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Abstract

Existing Moment retrieval (MR) methods focus on Single-Moment Retrieval
(SMR). However, one query can correspond to multiple relevant moments in
real-world applications. This makes the existing datasets and methods insufficient
for video temporal grounding. By revisiting the gap between current MR tasks and
real-world applications, we introduce a high-quality datasets called QVHighlights
Multi-Moment Dataset (QV-M?), along with new evaluation metrics tailored for
multi-moment retrieval (MMR). QV-M? consists of 2,212 annotations covering
6,384 video segments. Building on existing efforts in MMR, we propose a frame-
work called FlashMMR. Specifically, we propose a Multi-moment Post-verification
module to refine the moment boundaries. We introduce constrained temporal
adjustment and subsequently leverage a verification module to re-evaluate the
candidate segments. Through this sophisticated filtering pipeline, low-confidence
proposals are pruned, and robust multi-moment alignment is achieved. We retrain
and evaluate 6 existing MR methods on QV-M? and QVHighlights under both SMR
and MMR settings. Results show that QV-M? serves as an effective benchmark for
training and evaluating MMR models, while FlashMMR provides a strong baseline.
Specifically, on QV-M2, it achieves improvements over prior SOTA method by
3.00% on G-mAP, 2.70% on mAP@3+tgt, and 2.56% on mR@3. The proposed
benchmark and method establish a foundation for advancing research in more
realistic and challenging video temporal grounding scenarios. Code is released at
https://github.com/Zhuo-Cao/QV-M2.

1 Introduction

Understanding how natural language relates to visual events in videos is a core problem in video-
language research [33}143] 42| [13] [37]. One representative task, Moment Retrieval (MR), aims to
retrieve relevant temporal segments given a natural language query. Most existing MR methods [39}
17,16} [12]] operate under the Single-Moment Retrieval (SMR) paradigm, assuming that each query
corresponds to exactly one relevant moment within a video. However, this assumption oversimplifies
real-world scenarios, where a single query often aligns with multiple non-overlapping moments. For
example, in instructional videos, a query such as "cutting vegetables" may correspond to several
separate instances of chopping different ingredients throughout the video. Similarly, in sports
broadcasts, "successful three-point shots" may occur multiple times within a single match.

Despite the prevalence of such multi-moment scenarios, existing MR methods [12} [20, (18} 121]
remain inherently limited to retrieving only the most relevant single segment, disregarding other
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Query: “A woman with short brown hair and curved bangs holding an object in her hand.”
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Figure 1: Prediction in SMR vs. MMR. In multi-moment retrieval, SMR optimizes for the most
probable single moment, often disregarding other valid segments. In contrast, MMR encourages
comprehensive retrieval by identifying all semantically relevant moments, aligning better with real-
world video understanding.
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valid moments. This constraint severely limits their applicability to comprehensive video-language
understanding. Addressing this fundamental gap between current MR methodologies and real-world
applications requires a paradigm shift from SMR to Multi-Moment Retrieval (MMR).

By revisiting current video temporal grounding research [2} 18} 20], we found that a major limitation
is the lack of standardized datasets and evaluation metrics tailored for MMR. To support rigorous
benchmarking and further research in this area, we introduce QV-M? (QVHighlights [12] Multi-
Moment Dataset), an enhanced dataset based on QVHighlights. QV-M? contains 2,212 high-quality
human-annotated queries, covering 6,384 annotated temporal segments across diverse video scenarios.
Unlike previous MR datasets, which primarily support SMR evaluation, QV-M? explicitly accounts for
queries with multiple relevant moments, making it the first fully human-annotated dataset dedicated
to MMR benchmarking. Beyond dataset contributions, we also propose new evaluation metrics that
extend standard mean Average Precision (mAP) and Intersection-over-Union (IoU) to measure MMR
performance. These metrics provide a comprehensive evaluation considering both the SMR and the
MMR settings, ensuring that future MMR research aligns with real-world requirements.

To further advance MMR, we introduce FlashMMR, a novel framework explicitly designed for
MMR. A key challenge in MMR is to ensure that the retrieved moments precisely include all relevant
moments and exclude false positives. To achieve this, we propose a Multi-Moment Post-Verification
module, which refines moment boundaries through a constrained temporal adjustment strategy and
further verifies retrieved moments using a semantic consistency-based re-evaluation process. This
module filters out low-confidence proposals and enhances alignment with query semantics. Through
this structured refinement pipeline, FlashMMR effectively reduces the presence of redundant or
irrelevant moment predictions while maximizing the recall for multiple relevant instances. As show
in Figure[T] the objective shifts from retrieving the single most relevant moment to identifying as
many relevant and semantically consistent moments as possible.

