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ABSTRACT

Perceiving the world in terms of objects and tracking them through time is a crucial
prerequisite for reasoning and scene understanding. Recently, several methods have
been proposed for unsupervised learning of object-centric representations. How-
ever, since these models have been evaluated with respect to different downstream
tasks, it remains unclear how they compare in terms of basic perceptual abilities
such as detection, figure-ground segmentation and tracking of individual objects.
To close this gap, we design a benchmark with three datasets of varying complexity
and seven additional test sets which feature challenging tracking scenarios relevant
for natural videos. Using this benchmark, we compare the perceptual abilities of
four unsupervised object-centric learning approaches: VIMON, a video-extension
of MONET, based on a recurrent spatial attention mechanism, OP3, which exploits
clustering via spatial mixture models, as well as TBA and SCALOR, which use
an explicit factorization via spatial transformers. Our results suggest that architec-
tures with unconstrained latent representations and full-image object masks such
as VIMON and OP3 are able to learn more powerful representations in terms
of object detection, segmentation and tracking than the explicitly parameterized
spatial transformer based architecture of TBA and SCALOR. We also observe that
none of the methods are able to gracefully handle the most challenging tracking
scenarios despite their synthetic nature, suggesting that our benchmark may provide
fruitful guidance towards learning more robust object-centric video representations.

1 INTRODUCTION

Humans understand the world in terms of objects. Being able to decompose our environment into
independent objects that can interact with each other is an important prerequisite for reasoning and
scene understanding. Similarly, an artificial intelligence system would benefit from the ability to both
extract objects and their interactions from video streams, and keep track of them over time.

Recently, there has been an increased interest in unsupervised learning of object-centric represen-
tations. The key insight of these methods is that the compositionality of visual scenes can be used
to both discover (Eslami et al., [2016; \Greff et al., |2019; Burgess et al., |2019) and track objects in
videos (Greff et al.,|2017; |van Steenkiste et al.,[2018; [Veerapaneni et al.|[2019) without supervision.
However, it is currently not well understood how the learned visual representations of different
models compare to each other quantitatively, since the models have been developed with different
downstream tasks in mind and have not been evaluated using a common protocol. Hence, in this work,
we propose a benchmark based on procedurally generated video sequences to test basic perceptual
abilities of object-centric video models under various challenging tracking scenarios.

An unsupervised object-based video representation should (/) effectively identify objects as they enter
a scene, (2) accurately segment objects, as well as (3) maintain a consistent representation for each
individual object in a scene over time. These perceptual abilities can be evaluated quantitatively in the
established multi-object tracking framework (Bernardin & Stiefelhagen, |2008; |Milan et al., 2016). We
propose to utilize this protocol for analyzing the strengths and weaknesses of different object-centric
representation learning methods, independent of any specific downstream task, in order to uncover
the different inductive biases hidden in their choice of architecture and loss formulation. We therefore
compiled a benchmark consisting of three procedurally generated video datasets of varying levels of
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visual complexity and two generalization tests. Using this benchmark, we quantitatively compared
three classes of object-centric models, leading to the following insights:

o All of the models have shortcomings handling occlusion, albeit to different extents.

e OP3 (Veerapaneni et al.| [2019) performs strongest in terms of quantitative metrics, but
exhibits a surprisingly strong dependency on color to separate objects and accumulates false
positives when fewer objects than slots are present.

e Spatial transformer models, TBA (He et al.l2019) and SCALOR (Jiang et al., [2020), train
most efficiently and feature explicit depth reasoning in combination with amodal masks, but
are nevertheless outperformed by the simpler model, VIMON, lacking a depth or interaction
model, suggesting that the proposed mechanisms may not yet work as intended.

We will make our code, data, as well as a public leaderboard of results available.

2 RELATED WORK

Several recent lines of work propose to learn object-centric representations from visual inputs for
static and dynamic scenes without explicit supervision. Though their results are promising, methods
are currently restricted to handling synthetic datasets and as of yet are unable to scale to complex
natural scenes. Furthermore, a systematic quantitative comparison of methods is lacking.

Selecting and processing parts of an image via spatial attention has been one prominent approach for
this task (Mnih et al.| 2014} [Eslami et al.} [2016; Kosiorek et al.l 2018}; Burgess et al., |2019; 'Yuan
et al., 2019; |Crawford & Pineaul [2019; |[Locatello et al., [2020). As an alternative, spatial mixture
models decompose scenes by performing image-space clustering of pixels that belong to individual
objects (Greff et al., 2016} [2017;2019; |[van Steenkiste et al., 2018]). While some approaches aim at
learning a suitable representation for downstream tasks (Watters et al., [2019a}; |Veerapaneni et al.|
2019), others target scene generation (Engelcke et al.| |2019; [von Kiigelgen et al.,2020). We analyze
three classes of models for processing videos, covering three models based on spatial attention and
one based on spatial mixture modeling.

