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Abstract

While Diffusion Generative Models have
achieved great success on image generation
tasks, how to efficiently and effectively incor-
porate them into speech generation especially
translation tasks remains a non-trivial problem.
Specifically, due to the low information density
of speech data, the transformed discrete speech
unit sequence is much longer than the corre-
sponding text transcription, posing significant
challenges to existing auto-regressive models.
Furthermore, it is not optimal to brutally apply
discrete diffusion on the speech unit sequence
while disregarding the continuous space struc-
ture, which will degrade the generation perfor-
mance significantly. In this paper, we propose a
novel diffusion model by applying the diffusion
forward process in the continuous speech repre-
sentation space, while employing the diffusion
backward process in the discrete speech unit
space. In this way, we preserve the semantic
structure of the continuous speech representa-
tion space in the diffusion process and integrate
the continuous and discrete diffusion models.
We conduct extensive experiments on the text-
less direct speech-to-speech translation task,
where the proposed method achieves compa-
rable results to the computationally intensive
auto-regressive baselines (500 steps on aver-
age) with significantly fewer decoding steps
(50 steps).

1 Introduction

Speech-to-speech translation (S2ST) aims at trans-
lating speech of one language to speech of another
language, breaking the communication barriers be-
tween people around the world who speak differ-
ent languages. Conventional cascaded systems
(Lavie et al., 1997; Nakamura et al., 2006) for S2ST
typically consist of automatic speech recognition
(ASR), machine translation (MT) or end-to-end
speech-to-text translation (S2T), followed by text-
to-speech synthesis (TTS). However, integrating
multiple separated modules into a single system

would cause the problem of error propagation and
incur expensive computational costs. On one hand,
text-based cascaded systems face challenges when
dealing with low-resource languages that lack text
annotations or even without written systems (Chen
et al., 2022a). On the other hand, the speech-to-
text process disregards acoustic information such
as accentuation, attitude, and emotional nuances,
which are crucial for effective human spoken com-
munication.

Recent works of textless direct S2ST models
(Tjandra et al., 2019; Kano et al., 2021; Jia et al.,
2019, 2022; Zhang et al., 2021; Lee et al., 2021,
2022; Popuri et al., 2022; Wei et al., 2022) directly
translate speech to speech in an end to end manner
without the intermediate generation steps relying
on text transcripts. Among them, S2UT model (Lee
et al., 2021, 2022) takes the advantage of recent
progress in spoken language modeling (Lakhotia
et al., 2021) to obtain the discrete speech repre-
sentations, or discrete units, to build the textless
S2ST systems. The entire system consists of a
sequence-to-sequence transformer (Vaswani et al.,
2017) with a speech encoder and an auto-regressive
unit decoder, followed by a unit HiFi-GAN vocoder
(Polyak et al., 2021) trained separately for unit-to-
waveform conversion. Experiments (Chen et al.,
2022a) have demonstrated notable improvements
in translation for unwritten languages. Despite the
promising translation capabilities of the aforemen-
tioned auto-regressive-based S2ST models, they
suffer from O(N) decoding time complexity for
predicting one token per step. Furthermore, the
learned discrete speech unit sequences are typically
much longer than the corresponding text transcripts
due to the low information density of speech data,
with a rate of 50 units per second (sequence length
up to 500 on average), where the generation latency
bottleneck is exposed.

In the meantime, diffusion generative models
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
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Figure 1: Illustration of different diffusion forward processes. (a) Continuous diffusion on images. The image is
corrupted gradually by the Gaussian noise. (b) Discrete absorbing diffusion on text sequences. The text sequence is
corrupted with masks. (c) Our proposed diffusion process. The discrete units are converted between the continuous
space and the discrete space by K-means mapping. The Gaussian noise is added in the continuous space. (d) The
ASR transcription of the noisy speech converted from the perturbed units. The units are perturbed by replacing
them with the k-NN search in the continuous K-means space.

et al., 2020) have made remarkable advancements
in generating high-quality images (Rombach et al.,
2022), audios (Popov et al., 2021; Shen et al.,
2023), and texts (Austin et al., 2021; Hoogeboom
et al., 2021). Diffusion generative models are typi-
cally defined as a forward process and a backward
process. The forward process gradually corrupts
the data with noise, while the backward process
starts with the pure noise and performs ancestral
sampling to denoise the corrupted data. We com-
pare different diffusion forward processes for spe-
cific data structures in Figure 1. For continuous
data like audios or images in Figure 1(a), current
diffusion models (Ho et al., 2020) typically add
Gaussian noise gradually to the pixel space or au-
dio spectrogram space (Popov et al., 2021). For
discrete data like texts in Figure 1(b), current diffu-
sion models (Austin et al., 2021; Hoogeboom et al.,
2021) perturb the data with absorbing or multino-
mial transition matrices.

