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ABSTRACT

To effectively interrogate UAV-based images for detecting objects of interest, such
as humans, it is essential to acquire large-scale UAV-based datasets that include
human instances with various poses captured from widely varying viewing an-
gles. As a viable alternative to laborious and costly data curation, we introduce
Progressive Transformation Learning (PTL), which gradually augments a training
dataset by adding transformed virtual images with enhanced realism. Generally,
a virtual2real transformation generator in the conditional GAN framework suf-
fers from quality degradation when a large domain gap exists between real and
virtual images. To deal with the domain gap, PTL takes a novel approach that
progressively iterates the following three steps: 1) select a subset from a pool
of virtual images according to the domain gap, 2) transform the selected virtual
images to enhance realism, and 3) add the transformed virtual images to the train-
ing set while removing them from the pool. In PTL, accurately quantifying the
domain gap is critical. To do that, we theoretically demonstrate that the feature
representation space of a given object detector can be modeled as a multivariate
Gaussian distribution from which the Mahalanobis distance between a virtual ob-
ject and the Gaussian distribution of each object category in the representation
space can be readily computed. Experiments show that PTL results in a substan-
tial performance increase over the baseline, especially in the small data and the
cross-domain regime.

1 INTRODUCTION

Training an object detector usually requires a large-scale training image set so that the detector can
acquire the ability to detect objects’ diverse appearances. This desire for a large-scale training set is
bound to be greater for object categories with more diverse appearances, such as the human category
whose appearances vary greatly depending on its pose or viewing angles. Moreover, a person’s
appearance becomes more varied in images captured by an unmanned aerial vehicle (UAV), leading
to a wide variety of camera viewing angles compared to ground-based cameras, making the desire
for a large-scale training set even greater. In this paper, we aim to satisfy this desire, especially when
the availability of UAV-based images to train a human detector is scarce, where this desire is more
pressing.

As an intuitive way to expand the training set, one might consider synthesizing virtual images to
imitate real-world images by controlling the optical and physical conditions in a virtual environ-
ment. Virtual images are particularly useful for UAV-based object detection since abundant ob-
ject instances can be rendered with varying UAV locations and camera viewing angles along with
ground-truth information (e.g., bounding boxes, segmentation masks) that comes free of charge.
Therefore, a large-scale virtual image set covering diverse appearances of human subjects that are
rarely shown in existing UAV-based object detection benchmarks (Zhu et al., 2021; Barekatain et al.,
2017; ICG) can be conveniently acquired by controlling rendering entities and parameters in a virtual
environment, such as poses, camera viewing angles, and illumination conditions.

To make virtual images usable for training real-world object detection models, recent works (Hoff-
man et al., 2018; Mu et al., 2020; Li & Lee, 2021; Qiu et al., 2021) transform virtual images to look
realistic. They commonly use the virtual2real generator (Mirza & Osindero, 2014) trained with the
conditional GAN framework to transform images in the source domain to have the visual properties

1



Under review as a conference paper at ICLR 2023

Transformation 
Candidate Selection

Virtual2Real
Transformation

Set Update

Real images

w/ conditional GAN

Real images

Virtual images

- -

+ : add -: subtract

+ +

Virtual images select
generator

generator

Figure 1: Overview of Progressive Transformation Learning (PTL).

of images in the target domain. Here, virtual and real images are treated as the source and target do-
mains, respectively. However, the large discrepancy in visual appearance between the two domains,
referred to as the “domain gap”, result in the degraded transformation quality of the generator. In
fact, the aforementioned works using virtual images validate their methods where the domain gap
is not large (e.g., digit detection (Hoffman et al., 2018)) or when additional information is available
(e.g., animal pose estimation with additional keypoint information (Mu et al., 2020; Li & Lee, 2021;
Qiu et al., 2021)). In our case, real and virtual humans in UAV-based images inevitably have a large
domain gap due to the wide variety of human appearances.