To validate the effectiveness of FlashMMR, we benchmark 6 open-source MR models under both
SMR and MMR settings on QV-M? and QVHighlights. Experimental results show that the new
dataset enhances the performance of all methods on both SMR and MMR task. Our comprehensive
comparisons reveal that while existing methods perform well in single-moment retrieval, they struggle
significantly in multi-moment scenarios due to their inherent architectural limitations. In contrast,
FlashMMR consistently outperforms prior approaches across all MMR metrics, demonstrating its
effectiveness, with a 3.00% improvement in G-mAP, 2.70% in mAP @3+tgt, and 2.56% in mR@3 on
QV-M?2. These findings underscore the necessity of dedicated MMR frameworks to advance video
language understanding. FlashMMR not only enhances the performance of MMR task, but also
establishes a new benchmark for future research in MMR.

In summary, Our contributions are as follows:

1. We introduce FlashMMR, a novel Multi-Moment Retrieval (MMR) framework, which incorporates
a Multi-Moment Post-Verification module to refine candidate segments by enforcing temporal
consistency across related moments.

2. We propose QV-M?, the first fully human-annotated MMR dataset, designed to facilitate bench-
marking and model development for MMR.

3. We develop a comprehensive suite of MMR evaluation metrics that extend traditional MR evalua-
tion protocols. These metrics jointly assess retrieval accuracy and temporal coverage, offering a
fine-grained evaluation of model performance on moment retrieval.



Table 1: Comparison with existing moment retrieval datasets.

. Avg#moment  Av Avg ratio . Full
Dataset Domain pger query QuerygLen Mome:,gnt/Video #Moments / #Videos Human—An};lotated
DiDeMo [1] Flickr 1 8.0 22.2% 41.2K/10.6K v
ANetCaptions [10] Activity 1 14.8 30.8% 72K/ 15K v
CharadesSTA [5] Activity 1 7.2 26.5% 16.1K/6.7K X
TVR [11] TV show 1 13.4 12.0% 109K /21.8K v
TACoS [27] Cooking 1 27.9 8.4% 18K /0.1K v
YouCook?2 [47] Cooking 1 8.7 1.9% 13.8K /2K v
COIN [38] Open 1 4.9 9.8% 46.3K/ 11.8K v
HiREST [40] Open 1 4.2 55.0% 24K /0.5K v
NExXT-VMR [25] Open 1.5 - - 229.5K /9K X
QVHighlights [12] Vlog/News 1.8 11.3 16.4% 18.5K/10.2K v
QV-M? (Ours) Vlog/News 2.9 12.0 25.5% 6.4K/1.3K v

By providing a strong benchmark and a new dataset, our work lays the foundation for future research
on MMR systems, paving the way for more realistic video understanding in complex environments.

2 Related Work

2.1 Single-Moment Retrieval

Single-Moment Retrieval (SMR) focuses on the task of localizing a single relevant temporal segment
within a video based on a natural language query. Given the query, the model predicts the start
and end timestamps of the most relevant moment. Existing SMR methods [29, [7] can be broadly
categorized into proposal-based and proposal-free approaches.

Proposal-Based Methods. Proposal-based approaches decompose the retrieval process into two
stages: candidate moment generation followed by matching and ranking. These methods can be
further classified based on how they generate candidate segments: Sliding Window Approaches [39,
17,16, 11} 15]] systematically segment videos into overlapping windows and evaluate their relevance to
the query. Anchor-Based Approaches [46] 39,32, 44] define a set of predefined anchors across the
video and refine the most promising candidates. Proposal-Generated Approaches [45] 36} 134,130, [15]]
utilize deep neural networks to generate adaptive moment proposals.

Proposal-Free Methods. Proposal-free approaches directly predict the start and end timestamps using
sequence regression techniques. Instead of evaluating pre-defined candidate segments, these methods
formulate moment retrieval as an end-to-end sequence prediction problem [16} 19} 41} 22| [12} [28]].
Recent transformer-based models, such as Moment-DETR [12], adopt a set-based prediction paradigm
to eliminate the need for non-maximum suppression (NMS) and other post-processing steps.

While proposal-free methods demonstrate higher efficiency and flexibility, they often struggle with
multi-moment scenarios, as they are inherently designed to retrieve only a single moment per query.