However, speech is a unique modality that lies
between audio and text. On one hand, speech is
a continuous form of acoustic data represented as
a waveform. On the other hand, speech encom-
passes high-level linguistic information similar to
discrete text data and can be represented as dis-
crete units with SSL models, which is crucial for
the translation task. It is challenging to directly
apply the diffusion forward process like images
or texts for S2ST. For example, Translatoron (Jia
et al., 2019) directly generates the continuous spec-
trogram for speech translation but the performance
is significantly inferior to the discrete unit based
model S2UT (Lee et al., 2021). We conduct ex-
periments similar to DiffSound (Yang et al., 2023)

that uses naive discrete diffusion models to gen-
erate discrete units for S2ST. Our primary results
(see Table 1) demonstrate that it is sub-optimal to
brutally apply discrete diffusion on the speech unit
sequences, which would degrade the generation
performance by a large margin. Typically, the vo-
cabulary for the text translation task is constructed
by BPE (Sennrich et al., 2016), and the semantics
of the tokens require a large amount of training data
to learn. In contrast, discrete speech units are ac-
quired by the K-means clustering algorithm in the
continuous speech representation space learned by
the self-supervised learning models. Consequently,
structural relationships exist among these units nat-
urally. As shown in Figure 1(d), we perturb discrete
speech units by replacing them with k-NN search
in the continuous K-means space, and then convert
them to the waveform with the vocoder described
in Section 3.2. We transcribe the noisy speech with
the open-sourced ASR system to “see” the pronun-
ciation. We find that when k is small, the noisy
speech sounds similar to the original speech. The
results show that the close K-means centroids share
similar acoustical meanings.

To tackle these challenges, in this work, we
propose a new paradigm called DiffS2UT for the
S2ST task, a novel diffusion generative model that
bridges the continuous representation space and
discrete unit space of speech, while simultaneously
preserving the semantic structure of the continuous
speech representation space as well. Specifically,
as depicted in Figure 1(c), there exists an one-to-
one map between the discrete units and the con-
tinuous K-means centroid vectors. Therefore, in
the diffusion forward process, we first map a unit



to the continuous vector derived from the learned
K-means space. Next, we gradually add Gaussian
noise to corrupt it with the continuous diffusion
process. Subsequently, the noisy embedding vector
is converted into the discrete unit index through
the nearest neighbor search. As a consequence,
we obtain the perturbed discrete unit sequences
which are derived from the semantically structured
continuous space, rather than being uniformly sam-
pled from the vocabulary as in (Hoogeboom et al.,
2021). The perturbed unit sequences are semanti-
cally close to the unperturbed ones when the added
noise is small, which cannot be achieved in the dis-
crete diffusion process. In the diffusion backward
process, we train the model to predict the uncor-
rupted discrete unit sequences with cross-entropy
in parallel.

We evaluate our framework DiffS2UT on the
real-world S2ST datasets (Wang et al., 2021;
Iranzo-Sánchez et al., 2020). The model achieves
14.8/15.2/14.5/13.6 BLEU score on the Eurapal-
ST Es-En/Fr-En/En-Es/En-Fr test sets, significantly
surpassing the vanilla diffusion models, and achiev-
ing comparable performance to auto-regressive
models while requiring much fewer generation
steps.

To summarize, the main contributions of this
paper are:

• To the best of our knowledge, this is the first
work that effectively introduces diffusion gen-
erative models to the textless S2ST task. The
model significantly accelerate the generation
process (50 steps v.s. 500 steps on average),
while maintaining the generation quality com-
parable to the auto-regressive models.

• We propose a novel diffusion framework that
integrates the continuous and discrete diffu-
sion models by decoupling the diffusion for-
ward and backward processes.

• The proposed diffusion model DiffS2UT
bridges the continuous and discrete spaces of
speech and preserves the semantic structure
of the speech representation. Experimental
results demonstrate its superiority over vanilla
diffusion models.