To address the large domain gap, one critical question inherent in our task is how one can accurately
measure the domain gap. Consequently, we estimate the domain gap in the representation space
of a human detector trained on the real images. The representation space of the detector is learned
such that test samples, which have significantly different properties than training samples from the
perspective of the detector, are located away from the training samples. In this paper, we show
that the feature distribution of object entities belonging to a certain category, such as the human
category, in the representation space can be modeled with a multivariate Gaussian distribution if
the following two conditions are met: i) the detector uses the sigmoid function to normalize the
final output of the detector and ii) the representation space is constructed using the output of the
penultimate layer of the detector. This idea is inspired by Lee et al. (2018), which shows that
softmax-based classifiers can be modeled as multivariate Gaussian distributions. In this paper, we
show that the proposition is also applicable to sigmoid-based classifiers, which are widely used by
state-of-the-art (SOTA) detectors. Based on this modeling, when the two aforementioned conditions
are met, the human category in the representation space can be represented by two parameters (i.e.,
mean and covariance) of a multivariate Gaussian distribution that can be computed on the training
images. With the empirically calculated mean and covariance, the domain gap from a single virtual
human image to real human images (i.e., the training set) can be measured using the Mahalanobis
distance (Mahalanobis, 1936).

To add virtual images to the training set to include more diverse appearances of objects while pre-
venting the transformation quality degradation caused by large domain gaps, we introduce Pro-
gressive Transformation Learning (PTL) (Figure 1). PTL progressively expands the training set by
adding virtual images through iterating the three steps: 1) transformation candidate selection, 2) vir-
tual2real transformation, and 3) set update. When selecting transformation candidates from a pool
of virtual images, we use weighted random sampling, which gives higher weights to images with
smaller domain gaps. The weight takes an exponential term with one hyperparameter controlling the
ratio between images with smaller domain gaps and images with more diverse appearances. Then,
the virtual2real transformation generator is trained via the conditional GAN framework, taking the
selected virtual images (i.e., transformation candidates) as the “source” and the images in the train-
ing set as the “target”. After transforming the transformation candidates by applying the virtual2real
transformation generator, the training set is expanded with the transformed candidates while the
original candidates are excluded from the pool of virtual images.
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The main contribution of this paper is that we have validated the utility of virtual images in aug-
menting training data via PTL coupled with carefully designed comprehensive experiments. We
first use the task of low-shot learning, where adequately expanding datasets has notable effects.
Specifically, PTL provides better accuracy on three UAV-view human detection benchmarks than
other previous works that leverage virtual images in training, as well as methods that only use real
images. Then, we validate PTL on the cross-domain detection task where training and test data are
from distinct datasets, the problem we frequently face in real-world scenarios. Similarly, PTL con-
sistently presents significantly better accuracy than the baseline. The experimental results indicate
that a high-performance human detection model can be effectively learned via PTL, even with the
significant lack of training data representing real operational environments.

2 RELATED WORKS

Leveraging virtual images in training. In this section, we have listed previous works that demon-
strate how virtual images can play a role in a variety of real-world applications when used for
training. In fact, virtual images are desirable for model training as large-scale labeled datasets can
be built virtually almost free of charge. Unfortunately, when virtual images are used for model train-
ing without proper care, it is shown that the performance improvement is limited due to the domain
gap between the virtual images and the real test images. Generally, previous works leveraging vir-
tual images during model training can be summarized into three approaches according to how they
exploit the advantages of virtual images and address the challenges of using virtual images.

The most intuitive and widely used approach of using virtual images is to pre-train a model on
virtual images and fine-tune the pre-trained model on real images acquired in the same domain as
the test images (Handa et al., 2016; Kim et al., 2016; Gaidon et al., 2016; Fabbri et al., 2018; Varol
et al., 2018; Mu et al., 2020; Mishra et al., 2022; Guo et al., 2022; Jin et al., 2022; Baek & Shim,
2022). This approach aims to avoid the domain gap by fine-tuning the model on real images acquired
under the same conditions and environments of test images. While the first approach seeks to use
the representative capability learned from large-scale virtual datasets, the second approach seeks
to exploit additional information that can be easily labeled on virtual images. For example, Liu
et al. (2022) annotates part segmentation maps when acquiring virtual vehicle images, and uses the
part segmentation results from the pre-trained model on the virtual images during the fine-tuning
process. Similarly, Yan et al. (2022) uses depth and semantic information labeled when acquiring
virtual images.

