2, we obtain

Msub
i (τ) ⊂

{
K2p+2 i ∈ V1 or (i ∈ V3 and i ≤ 2n/3 + q)

K2p+1 i ∈ V2 or (i ∈ V3 and i > 2n/3 + q)
. (57)

Equations (27) and (55) imply ic(τ) = 2n/3 + q + 1. Hence, using eq. (56), we get

Mic(τ)(τ − τcom) ⊂ K2p+1.

For i ̸= ic(τ), using eqs. (9) and (56), we get

Mcom
i (τ) = span

(
Mic(τ)(τ − τcom)

)
⊂ K2p+1. (58)

For i = ic(τ) = 2n/3 + q + 1, using eqs. (9) and (56), we get

Mcom
ic(τ)

(τ) = span

 ⋃
j ̸=ic(τ)

Mj(τ − τcom)

 ⊂ K2p+2. (59)

Hence, using eqs. (58) and (59), for all i ∈ V , we obtain

Mcom
i (τ) ⊂

{
K2p+2 i = 2n/3 + q + 1

K2p+1 i ̸= 2n/3 + q + 1
. (60)

Now, we combine eqs. (57) and (60), and obtain

Mi(τ) ⊂ Msub
i (τ) ∪Mcom

i (τ) ⊂
{
K2p+2 i ∈ V1 or (i ∈ V3 and i ≤ 2n/3 + q + 1)

K2p+1 i ∈ V2 or (i ∈ V3 and i > 2n/3 + q + 1)
. (61)

Thus, we were able to prove eq. (34) for τ satisfying (55).

Part (ii). We can prove the general case

kτcom ≤ τ < min{(k + 1)τcom, kτcom + lτsub}

for arbitrary l ∈ {1, 2, . . .} using the induction on l. The only difference compared to the proof in the
previous part is in eq. (56), which will change to

Mi(τ − τsub) ⊂
{
K2p+2 i ∈ V1 or (i ∈ V3 and i ≤ 2n/3 + q + 1)

K2p+1 i ∈ V2 or (i ∈ V3 and i > 2n/3 + q + 1)
,

and eq. (57) will change as follows due to Lemma 2:

Msub
i (τ) ⊂

{
K2p+2 i ∈ V1 or (i ∈ V3 and i ≤ 2n/3 + q + 1)

K2p+1 i ∈ V2 or (i ∈ V3 and i > 2n/3 + q + 1)
.

However, the rest of the proof, including eq. (61) will remain unchanged.

19

Induction step, case q = 0. In this case p = p′ + 1 and q′ = n/3− 1.

Part (i). First, we consider the case

kτcom ≤ τ < min{(k + 1)τcom, kτcom + τsub}. (62)

Equation (62) implies τ − τsub < (k′ + 1)τcom and τ − τcom < (k′ + 1)τcom. Using the induction
hypothesis (54) and the fact that p′ = p− 1 and q′ = n/3− 1, we get

Mi(τ − τsub), Mi(τ − τcom) ⊂
{
K2p i ∈ V1 or i ∈ V3

K2p−1 i ∈ V2
. (63)

Equations (27) and (62) imply ic(τ) = 2n/3 + 1. Using eq. (63), we get

Mic(τ)(τ − τcom) ⊂ K2p.

For i ̸= ic(τ), using eqs. (9) and (63), we get

Mcom
i (τ) = span

(
Mic(τ)(τ − τcom)

)
⊂ K2p. (64)

For i = ic(τ) = 2n/3 + 1, using eqs. (9) and (63), we get

Mcom
ic(τ)

(τ) = span

 ⋃
j ̸=ic(τ)

Mj(τ − τcom)

 ⊂ K2p. (65)

Hence, using eqs. (64) and (65), for all i ∈ V , we obtain

Mcom
i (τ) ⊂ K2p. (66)

Using Lemma 2, from eq. (63) we obtain

Msub
i (τ) ⊂

{
K2p i ∈ V1 or i ∈ V3

K2p−1 i ∈ V2
. (67)

Hence, using eqs. (66) and (67), for all i ∈ V , we obtain

Mi(τ) ⊂ Msub
i (τ) ∪Mcom

i (τ) ⊂ K2p, (68)

which implies eq. (34) for τ satisfying (62).

Part (ii). Next, we consider the case

kτcom + τsub ≤ τ < min{(k + 1)τcom, kτcom + 2τsub}. (69)

Equation (66) still holds for all i ∈ V and τ satisfying eq. (69). From eqs. (68) and (69), for all i ∈ V ,
we obtain

Mi(τ − τsub) ⊂ K2p,

which, due to Lemma 2, implies the following:

Msub
i (τ) ⊂

{
K2p i ∈ V1 or i ∈ V3

K2p+1 i ∈ V2
. (70)

Hence, using eqs. (66) and (70), we obtain

Mi(τ) ⊂ Msub
i (τ) ∪Mcom

i (τ) ⊂
{
K2p i ∈ V1 or i ∈ V3

K2p+1 i ∈ V2
, (71)

which implies eq. (34) for τ satisfying (69).

Part(iii). We can prove the general case

kτcom + lτsub ≤ τ < min{(k + 1)τcom, kτcom + (l + 1)τsub} (72)

for l ∈ {2, 3, . . .} using the induction on l. There will be no differences compared to the proof in the
previous part. Indeed, eqs. (66) and (71) will still hold for all i ∈ V and τ satisfying eq. (72).

20

C.3 Proof Lemma 4

One can show, that x∗ defined in eq. (35) is indeed the unique minimizer of the function p(x) defined
in eq. (23). Moreover, we can obtain the following:

p(x∗) = − a2

18rd
.

We can lower-bound function p(x) as follows:

p(x) =
r

2
∥x∥2 − a

3
⟨ed1, x⟩+

a

3

d−1∑
j=1

∣∣⟨x, edj+1 − edj ⟩
∣∣

≥ −a

3

∣∣⟨ed1, x⟩∣∣+ a

3

d−1∑
j=1

(∣∣⟨x, edj ⟩∣∣− ∣∣⟨x, edj+1⟩
∣∣)

= −a

3

∣∣⟨edd, x⟩∣∣
= 0

as long as x ∈ Kd−1. Hence, for all x ∈ Kj , we obtain

p(x)− p(x∗) ≥ a2

18rd
,

which concludes the proof.

21

D Proof of Theorems 3 and 4

D.1 Auxiliary Lemmas

In order to prove Theorems 3 and 4, we will use the following auxiliary lemmas. The proofs of
these lemmas can be found in Appendix E. Furthermore, the proof of Theorem 3 is contained in
Appendix D.2, and the proof of Theorem 4 is contained in Appendix D.3.
Lemma 6. Under Assumptions 1, 2 and 3, let r > 0 (strongly convex case). Then there exists a
solution (w∗, y∗, z∗) ∈ L × (Rd)n × L⊥ to problem (1), which satisfies the following conditions

0 ∈ ∂xQ(w∗, y∗, z∗), 0 = ∇yQ(w∗, y∗, z∗), L ∋ ∇zQ(w∗, y∗, z∗). (73)
Moreover, the following inequalities hold:

∥w∗∥2 ≤ nM2/r2, ∥y∗∥2 ≤ (1 + rx/r)
2nM2, ∥z∗∥2 ≤ 4nM2. (74)

The proof of Lemma 6 is contained in Appendix E.1.
Lemma 7. Under Assumptions 1 and 2, let η0x, . . . , η

K−1
x and β0, . . . , βK−1 be chosen as follows:

ηkx = 1/(τkxT), βk = rx, σk = τkx /(2τ
k
x + βk) for k ∈ {0, . . . ,K − 1}. (75)

Then, for all x ∈ (Rd)n and k ∈ {0, . . . ,K − 1}, the following inequality holds:
(τkx + 1

2rx)∥x
k+1 − x∥2 ≤ τkx ∥xk − x∥2 + 2nM2/(τkxT)

−
(
F (x̃k+1)− F (x)− ⟨yk+1, x̃k+1 − x⟩+ 1

2τ
k
x ∥x̃k+1 − xk∥2

)
.