Spatial attention models with unconstrained latent representations use per-object variational
autoencoders, as introduced by [Burgess et al.[(2019). ivon Kiigelgen et al.|(2020) adapts this approach
for scene generation. So far, such methods have been designed for static images, but not for videos.
We therefore extend MONET (Burgess et al.,2019)) to be able to accumulate evidence over time for
tracking, enabling us to include this class of approaches in our evaluation. Recent concurrent work on
AlignNet (Creswell et al.l 2020) applies MONET frame-by-frame and tracks objects by subsequently
ordering the extracted objects consistently.

Spatial attention models with factored latents use an explicit factorization of the latent repre-
sentation into properties such as position, scale and appearance (Eslami et al., 2016} |Crawford &
Pineaul 2019). These methods use spatial transformer networks (Jaderberg et al., |2015)) to render
per-object reconstructions from the factored latents (Kosiorek et al., 2018; He et al., [2019; Jiang
et al., 2020). SQAIR (Kosiorek et al., 2018)) does not perform segmentation, identifying objects
only at the bounding-box level. We select Tracking-by-Animation (TBA) (He et al.| [2019)) and
SCALOR (Jiang et al., 2020) for analyzing spatial transformer methods in our experiments, which
explicitly disentangle object shape and appearance, providing access to object masks.

Spatial mixture models cluster pixels using a deep neural network trained with expectation maxi-
mization (Greff et al.,[2017; |van Steenkiste et al.,[2018). IODINE (Greff et al., 2019) extends these
methods with an iterative amortised variational inference procedure (Marino et al.,2018)), improving
segmentation quality. SPACE (Lin et al.,[2020) combines mixture models with spatial attention to
improve scalability. To work with video sequences, OP3 (Veerapanent et al.,[2019) extends IODINE
by modeling individual objects’ dynamics as well as pairwise interactions. We therefore include OP3
in our analysis as a representative spatial mixture model.

3  OBJECT-CENTRIC REPRESENTATION BENCHMARK

To compare the different object-centric representation learning models on their basic perceptual
abilities, we use the well-established multi-object tracking (MOT) protocol (Bernardin & Stiefelhagen|
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Table 1: Summary of datasets and example video sequences. See Appendix [B|for details.

Objects Background
Dataset  Shape Motion Count Over Sequence  Size Variation Orientation Color Motion Color
SpMOT 4 Templates (2D)  Linear Varies (0-3) Minimal Fixed 6 Colors None Black
VOR 2 Templates (3D)  Static Varies (0-4) Moderate Random 6 Colors Moving Camera Random
VMDS 3 Templates (2D) Non-Linear Fixed (1-4) Moderate Random 256° Colors  None Random

VMDS

SpMOT VOR
L] ¢
---' F‘ il i A M ol . ] .
t=1 t=3 t=5 t=7 t=9 t=1

2008)). In this section, we describe the datasets and metrics considered in our benchmark, followed
by a brief description of the models evaluated.

3.1 DATASETS

Current object-centric models are not capable of modeling complex natural scenes (Burgess et al.|
2019; |Greff et al. 2019; [Lin et al 2020). Hence, we focus on synthetic datasets that resemble
those which state-of-the-art models were designed for. Specifically, we evaluate on three synthetic
dataset{] (see Table [1), which cover multiple levels of visual and motion complexity. Synthetic
stimuli enable us to precisely generate challenging scenarios in a controllable manner in order to
disentangle sources of difficulty and glean insights on what models specifically struggle with. We
design different scenarios that test complexities that would occur in natural videos such as partial or
complete occlusion as well as similar object appearances.

Sprites-MOT (SpMOT, Table [I]left), as proposed by [He et al| (2019), features simple 2D sprites
moving linearly on a black background with objects moving in and out of frame during the sequence.
Video-Multi-dSprites (VMDS, Tableright) is a video dataset we generated based on a colored,
multi-object version of the dSprites dataset (Matthey et al.,[2017). Each video contains one to four
sprites that move non-linearly and independently of each other with the possibility of partial or full
occlusion. Besides the i.i.d. sampled training, validation and test sets of VMDS, we generate seven
additional challenge sets that we use to study specific test situations we observed to be challenging,
such as guaranteed occlusion, specific object properties, or out-of-distribution appearance variations.
Video Objects Room (VOR, Table [I| middle) is a video dataset we generated based on the static
Objects Room dataset (Greff et al.,[2019), which features static objects in a 3D room with a moving
camera. For full details on the datasets and their generation, see Appendix [B]