The third approach directly builds training batches consisting of both virtual images and real images.
Ros et al. (2016) and Richter et al. (2016) adopt the most naive approach to build a batch by randomly
selecting a fixed number of images from each of the real and virtual image sets. However, even if
the number of virtual images is several orders of magnitude greater than the number of real training
images, this approach does not provide remarkably better accuracy and may even provide worse
accuracy than its counterparts using only real images for training. In this case, the effect of using
virtual images during model training does not appear as expected because the large domain gap
between the real (test) images and the virtual images is not adequately addressed. In this paper,
we also use virtual images directly for model training while considering appropriately reducing this
domain gap.

Progressive learning. Progressive learning is a machine learning strategy that continuously trains
a model from easy to hard tasks, primarily for the purpose of training stabilization or fast optimiza-
tion. One of the most common applications for progressive learning is incrementally increasing the
network capacity to improve network capability. The most intuitive approach in this category is to
gradually increase the network size (e.g., depth or width) to alleviate the training difficulty of very
deep networks (Fahlman & Lebiere, 1989; Bengio et al., 2006; Smith et al., 2016; Chen et al., 2016;
Wei et al., 2016; Gong et al., 2019; Li et al., 2022a). Conversely, Zhang & He (2020) uses progres-
sive learning in the direction of reducing the network size for fast training. Progressive learning is
also used in GAN frameworks to enhance the generator’s ability to transform input images of larger
resolution (Karras et al., 2018). Curriculum learning (Bengio et al., 2009; Spitkovsky et al., 2009;
Khan et al., 2011; Graves et al., 2017), which continuously raises the level of training from easy to
difficult samples, also falls into this category.
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Progressive learning is also used to deal with the scalability of datasets that are incompletely labeled.
In a semi-supervised learning task where unlabeled samples can be used in training, Wang et al.
(2017), Wang et al. (2022a), and Cao et al. (2022) adopt progressive learning by gradually increasing
the number of unlabeled data used for training. Self-learning in Kumar et al. (2010) and Kaul
et al. (2022) uses progressive learning by repeating the two steps, assigning labels depending on the
current detector and updating the current detector with these labels.

Our method can be seen as similar to the second approach in that it also intend to expand the training
dataset. However, our method uses progressive learning to reliably add realistically transformed
virtual images to the training dataset by avoiding quality degradation of the transformation, which
has never been attempted before using the progressive learning strategy.

3 METHOD

3.1 MEASURING THE DOMAIN GAP BETWEEN REAL AND VIRTUAL IMAGES

Modeling training set with multivariate Gaussian distribution. The purpose of adopting pro-
gressive transformation learning, which progressively expands the training set with a subset of the
realistically transformed virtual images instead of expanding it with the full set at once, is to avoid
the significant domain gap between the real and virtual images when training the transformation gen-
erator. Here, the domain gap is measured in the representation space of the detector, which is learned
so that two samples with different properties from the perspective of the detector are separated far
from each other.

In general, the representation space of the detector refers to the space formed by the output of the
penultimate layer of the detector since all layers of the detector except for the last layer can be
transferred for different downstream tasks (He et al., 2020; Chen et al., 2020; Grill et al., 2020).
In Lee et al. (2018), it is shown that for the softmax-based classifier, the distribution of each cat-
egory in the representation space can be modeled as a multivariate Gaussian distribution. Object
detector generally uses the sigmoid function (i.e., fsigmoid(x) = 1/(1 + exp(−wT

c x−bc) for the
category c), which does not consider outputs for other categories, instead of the softmax function
(i.e., fsoftmax (x) = exp(wT

c x + bc)/
∑

c′ exp(w
T
c′x+ bc′) for the category c) that competes for

outputs for all categories to normalize the model output to [0 1]. This is because, unlike classifica-
tion, the detection task must take into account that two or more co-located objects may be active on
a single output. In the supplementary material, we show that even for the sigmoid-based detector,
the distribution of each category in the representation space can also be modeled as a multivariate
Gaussian distribution.