(76)

The proof of Lemma 7 is contained in Appendix E.2.
Lemma 8. Under Assumption 4, for all k ∈ {0, . . . ,K − 1}, the iterates of Algorithm 1 satisfy

Pzk = zk, Pzk+1 = zk+1, Pzk = zk, (77)
where P ∈ Rnd×nd is the orthogonal projection matrix onto L⊥, which is given as follows:

P = (In − 1
n1n1

⊤
n)⊗ Id. (78)

The proof of Lemma 8 is contained in Appendix E.3.
Lemma 9. Under Assumptions 4 and 5, for all k ∈ {0, . . . ,K − 1} the following inequality holds:

∥ηkzmk∥2P ≤ 2χ∥ηkzmk∥2P − 2χ∥ηk+1
z mk+1∥2P + 4χ2∥ηkz gkz∥2P. (79)

The proof of Lemma 9 is contained in Appendix E.4.
Lemma 10. Under Assumptions 4 and 5, let parameters θ0z , . . . , θ

K−1
z be chosen as follows:

θkz = 1/(2ryz) for k = 0, . . . ,K − 1. (80)
Then, for all k ∈ {0, . . . ,K − 1}, the following inequality holds:

0 ≤ −α−1
k

(
⟨zk+1 − zk, gkz ⟩+ ryz∥zk+1 − zk∥2

)
− (4αkχryz)

−1∥gkz∥2P. (81)

The proof of Lemma 10 is contained in Appendix E.5.
Lemma 11. Under Assumptions 1 and 2 and under conditions of Lemmas 7 and 10, let parameters
α0, . . . , αK−1 and γ0, . . . , γK−1 be chosen as follows:

αk = 3/(k + 3), γk = (k + 2)/(k + 3) for k = 0, . . . ,K − 1. (82)
Let parameters τ0x , . . . , τ

K−1
x , η0y, . . . , η

K−1
y , and η0z , . . . , η

K−1
z be chosen as follows:

τkx = τxα
−1
k , ηky = ηyα

−1
k , ηkz = ηzα

−1
k for k = 0, . . . ,K − 1, (83)

where τx, ηy and ηz are defined as follows:
τx = 1

2rx, ηy = (4ryz)
−1, ηz = (10ryzχ

2)−1, rx = 2
3r, ryz = 3/r. (84)

Let parameters λ1, . . . , λK be chosen as follows:
λK = α−2

K−1 and λk = α−2
k−1 + α−1

k − α−2
k for k = 1, . . . ,K − 1. (85)

Let the input of Algorithm 1 be chosen as follows:
x0 = 0, y0 = 0, z0 = 0, m0 = 0. (86)

Then, for all x, y ∈ (Rd)n and z ∈ L⊥, the following inequality holds:

Q(xK
a , y, z)−Q(x, yKa , zKa) ≤ 2

K2

(
r∥x∥2 + 18

r
∥y∥2 + 45χ2

r
∥z∥2

)
+

72nM2

rKT
. (87)

The proof of Lemma 11 is contained in Appendix E.6.

22

D.2 Proof of Theorem 3

We can upper-bound rx
2 ∥xK

a − w∗∥2, where w∗ is defined in Lemma 6, as follows:

rx
2
∥xK

a − w∗∥2
(a)

≤ Q(xK
a , y∗, z∗)−Q(w∗, y∗, z∗)

(b)

≤ Q(xK
a , y∗, z∗)−Q(w∗, yKa , zKa)

(c)

≤ 2

K2

(
r∥w∗∥2 + 18

r
∥y∗∥2 + 45χ2

r
∥z∗∥2

)
+

72nM2

rKT

(d)

≤ 2

K2

(
nM2

r
+

18(1 + rx/r)
2nM2

r
+

180nχ2M2

r

)
+

72nM2

rKT

where (a) uses Lemma 6 and the strong convexity of Q(x, y, z) in x; (b) and (d) use Lemma 6; (c) uses
Lemma 11. Using the definition of rx in eq. (84)

r∥xK
a − w∗∥2 ≤ 6

K2

(
51nM2

r
+

180nχ2M2

r

)
+

72nM2

rKT

≤ 1386nχ2M2

rK2
+

72nM2

rKT
.

Next, we can upper-bound n(p(xK
o)− p(x∗)) as follows:

n(p(xK
o)− p(x∗))

(a)
=

n∑
i=1

(
fi(x

K
o)− fi(x

∗) +
r

2
∥xK

o ∥2 − r

2
∥x∗∥2

)
(b)
=

n∑
i=1

(
fi(x

K
o)− fi(x

∗) +
r

2
∥ 1
n

∑n
j=1 x

K
a,j∥2 −

r

2
∥x∗∥2

)
(c)

≤
n∑

i=1

(
fi(x

K
o)− fi(x

∗) +
r

2
∥xK

a,i∥2 −
r

2
∥x∗∥2

)
(d)
=

n∑
i=1

(
fi(x

K
o)− fi(x

∗)
)
+

r

2
∥xK

a ∥2 − r

2
∥w∗∥2

(e)

≤
n∑

i=1

(
fi(x

K
a,i)− fi(x

∗) +M∥xK
a,i − xK

o ∥
)
+

r

2
∥xK

a ∥2 − r

2
∥w∗∥2

(f)
= F (xK

a)− F (w∗) +
1

2ryz
∥xK

a ∥2 − 1

2ryz
∥w∗∥2 +

n∑
i=1

M∥xK
a,i − xK

o ∥

(g)

≤ F (xK
a)− F (w∗) +

1

2ryz
∥xK

a ∥2 − 1

2ryz
∥w∗∥2

+
√∑n

i=1M
2
√∑n

i=1∥xK
a,i − xK

o ∥2

(h)
= F (xK

a)− F (w∗) +
1

2ryz
∥xK

a ∥2 − 1

2ryz
∥w∗∥2 +

√
nM∥xK

a ∥P

where (a) uses the definition of p(x) in eq. (1); (b) uses the definition of xK
o on line 15 of Algo-

rithm 1; (c) uses the convexity of ∥·∥2; (d) uses the definition of w∗ in eq. (95); (e) uses Assump-
tion 2; (f) uses the definition of function F (x) in eq. (12) and eq. (13); (g) uses the Cauchy-Schwarz
inequality; (h) uses the definition of P in eq. (78).

Next, for arbitrary z ∈ L⊥ we define y = −r−1
yz x

K
a − z. Then, we get ∇yQ(xK

a , y, z) = 0 and
Q(xK

a , y, z) = F (xK
a) + 1

2ryz
∥xK

a ∥2 + ⟨xK
a , z⟩. Plugging this into the previous upper-bound gives

the following:

n(p(xK
o)− p(x∗)) ≤ Q(xK

a , y, z)− F (w∗)− 1

2ryz
∥w∗∥2 − ⟨xK

a , z⟩+
√
nM∥xK

a ∥P

23

(a)
= Q(xK

a , y, z)−Q(w∗, y∗, z∗)− ⟨xK
a , z⟩+

√
nM∥xK

a ∥P
(b)

≤ Q(xK
a , y, z)−Q(w∗, yKa , zKa)− ⟨xK

a , z⟩+
√
nM∥xK

a ∥P
where (a) uses the definition of y∗ in eq. (98) and the definition of z∗ in eq. (99); (b) uses Lemma 6.