3.2 METRICS

Our evaluation protocol follows the multi-object tracking (MOT) challenge, a standard and widely-
used benchmark for supervised object tracking (Milan et al.,[2016). The MOT challenge uses the
CLEAR MOT metrics (Bernardin & Stiefelhagen) [2008)), which quantitatively evaluate different
performance aspects of object detection, tracking and segmentation. To compute these metrics,
predictions have to be matched to ground truth. Unlike |[Bernardin & Stiefelhagen|(2008) and Milan
et al.| (2016), we use binary segmentation masks for this matching instead of bounding boxes, which
helps us better understand the models’ segmentation capabilities. We consider an intersection over
union (IoU) greater than 0.5 as a match (Voigtlaender et al.,[2019). The error metrics used are the
fraction of Misses (Miss), ID switches (ID S.) and False Positives (FPs) relative to the number of
ground truth masks. In addition, we report the Mean Squared Error (MSE) of the reconstructed
image outputs summed over image channels and pixels.

To quantify the overall number of failures, we use the MOT Accuracy (MOTA), which measures
the fraction of all failure cases compared to the total number of objects present in all frames. A model
with 100% MOTA perfectly tracks all objects without any misses, ID switches or false positives.
To quantify the segmentation quality, we define MOT Precision (MOTP) as the average IoU of
segmentation masks of all matches. A model with 100% MOTP perfectly segments all tracked objects,
but does not necessarily track all objects. Further, to quantify detection and tracking performance

"Datasets are available at this https URL!
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Figure 1: Common principles of all models: Decomposition of an image into a fixed number of slots,
each of which contains an embedding z; ;, and a mask m; j, of (ideally) a single object. Dotted lines:
temporal connections. Solid lines: information flow within one frame.

independent of false positives, we measure the Mostly Detected (MD) and Mostly Tracked (MT)
metrics, the fraction of ground truth objects that have been detected and tracked for at least 80% of
their lifespan, respectively. If an ID switch occurs, an object is considered detected but not tracked.
For full details regarding the matching process and the evaluation metrics, refer to Appendix [A]

3.3 MODELS

We consider three classes of unsupervised object-centric representation learning models: (/) a
spatial attention model with unconstrained latents, VIMON, which is our video extension of
MONET (Burgess et al) 2019); (2) spatial transformer-based attention models, TBA (He et al.,
2019) and SCALOR (Jiang et al., [2020); (3) a scene mixture model, OP3 (Veerapaneni et al.,
2019). At a high-level, these methods share a common structure which is illustrated in Fig.|lal They
decompose an image into a fixed number of slots (Burgess et al., [2019)), each of which contains
an embedding z; ;, and a mask my, ;, of (ideally) a single object. These slots are then combined in
a decoding step to reconstruct the image. Below, we briefly describe each method. Appendix [C]
provides a detailed explanation in a unified mathematical framework.

Video MONet (VIMON) is our video extension of MONET (Burgess et al [2019). MONET
recurrently decomposes a static scene into slots, using an attention network to sequentially extract
attention masks my, € [0, 1]#*W of individual objects k. A Variational Autoencoder (VAE) (Kingma
& Welling| 2014) encodes each slot into a latent representation z;, € R” of the corresponding object.
We use MONET as a simple frame-by-frame baseline for detection and segmentation that does not
employ temporal information. VIMON accumulates evidence about the objects over time to maintain
a consistent object-slot assignment throughout the video. This is achieved by (1) seeding the attention
network the predicted mask m; j € [0, 1]%*"W from the previous time step and (2) introducing a
gated recurrent unit (GRU) (Cho et al.| 2014), which aggregates information over time for each slot
separately, enabling it to encode motion information. For full details on MONET and VIMON, as
well as ablations to provide context for the design decisions, refer to Appendix [C.1] [C.2]and [E.3]

Tracking-by-Animation (TBA) (He et al., 2019) is a spatial transformer-based attention model.
Frames are encoded by a convolutional feature extractor f before being passed to a recurrent block g
called Reprioritized Attentive Tracking (RAT). RAT re-weights slot input features based on their
cosine similarity with the slots from the previous time step and outputs latent representations for all
K slots in parallel. Each slot latent is further decoded into a mid-level representation y; j consisting
of pose and depth parameters, as well as object appearance and shape templates (see Fig.[Ic]). For
rendering, a Spatial Transformer Network (STN) (Jaderberg et al., 2015) is used with an additional
occlusion check based on the depth estimate. TBA is trained on frame reconstruction with an
additional penalty for large object sizes to encourage compact bounding boxes. TBA can only
process scenes with static backgrounds, as it preprocesses sequences using background subtraction
(Bloisi & Tocchi, 2012). For full details on TBA, refer to Appendix [C.3]

Object-centric Perception, Prediction, and Planning (OP3) (Veerapaneni et al., 2019) extends
IODINE (Greff et al.,[2019) to operate on videos. [ODINE decomposes an image into objects and
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Table 2: Analysis of SOTA object-centric representation learning models for MOT. Results shown as
mean =+ standard deviation of three runs with different random training seeds.