2 Related Work

Textless Direct Speech to Speech Translation
Textless direct speech-to-speech translation (S2ST)

aims at translating the source speech to the tar-
get speech directly without any text intermediates.
Translatoron (Jia et al., 2019, 2022) is the first
S2ST model to translate speeches by generating
spectrograms directly. Tjandra et al. (2019); Zhang
et al. (2021) build the S2ST system by pre-training
a VQ-VAE model to convert target speeches into
discrete codes and learn a speech-to-code transla-
tion model. S2UT model (Lee et al., 2021) uti-
lizes the self-supervised speech encoder HuBERT
(Hsu et al., 2021) pre-trained on large corpus of
unlabeled speeches to convert speeches into dis-
crete units with K-means clustering, which out-
performs the VQ-VAE based approach in (Zhang
et al., 2021). Lee et al. (2022) extend the S2UT
model to the real-word S2ST data VoxPopuli-S2S
(Wang et al., 2021) and propose a speech nor-
malizer to obtain the speaker-invariant representa-
tions. Duquenne et al. (2022) propose a large-scale
multilingual S2ST corpus with the speech min-
ing method (Duquenne et al., 2021). By introduc-
ing the pre-trained models including the wav2vec
(Baevski et al., 2020) encoder and mBART (Liu
et al., 2020) decoder to the S2UT model, the trans-
lation quality is further boosted in (Popuri et al.,
2022). TranSpeech (Huang et al., 2023) alleviates
the acoustic multi-modal problem with bilateral
perturbation. Speech2S (Wei et al., 2022) performs
joint pre-training on speech and text datasets to
align the acoustic and textual modalities. Although
the above methods achieve good performance in
the S2ST task, they are built on the auto-regressive
generation models and suffer from the slow gener-
ation speed due to the excessive lengths of speech
sequences. Our work leverages diffusion gener-
ative models to speed up the translation process
without compromising the translation quality.

Diffusion Probabilistic Models Diffusion gener-
ative models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2020) have achieved remarkable
progress in generating high-quality images (Rom-
bach et al., 2022), audios (Popov et al., 2021; Shen
et al., 2023), and texts (Austin et al., 2021; Hooge-
boom et al., 2021). DDPM (Ho et al., 2020) defines
the generative process as the reverse of a partic-
ular Markovian diffusion process. By gradually
corrupting an image with Gaussian noise and train-
ing a model based on U-Net to denoise it, DDPM
can generate high quality images. Multinomial
diffusion (Hoogeboom et al., 2021) proposes a uni-
form corruption process for categorical variables,



which is extended by D3PMs (Austin et al., 2021)
to support general transition matrices, including an
absorbing variant that draws close connections to
masked LMs. Recent works (Gong et al., 2022;
Gao et al., 2022) aim at conducting the Gaussian
diffusion process over token embeddings so that
the continuous diffusion models can be applied to
discrete texts. Some works (Chen et al., 2022b)
consider converting discrete tokens to bit strings
and model them as real values. However, these
approaches neglect the semantic relationships be-
tween tokens because the vocabulary is constructed
using BPE, limiting the model performance. In
this work, we introduce the diffusion generative
models into the S2ST task. We conduct a thorough
investigation of the unique properties of the speech
modality and propose a novel diffusion paradigm
decoupling the diffusion forward and backward pro-
cess to bridge the discrete and continuous spaces
of speech, while preserving the semantic structure
of speech representations.

3 Background

In this section, we start with the formulations of
both continuous and discrete diffusion generative
models. Then we introduce some preliminaries
for the proposed DiffS2UT system, such as how
to convert a speech to discrete units and units to a
waveform.

3.1 Diffusion Generative Models
The diffusion generative models are typically de-
fined as a forward process and a backward process.
Given the continuous data x0 ∼ pdata(x0) ∈ Rd,
the continuous diffusion forward process usually
perturbs it into the Gaussian noise xT ∼ N (0, I)
through a series of latent variables x1, . . . ,xT in a
Markov transition:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where βt controls the noise level added at the
timestep t. For any arbitrary t, sampling xt from
x0 can be achieved in a closed form with the repa-
rameterization trick:

q(xt|x0) = N (xt;