2.2 Multi-Moment Retrieval

Real-world video content often contains multiple non-overlapping moments that are semantically
relevant to the query. Current SMR models address this by selecting the highest IToU moment
as the ground truth, ignoring other valid segments [[12]]. This simplification results in suboptimal
retrieval performance when multiple events contribute to the semantics of the query. To address these
shortcomings, recent studies have explored Multi-Moment Retrieval (MMR), where a query can be
mapped to multiple relevant moments [25| [8].

Early Efforts in MMR. Early works attempted to adapt SMR models to MMR by modifying
retrieval pipelines: Otani et al. [24]] identified false negatives in SMR training. Liu et al. [17]
extended proposal-based MR models to allow multiple moment predictions per query, though lacking
robust mechanisms for handling dependencies among moments.

Recent Advances in MMR. Recent works have introduced dedicated architectures and datasets
for MMR: SFABD [§8] refines candidate retrieval by eliminating false negatives and improving



alignment with query semantics. Concurrent work by Qin et al. [25]] extends moment retrieval beyond
single-moment assumptions, introducing NExT-VMR, a dataset designed to support multi-moment
and no-moment retrieval. However, its design and evaluation remain closely aligned with previous
benchmarks, without targeted optimizations for the unique challenges of MMR. Additionally, the
dataset is not yet publicly available.

Despite recent efforts in multi-moment retrieval (MMR), a high-quality dataset built with standardized
methodology is still lacking. We address this gap by introducing QV-M?, a densely annotated, high-
quality MMR benchmark, together with FlashMMR, which establishes a new baseline for the
multi-moment retrieval task.

3 QV-M? Dataset

3.1 Video Collection and Annotation

Video Collection. To better reflect real-world MMR scenarios and facilitate comparison with existing
SMR tasks, building on existing moment retrieval datasets is a natural and effective choice for
developing MMR benchmarks. Among them, QVHighlights [12] stands out as one of the most widely
adopted datasets. Composed of unedited or minimally edited videos with naturally rich content,
it serves as an ideal foundation for extending to MMR while enabling a seamless transition and
comparison with SMR.

Our dataset retains the original QVHighlights videos and adds new annotations for MMR. The videos,
sourced from YouTube, include lifestyle vlogs and news footage, covering diverse scenarios such as
travel, social activities, natural disasters, and protests. They vary in perspective (e.g., first-person,
third-person) and range from 5 to 30 minutes in length, offering both diversity and annotation
feasibility. This ensures the dataset captures real-world complexity and better supports the MMR
task.

Video Annotation. We design a manual annotation process for the one-to-many nature of MMR. It
improves diversity and coverage while ensuring high quality. We define a set of annotation guidelines
to standardize the process, including: (i) create detailed queries that precisely capture actors, actions,
and contexts; (ii) include context-dependent queries that require knowledge of temporal relationships
within the video; and (iii) design negative (inverse) queries to mark segments where a specified action
or event does not occur.

Each query must be matched with one or multiple video segments. To facilitate this, we develop an
annotation interface that allows annotators to watch each video, formulate the queries, and assign start
and end times for relevant segments. Details of the annotation interface are provided in supplementary
material. For quality control, after every 100 videos are annotated by the primary annotator, we
randomly sample 5% of these videos for re-checking by an additional annotator. If the temporal
boundaries identified by the two annotators overlap by less than 90%, the batch is re-annotated by a
third annotator. This process ensures annotation consistency and captures the complexity of MMR.
License and data usage details are provided in the supplementary material.

3.2 Dataset Statistics

Our dataset, QV-M2, consists of 2,212 new queries associated with 1,341 videos, covering a total of
6,384 annotated temporal moments. As shown in Table[T} compared to existing moment retrieval
datasets, QV-M2 is distinct in its MMR setting, where each query is linked to an average of 2.9
moments, significantly surpassing the typical single-moment assumption in prior datasets.

To analyze the temporal properties of annotated moments, we present the distribution of moment
lengths and location in Figure [2(a) and (c). As shown in (a), the majority of temporal windows fall
within the 2 to 20-second range, with a notable 1,263 instances (19.8%) extending beyond 20 seconds,
highlighting the diversity in temporal granularity.

Figure c) compares the ground-truth moment boundaries of QV-M? and Charades-STA [5]] (start
time on the x-axis and end time on the y-axis; both axes normalized by video duration), and reveals
that QV-M? annotations are distributed more uniformly throughout videos. Lexical analysis of QV-M2
(Figure[2|b)) reveals a rich vocabulary of commonly occurring nouns and verbs, emphasizing key
concepts in human interactions, fashion, and daily activities. Frequent words such as woman, man,
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Figure 2: Dataset statistics for QV-M?2. (a) and (c) show the distributions of moment lengths and
temporal locations, respectively; (b) reports the top-10 most frequent words in the annotations.

speak, wear, and scene suggest a broad coverage of people-centric activities, aligning well with the
dataset’s focus on vlog and news content.