Model MOTA1+ MOTP{1 MD1? MT 1 Match 1 Miss | IDS. | FPs | MSE |
SpMOT
MONET 702 +08 89.6+10 924 +06 504 +24 T53+13 44+o04 203 +16 5.1+05 13.0 +20
VIMON 929 +02  91.8+02 87.7+08 872408 950+02 4.8+02 0.2 +0.0 2.1 +01 11.1 + 06
TBA 797 150 T1.2+03 834+97 80.0+136 87.8+90 9.6+60 2.6 +£30 8.1 £60 119 +19
OP3 89.1+51 784 +24 924 +40 91.8+38 959422 3.7+22 0.4 +00 6.8 +29 13.3 +119
SCALOR 949 +05 802+01 964 +01 93.2+07 959+04 2.4+00 1.7 + 04 1.0 + 0.1 34 01
VOR

MONET 37.0+68 81.7+05 769 +22 373+78 644+50 158 +16 198435 274 +23 122+14
VIMON 89.0 00 89.5+05 904 +05 90.0+04 93.2+04 6.5+04 0.3 +00 4.2 +04 6.4 +06

OP3 654 +06 89.0+06 88.0+06 854+05 90.7+03 82+04 1.1 +02 253 +06 3.0 0.1

SCALOR 746 +04 86.0+02 76.0+04 759 +04 77.9+04 22.1+04 0.0+00 33+02 6.4 +0.1
VMDS

MONET 494 +36  T78.6+18 T742+17 357+08 667 +07 13.6+10 19.7+06 172431 222 +22

VIMON 86.8 +03 86.8+00 86.2+03 85.0+03 923+02 7.0+02 0.7 00 5.5+01 10.7 0.1

TBA 545+121 750+09 629+59 583 +6.1 759 +43 21.0+42 3.2+03 214 +78 28.1 £20

OP3 917 +17  93.6 04 968 +05 963 +04 97.8+01 2.0 +01 0.2 +0.0 6.1 +15 4.3 +02

SCALOR 74.1+12 87.6+04 679+11 667+11 784+10 20.7+10 0.8+00 4.4 +04 14.0 +0.1

represents them independently by starting from an initial guess of the segmentation of the entire
frame, and subsequently iteratively refines it using the refinement network f (Marino et al.l 2018). In
each refinement step m, the image is represented by K slots with latent representations z,, . OP3
applies IODINE to each frame x; to extract latent representations z; ,, j, which are subsequently
processed by a dynamics network d (see Fig.[Ie)), which models both the individual dynamics of each
slot k as well as the pairwise interaction between all combinations of slots, aggregating them into a
prediction of the posterior parameters for the next time step ¢ + 1 for each slot k. For full details on
IODINE and OP3, refer to Appendix [C.4]and [C.5] respectively.

SCALable Object-oriented Representation (SCALOR) (Jiang et al.l 2020) is a spatial
transformer-based model that factors scenes into background and multiple foreground objects, which
are tracked throughout the sequence. Frames are encoded using a convolutional LSTM f. In the
proposal-rejection phase, the current frame ¢ is divided into H x W grid cells. For each grid cell a
object latent variable z; j, ., is proposed, that is factored into existence, pose, depth and appearance
parameters. Subsequently, proposed objects that significantly overlap with a propagated object are
rejected. In the propagation phase, per object GRUs are updated for all objects present in the scene.
Additionally, SCALOR has a background module to encode the background and its dynamics. Frame
reconstructions are rendered using a background decoder and foreground STNs for object masks and
appearance. For full details on SCALOR, refer to Appendix [C.6]

4 RESULTS

We start with a summary of our overall results across the three datasets and four models (Table 2))
before analyzing more specific challenging scenarios using variants of the VMDS dataset.

We first ask whether tracking could emerge automatically in an image-based model like MONET,
which may produce consistent slot assignments through its learned object-slot assignment. This is not
the case: MONET exhibits poor tracking performance (Table[2). While MONET correctly finds and
segments objects, it does not assign them to consistent slots over time (Fig.[E.2). In the following, we
will thus focus on the video models: VIMON, TBA, OP3 and SCALOR.

SpMOT. All models perform tracking well on SpMOT with the exception of one training run of TBA
with poor results leading to high standard deviation (cp. best TBA model: 89.8% MT; Table [E.T).
SCALOR outperforms the other models on the detection and tracking metrics MD and MT, while
VIMON exhibits the highest MOTP, highlighting its better segmentation performance on SpMOT.