Specifically, let x ∈ X and y = {yc}c=1,··· ,C ∈ Y, yc ∈ {0, 1} be an input and its label, respec-
tively. Then, the representation space of the sigmoid-based detector can be expressed as follows:

P (f(x)|yc = 1) ∼ N (f(x)|µc,Σc), (1)

where f(·) denotes the output of the penultimate layer of the detector. µc and Σc are the mean
and the covariance of the multivariate Gaussian distribution for the category c. µc and Σc can be
calculated over the entire set of training images as follows:

µc =
1

|Dc|
∑
x∈Dc

f(x), Σc =
1

|Dc|
∑
x∈Dc

(f(x)− µc) (f(x)− µc)
⊤
, (2)

where Dc is the set of instances for the category c. Practically, any detection whose IoU with the
groundtruth of the category c is greater than 0.5 belongs to Dc.

Measuring domain gap. After µc and Σc are empirically calculated to represent Dc, the domain
gap between a new image xnew and Dc can be measured using the Mahalanobis distance, as follows:

d(xnew ) = (f(xnew )− µc)
⊤
Σ−1

c (f(xnew )− µc) . (3)

This measurement of the domain gap is highly dependent on the detector’s ability to detect objects
in the image. It is commonly known that the detection capability of a detector is greatly affected by
the image size as well as the object appearance in the image. To mitigate the effect of image size
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Figure 2: Progressive Transformation Learning (PTL) pipeline. The red arrow indicates the
processing flow of the virtual images selected to be added to the training set.

on measuring the domain gap, the Mahalanobis distance for xnew is calculated at multiple image
scales, and the minimum distance is used as the domain gap, as follows:

d(xnew ) = min
s∈S

({d(xs
new )}), (4)

where xs
new is the resized image of xnew to be s×s. S is the set of resizing factors. In our experi-

ments, we use S = {128, 256, 384, 512}.

3.2 PROGRESSIVE TRANSFORMATION LEARNING

Our objective is to expand the training set consisting of real images by adding virtual images which
are transformed to intimate real images. The virtual2real transformation can be performed by a
generator trained by treating virtual images and real images as “source” and “target”, respectively,
in the conditional GAN framework. Inevitably, the transformation quality of the trained generator
is degraded when the domain gap between the source domain and the target domain is large. To
prevent the degraded transformation quality due to the large domain gap, we introduce Progressive
Transformation Learning (PTL), which progressively and iteratively expands the training set with
a subset of virtual images carefully selected to avoid the large domain gap. PTL goes through
three steps for each iteration (Fig 2): i) sampling a subset of virtual images from a virtual image
pool by giving heavier weights to images close to the current training set (Transformation candidate
selection), ii) transforming the selected images to be realistic (Virtual2real transformation), and iii)
adding the transformed images to the training set while excluding the selected images from the
virtual image pool (Set update). The details of each step are described next.

Transformation candidate selection. When selecting transformation candidates, we must consider
two conflicting claims simultaneously: i) to suit the purpose of PTL, virtual images with a small
domain gap should be selected, but ii) to suit the purpose of expanding the training set, virtual
images with appearances that rarely appear in the training set, which usually implies a large domain
gap, should also be selected.

To jointly consider these two claims, we use weighted random sampling. The sampling weight takes
the exponential term which gives higher weights to virtual images with smaller domain gaps, while
introducing one hyper-parameter τ to control the amplitude of the weights, as follows:

w(x) = exp

(
−d(x)

τ

)
, (5)

where d(x) is the Mahalanobis distance, which is used to measure the domain gap of x from the cur-
rent training set (eq 4). Intuitively, using a small τ allows a more frequent selection of images with
smaller domain gaps by giving them larger weights than using a large τ . (We use τ=5.0 throughout
all experiments; the detection accuracy is found to be not very sensitive to τ .)