3.3 Evaluation Metrics For MMR

We develop new evaluation metrics by smoothly adapting SMR metrics to handle multiple moments.
Specifically, we label a prediction as a true positive if its Intersection-over-Union (IoU) with any
unmatched ground truth meets a threshold (e.g., 0.5); otherwise, it is deemed a false positive.

Generalized mAP. The generalized mean Average Precision (G-mAP) is computed by averaging the
AP scores over multiple IoU thresholds:

G-mAP = > AP(7),
|T| TeT

where T denotes the set of IoU thresholds (e.g., {0.5,0.55,...,0.9}), and AP(7) represents the
average precision computed at threshold 7.

To further capture performance nuances, we categorize queries by their number of ground-truth
moments and report mAP under each category (e.g., mAPQ1_tgt, nAPQ2_tgt, mAPQ3 + _tgt).
Averaging these scores over multiple IoU thresholds also yields the G-mAP, ensuring a robust, unified
metric that can evaluate both single- and multi-target scenarios.

Mean IoU@k. The mean Intersection-over-Union at top-% predictions is defined as:

mloUQk = max IoU(pred,, gt
19| qezg — 2€G(a) (pred;. 20,

where k € {1, 2,3} denotes the rank, Q is the set of all queries, and G(q) represents the ground-truth
moments associated with query ¢. The function IoU(pred,, gt) computes the Intersection-over-Union
between the i-th prediction and one of the ground-truth moment. It is worth noting that Mean IoU @k
is computed only on queries with at least k ground-truth moments.



Multi-Scale Temporal Prediction

Video
"/ Feature
|
Video _l;-_ o : Fusion - Temporal Feature ASR
Encoder Layering Module Module
: Boundary Prediction y
Dummy Tokens Ty K Adaptive ;:;;3:6 T
--=s : D, )! Cross-Attention Encoder - Momemsﬂ
! i LGuenc)  (sp.22) (53.€3,65) |1

i | 1
1 ! G 00— — T EEEesosses SRR
:: Dummy‘ ] 1
] e 1
i I Encoder | |
i i i | 7 [ Fusion Feature Selection ]
(D )r | i
1 4, 1
Tt ! I I I
(g l[ 1 : 3
Text Query : : Guide I:Ij]‘ I:D
______ ! 1 D ) )
| Two | Text : l [ Feature Refinement Unit ]
i chitdren .. ™| Encoder 0 :
Niozelord 1% |

Sz=2 Si P1,P2,P3 «——————— Temporal loU
Guide T
Feature Extraction Post-Verification module [si e [si e [s3 s

i

Ground Truth Moments B*

Figure 3: Overview of the FlashMMR Framework. In Feature Extraction, video and query features
are extracted via frozen encoders. The textual feature, combined with encoded dummy tokens, forms
the key, while the video feature serves as the query and the text feature as the value in Feature
Fusion Module. This produces fused features { fi}fzvl (in purple), where color intensity indicates
semantic relevance. During inference, the fused features are directly passed into the Multi-Scale
Temporal Prediction Module to generate the final prediction {(s;, e;, ¢;)}3_,. During training, the
Post-Verification Module further refines the initial prediction. Specifically, the fused features are
aligned with the prediction to obtain a refined confidence score p; and a self-similarity matrix 5;,
both of which are supervised using the ground truth moments.

Mean Recall @k. The recall at top-k predictions is defined as:

mRQk = |Q| Z Z 1 {méai( ToU(pred;, gt) > 7
gteg(q) =

where k € {1, 2,3} denotes the rank, 1[-] is the indicator function, and 7 is the IoU threshold (e.g.,
{0.53,0.35,...,0.95}) for determining whether a prediction is considered a match to a ground truth.
Similar to Mean IoU @k, Mean Recall @k is also computed only on queries with at least k£ ground-truth
moments.

Taken together, these new metrics form a comprehensive and scalable evaluation framework that
effectively measures the MMR task while maintaining strong compatibility with the SMR criteria. In
particular, G-mAP, mIoU@1, and mR@1 remain fully consistent with the standard SMR metrics,
ensuring direct comparability of performance in both single- and multi-moment retrieval settings.

4 Methodology

As shown in Figure [3] the proposed FlashMMR model extends traditional SMR pipeline by intro-
ducing a novel Post-Verification Module. This module effectively adapts the existing framework for
addressing MMR tasks. The FlashMMR consists of three key components: Feature Extraction and
Fusion, Multi-Scale Temporal Processing, and the Post-Verification.