Next, we choose z ∈ L⊥ as follows:

z =

{
+
√
nM∥PxK

a ∥−1PxK
a xK

a ̸= 0

0 xK
a = 0

. (88)

Then, ⟨xK
a , z⟩ = +

√
nM∥xK

a ∥P and we obtain the following:

n(p(xK
o)− p(x∗))

≤ Q(xK
a , y, z)−Q(w∗, yKa , zKa)

(a)

≤ 2

K2

(
r∥w∗∥2 + 18

r
∥y∥2 + 45χ2

r
∥z∥2

)
+

72nM2

rKT

(b)
=

2

K2

(
r∥w∗∥2 + 18

r
∥r−1

yz x
K
a + z∥2 + 45χ2

r
∥z∥2

)
+

72nM2

rKT

=
2

K2

(
r∥w∗∥2 + 18

r
∥r−1

yz (x
K
a − w∗ + w∗) + z∥2 + 45χ2

r
∥z∥2

)
+

72nM2

rKT

(c)

≤ 2

K2

(
r∥w∗∥2 + 54

rr2yz
∥xK

a − w∗∥2 + 54

rr2yz
∥w∗∥2 + 54

r
∥z∥2 + 45χ2

r
∥z∥2

)
+

72nM2

rKT

≤ 2

K2

(
r∥w∗∥2 + 54

rr2yz
∥xK

a − w∗∥2 + 54

rr2yz
∥w∗∥2 + 99χ2

r
∥z∥2

)
+

72nM2

rKT

(d)

≤ 2

K2

(
r∥w∗∥2 + 54

rr2yz
∥xK

a − w∗∥2 + 54

rr2yz
∥w∗∥2 + 99nχ2M2

r

)
+

72nM2

rKT

(e)

≤ 2

K2

(
nM2

r
+

54nM2

r3r2yz
+

54

rr2yz
∥xK

a − w∗∥2 + 99nχ2M2

r

)
+

72nM2

rKT

(f)
=

2

K2

(
7nM2

r
+ 6r∥xK

a − w∗∥2 + 99nχ2M2

r

)
+

72nM2

rKT

≤ 212nχ2M2

rK2
+

72nM2

rKT
+

12r

K2
∥xK

a − w∗∥2

(g)

≤ 212nχ2M2

rK2
+

72nM2

rKT
+

12

K2

(
1386nχ2M2

rK2
+

72nM2

rKT

)
,

where (a) uses Lemma 11; (b) uses our choice of y; (c) uses the parallelogram rule and Young’s
inequality; (d) uses our choice of z; (e) uses Lemma 6; (f) uses the definition of ryz in eq. (84); (g) uses
the previously obtained upper-bound on r∥xK

a − w∗∥2. Dividing both sides of the inequality by n
gives the following:

p(xK
o)− p(x∗) ≤ 212χ2M2

rK2
+

72M2

rKT
+

12

K2

(
1386χ2M2

rK2
+

72M2

rKT

)
.

Hence, choosing the parameters K and T such that

K ≥ O
(
χM√
rϵ

)
and K × T ≥ O

(
M2

rϵ

)
implies p(xK

o)− p(x∗) ≤ ϵ, which concludes the proof.

24

D.3 Proof of Theorem 4

With r = 0, the original problem (1) turns into the following problem:

min
x∈Rd

[
f̄(x) =

1

n

n∑
i=1

fi(x)

]
. (89)

Let x∗ ∈ Rd be the solution to problem (89), such that ∥x∗∥ ≤ R, which always exists due to
Assumption 3. Let r > 0 be an arbitrary regularization parameter. We can upper-bound function f̄(x)
using the regularized objective function p(x) defined in eq. (1) as follows:

f̄(x) ≤ f̄(x) +
r

2
∥x∥2 = p(x).

On the other hand, we can lower-bound f̄(x∗) as follows:

f̄(x∗) = p(x∗)− r

2
∥x∗∥2 ≥ min

x′∈Rd
p(x′)− r

2
∥x∗∥2 ≥ min

x′∈Rd
p(x′)− rR2

2
.

Hence, we can upper-bound the function suboptimality gap in problem (89) as follows:

f̄(x)− f̄(x∗) ≤ p(x)− min
x′∈Rd

p(x′) +
rR2

2
.

Let the regularization parameter r > 0 be chosen as follows:

r = ϵ/R2. (90)

Then, we obtain the following:

f̄(x)− f̄(x∗) ≤ p(x)− min
x′∈Rd

p(x′) +
ϵ

2
. (91)

We can apply Algorithm 1 to solving the regularized problem (1) with the regularization parameter r
defined in eq. (90). Theorem 3 implies that, to reach precision

p(xK
o)− min

x′∈Rd
p(x′) ≤ ϵ

2
(92)

it is sufficient to perform the following number of decentralized communications:

K = O
(
χM√
rϵ

)
(a)
= O

(
χMR

ϵ

)
, (93)

and the following number of subgradient computations:

K × T = O
(
M2

rϵ

)
(b)
= O

(
M2R2

ϵ2

)
, (94)

where (a) and (b) use the definition of r in eq. (90). Using eqs. (91) and (92), we also obtain the
desired precision f̄(xK

o)− f̄(x∗) ≤ ϵ, which concludes the proof.

25

E Proofs of Lemmas from Section D.1

E.1 Proof of Lemma 6

First, we pick the solution x∗ ∈ Rd to problem (1), which is unique due to Assumption 3 and the fact
that r > 0. Next, we define w∗ ∈ L as follows:

w∗ = (x∗, . . . , x∗). (95)

From Assumptions 1 and 2 it follows that dom p(x) = Rd and dom fi(x) = Rd for all i ∈
{1, . . . , n}, which implies the following:

0 ∈ ∂p(x∗) = rx∗ +
1

n

n∑
i=1

∂fi(x
∗). (96)

Hence, there exists a vector ∆∗ = (∆∗
1, . . . ,∆

∗
n) ∈ (Rd)n such that ∆∗

i ∈ ∂fi(x
∗) for all i ∈

{1, . . . , n}, and the following relation holds:

rx∗ +
1

n

n∑
i=1

∆∗
i = 0. (97)

Next, we define y∗ ∈ (Rd)n as follows:

y∗ = ∆∗ + rxw
∗. (98)

From Assumptions 1 and 2 it follows that domF (x) = (Rd)n, which implies y∗ ∈ ∂F (w∗) and
0 ∈ ∂(F (·)− ⟨y∗, ·⟩)(w∗) = ∂xQ(w∗, y∗, z∗).

Next, we define z∗ ∈ L⊥ as follows:

z∗ = −rw∗ −∆∗. (99)

Note that the inclusion z∗ ∈ L⊥ is implied by eq. (97). Further, we get

∇zQ(w∗, y∗, z∗)
(a)
= −ryz(y

∗ + z∗)
(b)
= −ryz(rx − r)w∗ ∈ L,

where (a) uses the definition of Q(x, y, z) in eq. (14); (b) uses the definition of y∗ and z∗, and the
last inclusion follows from the definition of w∗. Moreover, we obtain the following

∇yQ(w∗, y∗, z∗)
(a)
= −w∗ − ryz(y

∗ + z∗)
(b)
= −ryz(r

−1
yz + rx − r)w∗ (c)

= 0,

where (a) uses the definition of Q(x, y, z) in eq. (14); (b) uses the definition of y∗ and z∗; (c) uses
eq. (13).

From Assumption 2 it follows that ∥∆∗
i ∥ ≤ M for all i ∈ {1, . . . , n}. Hence, using eq. (97), we get

r∥x∗∥ ≤ M , which implies ∥w∗∥2 ≤ nM2/r2. Moreover, we get

∥y∗∥ ≤ ∥∆∗∥+ rx∥w∗∥ ≤
√
n(M + rxM/r) = (1 + rx/r)

√
nM,

which implies ∥y∗∥2 ≤ (1 + rx/r)
2nM2. Finally, we obtain

∥z∗∥ ≤ r∥w∗∥+ ∥∆∗∥ ≤ 2
√
nM,

which implies ∥z∗∥2 ≤ 4nM2 and concludes the proof.