√
1− β̄txt−1, β̄tI), (2)

where β̄t := 1 −
∏t

i=0(1 − βi). In the backward
process, the model learns to recover x0 by denois-
ing from xt step by step:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)),
(3)

where µθ,Σθ are the predicted mean and variance
of q(xt−1|xt), θ denotes the model parameters.
Following the derivation in Ho et al. (2020), Σθ is
set as σ2

t I and the objective function of the diffu-
sion model can be written as a simplified variational
lower-bound (VLB) of log pθ(x0):

Lvlb = Ex0,t[∥µθ(xt, t)− µ̂(xt,x0)∥2] (4)

For the discrete data represented as one-hot vec-
tors x0 ∼ pdata(x0) ∈ {0, 1}K , the discrete dif-
fusion forward process usually involves model-
ing noise through multinomial transition (Hooge-
boom et al., 2021) and absorbing transition (Austin
et al., 2021). The multinomial transition adopts
a uniform noise distribution over the vocabulary
{1, . . . ,K}; alternatively, the absorbing transition
specifies noise to be a point mass with all of the
probability on an absorbing state. In the backward
process, the model pθ is adopted to predict x0 with
a softmax function, representing the probability
distribution for each token. The objective function
of the discrete diffusion model can be written as
the negative log-likelihood loss:

Lvlb = Ex0,t − [x0 log pθ(xt, t)], (5)

3.2 Pre-processing and Post-processing for
DiffS2UT

We describe the speech-to-unit method and the unit-
to-speech method below.

Speech to Unit Lee et al. (2022) pre-train Mul-
tilingual HuBERT (mHuBERT) (Hsu et al., 2021)
on the data combined of En, Es and Fr from the
unlabeled speech dataset VoxPopuli (Wang et al.,
2021), which contains 4.5k hours of data for En,
Es and Fr, respectively. We follow Lee et al. (2022)
and use mHuBERT to discretize the target speech.
As shown in the left of Figure 2(a), the speech-to-
unit discretization method uses the last iteration of
the mHuBERT model for feature extraction, fol-
lowed by the K-means clustering algorithm. The
learned K cluster centroids are used to convert the
audio into a sequence of cluster indices, which are
referred to as units.

Unit to Speech As illustrated in the right of Fig-
ure 2(a), the unit-to-speech conversion is done
with the discrete unit-based HiFi-GAN vocoder
proposed in (Polyak et al., 2021). The vocoder
is trained separately from the S2UT model, with
the combination of the generator-discriminator loss
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Figure 2: Illustration of the model architecture. (a) Left: The speech-to-unit model with mHuBERT and K-means
to discretize the speech input. Right: The unit-based HiFi-GAN vocoder for unit-to-speech conversion. (b) Our
proposed DiffS2UT translation model. The speech units are transformed and perturbed between the discrete space
and continuous space for diffusion.

from HiFi-GAN (Kong et al., 2020) and MSE of
the predicted duration of each unit in the logarith-
mic domain.

4 DiffS2UT

In this section, we elaborate our proposed model
DiffS2UT in detail. We first describe the model ar-
chitecture for S2ST, followed by the novel training
and sampling algorithms for diffusion.

4.1 Model Architecture

Figure 2(b) depicts the overall architecture of the
DiffS2UT system. The entire system consists of
a speech encoder and a unit decoder. The speech
encoder is constructed using a CNN-based speech
down-sampling module and a stack of Transformer
encoder blocks (Vaswani et al., 2017). The unit
decoder consists of an input embedding layer that
embeds discrete units and diffusion time steps, fol-
lowed by a stack of Transformer decoder blocks.
Given the source speech c, the model learns to gen-
erate the target unit sequence x = [x1, . . . , xn]
by estimating pθ(x|c). Previous models factor-
ize the unit sequence in an auto-regressive man-
ner and estimate the units from left to right, i.e.,
pθ(x|c) =

∏n
i=1 pθ(xi|x<i, c). In contrast, the

diffusion decoder is trained with the non-causal
attention mask and estimates all tokens simultane-
ously, which means each token can not only attend
to the tokens before it but the tokens after, i.e.,
pθ(x|c, t) =

∏n
i=1 pθ(xi|c, t). We denote the K-

means mapping function as g, which can convert
the discrete unit indices to the continuous K-means

cluster centroid vectors. And the inversion func-
tion g−1 works by conducting the nearest neighbor
search in the K-means Euclidean space, convert-
ing the continuous vector to the K-means cluster
indices (units).