VOR. TBA is not applicable to VOR due to the dynamic background which cannot be resolved using
background subtraction. VIMON and OP3 show similarly good performance on detection (MD) and
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segmentation (MOTP), while VIMON outperforms OP3 on the tracking metrics MOTA and MT.
OP3 accumulates a high number of false positives leading to a low MOTA due to the splitting of
objects into multiple masks as well as randomly segmenting small parts of the background (Fig. [E.4).
In contrast, SCALOR has almost no false positives or ID switches, but accumulates a high number
of misses leading to a poor MOTA. It often segments two objects as one that are occluding each other
in the first frame, which is common in VOR due to the geometry of its scenes (Fig.[F.11] last row).

VMDS. OP3 outperforms the other models on VMDS, on which TBA performs poorly, followed
by SCALOR, which again accumulates a high number of misses. We will analyze the models on
VMDS qualitatively and quantitatively in more detail in the following.

Accumulation of evidence over time. 2
Recognition and tracking of objects
should improve if models can exploit
prior knowledge about the objects in
the scene from previous video frames.
To test whether the models exploit such
knowledge, we evaluate their MOTA per-
formance on VMDS after warm starting [ L S —
Wlth up to 10 frarnes Wthh are not in- Number of frames for warm start Number of objects in video
cluded in evaluation (Fig. [2). Note that

the models were trained on sequences  Figure 2: MOTA on frames  Figure 3: Distribution of
of length 10, but are run for 20 frames  11-20 of the VMDS test set  failure cases dependent
in the case of a warm start of 10 frames.  with warm starts of 1-10 on number of objects in
The performance of VIMON improves  frames (0 = no warm start). VMDS videos. Mean of
with longer warm starts, showing thatthe  Difference to performance three training runs. Error

GRU accumulates evidence over time.  of warm start = 2 shown. bars: standard deviation.
TBA, in contrast, does not use temporal

information beyond 2-3 frames, while SCALOR’s performance slightly drops after 3 frames. OP3
appears to most strongly rely on past information and is able to integrate information over longer
time scales: its performance does not even saturate with a warm start of 10 frames. However, the
effect for all models is rather small.

80

= ViMON

—— ViMON
TBA

— OP3

—— SCALOR

=== Warm start=2

Performance difference [%]
|
N
S
Fraction of failure cases [%]

-4

Challenging scenarios for different models. The number of objects in the sequence matters for
VIMON, TBA and SCALOR: more objects increase the number of failure cases (Fig. E]) In contrast,
OP3 does not exhibit this pattern: it accumulates a higher number of false positives (FPs) in videos
with fewer (only one or two) objects (Fig. [E.I)), as it tends to split objects into multiple slots if fewer
objects than slots are present.

Occlusion leads to failure cases for all models (Fig. @p-b). Partial occlusion can lead to splitting of
objects into multiple slots (Fig.[d). Objects that reappear after full occlusion are often missed when
only a small part of them is visible (Fig. @). In particular, SCALOR tends to segment two objects as
one when they overlap while entering the scene, leading to a high number of misses.

Color of the object is important. TBA often misses dark objects (Fig.[dp). In contrast, VIMON, OP3
and SCALOR struggle with scenes that feature objects of similar colors as well as objects that have
similar colors to the background (Fig. A.e).

False positives are more prevalent for OP3 and TBA than for VIMON and SCALOR (Table[2). FPs
of OP3 are due to objects split in multiple masks (Fig. @) and random small parts of the background
being individually segmented (Fig. @), while TBA tends to compose larger objects using multiple
smaller, simpler components (Fig. ).

Challenge sets. Based on the challenging scenarios identified above, we design multiple ‘challenge
sets’: videos featuring (/) heavy occlusion, (2) objects with same colors, (3) only small objects and
(4) only large objects (Fig.[5] top). For details, see Appendix (B.1.1).

Occlusion reduces performance of all models compared with the i.i.d. sampled VMDS test set, albeit
to different degrees (Fig. [5} for absolute performance see Table[E.2). OP3 is more robust to occlusion
than the other models.

Tracking objects with the same color is challenging for all models (Fig.[5). In particular, OP3 appears
to rely on object color as a way to separate objects.
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Figure 4: Example failure cases for all models on VMDS. Segmentation masks are binarized and
color-coded to signify slot assignment.

OP3, VIMON and SCALOR are not sensitive to object size (Fig.[5). They exhibit only slightly
decreased performance on the large objects test set, presumably because large objects cause more
occlusion (Fig.[5). TBA shows increased performance on small objects but performs poorly on the
large objects set.