26

E.2 Proof of Lemma 7

We start with the following upper-bound on 1
2ηk

x
∥xk,t+1 − x∥2:

1

2ηkx
∥xk,t+1 − x∥2

(a)
=

1

2ηkx
∥xk,t − x∥2 − 1

2ηkx
∥xk,t+1 − xk,t∥2 + 1

ηkx
⟨xk,t+1 − xk,t, xk,t+1 − x⟩

(b)
=

1

2ηkx
∥xk,t − x∥2 − 1

2ηkx
∥xk,t+1 − xk,t∥2

− ⟨gk,tx + βkx
k,t+1 − yk+1 + τkx (x

k,t+1 − xk), xk,t+1 − x⟩

=
1

2ηkx
∥xk,t − x∥2 − 1

2ηkx
∥xk,t+1 − xk,t∥2 + ⟨yk+1, xk,t+1 − x⟩

− ⟨βkx
k,t+1 + τkx (x

k,t+1 − xk), xk,t+1 − x⟩ − ⟨gk,tx , xk,t+1 − x⟩
(c)

≤ 1

2ηkx
∥xk,t − x∥2 − 1

2ηkx
∥xk,t+1 − xk,t∥2 + ⟨yk+1, xk,t+1 − x⟩

− τkx
2
∥xk,t+1 − xk∥2 − τkx

2
∥xk,t+1 − x∥2 + τkx

2
∥xk − x∥2

− βk

2
∥xk,t+1∥2 − βk

2
∥xk,t+1 − x∥2 + βk

2
∥x∥2 − ⟨gk,tx , xk,t − x⟩ − ⟨gk,tx , xk,t+1 − xk,t⟩

(d)

≤ 1

2ηkx
∥xk,t − x∥2 − 1

2ηkx
∥xk,t+1 − xk,t∥2 + ⟨yk+1, xk,t+1 − x⟩

− τkx
2
∥xk,t+1 − xk∥2 − τkx

2
∥xk,t+1 − x∥2 + τkx

2
∥xk − x∥2

− βk

2
∥xk,t+1∥2 − βk

2
∥xk,t+1 − x∥2 + βk

2
∥x∥2

+

n∑
i=1

(fi(xi)− fi(x
k,t
i)− ⟨gk,tx,i , x

k,t+1
i − xk,t

i ⟩),

where (gk,tx,1, . . . , g
k,t
x,n) = (∇̂f1(x

k,t
1), . . . , ∇̂fn(x

k,t
n)) = gk,tx ∈ (Rd)n, (a) and (c) uses the paral-

lelogram rule; (b) uses line 12 of Algorithm 1; (d) uses line 11 of Algorithm 1, Definition 1 and
Assumption 1. Further, we obtain

1

2ηkx
∥xk,t+1 − x∥2

(a)

≤ 1

2ηkx
∥xk,t − x∥2 − 1

2ηkx
∥xk,t+1 − xk,t∥2 + ⟨yk+1, xk,t+1 − x⟩

− τkx
2
∥xk,t+1 − xk∥2 − τkx

2
∥xk,t+1 − x∥2 + τkx

2
∥xk − x∥2

− βk

2
∥xk,t+1∥2 − βk

2
∥xk,t+1 − x∥2 + βk

2
∥x∥2

+

n∑
i=1

(fi(xi)− fi(x
k,t+1
i) +M∥xk,t+1

i − xk,t
i ∥+ ∥gk,tx,i∥∥x

k,t+1
i − xk,t

i ∥)

(b)

≤ 1

2ηkx
∥xk,t − x∥2 − 1

2ηkx
∥xk,t+1 − xk,t∥2 + ⟨yk+1, xk,t+1 − x⟩

− τkx
2
∥xk,t+1 − xk∥2 − τkx

2
∥xk,t+1 − x∥2 + τkx

2
∥xk − x∥2

− βk

2
∥xk,t+1∥2 − βk

2
∥xk,t+1 − x∥2 + βk

2
∥x∥2

+

n∑
i=1

(fi(xi)− fi(x
k,t+1
i) + 2M∥xk,t+1

i − xk,t
i ∥)

27

(c)

≤ 1

2ηkx
∥xk,t − x∥2 − 1

2ηkx
∥xk,t+1 − xk,t∥2 + ⟨yk+1, xk,t+1 − x⟩

− τkx
2
∥xk,t+1 − xk∥2 − τkx

2
∥xk,t+1 − x∥2 + τkx

2
∥xk − x∥2

+ F (x)− F (xk,t+1)− rx
2
∥xk,t+1 − x∥2 +

n∑
i=1

(
1

2ηkx
∥xk,t+1

i − xk,t
i ∥2 + 2ηkxM

2

)
=

1

2ηkx
∥xk,t − x∥2 + τkx

2
∥xk − x∥2 + ⟨yk+1, xk,t+1 − x⟩+ 2nηkxM

2

− τkx
2
∥xk,t+1 − xk∥2 − τkx + rx

2
∥xk,t+1 − x∥2 − F (xk,t+1) + F (x),

where (a) uses Assumption 2 and the Cauchy-Schwarz inequality; (b) uses the inequality ∥gk,tx,i∥ ≤ M ,
which follows from Assumption 2; (c) uses the definition of βk in eq. (75), the definition of F (x) in
eq. (12) and Young’s inequality. After rearranging, we obtain

1

2ηkx
∥xk,t+1 − x∥2 ≤ 1

2ηkx
∥xk,t − x∥2 + τkx

2
∥xk − x∥2 + 2nηkxM

2 −∆k,t+1,

where ∆k,t+1 is defined as

∆k,t+1 = F (xk,t+1)− F (x)− ⟨yk+1, xk,t+1 − x⟩

+
τkx + rx

2
∥xk,t+1 − x∥2 + τkx

2
∥xk,t+1 − xk∥2

Now, we sum these inequalities for t = 0, . . . , T − 1 and obtain

1

2ηkx
∥xk,T − x∥2 ≤ 1

2ηkx
∥xk,0 − x∥2 + τkxT

2
∥xk − x∥2 + 2nηkxM

2T −
T∑

t=1

∆k,t.

Dividing both sides of the inequality by T gives

1

2ηkxT
∥xk,T − x∥2 ≤ 1

2ηkxT
∥xk,0 − x∥2 + τkx

2
∥xk − x∥2 + 2nηkxM

2 − 1

T

T∑
t=1

∆k,t.

Using the definition of ∆k,t, the definition of x̃k on line 13 of Algorithm 1 and Assumption 1, we
obtain

1

2ηkxT
∥xk,T − x∥2 ≤ 1

2ηkxT
∥xk,0 − x∥2 + τkx

2
∥xk − x∥2 + 2nηkxM

2

−
(
F (x̃k+1)− F (x)− ⟨yk+1, x̃k+1 − x⟩

)
−
(
τkx + rx

2
∥x̃k+1 − x∥2 + τkx

2
∥x̃k+1 − xk∥2

)
.

Using the definition of ηkx and βk in eq. (75), we obtain

τkx
2
∥xk,T − x∥2 + τkx + βk

2
∥x̃k+1 − x∥2 ≤ τkx

2
∥xk,0 − x∥2 + τkx

2
∥xk − x∥2 + 2nηkxM

2

−
(
F (x̃k+1)− F (x)− ⟨yk+1, x̃k+1 − x⟩+ τkx

2
∥x̃k+1 − xk∥2

)
.