For each unit sequence as the decoder input, we
first convert it to the continuous space that encapsu-
lates the semantic structure learned by SSL models
and K-means. Then we perturb it with the Gaus-
sian noise as in the continuous diffusion forward
process, followed by the inversion function con-
verting it back to discrete units. At last, the model
learns to recover the correct unit sequence with the
corrupted units and time step t as the input. The
model is optimized with negative log-likelihood
objective.

4.2 Training

The training details are described in Algo-
rithm 1. Following standard practices in diffu-
sion models, we randomly sample a time step
t and optimize the model parameter θ with re-
spect to the objective L(θ). In our case, L(θ) =
−x0 log pθ(xt, t), which is the KL divergence of
x0 and pθ(xt, t). Given a unit sequence x0 ∼
pdata(x0) ∈ {1, . . . ,K}n, we first convert it to the
continuous speech representation v0 = g(x0) ∈
Rn×d with the K-means mapping function g. Then
we sample vt by perturbing v0 with the Gaussian
noise as in continuous diffusion models

q(vt|v0) = N (vt;

√
1− β̄tvt−1, β̄tI). (6)

After that we transform vt back to the discrete



Algorithm 1 Training DiffS2UT

Input: network fθ, data distribution pdata(x0),
and K-means mapping function g.
Output: model parameters θ.
repeat

Draw x0 ∼ pdata(x0);
Draw t ∈ Uniform({1, . . . , T});
Convert discrete x0 to continuous space v0 =
g(x0);
Draw vt ∼ q(vt|v0);
Convert continuous vt to discrete space xt =
g−1(vt);
L(θ) = −x0 log pθ(xt, t);
Minimize L(θ) with respect to θ;

until converged

units xt = g−1(vt) ∈ {1, . . . ,K} with the inver-
sion function g−1, which preserves the semantic
structure of the speech representation. The pertur-
bation xt is semantically close to the target units
x0 with the time step t as control.

4.3 Sampling
The sampling details are described in Algorithm
2. Sampling in DiffSUT begins with a sequence
comprising only continuous noisy vectors vT ∼
N (0, I). Then we convert vT to discrete units
xT = g−1(vT ) with the inversion function g−1.
At each time step t, we first feed the noisy units xt

into the neural network and get the predicted target
x̂0 with argmax:

x̂0 = argmax pθ(xt, t). (7)

Since we apply the diffusion forward process in the
continuous space, we need to convert the model
prediction back to the K-means space v̂0 = g(x̂0)
with the K-means mapping function g. Then we
sample vt−1 as in continuous diffusion models:

vt−1 = N (vt−1; v̂0, σ
2
t I) (8)

This strategy is more informative, as the noise is
added to the semantically structured speech repre-
sentation space, where the intensity is controlled
by the time step t.

To accelerate the sampling speed, we pick a sub-
set {τ1, . . . , τK} from the full diffusion trajectory
{1, . . . , T} for generation (Nichol and Dhariwal,
2021). Then a reverse step can be obtained by:

vτi ∼ q(xτi−1 |vτi , v̂0) (9)

Algorithm 2 Sampling from DiffS2UT

Input: trained network parameters θ and K-
means mapping function g, decoding steps K.

Output: generated sample x0.
Initialize vT ∼ N (0, I);
Convert continuous vT to discrete space xT =
g−1(vT );
Sample a subset {τ1, . . . , τK} from the full dif-
fusion trajectory {1, . . . , T};
for t = τ1, . . . , τK do

Draw x̂0 = argmax pθ(xt, t);
Convert discrete x̂0 to continuous space v̂0 =
g(x̂0);
Draw vt−1 ∼ q(vt−1|vt, v̂0);
Convert continuous vt to discrete space xt =
g−1(vt);

end for
Return x0.
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Figure 3: Accuracy of nearest neighbour search on the
perturbation data in the K-means space.

Note that the conversion between the discrete
and continuous spaces only requires L2 distance
computation, which can be accelerated with the
FAISS library (Johnson et al., 2019) so that the
time cost is negligible. Equipped with this method,
we can execute the sampling algorithm more effec-
tively.