In practice, transformation candidates are selected from virtual image pool through the following
four steps: i) training the human detector f t

D on the current training set of real images Rt, ii) calcu-
lating µt and Σt on Rt as in eq. 2, iii) calculating weights for each image in the current set of virtual
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images Vt as in eq. 5, and iv) applying weighted random sampling to Vt to select a pre-defined
number n of transformation candidates. (We use n=100 throughout all experiments.)

Virtual2Real transformation. In line with the goal of this paper to obtain a human detector that
can identify humans with diverse appearances captured by a UAV, we design the virtual2real trans-
formation to focus on the person region rather than the background of the selected virtual images. To
do so, we crop the person region in the virtual image, apply the transformation only to this region,
and segment the transformed person back to the original background. For accurate segmentation,
the pixel-wise segmentation mask is required. Obtaining such pixel-wise segmentation mask at no
cost is another benefit of using virtual images.

The conditional GAN framework (Mirza & Osindero, 2014), in which the generator is trained to
transform a given input image from source styles into target styles, is widely used to transform
virtual images to look like real images (Isola et al., 2017; Li & Lee, 2021). Among many variants
of conditional GANs, we use CycleGAN (Zhu et al., 2017) in which the generator is trained to
minimize the reconstruction error between the input image and the reconstructed image transformed
back to the original style of the input image after the initial transformation to the target style. It is
shown in Mirza & Osindero (2014) that the transformation with CycleGAN is likely to maintain the
original object pose while changing detailed styles such as patterns (e.g., transforming a white horse
into a zebra in the same pose). We intend to borrow this characteristic of CycleGAN to transform
virtual images in the direction that makes the detailed styles realistic while maintaining the overall
human appearances, which depend on various viewing angles or human poses.

In practice, the virtual2real transformation generator f t
G is trained using the CycleGAN framework

by treating the selected transformation candidates CV
t and the current set of real images Rt as

“source” and “target”, respectively. Then, CV
t are transformed to realistic transformed images CR

t

by applying the virtual2real transformation generator.

Set update. After the transformed images CR
t are acquired from the selected transformation candi-

dates CV
t, PTL updates the current real image set Rt and the current virtual image set Vt as follows:

Rt+1 = Rt ∪ CR
t Vt+1 = Vt/CV

t (6)

When this progressive learning is terminated, the final human detection model can be acquired by
training on the final set of real images.

In practice, the first two steps of PTL are applied to the tightly cropped image region of human
region, but in the ‘set update’ step, the entire image including the human region and the background
is added to the training set for training the human detector. More precisely, when training the
virtual2real transformation generator, the tightly cropped image region around each human from the
training images are used as the “target”.

4 EXPERIMENTS

Datasets and evaluation metrics. We perform experiments on three real UAV-based datasets, Vis-
Drone (Zhu et al., 2021), Okutama-Action (Barekatain et al., 2017), and ICG (ICG), and one virtual
dataset, Archangel-Synthetic (Shen et al., 2022), all including human instances. Archangel-Synthetic
consists of various virtual characters with different poses across a range of altitudes and circle radii
with different camera pitch angles (i.e., 16.9K images with eight characters, three poses, ten al-
titudes, six circle radii, and twelve camera pitch angles). Each image in Archangel-Synthetic ac-
companies metadata about the above imaging conditions, allowing us to analyze how the feature
distributions of virtual characters evolve with respect to these imaging conditions when PTL pro-
gresses. We use AP@.5 and AP@[.5:.95] as evaluation metrics for all experiments.