Using the definition of xk,0 on line 9 of Algorithm 1, the definition of xk+1 on line 13 of Algorithm 1,
the definition of ηkx, βk and σk in eq. (75) and the convexity of ∥·∥, we obtain

(τkx + 1
2rx)∥x

k+1 − x∥2 ≤ τkx ∥xk − x∥2 + 2nM2

τkxT

−
(
F (x̃k+1)− F (x)− ⟨yk+1, x̃k+1 − x⟩+ τkx

2
∥x̃k+1 − xk∥2

)
,

which concludes the proof.

28

E.3 Proof of Lemma 8

Using Assumption 4, and the definition of P in eq. (78), we obtain

P(Wk ⊗ Id) = (Wk ⊗ Id)P = (Wk ⊗ Id). (100)

Then, the desired relations can be trivially obtained by analyzing the lines of Algorithm 1.

E.4 Proof of Lemma 9

We can upper-bound ∥ηk+1
z mk+1∥2P as follows:

∥ηk+1
z mk+1∥2P

(a)
= ∥ηkz (mk + gkz − ĝkz)∥2P
(b)
= ∥ηkz (mk + gkz − (Wk ⊗ Id)(m

k + gkz))∥2P
(c)
= ∥ηkz (P(mk + gkz)− (Wk ⊗ Id)P(mk + gkz))∥2

(d)

≤ (1− 1/χ)∥ηkzP(mk + gkz)∥2

(e)

≤ (1− 1/χ)
(
(1 + 1/(2χ))∥ηkzmk∥2P + (1 + 2χ)∥ηkz gkz∥2P

)
≤ (1− 1/(2χ))∥ηkzmk∥2P + 2χ∥ηkz gkz∥2P

where (a) uses line 8 of Algorithm 1; (b) uses line 6 of Algorithm 1; (c) uses eq. (100); (d) uses
Assumption 5; (e) uses the parallelogram rule and Young’s inequality. Using this, we obtain

∥ηkzmk∥2P ≤ 2χ∥ηkzmk∥2P − 2χ∥ηk+1
z mk+1∥2P + 4χ2∥ηkz gkz∥2P,

which concludes the proof.

E.5 Proof of Lemma 10

We can upper bound ∥g̃kz −Pgkz∥2 as follows:

∥g̃kz −Pgkz∥2
(a)
= ∥(Wk ⊗ Id)g

k
z −Pgkz∥2

(b)
= ∥(Wk ⊗ Id)Pgkz −Pgkz∥2

(c)

≤ (1− 1/χ)∥gkz∥2P
where (a) uses line 6 of Algorithm 1; (b) uses eq. (100); (c) uses Assumption 5. On the other hand,
∥g̃kz −Pgkz∥2 is equal to the following:

∥g̃kz −Pgkz∥2
(a)
= ∥g̃kz∥2 + ∥gkz∥2P − 2⟨g̃kz ,Pgkz ⟩
(b)
=

1

(θkz)
2
∥zk+1 − zk∥2 + ∥gkz∥2P +

2

θkz
⟨zk+1 − zk,Pgkz ⟩.

where (a) uses the parallelogram rule; (b) uses line 8 of Algorithm 1. Hence, we obtain the following

1

(θkz)
2
∥zk+1 − zk∥2 + 2

θkz
⟨zk+1 − zk,Pgkz ⟩+

1

χ
∥gkz∥2P ≤ 0.

After rearranging and multiplying both sides of the inequality by θk
z

2αk
, we obtain

0 ≥ α−1
k

(
⟨zk+1 − zk,Pgkz ⟩+

1

2θkz
∥zk+1 − zk∥2

)
+

θkz
2αkχ

∥gkz∥2P

(a)
= α−1

k

(
⟨P(zk+1 − zk), gkz ⟩+ ryz∥zk+1 − zk∥2

)
+

1

4αkχryz
∥gkz∥2P

(b)
= α−1

k

(
⟨zk+1 − zk, gkz ⟩+ ryz∥zk+1 − zk∥2

)
+

1

4αkχryz
∥gkz∥2P

where (a) uses eq. (80); (b) uses Lemma 8, which concludes the proof.

29

E.6 Proof of Lemma 11

We can upper-bound 1
2ηk

y
∥yk+1 − y∥2 as follows:

1

2ηky
∥yk+1 − y∥2 (a)

=
1

2ηky
∥yk − y∥2 − 1

2ηky
∥yk+1 − yk∥2 + 1

ηky
⟨yk+1 − yk, yk+1 − y⟩

(b)
=

1

2ηky
∥yk − y∥2 − 1

2ηky
∥yk+1 − yk∥2 − ⟨gky + x̂k+1, yk+1 − y⟩

=
1

2ηky
∥yk − y∥2 − 1

2ηky
∥yk+1 − yk∥2 − ⟨x̂k+1, yk+1 − y⟩

− ⟨gky , yk+1 − yk + yk − yk + yk − y⟩
(c)
=

1

2ηky
∥yk − y∥2 − 1

2ηky
∥yk+1 − yk∥2 − ⟨x̂k+1, yk+1 − y⟩

− α−1
k ⟨gky , yk+1 − yk⟩+ (1− αk)α

−1
k ⟨gky , yk − yk⟩+ ⟨gky , y − yk⟩

=
1

2ηky
∥yk − y∥2 − 1

2ηky
∥yk+1 − yk∥2 − ⟨x̃k+1, yk+1 − y⟩

− α−1
k ⟨gky , yk+1 − yk⟩+ (1− αk)α

−1
k ⟨gky , yk − yk⟩+ ⟨gky , y − yk⟩

+ ⟨x̃k+1 − x̂k+1, yk+1 − y⟩

where (a) uses the parallelogram rule; (b) uses line 7 of Algorithm 1; (c) uses Lines 4 and 8 of
Algorithm 1. Further, we can upper-bound the term ⟨x̃k+1 − x̂k+1, yk+1 − y⟩ as follows:

⟨x̃k+1 − x̂k+1, yk+1 − y⟩
(a)
= ⟨x̃k+1 − xk − γk(x̃

k − xk−1), yk+1 − y⟩
= γk⟨xk−1 − x̃k, yk − y⟩ − ⟨xk − x̃k+1, yk+1 − y⟩+ γk⟨xk−1 − x̃k, yk+1 − yk⟩
(b)

≤ γk⟨xk−1 − x̃k, yk − y⟩ − ⟨xk − x̃k+1, yk+1 − y⟩+ 1

4ηky
∥yk+1 − yk∥2

+ 2ηkyγ
2
k∥xk−1 − x̃k∥2.

where (a) uses Line 7 of Algorithm 1; (b) uses Young’s inequality. Plugging this into the previous
inequality gives

1

2ηky
∥yk+1 − y∥2 ≤ 1

2ηky
∥yk − y∥2 − 1

4ηky
∥yk+1 − yk∥2 − ⟨x̃k+1, yk+1 − y⟩

− α−1
k ⟨gky , yk+1 − yk⟩+ (1− αk)α

−1
k ⟨gky , yk − yk⟩+ ⟨gky , y − yk⟩

+ γk⟨xk−1 − x̃k, yk − y⟩ − ⟨xk − x̃k+1, yk+1 − y⟩+ 2ηkyγ
2
k∥xk−1 − x̃k∥2

(a)
=

1

2ηky
∥yk − y∥2 − ⟨x̃k+1, yk+1 − y⟩+ 2ηkyγ

2
k∥xk−1 − x̃k∥2

+ ⟨gky , y − yk⟩+ (1− αk)α
−1
k ⟨gky , yk − yk⟩ − α−1

k ⟨gky , yk+1 − yk⟩

− 1

4ηkyα
2
k

∥yk+1 − yk∥2 + γk⟨xk−1 − x̃k, yk − y⟩ − ⟨xk − x̃k+1, yk+1 − y⟩

(b)
=

1

2ηky
∥yk − y∥2 + 2ηkyγ

2
k∥xk−1 − x̃k∥2 − ⟨x̃k+1, yk+1 − y⟩

+ γk⟨xk−1 − x̃k, yk − y⟩ − ⟨xk − x̃k+1, yk+1 − y⟩+ ⟨gky , y − yk⟩
+ (1− αk)α

−1
k ⟨gky , yk − yk⟩ − α−1

k

(
⟨gky , yk+1 − yk⟩+ ryz∥yk+1 − yk∥2

)
,

where (a) line 8 of Algorithm 1; (b) uses eqs. (83) and (84).