4.4 Noise Schedule

Due to the fact that K-means is robust to small
Gaussian noises, the unit sequence would not be
corrupted when the added noise is small. As shown
in Figure 3, the accuracy of the nearest neighbour
search on the perturbation data remains 1.0 for the
first 20% time steps with the linear noise sched-
ule, which is useless since the model can directly



Name # Iter. Es-En Fr-En En-Es En-Fr Param. Speedup

Cascaded systems:
S2T + tf TTS (Lee et al., 2022) n.a. 19.2 19.8 21.7 18.5 n.a. -

S2UT systems with auto-regressive generation:
S2UT (Lee et al., 2022) N 13.1 15.4 16.4 15.8 71M 1.0×
S2UT w/ ED (Duquenne et al., 2022) N 20.4 20.7 21.9 19.3 71M 1.0×
S2UT w/ PT (Popuri et al., 2022) N 23.8 - 26.0 - 827M -

S2UT systems with diffusion generation:
S2UT-Absorbing (Austin et al., 2021) 50 5.5 5.1 3.9 4.3 71M 12.6×
S2UT-Multinomial (Hoogeboom et al., 2021) 50 11.8 12.0 11.2 8.5 71M 9.7×

DiffS2UT (Ours)

5 13.5 14.1 13.8 12.9 71M 14.4×
10 14.6 15.0 14.2 13.5 71M 14.0×
20 14.8 15.1 14.4 13.6 71M 12.4×
50 14.8 15.2 14.5 13.6 71M 11.9×

Table 1: BLEU scores achieved by training on VoxPopuli-S2S (Wang et al., 2021) training sets and evaluating on
Europarl-ST (Iranzo-Sánchez et al., 2020) test sets. For the S2UT systems with diffusion generative models, the
results are reproduced by ourselves.
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Figure 4: Statistics of the target sequence length in
VoxPopuli-S2S Es-En training set.

copy the input as the target. To force the model to
learn to recover the corrupted sequence, we propose
a new noise schedule uniform for the DiffS2UT
model. We initially set β0 = 0.3 and decrease
1− β̄t uniformly. The proposed uniform schedule
improves the level of data utilization.

5 Experiments

5.1 Setup

Datasets We use the real-world dataset
VoxPopuli-S2S (Wang et al., 2021) for model
training. We examine four directions of
language pairs: Spanish-English (Es-En), English-
Spanish (En-Es), French-English (Fr-En), and
English-French (En-Fr) on the test set from
Europarl-ST (Iranzo-Sánchez et al., 2020). In
order to avoid duplication with the corpus of
the test set, we deleted the data before 2013 in

the training set. The statistics of the target unit
sequence length in Es-En training set is shown in
Figure 4. Different from the text translation data,
the S2ST data is much longer with the average
length larger than 500, inducing challenges to
auto-regressive models with the long generation
process.

Evaluation Following prior works (Lee et al.,
2022), all speech outputs are decoded with the
same open-sourced ASR models1 to compute
BLEU with respect to the reference transcribed
translations using SACREBLEU (Post, 2018).

Baselines For comparison, we choose three
S2UT baselines and reproduce two discrete dif-
fusion models for S2ST. Among them, S2UT is
the baseline model proposed in (Lee et al., 2022).
S2UT w/ ED (Duquenne et al., 2022) trains the
model on the mined S2ST datasets. S2UT w/ PT
(Popuri et al., 2022) is initialized with the pre-
trained wav2vec encoder and unit-based mBART
decoder. We reproduce the absorbing (Austin et al.,
2021) and multinomial (Hoogeboom et al., 2021)
diffusion methods on the S2ST task, named S2UT-
Absorbing and S2UT-Multinomial. The implemen-
tation details are described in Appendix A.1.

5.2 Results

Table 1 summarizes the results from different S2UT
systems trained with VoxPopuli-S2S data (Wang
et al., 2021). First, by comparing our proposed

1https://github.com/facebookresearch/fairseq/
tree/main/examples/speech_to_speech/asr_bleu

https://github.com/facebookresearch/fairseq/tree/main/examples/speech_to_speech/asr_bleu
https://github.com/facebookresearch/fairseq/tree/main/examples/speech_to_speech/asr_bleu


Models BLEU

DiffS2UT 14.8
w/o K-means mapping 12.1
w/o beam size 14.6

Table 2: The ablation study on the proposed methods.
Results are conducted on the Es-En test set.

model with the models trained with conventional
discrete diffusion processes (S2UT-Absorbing and
S2UT-Multinomial), results show that our model
achieves improvements of 10.0 and 3.0 in BLEU
scores on the S2ST tasks. As shown in the results,
existing discrete diffusion models struggle to per-
form well due to the complexity of the S2ST task
over text translation. In comparison, our model
can better utilize the semantic structures beneath
the units through the K-means conversion. Further-
more, we also compare with the S2UT model based
on auto-regressive generation, and our method is
able to achieve comparable results with the base-
line model S2UT even with only 10 decoding steps,
which boosts the generation speed a lot.