Detector. For the detector, we use RetinaNet (Lin et al., 2017) that uses the feature pyramid network
(FPN) to provide a rich multi-scale feature pyramid and processes features at all scale levels with the
same subnetwork responsible for the final classification and bounding box regression. It is important
to use the same subnetwork across all scale levels since the domain gap for each virtual image
should be measured in a shared representation space regardless of the image size. Most other object
detectors using FPN (e.g., SSD (Liu et al., 2016) and v4 or later versions of YOLO (Bochkovskiy
et al., 2020; Jocher, 2020; Li et al., 2022b; Wang et al., 2022b)) use different subnetworks at each
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Figure 3: Analysis of the use of virtual images when PTL progresses. The figures in the top row
show the accumulated distribution of transformation candidates with respect to camera locations
(i.e., altitude and rotation circle radius from the target human in x and y axes, respectively) for each
PTL iteration. Darker bins indicate that more virtual images have been added to the training set. The
figures in the bottom row (x axis: domain gap, y axis: the corresponding number of virtual images)
show the domain gap distribution of virtual images measured by eq. 4. These figures are collected
from the experimental setup of using 50 real images from the VisDrone dataset for training.

AP@.5: VisDrone AP@[.5:.95]: VisDrone AP@.5: Okutama-Action AP@[.5:.95]: Okutama-Action AP@.5: ICG AP@[.5:.95]: ICG

Figure 4: Learning curves of the two metrics (AP@.5 and AP@[.5:.95]) on the three datasets

scale level. However, PTL is not structurally limited to RetinaNet as it can be used with any detector
with minor modifications, such as adding one shared layer across all scale levels.

4.1 PROPERTIES OF PROGRESSIVE LEARNING

Which virtual images are selected for each PTL iteration? The top row of Figure 3 shows the
change in the accumulated distribution of virtual images added to the training set via each PTL
iteration with respect to camera locations. By examining the distribution, we can identify which
camera locations of the virtual images contribute more to the training set at each PTL iteration.

It is observed that after the 1st PTL iteration, most virtual images included in the training set are
taken from the camera locations close to the human subjects. As PTL progresses, the camera lo-
cations of the virtual images included in the training set gradually spread across the UAV altitudes
and rotation circle radii. Consequently, after the 5th PTL iteration, transformed virtual images with
diverse appearances from much broader camera locations are included in the final training set. This
demonstrates that the proposed transformation candidate selection process is adequately designed to
consider the two conflicting claims together.

How close does the domain gap get as PTL progresses? The bottom row of Figure 3 shows the
domain gap between the virtual images and the training set at each PTL iteration. We can observe
the domain gap distribution of virtual images to the training set gradually becomes narrower and
smaller. Additionally, some virtual images which have not been included in the training set also
appear in the long tail of the distribution.

Accuracy variation as PTL evolves. Figure 4 shows how the accuracy changes as PTL progresses
on the three datasets. Overall, for AP@.5, accuracy increases rapidly until the 3rd iteration and does
not change significantly thereafter. On the other hand, for AP@[.5:.95], accuracy continues to in-
crease even after the 3rd iteration on the Okutama-Action and ICG datasets. This can be interpreted
such that human bounding boxes are estimated more accurately as PTL progresses on these two
datasets.
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Table 1: Low-shot learning accuracy with 20 and 50 real images. AP@.5 and AP@[.5:.95] are
reported in each bin. For PTL, the margin from the baseline accuracy is shown below the reported
accuracy. The best accuracy for each setting is shown in bold. R and V denote the set of real images
and the set of virtual images, respectively.

method train set
VisDrone Okutama-Action ICG

20 50 20 50 20 50
baseline R 3.74/ 1.09 6.42/ 1.86 41.61/ 11.23 49.84/ 13.76 49.35/ 14.69 66.75/ 23.91
pretrain-finetune R+V 4.99/ 1.46 6.25/ 1.99 44.57/ 12.78 49.06/ 15.08 66.92/ 26.67 68.41/ 29.73
naive merge R+V 3.41/ 1.02 5.18/ 1.65 34.26/ 9.21 48.33/ 14.61 55.95/ 20.76 65.68/ 26.73

w/ transform R+V 1.26/ 0.49 4.02/ 1.37 27.37/ 7.84 41.36/ 12.64 48.02/ 17.62 65.03/ 27.21
PTL (5th itr.) R+V 6.83/ 1.94 9.09/ 2.85 52.89/ 15.57 59.90/ 18.48 69.11/ 27.33 74.14/ 31.41