Out-of-distribution test sets. Next, we assess gen- Occlusion Same Color

eralization to out-of-distribution (0.0.d.) changes in p 4 " -l'
object appearance that are not encountered during

training. In the training set of VMDS, object color, Small Objects Large Objects

size and orientation are constant throughout a video. IR

To test 0.0.d. generalization, we evaluate models B |GG
trained on VMDS on three datasets that feature un- t=1 =4 =7 =10 =l =4 t=7 =10
seen.object transforrpatior}s (Fig.[6]and Table [E.3): <150 MOTA i - S
continuous changes in object color or size as well g o VIMON
as continuous rotation around the object’s centroid £ 107y |ETTT T TBA
while moving. For details, see Appendix [B.1.2] g so . L T eon

r T T 1 r T T 1
Occlu- Same Small Large Occlu- Same Small Large

Continuous Changes in ObjeCt SiZC do not pose a se- sion color objectsobjects sion color objects objects

rious prol?lem to TBA, OP3 and SCALOR, while  gjoyre 5. Performance on challenge sets relative
VIMON’s performance drops (Fig. @ Surpris- ¢, performance on VMDS test set (100%).
ingly, continuous color changes of objects do not

impact the performance of any model. Tracking performance of VIMON drops significantly for
rotated objects, while OP3 and SCALOR are affected less. TBA’s tracking performance is not as
strongly influenced by object rotation (for absolute values, see Table [E.3).

Stability of training and runtime. TBA and SCALOR train faster and require less memory than
OP3 and VIMON (see Table [E.4|for details). However, some training runs converge to suboptimal
minima for TBA. Training OP3 is sensitive to the learning rate and unstable, eventually diverging
in almost all experiments. Interestingly, it often reached its best performance prior to divergence.
VIMON and TBA are less sensitive to hyper-parameter settings in our experiments. For a more
detailed analysis of the runtime, see Appendix

7
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5 DISCUSSION

Our experimental results provide insights into Size Color Rotation

the inductive biases and failure cases of object- _'i -!!H -
centric models that were not apparent from their =752 5700 TS s =7 10 1 s =7 10
original publications. Despite the positive re-

sults shown in each of the papers for the evalu- MOTA MT

ated methods, a controlled, systematic analysis 3 10074 ¢ T e ¢ ® |--- Testset
demonstrates that they do not convincingly suc-  § s ¢ ] o o YoM
ceed at tracking, which is fundamentally what g ® o or3
object-centric video methods should enable. g . © SCALOR
TBA has a significantly lower MOTP than the size  Color R?i'gan- size  Color R?i%)ar;

other models on all datasets, suggesting that the
simple rendering-based decoder using a fixed Figure 6: Performance on out-of-distribution sets

template might be less suitable to generate ac- relative to VMDS test set (100%).
curate segmentation masks (see also Fig.[F3]and

Fig.[F4) compared to the VAE-based approaches of VIMON, OP3 and SCALOR.

Handling occlusion of objects during the video is a key property object-centric representations should
be capable of. Qualitatively and quantitatively, OP3 is more robust to occlusion than the other models,
suggesting that its dynamics network which models interactions between objects is currently most
successful at modeling occluded objects. Surprisingly, TBA and SCALOR, which explicitly encode
depth, do not handle occlusion more gracefully than VIMON, whose much simpler architecture
has no explicit way of dealing with depth. Moving forward, occlusion handling is a key component
that object-centric video models need to master, which can be addressed by either equipping the
model with a potent interaction module, that takes pairwise interaction between objects (including
occlusion) into account, similar to OP3’s dynamics model, or ensuring that the depth reasoning of
the models works as intended, which may be preferable, as explained below.

All models struggle with detecting objects that have similar color as the background (for TBA: dark
objects, since background is removed and set to black in a pre-processing step). Color is a reliable
cue to identify objects in these datasets. However, the auto-encoding objective incurs little extra loss
for missing objects with similar color as the background and, thus, the models appear to not to learn
to properly reconstruct them. In order to scale to data with more visual complexity, one might want to
replace the pixel-wise reconstruction with for instance a loss based in feature space in order to focus
more on reconstructing semantic content rather than high-frequency texture, as is done when using
perceptual loss functions (Gatys et al.,2015; [Hou et al.,|2017) or by using contrastive learning (Kipf]
et al.,|2020). Furthermore, the models — particularly so OP3 — struggle with separating objects of
similar colors from each other. This result hints at a mismatch between the intuitions motivating these
models and what the models actually learn: it should be more efficient in terms of the complexity of
the latent representation to decompose two objects — even of similar colors — into two masks with
simple shapes, rather than encoding the more complicated shape of two objects simultaneously in
one slot. However, since none of the models handle occlusion with amodal segmentation masks
(i. e. including the occluded portion of the object) successfully, they learn to encode overly complex
(modal) mask shapes. As a consequence, they tend to merge similarly colored objects into one slot.
This result suggests that resolving the issues surrounding the depth reasoning in combination with
amodal segmentation masks would enable much more compact latents and could also resolve the
merging of similarly colored objects.