Let ẑk be defined for all k ∈ {0, . . . ,K} as follows:

ẑk = zk − ηkzPmk. (101)

30

Using eq. (101) and lines 7 and 8 of Algorithm 1, we obtain

ẑk+1 = ẑk + zk+1 − zk −P(ηk+1
z mk+1 − ηkzm

k)

= ẑk −P(ηkz ĝ
k
z + ηk+1

z mk+1 − ηkzm
k)

= ẑk −P(ηkz ĝ
k
z + ηk+1

z (ηkz/η
k+1
z)(mk + gkz − ĝkz)− ηkzm

k)

= ẑk − ηkzPgkz .

Hence, we can upper-bound 1
2ηk

z
∥ẑk+1 − z∥2 as follows:

1

2ηkz
∥ẑk+1 − z∥2 (a)

=
1

2ηkz
∥ẑk − z∥2 + 1

2ηkz
∥ẑk+1 − ẑk∥2 + 1

ηkz
⟨ẑk+1 − ẑk, ẑk − z⟩

(b)
=

1

2ηkz
∥ẑk − z∥2 + ηkz

2
∥gkz∥2P − ⟨Pgkz , ẑ

k − z⟩

=
1

2ηkz
∥ẑk − z∥2 + ηkz

2
∥gkz∥2P − ⟨Pgkz , z

k − z⟩+ ⟨Pgkz , z
k − ẑk⟩

(c)
=

1

2ηkz
∥ẑk − z∥2 + ηkz

2
∥gkz∥2P − ⟨Pgkz , z

k − z⟩+ ηkz ⟨Pgkz ,Pmk⟩,

where (a) uses the parallelogram rule; (b) uses the update rule for ẑk which we previously ob-
tained; (c) uses eq. (101). Further, we can upper-bound the term ηkz ⟨Pgkz ,Pmk⟩ as follows

ηkz ⟨Pgkz ,Pmk⟩
(a)

≤ 1

ηkz
∥ηkz gkz∥P∥ηkzmk∥P

(b)

≤ 1

2ηkz

(
2χ∥ηkz gkz∥2P +

1

2χ
∥ηkzmk∥2P

)
(c)

≤ 1

2ηkz

(
4χ∥ηkz gkz∥2P + ∥ηkzmk∥2P − ∥ηk+1

z mk+1∥2P
)

where (a) uses the Cauchy-Schwarz inequality; (b) uses Young’s inequality; (c) uses Lemma 9.
Plugging this into the previous inequality gives

1

2ηkz
∥ẑk+1 − z∥2 ≤ 1

2ηkz
∥ẑk − z∥2 + ηkz

2
∥gkz∥2P − ⟨Pgkz , z

k − z⟩

+
1

2ηkz

(
4χ∥ηkz gkz∥2P + ∥ηkzmk∥2P − ∥ηk+1

z mk+1∥2P
)

(a)
=

1

2ηkz
∥ẑk − z∥2 + ηkz (1 + 4χ)

2
∥gkz∥2P − ⟨gkz , zk − zk + zk − z⟩

+
1

2ηkz

(
∥ηkzmk∥2P − ∥ηk+1

z mk+1∥2P
)

(b)
=

1

2ηkz
∥ẑk − z∥2 + ηkz (1 + 4χ)

2
∥gkz∥2P +

1

2ηkz

(
∥ηkzmk∥2P − ∥ηk+1

z mk+1∥2P
)

+ ⟨gkz , z − zk⟩+ (1− αk)α
−1
k ⟨gkz , zk − zk⟩

(c)

≤ 1

2ηkz
∥ẑk − z∥2 + ηkz (1 + 4χ)

2
∥gkz∥2P +

1

2ηkz

(
∥ηkzmk∥2P − ∥ηk+1

z mk+1∥2P
)

+ ⟨gkz , z − zk⟩+ (1− αk)α
−1
k ⟨gkz , zk − zk⟩

− α−1
k

(
⟨zk+1 − zk, gkz ⟩+ ryz∥zk+1 − zk∥2

)
− 1

4αkχryz
∥gkz∥2P

(d)

≤ 1

2ηkz
∥ẑk − z∥2 + 1

2ηkz

(
∥ηkzmk∥2P − ∥ηk+1

z mk+1∥2P
)
+ ⟨gkz , z − zk⟩

+ (1− αk)α
−1
k ⟨gkz , zk − zk⟩ − α−1

k

(
⟨zk+1 − zk, gkz ⟩+ ryz∥zk+1 − zk∥2

)
31

where (a) uses Lemma 8 and the fact that z ∈ L⊥; (b) uses line 4 of Algorithm 1; (c) uses
Lemma 10; (d) uses eqs. (83) and (84).

Now we combine the upper-bounds for 1
2ηk

y
∥yk+1−y∥2 and 1

2ηk
z
∥ẑk+1−z∥2 and obtain the following:

1

2ηky
∥yk+1 − y∥2 + 1

2ηkz
∥ẑk+1 − z∥2

≤ 1

2ηky
∥yk − y∥2 + 1

2ηkz
∥ẑk − z∥2 + 2ηkyγ

2
k∥xk−1 − x̃k∥2 − ⟨x̃k+1, yk+1 − y⟩

+ γk⟨xk−1 − x̃k, yk − y⟩ − ⟨xk − x̃k+1, yk+1 − y⟩+ 1

2ηkz

(
∥ηkzmk∥2P − ∥ηk+1

z mk+1∥2P
)

+ ⟨gky , y − yk⟩+ ⟨gkz , z − zk⟩+ (1− αk)α
−1
k

(
⟨gky , yk − yk⟩+ ⟨gkz , zk − zk⟩

)
− α−1

k

(
⟨gky , yk+1 − yk⟩+ ⟨zk+1 − zk, gkz ⟩+ ryz∥yk+1 − yk∥2 + ryz∥zk+1 − zk∥2

)
(a)

≤ 1

2ηky
∥yk − y∥2 + 1

2ηkz
∥ẑk − z∥2 + 2ηkyγ

2
k∥xk−1 − x̃k∥2 − ⟨x̃k+1, yk+1 − y⟩

+ γk⟨xk−1 − x̃k, yk − y⟩ − ⟨xk − x̃k+1, yk+1 − y⟩+ 1

2ηkz

(
∥ηkzmk∥2P − ∥ηk+1

z mk+1∥2P
)

+G(y, z)−G(yk, zk) + (1− αk)α
−1
k

(
G(yk, zk)−G(yk, zk)

)
− α−1

k

(
G(yk+1, zk+1)−G(yk, zk)

)
=

1

2ηky
∥yk − y∥2 + 1

2ηkz
∥ẑk − z∥2 + 2ηkyγ

2
k∥xk−1 − x̃k∥2 − ⟨x̃k+1, yk+1 − y⟩

+ γk⟨xk−1 − x̃k, yk − y⟩ − ⟨xk − x̃k+1, yk+1 − y⟩+ 1

2ηkz

(
∥ηkzmk∥2P − ∥ηk+1

z mk+1∥2P
)

+ (1− αk)α
−1
k

(
G(yk, zk)−G(y, z)

)
− α−1

k

(
G(yk+1, zk+1)−G(y, z)

)
,

where (a) uses the definition of gky and gkz on line 5 of Algorithm 1 and the convexity and (2ryz)-
smoothness of the function G(y, z). Further, we divide both sides of the inequality by αk and, using
eq. (83), obtain the following:

1

2ηy
∥yk+1 − y∥2 + 1

2ηz
∥ẑk+1 − z∥2 + 1

2ηz
∥ηk+1

z mk+1∥2P

≤ 1

2ηy
∥yk − y∥2 + 1

2ηz
∥ẑk − z∥2 + 1

2ηz
∥ηkzmk∥2P + 2ηyα

−2
k γ2

k∥xk−1 − x̃k∥2

+ γkα
−1
k ⟨xk−1 − x̃k, yk − y⟩ − α−1

k ⟨xk − x̃k+1, yk+1 − y⟩ − α−1
k ⟨x̃k+1, yk+1 − y⟩

+ (α−2
k − α−1

k)
(
G(yk, zk)−G(y, z)

)
− α−2

k

(
G(yk+1, zk+1)−G(y, z)

)
Next, we divide the inequality in Lemma 7 by αk and, using the definition of τkx and τx in eqs. (83)
and (84), obtain the following:

τx(α
−2
k + α−1

k)∥xk+1 − x∥2 ≤ τxα
−2
k ∥xk − x∥2 −

τxα
−2
k

2
∥x̃k+1 − xk∥2 + 2nM2

τxT

− α−1
k

(
F (x̃k+1)− F (x)− ⟨yk+1, x̃k+1 − x⟩

)
.

Combining this inequality with the previous upper-bound gives the following:

τx(α
−2
k + α−1

k)∥xk+1 − x∥2 + 1

2ηy
∥yk+1 − y∥2 + 1

2ηz
∥ẑk+1 − z∥2 + 1

2ηz
∥ηk+1

z mk+1∥2P

≤ τxα
−2
k ∥xk − x∥2 + 1

2ηy
∥yk − y∥2 + 1

2ηz
∥ẑk − z∥2 + 1

2ηz
∥ηkzmk∥2P +

2nM2

τxT

−
τxα

−2
k

2
∥x̃k+1 − xk∥2 + 2ηyα

−2
k γ2

k∥xk−1 − x̃k∥2 − α−1
k ⟨xk − x̃k+1, yk+1 − y⟩

+ γkα
−1
k ⟨xk−1 − x̃k, yk − y⟩ − α−1

k

(
F (x̃k+1)− F (x) + ⟨yk+1, x⟩ − ⟨x̃k+1, y⟩

)
32

+ (α−2
k − α−1

k)
(
G(yk, zk)−G(y, z)

)
− α−2

k

(
G(yk+1, zk+1)−G(y, z)

)
(a)
= τxα

−2
k ∥xk − x∥2 + 1

2ηy
∥yk − y∥2 + 1

2ηz
∥ẑk − z∥2 + 1

2ηz
∥ηkzmk∥2P +

2nM2

τxT

−
τxα

−2
k

2
∥x̃k+1 − xk∥2 + 2ηyα

−2
k γ2

k∥xk−1 − x̃k∥2 − α−1
k ⟨xk − x̃k+1, yk+1 − y⟩

+ γkα
−1
k ⟨xk−1 − x̃k, yk − y⟩ − α−1

k

(
F (x̃k+1)− ⟨x̃k+1, y⟩ −G(y, z)

)
+ (α−2

k − α−1
k)

(
G(yk, zk) + ⟨yk, x⟩ − F (x)

)
− α−2

k

(
G(yk+1, zk+1) + ⟨yk+1, x⟩ − F (x)

)
(b)
= τxα

−2
k ∥xk − x∥2 + 1

2ηy
∥yk − y∥2 + 1

2ηz
∥ẑk − z∥2 + 1

2ηz
∥ηkzmk∥2P +

2nM2

τxT

−
τxα

−2
k

2
∥x̃k+1 − xk∥2 + 2ηyα

−2
k γ2

k∥xk−1 − x̃k∥2 − α−1
k ⟨xk − x̃k+1, yk+1 − y⟩

+ γkα
−1
k ⟨xk−1 − x̃k, yk − y⟩ − (α−2

k − α−1
k)Q(x, yk, zk) + α−2

k Q(x, yk+1, zk+1)

− α−1
k Q(x̃k+1, y, z)

(c)

≤ τxα
−2
k ∥xk − x∥2 + 1

2ηy
∥yk − y∥2 + 1

2ηz
∥ẑk − z∥2 + 1

2ηz
∥ηkzmk∥2P +

2nM2

τxT

−
τxα

−2
k

2
∥x̃k+1 − xk∥2 + 2ηyα

−2
k γ2

k∥xk−1 − x̃k∥2 − α−1
k ⟨xk − x̃k+1, yk+1 − y⟩

+ γkα
−1
k ⟨xk−1 − x̃k, yk − y⟩ − (α−2

k − α−1
k)Q(x, yk, zk) + α−2

k Q(x, yk+1, zk+1)

− α−2
k Q(xk+1, y, z) + (α−2

k − α−1
k)Q(xk, y, z)

= τxα
−2
k ∥xk − x∥2 + 1

2ηy
∥yk − y∥2 + 1

2ηz
∥ẑk − z∥2 + 1

2ηz
∥ηkzmk∥2P +

2nM2

τxT

−
τxα

−2
k

2
∥x̃k+1 − xk∥2 + 2ηyα

−2
k γ2

k∥xk−1 − x̃k∥2 − α−1
k ⟨xk − x̃k+1, yk+1 − y⟩

+ γkα
−1
k ⟨xk−1 − x̃k, yk − y⟩+ (α−2

k − α−1
k)

(
Q(xk, y, z)−Q(x, yk, zk)

)
− α−2

k

(
Q(xk+1, y, z)−Q(x, yk+1, zk+1)

)
where (a) uses the fact that yk+1 = α−1

k yk+1 − (1− αk)α
−1
k yk, which follows from lines 4 and 8

of Algorithm 1; (b) uses the definition of Q(x, y, z) in eq. (14); (c) uses line 13 of Algorithm 1 and
Assumption 1.

Further, let αK = 3/(K + 3). Then from eq. (82) it follows that α−2
k + α−1

k ≥ α−2
k+1, γkα−1

k =

(k + 2)/3 and α−1
k = (k + 3)/3. Hence, we obtain the following:

τxα
−2
k+1∥x

k+1 − x∥2 + 1

2ηy
∥yk+1 − y∥2 + 1

2ηz
∥ẑk+1 − z∥2 + 1

2ηz
∥ηk+1

z mk+1∥2P

≤ τxα
−2
k ∥xk − x∥2 + 1

2ηy
∥yk − y∥2 + 1

2ηz
∥ẑk − z∥2 + 1

2ηz
∥ηkzmk∥2P +

2nM2

τxT

− τx(k + 3)2

18
∥x̃k+1 − xk∥2 + 4ηy(k + 2)2

18
∥xk−1 − x̃k∥2 − k + 3

3
⟨xk − x̃k+1, yk+1 − y⟩

+
k + 2

3
⟨xk−1 − x̃k, yk − y⟩+ (α−2

k − α−1
k)

(
Q(xk, y, z)−Q(x, yk, zk)

)
− α−2

k

(
Q(xk+1, y, z)−Q(x, yk+1, zk+1)

)
(a)
= τxα

−2
k ∥xk − x∥2 + 1

2ηy
∥yk − y∥2 + 1

2ηz
∥ẑk − z∥2 + 1

2ηz
∥ηkzmk∥2P +

2nM2

τxT

− 2ηy(k + 3)2

9
∥x̃k+1 − xk∥2 + 2ηy(k + 2)2

9
∥xk−1 − x̃k∥2 − k + 3

3
⟨xk − x̃k+1, yk+1 − y⟩

+
k + 2

3
⟨xk−1 − x̃k, yk − y⟩+ (α−2

k − α−1
k)

(
Q(xk, y, z)−Q(x, yk, zk)

)
− α−2

k

(
Q(xk+1, y, z)−Q(x, yk+1, zk+1)

)
,

33

where (a) uses eq. (84).