+3.09/+0.85 +2.67/+0.99 +11.28/ +4.34 +10.06/ +4.72 +19.76/+12.64 +7.39/ +7.50
PTL (best) R+V 7.52/ 2.13 9.33/ 2.94 53.82/ 15.59 60.65/ 18.48 70.23/ 27.33 74.14/ 31.41

+3.78/+1.04 +2.91/+1.08 +12.21/ +4.36 +10.81/ +4.72 +20.88/+12.64 +7.39/ +7.50

4.2 RESULTS ON LOW-SHOT LEARNING

Baselines. In this section, we compare PTL with the method utilizing only real images for training
(i.e., ‘baseline’) and other three methods also leveraging virtual images in conjunction with real
images for training (i.e., ‘pretrain-finetune’, ’naive merge’, and ‘naive merge w/ transform’) in terms
of human detection accuracy. ‘Pretrain-finetune’ is the strategy to train a model by pre-training
on virtual images and then fine-tuning on real images, which is the most widely used approach
leveraging virtual images in previous works (Handa et al., 2016; Kim et al., 2016; Gaidon et al.,
2016; Fabbri et al., 2018; Varol et al., 2018; Mu et al., 2020; Mishra et al., 2022; Guo et al., 2022;
Jin et al., 2022; Baek & Shim, 2022). ’Naive merge’ is the strategy that uses a training set naively
merging from real and virtual images for model training, which has also been used in previous
works (Ros et al., 2016; Richter et al., 2016). ‘Naive merge w/ transform’ naively adds transformed
virtual images to the training set, where the transformation generator is trained with the CycleGAN
framework by considering all virtual images and all real images as “source” and “target”.

Main Results. In Table 1, we compare PTL to the baselines in terms of human detection accuracy
in two low-shot detection regimes (i.e., 20 and 50 real images are used for training) on the three
real-world UAV-based datasets. Low-shot detection is a suitable task to validate the proper use of
virtual images as notable effects can be expected from adequately expanded datasets.

In all cases, the previous methods leveraging virtual images do not present significantly better, or
even worse, accuracy than their counterpart (i.e., ‘baseline’) using real images only for training.
‘Pretrain-finetune’ is the only method, except for PTL, that presents better accuracy than the baseline
in some cases. This two-step method is effective in avoiding adverse effects due to the large domain
gap while indirectly taking advantage of the large-scale dataset. However, the increase in accuracy is
marginal as the task-specific properties (i.e., human detection) of the large-scale virtual dataset used
for pre-training are not fully exploited due to the catastrophic forgetting issue inherent in this indirect
method. In addition, ‘naive merge w/ transformation’, which is the only previous method that uses
transformed virtual images, presents significantly reduced accuracy, which can be regarded as the
adverse effects (e.g., transformation quality degradation) when the large domain gap is not properly
addressed. The final model obtained after the 5th PTL iteration or the best model achieved when PTL
progresses consistently presents significantly better performance than any compared method. This
demonstrates the effectiveness of PTL such that accuracy is substantially improved by expanding the
training set using virtual images while the large domain gap is appropriately addressed.

Table 2: Varying τ in PTL (best)
on the VisDrone dataset with 50-
shot learning setup.

τ 2.0 5.0 10.0
AP@.5 9.45 9.33 9.68

AP@[.5:.95] 2.98 2.94 2.89

Ablation: the effect of τ . In Table 2, we compare three differ-
ent τ values to investigate the effect of τ used to control the
sampling weights when selecting transformation candidates
(eq. 5). In general, the change in accuracy with respect to τ
is not obvious. Interestingly, τ=10.0 gives the best accuracy
for AP@.5 while τ=2.0 is the best for AP@[.5:.95]. That is,
using a smaller τ to select more virtual images with small do-
main gaps leads to more accurate estimation of the bounding
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Table 3: Cross-domain detection accuracy. The table shows experiments with 3×3 cross-domain
setups. For each setup, datasets shown to the left and right of the arrow are the training and test
sets, respectively. The accuracies of PTL and the baseline without using virtual images for training
are shown. Setups on the top use training and test images from the same domain, which provides
a baseline accuracy in the cross-domain setups. All setups in each column are tested on the same
dataset and the same low-shot regime.