A major difference between models is the spatial transformer based model formulation of TBA
and SCALOR, compared to VIMON and OP3, which operate on image-sized masks. The parallel
processing of objects and the processing of smaller bounding boxes renders training TBA and
SCALOR to be significantly faster and more memory efficient, enabling them to scale to a larger
number of objects. On the downside, the spatial transformer introduces its own complications. TBA
depends strongly on its prior on object size and performs well only when this prior fits the data well
as well as when the data contains little variation in object sizes, as in SpMOT (Table |Z|) Howeyver, it
is not able to handle VMDS and its larger variation in object sizes and shapes. SCALOR performs
tracking well in scenes where objects are clearly separated, but struggles to separate objects that
partially occlude each other when entering the scene. This difficulty is caused by its discovery
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mechanism which can propose at most one bounding box per grid cell, leading to a high number
of misses on datasets which feature significant occlusion (VOR and VMDS). Unfortunately, simply
increasing the number of proposals does not provide a simple solution, as SCALOR’s performance
is sensitive to properly tweaking the number of proposals.

Choosing a class of models is therefore dependent on the dataset one wants to apply it to as well as
the computational resources at one’s disposal. Datasets that feature a high number of objects (>10)
that are well separated from each other make a method like SCALOR, which can process objects
in parallel, advisable. On datasets with a lower number of objects per scene which feature heavy
occlusion, methods like OP3 and VIMON will likely achieve better results, but require a high
computational budget for training.

In conclusion, our analysis shows that none of the models solve the basic challenges of tracking even
for relatively simple synthetic datasets. Future work should focus on developing robust mechanisms
for reliably handling depth and occlusion, additionally combining the transformer-based efficiency of
TBA and SCALOR with the stable training of VIMON and the interaction model of OP3. The key
open challenges for scaling these models to natural videos include their computational inefficiency,
complex training dynamics, as well as over-dependence on simple appearance cues like color.
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SUPPLEMENTARY MATERIAL FOR:
BENCHMARKING UNSUPERVISED OBJECT REPRESENTATIONS
FOR VIDEO SEQUENCES

In this supplementary document, we first discuss the metrics used (Section[A]) and describe the data
generation process (Section . ‘We then describe the methods MONET, VIMON, TBA, IODINE,
OP3 and SCALOR (Section|C). Section [D]contains information regarding the implementation details
and training protocols. Finally, we provide additional qualitative and quantitative experimental results
in Section[El

A  EVALUATION PROTOCOL DETAILS

We quantitatively evaluate all models on three datasets using the standard CLEAR MOT metrics
(Bernardin & Stiefelhagen, 2008)). Our evaluation protocol is adapted from the multi-object tracking
(MOT) challenge (Milan et al.,[2016), a standard computer vision benchmark for supervised object
tracking. In particular, we focus on the metrics provided by the py-motmetrics packageﬂ

A.1 MAPPING

In each frame, object predictions of each model in the form of binary segmentation masks are mapped
to the ground truth object segmentation masks. We require that each pixel is uniquely assigned to
at most one object in the ground truth and the predictions, respectively. Matching is based on the
intersection over union (IoU) between the predictions and the ground truth masks (Voigtlaender
et al., 2019). A valid correspondence between prediction and object has to exceed a threshold in
IoU of 0.5. Predictions that are not mapped to any ground truth mask are classified as false positives
(FPs). Ground truth objects that are not matched to any prediction are classified as misses. Following
(Bernardin & Stiefelhagenl [2008]), ground truth objects that are mapped to two different hypothesis
IDs in subsequent frames are classified as ID switches for that frame.

A.2 MOT METRICS

MOT Accuracy (MOTA) measures the fraction of all failure cases, i.e. false positives (FPs), misses
and ID switches compared to total number of objects present in all frames. MOT Precision (MOTP)
measures the total accuracy in position for matched object hypothesis pairs, relative to total number
of matches made. We use percentage Intersection over Union (IoU) of segmentation masks as the
accuracy in position for each match. Mostly Tracked (MT) is the ratio of ground truth objects
that have been tracked for at least 80% of their lifespan.(i.e. 80% of the frames in which they are
visible). MT as implemented by py-motmetrics counts trajectories of objects as correctly tracked
even if ID switches occur. We use a strictly more difficult definition of MT that counts trajectories
with ID switches as correctly detected but not correctly tracked. Consequently, we add the Mostly
Detected (MD) measure which does not penalize ID switches. Match, Miss, ID Switches (ID S.)
and FPs are reported as the fraction of the number of occurrences divided by the total number of
object occurrences.