5.3 Analysis

On the Effect of Semantic Preserving Diffu-
sion Process We study the effects of the pro-
posed components, which are listed in Table 2. It
can be observed that without K-means mapping,
DiffS2UT would degenerate to the multinomial dif-
fusion and the BLEU score drops to 12.1, which
is close to S2UT-Multinomial. We also study the
effect of the predicted sequence length and ablate
the beam search, we find that the model is slightly
sensitive to it because the vocoder needs to predict
the duration of each token which results in the time
and speed of the final audio.

On the Decoding Steps We list the BLEU scores
of different decoding step settings from 5 steps to
50 steps for all diffusion models in Table 1. We can
see that the proposed DiffS2UT model achieves
the BLEU score of 13.5 with 5 steps, which is
even higher than the results of S2UT-Absorbing
and S2UT-Multinomial with 50 steps. The results
demonstrate the superiority of the proposed model
DiffS2UT that it can surpass the conventional dif-
fusion models with much fewer decoding steps.

On the Intermediate Generation Results To
analyze the generation quality during the reverse
process, we extract x̂0 at some of the reverse steps
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Figure 5: The BLEU score of intermediate x̂0 within a
decoding process.

and evaluate the BLEU scores. The results are
illustrated in Figure 5. All the diffusion models
can achieve high BLEU scores in the first quarter
of the reverse process and converge slowly in the
rest steps. Among them, our DiffS2UT obtains the
highest BLEU score in the first quarter, which is
even higher than the final score of other diffusion
models. According to the observation above, we
can extract the intermediate x̂0 as the final decod-
ing results to further accelerate the decoding speed
with a negligible performance drop.

6 Conclusion

We present a diffusion generative model for the
S2ST task named DiffS2UT that integrates the con-
tinuous and discrete diffusion models by decou-
pling the diffusion forward and backward processes.
The model applies the diffusion forward process in
the continuous speech representation space, while
employing the diffusion backward process in the
discrete speech unit space. In this way, we effec-
tively preserve the semantic structure of the con-
tinuous speech representation space in the diffu-
sion process. We evaluate the proposed DiffS2UT
model on the real-world speech-to-speech datasets
and demonstrate the significantly boosted gener-
ation quality compared to the conventional dis-
crete diffusion models. Furthermore, the model
can achieve comparable results to auto-regressive
models but with much fewer decoding steps.

Limitations

While the conversion between the continuous space
and discrete space doses not add extra trainable
model parameters, it does introduce some com-



putational overhead. The dimensionality of the
K-means space is D = 768 and number of clusters
is K = 1000. For each batch forward in training,
the computation complexity O(B × L×K ×D).
Although we can accelerate the search process with
the FAISS (Johnson et al., 2019) library without sac-
rificing the training speed, the GPU memory usage
is still not negligible. Developing faster and more
efficient nearest neighbor search tools remains an
active area of research (Guo et al., 2020).
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A Appendix

A.1 Implementation Details

We follow the model architecture settings in (Lee
et al., 2022), with a 12-layer speech encoder and
6-layer unit decoder with embedding size 512 and
8 attention heads. We train the model for 600k
steps on VoxPopuli S2ST training datasets. We use
Adam optimizer with learning rate 0.0003 for all
translation directions, and inverse square root learn-
ing rate decay schedule with 10k warm up steps. To
prevent overfitting, we use label smoothing of 0.2
for training. All S2UT systems except S2UT w/ PT
(pre-trained models) are trained with an auxiliary
task as (Lee et al., 2022). We find that sentence
level knowledge distillation (Kim and Rush, 2016;

Gu et al., 2018) can boost the performance, so we
adopt the typical method in the non-auto-regressive
translation task with S2UT w/ ED as the teacher.
We set diffusion steps T = 1000 for all diffusion
based models with the linear noise schedule. In the
sampling process, we use the length beam size 5
which means generating 5 candidates of different
lengths at the same time and select the final pre-
diction according to perplexity. All experiments
are conducted using the FAIRSEQ toolkit (Ott et al.,
2019). We use FAISS (Johnson et al., 2019) for
fast nearest neighbor search in high-dimensional
spaces.
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