4.1 Feature Extraction and Multi-Scale Temporal Processing

Different with Single-Moment Retrieval, the goal is to locate a multiple video segment that best
matches a textual query. Given a video V with clip-level features V = {vl} , and a query Q with
word features Q = {¢; f 1> the model predlcts a set of temporal spans (s;, €;, cz) 1, Where (s;, e;)
defines the i-th predicted moment and ¢; is its confidence score.

Feature Extraction. Consistent with previous research [12} 20, 21]], we extract video features V
using frozen SlowFast [4] and CLIP [26] encoders, while text features Q are derived from CLIP.



The input video is segmented into clips at a predefined frame rate r (e.g., 0.5 FPS), and each clip
is transformed into a feature representation {v; € Rd}fz’”l, while each query word is encoded as
{a: € Rd}f:ql. Both modalities are projected into a shared space of dimension d via MLPs. L, and
L, denote the video clip number and query word count, respectively. The dummy token and dummy
encoder used here are identical to those in [2,121], and act as explicit sinks that absorb semantics
irrelevant to the query. Further implementation details are provided in the supplementary material.

Cross-Feature Alignment. To enhance video-text feature alignment, we adopt a Adaptive Cross
Attention (ACA) module [21]], which integrates learnable dummy token to encode contextual infor-
mation beyond explicit query representations. After we get the fused feature F' € R *9 from ACA,
it is further refined using a Transformer Encoder for long-range dependencies.

Temporal Feature Layering. To capture temporal variations across different moment durations, we
employ a multi-scale temporal processing. We construct a temporal feature pyramid by applying a
series of 1D convolutions to F":

r_{F ifp=1, "
P | ConvID?(F,stride = 2), ifp=2,3,...,P.

This results in a set of downsampled fused feature maps {F,|p = 1,2,..., P}, capturing temporal
dependencies at different granularities. Moment boundary predictions are computed at each scale

a
using a shared convolutional head: B, = ¢ (Conle (o (Conle(Fp)))T> x Cp, where B, €

L
R27-T " represents boundary predictions, C), is a learnable scaling parameter, and o is the activation
function.

Adaptive Score Refinement. To improve moment retrieval confidence, we refine moment scores
using both intra-scale and inter-scale scoring: ¢, = ScoreHead;(F},), p = 1,2,..., P, Cinra =
Concat(cy, ¢, ..., ¢p), Ciner = ScoreHeads (Concat(Fy, Fs, ..., Fp)). The final confidence score
is computed as: Cipag = - Cinga + (1 — ) - Cinter, Where z is a learnable weighting factor.

We first obtain initial moment predictions. To better address the multi-moment setting, we introduce
a post-verification module that enforces consistency across semantically related moments. This
refinement leads to more diverse predictions and broader coverage in the multi-moment setting.

4.2 Post Verification Module

Post Verification Module refines initial predictions and improves alignment with the ground truth. It
consists of two key components: Post-Processing with Feature Refinement and Semantic Consistency
Control. We describe each component in detail below.

Post-Processing with Feature Refinement. Given the initial boundary predictions B € R¥*™ where

each predicted moment b; = (s;, e;, ¢;) consists of start time s;, end time e;, and confidence score
c;, we apply a structured post-processing strategy inspired by prior refinement techniques [2} 21]].
This step ensures that the predicted windows adhere to temporal constraints and enhances their
interpretability. We employ a post-processing function F(-) parameterized by a set of structured
constraints, including minimum and maximum window lengths, temporal clipping, and rounding
heuristics: _ .

B= ]:(B; /\clip7 )\round); 2)
where Ajip and Aroung control boundary clipping and discretization granularity. This operation prevent
excessively short or long predictions and align segments with predefined frame sampling rates.
Following this step, each predicted interval is used to extract its corresponding multi-modal feature
representation from the fused video embeddings F' € Rivxd. I, = F [s; X r: e; X r,:], where the
feature segments I; are sampled based on the refined start and end timestamp.

Post Verification via Semantic Consistency Control. To re-evaluate the quality of predicted
moments, we introduce a post-verification network P(-), which models semantic consistency between
retrieved intervals and their relevance to the query. This network is implemented as a recurrent
module Pgru(-) [3l], capturing contextual dependencies across extracted moment representations:
p; = o(Pgru(l;)), where p; represents the refined confidence score assigned to each predicted
moment, and o(-) is the activation function. The refined score p € R™ provides an confidence
adjustment that used to mitigate errors in the initial moment retrieval process.