method VisDrone Okutama-Action ICG
20 50 20 50 20 50

Vis → Vis Oku → Oku ICG → ICG
baseline 3.74/ 1.09 6.42/ 1.86 41.61/ 11.23 49.84/ 13.76 49.35/ 14.69 66.75/ 23.91
PTL (5th itr.) 6.83/ 1.94 9.09/ 2.85 52.89/ 15.57 59.90/ 18.48 69.11/ 27.33 74.14/ 31.41
PTL (best) 7.52/ 2.13 9.33/ 2.94 53.82/ 15.59 60.65/ 18.48 70.23/ 27.33 74.14/ 31.41

Oku → Vis Vis → Oku Vis → ICG
baseline 1.62/ 0.47 2.04/ 0.57 17.13/ 4.53 36.82/ 9.87 2.92/ 0.56 7.46/ 1.83
PTL (5th itr.) 2.72/ 0.94 3.05/ 1.07 30.72/ 7.45 42.39/ 11.41 26.86/ 7.22 29.26/ 7.27
PTL (best) 3.00/ 1.22 3.56/ 1.17 33.25/ 8.59 42.39/ 11.46 29.60/ 7.69 30.01/ 7.36

ICG → Vis ICG → Oku Oku → ICG
baseline 0.54/ 0.13 0.99/ 0.26 3.56/ 0.75 10.27/ 2.49 5.37/ 1.25 5.23/ 1.20
PTL (5th itr.) 1.09/ 0.33 1.61/ 0.50 11.19/ 2.58 14.20/ 3.56 28.98/ 8.14 25.39/ 6.53
PTL (best) 1.58/ 1.02 1.70/ 0.63 12.82/ 2.96 14.20/ 3.71 28.98/ 8.14 26.62/ 6.53

boxes, whereas selecting virtual images with more diverse appearances using a larger τ increases the
detection accuracy. Taking these two effects into account, we carry out all experiments with τ=5.0.

4.3 RESULTS ON CROSS-DOMAIN DETECTION

In Table 3, we show the accuracy for the cross-domain setups on the three datasets. The “cross-
domain detection” setups are used to validate the impact of using virtual images for training when
training and test images have distinct characteristics, such as when the distributions of human ap-
pearances with respect to human poses and viewing angles are different.

First, it is observed that using PTL yields much better accuracies than the baseline when using
the same real training dataset. Despite the inherent difficulty of cross-domain learning, it is also
observed that leveraging virtual images through PTL produces results not far behind the accuracy
of the baseline (shown in the first row of Table 3) which uses the training images from the same
domain as the test images. However, the improvement in the cross-domain detection accuracy when
using the ICG dataset for training is relatively low compared to other cases. This is because the
ICG dataset has very different characteristics from other datasets, and virtual images added to the
training set do not reduce this difference. Note that if the real images in the initial training set have
very distinct appearances, a very different set of virtual images may be selected in the first PTL
iteration. Thus, the disparity may not be overcome even if the PTL progresses further. Nevertheless,
in general, we can confirm that human detectors trained using virtual images through PTL can
improve substantially detection accuracy, regardless of which real dataset is used during training.

5 DISCUSSION

Our method has been proved effective in leveraging virtual images during training as it presents
much better accuracy than any other previous methods for low-shot learning task, where scaling up
the training dataset can significantly impact. In addition, compared to the baseline which does not
use virtual images, our method also presents remarkable accuracy on cross-domain detection, where
the real training and test datasets are from two distinct domains with very different characteristics.

Despite the merit of the proposed method, there is still room to improve PTL further. Specifically, the
current version of PTL can only leverage a subset of the entire virtual images within a limited number
of iterations, beyond which the accuracy may decrease. We hope that more advanced methods can
be developed to address this issue so that PTL can progress for more iterations with a continuous
accuracy increase until all virtual images are leveraged for training.
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