Next, we sum these inequalities for k = 0, . . . ,K − 1 and obtain the following:

τxα
−2
K ∥xK − x∥2 + 1

2ηy
∥yK − y∥2 + 1

2ηz
∥ẑK − z∥2 + 1

2ηz
∥ηKz mK∥2P

≤ τxα
−2
0 ∥x0 − x∥2 + 1

2ηy
∥y0 − y∥2 + 1

2ηz
∥ẑ0 − z∥2 + 1

2ηz
∥η0zm0∥2P +

2nM2K

τxT

+
8ηy
9

∥x̃0 − x−1∥2 + 2
3 ⟨x

−1 − x̃0, y0 − y⟩

− 2ηy(K + 2)2

9
∥x̃K − xK−1∥2 − 1

3 (K + 2)⟨xK−1 − x̃K , yK − y⟩

+

K−1∑
k=0

(α−2
k − α−1

k)
(
Q(xk, y, z)−Q(x, yk, zk)

)
−

K−1∑
k=0

α−2
k

(
Q(xk+1, y, z)−Q(x, yk+1, zk+1)

)
(a)

≤ τxα
−2
0 ∥x0 − x∥2 + 1

2ηy
∥y0 − y∥2 + 1

2ηz
∥ẑ0 − z∥2 + 1

2ηz
∥η0zm0∥2P +

2nM2K

τxT

− 2ηy(K + 2)2

9
∥x̃K − xK−1∥2 + ηy(K + 2)2

9
∥xK−1 − x̃K∥2 + 1

4ηy
∥yK − y∥2

+

K−1∑
k=0

(α−2
k − α−1

k)
(
Q(xk, y, z)−Q(x, yk, zk)

)
−

K−1∑
k=0

α−2
k

(
Q(xk+1, y, z)−Q(x, yk+1, zk+1)

)
(b)
= τx∥x0 − x∥2 + 1

2ηy
∥y0 − y∥2 + 1

2ηz
∥ẑ0 − z∥2 + 1

2ηz
∥η0zm0∥2P +

2nM2K

τxT

− ηy(K + 2)2

9
∥x̃K − xK−1∥2 + 1

4ηy
∥yK − y∥2 − α−2

K−1

(
Q(xK , y, z)−Q(x, yK , zK)

)
+

K−1∑
k=1

(α−2
k − α−1

k − α−2
k−1)

(
Q(xk, y, z)−Q(x, yk, zk)

)
(c)
= τx∥x0 − x∥2 + 1

2ηy
∥y0 − y∥2 + 1

2ηz
∥ẑ0 − z∥2 + 1

2ηz
∥η0zm0∥2P +

2nM2K

τxT

− ηy(K + 2)2

9
∥x̃K − xK−1∥2 + 1

4ηy
∥yK − y∥2 −

K∑
k=1

λk

(
Q(xk, y, z)−Q(x, yk, zk)

)
,

where (a) uses the Cauchy-Schwarz inequality, Young’s inequality, and the initialization x̃0 = x−1

on line 1 of Algorithm 1; (b) uses the fact that α0 = 1, which follows from eq. (82); (c) uses the
definition of λk in eq. (85). Further, we obtain the following:

τxα
−2
K ∥xK − x∥2 + 1

2ηy
∥yK − y∥2 + 1

2ηz
∥ẑK − z∥2 + 1

2ηz
∥ηKz mK∥2P

(a)

≤ τx∥x0 − x∥2 + 1

2ηy
∥y0 − y∥2 + 1

2ηz
∥ẑ0 − z∥2 + 1

2ηz
∥η0zm0∥2P +

2nM2K

τxT

− ηy(K + 2)2

9
∥x̃K − xK−1∥2 + 1

4ηy
∥yK − y∥2 −

K∑
k=1

λk

(
Q(xK

a , y, z)−Q(x, yKa , zKa)
)

(b)
= τx∥x0 − x∥2 + 1

2ηy
∥y0 − y∥2 + 1

2ηz
∥ẑ0 − z∥2 + 1

2ηz
∥η0zm0∥2P +

2nM2K

τxT

34

− ηy(K + 2)2

9
∥x̃K − xK−1∥2 + 1

4ηy
∥yK − y∥2 −

K−1∑
k=0

α−1
k

(
Q(xK

a , y, z)−Q(x, yKa , zKa)
)
,

where (a) uses the convexity of Q(x, y, z) in x (follows from Assumption 1) and the concavity of
Q(x, y, z) in (y, z), line 14 of Algorithm 1, and the fact that λk ≥ 0, which follows from eqs. (82)
and (85); (b) use the definition of λk in eq. (85) and the fact that α0 = 1, which follows from eq. (85).
Next, we do rearranging and use eqs. (84) and (86), which gives the following:(

K−1∑
k=0

α−1
k

)(
Q(xK

a , y, z)−Q(x, yKa , zKa)
)
≤ r

3
∥x∥2 + 6

r
∥y∥2 + 15χ2

r
∥z∥2 + 12nM2K

rT
.

Next, we divide both sides of the inequality by
∑K−1

k=0 α−1
k , which gives the following:

Q(xK
a , y, z)−Q(x, yKa , zKa) ≤

(
K−1∑
k=0

α−1
k

)−1(
r

3
∥x∥2 + 6

r
∥y∥2 + 15χ2

r
∥z∥2 + 12nM2K

rT

)
.

Further, we can estimate
∑K−1

k=0 α−1
k as follows:

K−1∑
k=0

α−1
k

(a)
=

K−1∑
k=0

k + 3

3
= K +

1

3

K−1∑
k=0

k = K +
K(K − 1)

6
=

K(K + 5)

6
≥ K2

6
,

where (a) uses eq. (82). Plugging this into the previous inequality gives

Q(xK
a , y, z)−Q(x, yKa , zKa) ≤ 6

K2

(
r

3
∥x∥2 + 6

r
∥y∥2 + 15χ2

r
∥z∥2 + 12nM2K

rT

)
=

1

K2

(
2r∥x∥2 + 36

r
∥y∥2 + 90χ2

r
∥z∥2

)
+

72nM2

rKT

which concludes the proof.

35

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See the abstract and the introduction (Section 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The theoretical results provided in the paper require certain assumptions
described in Section 2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

36

Justification: The assumptions are described in Section 2. The proof of Lemma 1 is provided
in Appendix A. The proofs of Theorems 1 and 2 are provided in Appendix B. The proofs of
Theorems 3 and 4 are provided in Appendix D.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not contain experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

37

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not contain experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not contain experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not contain experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not contain experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics and the research
conducted in the paper conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper provides theoretical research and there is no societal impact from
the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

39

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose the risks described in the question.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

40

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

41

	Introduction
	Time-varying Networks
	Convex Setting
	Related Work and Main Contributions

	Notation and Assumptions
	Objective Function
	Decentralized Communication

	Lower Complexity Bounds
	Decentralized Subgradient Optimization Algorithms
	Lower Bounds
	Comparison with the Lower Bounds in Centralized and Fixed Network Settings

	Optimal Algorithm
	Saddle-Point Reformulation
	New Algorithm and its Convergence
	Comparison with the Existing Results

	Proof of Lemma 1
	Proof of Theorems 1 and 2
	The Hard Instance of Problem (1)
	Auxiliary Lemmas
	Proof of Theorem 1
	Proof of Theorem 2

	Proofs of Lemmas from Section B.2
	Proof of Lemma 2
	Proof of Lemma 3
	Proof Lemma 4

	Proof of Theorems 3 and 4
	Auxiliary Lemmas
	Proof of Theorem 3
	Proof of Theorem 4

	Proofs of Lemmas from Section D.1
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 11