Table 2: Cross-Dataset Performance Comparison of SMR and MMR on QVHighlights and
QV-M2. Experimental results for each method under three settings: (i) trained and evaluated on
QVHighlights, (ii) trained on QVHighlights and evaluated on QV-M?2, and (iii) trained on QV-M? and
evaluated on QVHighlights. The table reports the performance gains on both SMR and MMR tasks
introduced by the new QV-M? dataset, and highlights the increased challenge that MMR poses to
methods originally designed for SMR.

mAP mloU@k mR@k
Method GmAP @l_tgt @2_tgt @3+tgt @1 @2 @3 @l @2 @3
M-DETR [12] 3279 4202 19.45 367 | 4881 3275 2854 | 40.19 2456 1955
w/ QV-M? Val 3026 4043 19.44 426 | 4697 3165 2790 | 3834 2378 19.79
— QV-M? Train | 3470 4381  20.75 535 | 5171 3448 3122 | 4344 2723  23.67
EATR [0] 3596 4415 2380 770 | 5091 3644 3400 | 4285 30.14 27.65
w/ QV-M? Val 3542 4559 2371 719 | 5030 3642 3310 | 4237 2987 2692
— QV-M? Train | 38.65 4690  26.80 882 | 5326 3971 3525 | 45.64 3377  29.99
UVCOM[33] 42.83 5171  29.96 1102 | 5779 4092 3879 | 5101 3526 3297
w/ QV-M? Val 40.33 5074  28.82 907 | 5573 4061 37.11 | 4867 3461 31.50
— QV-M? Train | 43.68 5171 3156  13.88 | 58.96 4396 42.10 | 5206 37.88 36.77
QD-DETR [20] 3890  48.18 2455 747 | 5448 3863 3614 | 4680 3193  29.49
w/ QV-M? Val 3632 4662 2482 697 | 5275 3753 3381 | 4501 3070 2721
S QV-M? Train | 40.63 4994 2691 869 | 5639 3976 3609 | 48.72 3296 29.42
TR-DETR [31] 36.86 4620  24.63 518 | 5386 3659 31.18 | 4533 2891 24.13
w/ QV-M? Val 3414 4496 2264 544 | 5314 3458 2873 | 4449 2753 2337
— QV-M*Train | 4449 5470  29.68 860 | 6073 4185 3810 | 53.33 3512 32.30
FlashVTG [2] 4802 5731 35.08 1385 | 6145 4380 3937 | 5392 3898 35.17
w/ QV-M? Val 40.28 5021 29.93 937 574 4403 3942 | 4992 3724 32091
— QV-M*Train | 4835  57.37 3540 1571 | 62.61 44.86 41.83 | 55.67 40.03 37.77
FlashMMR (Ours) 48.07 5695 3578 1515 | 62.09 4532 4032 | 55.02 40.63  36.68
w/ QV-M? Val 4481 5529 3431 1358 | 5995 4398 3821 | 5255 3896 34.94
— QV-M? Train | 4842 5746 3737 1641 | 6240 4752 43.13 | 5538 4240 39.29

We supervise the refined score p by leveraging the temporal Intersection-over-Union (tloU) between
predicted segments and ground-truth moments. Given the ground truth annotations B* = {(s7, ¢})},
we compute the tloU matrix and select the highest overlap score for each prediction:

ToU = max(tloU(B, B*),dim = —1).

By incorporating this post-verification module, our method effectively re-evaluates and refines initial
moment predictions, leading to to more accurate and coherent grounding in the multi-moment setting.

4.3 Training Objectives

Follow the previous work [2], we employ Focal Loss [14], L1 Loss, and Clip-Aware Score Loss to
optimize classification labels, temporal boundaries, and clip-level confidence scores, respectively.
Additionally, we introduce a post-verification loss to refine moment predictions through a combination
of mean squared error (MSE) loss and contrastive representation (Cross-Entropy) loss: Lpy =

lp — IOU”% + £repr~

The representation loss Ly enforces feature similarity consistency by encouraging temporally close
frames to maintain high semantic coherence: Ly, = Y, CE(S;, T;), where S; is a cosine similarity
matrix computed over fusion features, and T'; represents the pairwise segment agreement derived
from ground truth moment labels.

S Experiments

5.1 Implementation Details

For fair comparison, we use SlowFast [4]] and CLIP [26] as the video and text encoders, respectively,
following configurations in [23]]. FlashMMR and FlashVTG share identical parameter settings for
common components. The post-verification loss terms Lpy and Ly, are weighted at 9 and 7. We
use AdamW as the optimizer and set the NMS threshold to 0.7 during inference. SMR verification
experiments on QVHighlights are conducted on the validation set due to the unavailability of test set
annotations. All experiments are conducted on a single RTX 4090 GPU. Additional implementation
details can be found in the supplementary material.



Table 3: Comparison of performance on QV-M? test set with previous state-of-the-art methods.
The best results are highlighted in bold, and the second-best are underlined.

mAP mloU@k mR@k
G-mAP @1_tgt @2_tgt @3+tgt @1 @2 @3 @1 @2 @3
M-DETR [12] Neurtps21 20.65 33.71 25.85 10.95 44.14 3898 3434 3481 3095 2624

Method

EATR [9] rccv2s 27.32 38.26 33.25 19.46 47.16 4262 3941 3930 36.05 33.56
QD-DETR [20] cver'23 28.95 39.69 37.26 18.30 50.46  46.79 40.50 4235 4058  36.05
TR-DETR [31] asar23 31.23 44.12 39.17 19.64 55.13  48.13 4252 4721 4124 3582

CG-DETR [21] Arxivi24 28.87 43.74 32.35 18.44 52.01 4798 4327 4326 4080 36.69
FlashVTG [2] wacvzs 32.14 47.16 39.48 20.19 5449 47.85 4092 46.64 4130 35.94

FlashMMR (Ours) 35.14 52.59 42.52 22.89 56.29 49.64 4292 48.81 4433 38.50

Table 4: Comparison of performance on QVHighlights validation set with previous state-of-the-
art methods. The best results are highlighted in bold, and the second-best are underlined.

mAP mloU@k mR@k
Method
G-mAP @I]1_tgt @2_tgt @3+tgt @1 @2 @3 @l @2 @3
M-DETR [12] Neurips’21 32.79 42.02 19.45 3.67 48.81 3275 2854 40.19 2456 19.55
EATR [9] iccv23 35.96 44.15 23.80 7.70 5091 3644 34.00 4285 30.14 27.65

QD-DETR [20] cvrr23 38.90 48.18 24.55 7.47 54.48 38.63 36.14 46.80 3193 2949
TR-DETR [31] Asar23 36.86 46.20 24.63 5.18 53.86 36.59 31.18 4533 2891 24.13
CG-DETR [21] Arxiv24 43.69 52.70 30.12 10.02 60.32 45.04 4221 5285 38.17 35.46
FlashVTG [2] wacv2s 48.02 57.31 35.08 13.85 6145 43.80 3937 5392 3898 35.17

FlashMMR (Ours) 48.07 56.95 35.78 1515 62.09 4532 4032 55.02 40.63 36.68

5.2 Comparison Results

We retrain and evaluate 6 methods on QV-M? and QVHighlights [12] dataset under both SMR and
MMR settings. The experimental results, as presented in Tables 2] [3| (4 demonstrate the effectiveness
of QV-M? for MMR and further show that FlashMMR consistently outperforms previous methods.

Table [2| presents Cross-Dataset Performance Comparison of SMR and MMR on QVHighlights and
QV-M2. Notably, models trained with QV-M? consistently exhibit improved performance compared
to their counterparts trained only on QVHighlights, validating the effectiveness of QV-M?2 on both
SMR and MMR supervision. FlashMMR achieves the highest overall G-mAP (48.42%) and superior
performance across all mloU@k and mR @k metrics. We also observe a performance drop across all
methods when using QV-M? for evaluation, due to the increased number of one-to-many moment
queries. This further demonstrates the effectiveness of our dataset in evaluating the MMR task.

To validate the effectiveness of our proposed FlashMMR, we compare it with state-of-the-art methods
on the QV-M? and QVHighlights, as shown in Table FlashMMR achieves notable improve-
ments over previous methods in most evaluation metrics, achieving a significant improvement over
FlashVTG [2] in G-mAP (+3.00%), mAP@3+tgt (+2.70%), and mR @3 (+2.56%) on QV-M2. Similar
results can be observed in Table[d] These results highlight the superiority of our approach in localizing
multiple relevant moments.

5.3 Ablation Study

We conduct an ablation study on the two MMR datasets—QV-M? and QVHighlights—to evaluate the
effectiveness of the Post-Verification (PV) module in FlashMMR. As shown in Table 5] incorporating
the PV module leads to consistent performance improvements across both datasets. On QV-M?, the PV
module brings a notable gain of 3.00% in G-mAP and 3.04% in mAP@2_tgt. Similar improvements
are observed across other metrics, including mAP@3+tgt (+2.70%), mloU@2 (+1.79%), and mR @2
(+3.03%), demonstrating its effectiveness in handling dense one-to-many queries.

On QVHighlights, which is comparatively less challenging, the PV module still yields consistent gains,
including a 0.70% improvement in mAP@2_tgt and a 1.52% increase in mloU@2. These results
validate the robustness of the PV module and highlight its role in enhancing temporal consistency
and filtering low-confidence predictions, ultimately improving multi-moment retrieval performance.



Table 5: Ablation study of the Post Verification (PV) module on MMR task.

Dataset ‘ FlashMMR ‘ G-mAP mAP@2_tgt mAP@3+tgt mloU@2 mloU@3 mR@2 mR@3
QV-M? w/o PV 32.14 39.48 20.19 47.85 40.92 41.30 35.94
. w/ PV 35.14 42.52 22.89 49.64 42.92 44.33 38.50
QVHighlights w/o PV 48.02 35.08 13.85 43.80 39.37 38.98 35.17
ghlig w/ PV 48.07 35.78 15.15 45.32 40.32 40.63 36.68

6 Discussion and Limitation

Experimental results show that while existing SMR models struggle to generalize to the MMR setting,
FlashMMR improves overall performance and establishes a strong baseline, with QV-M? serving as a
reliable testbed for advancing MMR research.

Despite these improvements, several challenges remain. First, our verification module remains in an
early stage. Future work could explore more strategies, such as reinforcement learning or contrastive
learning for better moment discrimination, to further enhance model performance. Secondly, one
limitation in MMR research is the relatively limited size of high-quality annotated datasets. Although
QV-M2 is sufficient for current models, its limited scale may constrain future progress as models
become more advanced.

7 Conclusion

In this paper, we revisited the gap between existing single-moment retrieval methodologies and the
practical complexities inherent in real-world video understanding tasks. We introduce QV-M?2, the
first fully human-annotated dataset for multi-moment retrieval, along with new evaluation metrics
to benchmark the task. To address the limitations of traditional SMR frameworks, we proposed
FlashMMR, a dedicated multi-moment retrieval model equipped with a Post-verification module.
Comprehensive experiments demonstrate that FlashMMR effectively surpasses existing state-of-
the-art moment retrieval methods, emphasizing the necessity and potential of future multi-moment
retrieval frameworks. The proposed framework and dataset lay a groundwork for future research on
more realistic and complex video temporal grounding tasks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions: FlashMMR
framework, QV-M? dataset, and new evaluation metrics. Also see supplementary material
for more theoretical and experimental evidence.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section [6] discusses limitations. We also report computational complexity
analysis in supplementary material.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not contain formal theoretical results or proofs; it focuses on
model design, dataset construction, and empirical evaluation.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the dataset construction, model
architecture, training settings, and evaluation protocols. We also include dataset annotations
in the supplementary material to support full reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the dataset annotations in the supplementary material to support
reproduction of our results. And we will open-source code and checkpoint on github.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section[5.1]specifies the training setup, including dataset, feature extractors,
optimizer, loss weights, and GPU settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not report error bars or statistical tests, as all evaluation baselines follow
deterministic protocols for fair comparison. This is consistent with prior work in moment
retrieval, which also does not report statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: We report the GPU type used (RTX 4090) in Section[5.1] but we do not provide
details on memory usage or execution time. Our experiments follow standard settings similar
to prior work, and total compute usage is moderate.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our research uses publicly available data under CC BY-NC-SA 4.0 license
and is strictly intended for academic purposes. We follow the NeurIPS Code of Ethics and
ensure compliance with responsible data use, fairness, and transparency principles.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The Broader Impact discussion is provided in the supplementary material.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve high-risk models or data. The dataset is based on
QVHighlights with additional human annotations, and both the data and models are intended
solely for research purposes under a CC BY-NC-SA 4.0 license.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the QVHighlights dataset under its CC BY-NC-SA 4.0 license. We
also properly cite and credit all external assets, including CLIP [26]], SlowFast [4], etc., with
references and usage terms clearly indicated.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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14.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce the QV-M? dataset, which is built upon QVHighlights and fol-
lows the same CC BY-NC-SA 4.0 license. Documentation regarding annotation guidelines,
quality control, and licensing is provided in Section [3]and the annotation file is attached in
the supplementary material.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Our dataset involves manual annotation by trained annotators. Annotation
guidelines, interface screenshots, and related details are provided in the supplementary
material.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [Yes]

Justification: The data annotation task was reviewed and approved by our institution’s ethics
committee or an equivalent process. The task involved no personal or sensitive information
and posed minimal risk to participants.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were only used for writing and editing assistance. They are not involved
in the core methodology, experiments, or scientific contributions of the paper.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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