YL, M + FP, + IDS,
23:1 o

where My, FP;,and IDS; are the number of misses, false positives and ID switches, respectively, for

time ¢, and Oy is the number of objects present in frame ¢. Note that MOTA can become negative,
since the number of FPs is unbounded.

MOTA =1

(D

T I i
MOTP = Zt:l;i:l dt

t=1Ct

)

where d is the total accuracy in position for the i*" matched object-hypothesis pair measured in loU
between the respective segmentation masks and ¢, is the number of matches made in frame ¢.

https://pypi.org/project/motmetrics/
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Note that we exclude the background masks for VIMON and OP3 before evaluating tracking based
on IoU. The Video Object Room (VOR) dataset can contain up to three background segments, namely
the floor and up to two wall segments. In order to exclude all background slots regardless of whether
the model segments the background as one or as multiple masks, we remove all masks before the
tracking evaluation that have an IoU of more than 0.2 with one of the ground truth background masks;
we empirically tested that this heuristic is successful in removing background masks regardless of
whether the models segments it as one or as three separate ones.

B DATASET GENERATION DETAILS

B.1 VIDEO MULTI-DSPRITES (VMDS)

The Multi-DSprites Video dataset consists of 10-frame video sequences of 64 x64 RGB images with
multiple moving sprites per video. In order to test temporal aggregation properties of the models,
the test set contains 20 frame-long sequences. Each video contains one to four sprites following the
dataset proposed in (Burgess et al.,[2019) that move independently of each other and might partially or
fully occlude one another. The sprites are sampled uniformly from the dSprites dataset (Matthey et al.,
2017) and colored with a random RGB color. The background is uniformly colored with a random
RGB color. Random trajectories are sampled per object by drawing x and y coordinates from a
Gaussian process with squared exponential covariance kernel cov(zs, ;] = exp[—(zs — x¢)?/(272)]
and time constant 7 = 10 frames, and then shifted by an initial (z, y)-position of the sprite centroid,
which is uniformly sampled from [10, 54] to ensure that the object is within the image boundaries.
Trajectories that leave these boundaries are rejected. In occlusion scenarios, larger objects are always
in front of smaller objects to disambiguate prediction of occlusion. The training set consists of
10,000 examples whereas the validation set as well as the test set contain 1,000 examples each.
Additionally, we generated four challenge sets and three out-of-distribution test sets for VMDS that
contain specifically challenging scenarios. Each test set consists of 1,000 videos of length 10 frames,
which we describe in the following.

B.1.1 VMDS CHALLENGE SETS

Occlusion test set. In each video, one or more objects are heavily occluded and thus often are not
visible at all for a few frames. This is ensured by sampling object trajectories that cross path, i.e. at
least in one video frame, two objects are centered on the same pixel. The time step and spatial position
of occlusion is sampled randomly. Object trajectories are sampled independently as described above
and then shifted such that they are at the sampled position of occlusion at time ¢. Videos contain two
to four sprites (Fig.[5), since at least two objects are necessary for occlusion.

Small Objects. Videos contain one to four sprites with all sprites being of the smallest size present in
the original dSprites (Matthey et al.|, 2017) dataset (Fig. [5). Other than that, it follows the generation
process of the regular training and test set.

Large Objects. Videos contain one to four sprites with all sprites being of the largest size present in
the original dSprites (Matthey et al.|, 2017) dataset (Fig. [5). Other than that, it follows the generation
process of the regular training and test set.

Same Color. Videos contain two to four sprites which are identically colored with a randomly chosen
color. Other than that, it follows the generation process of the regular training and test set (Fig. [5).

B.1.2 VMDS OUT-OF-DISTRIBUTION TEST SETS

Rotation test set. Sprites rotate around their centroid while moving. The amount of rotation between
two video frames is uniformly sampled between 5 and 40 degrees, and is constant for each object
over the course of the video. Direction of rotation is chosen randomly. Rotation is not included as a
transformation in the training set (Fig. [6).

Color change test set. Sprites change their color gradually during the course of the video. The
initial hue of the color is chosen randomly as well as the direction and amount of change between
two frames, which stays the same for each object over the course of the video. Saturation and value
of the color are kept constant. Color changes are not part of the training set (Fig. [6).
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Size change test set. Sprites change their size gradually during the course of the video. The original
dSprites dataset (Matthey et al.l |2017) contains six different sizes per object. For each object, its
size is sampled as either the smallest or largest in the first frame as well as a random point in time,
at which it starts changing its size. At this point in time, it will either become larger or smaller,
respectively, increasing or decreasing each frame to the next larger or smaller size present in the
original dSprites dataset, until the largest or smallest size is reached. Size changes are not part of the
training set (Fig. [6).

B.2 SPRITES-MOT (SPMOT)

Sprites-MOT, originally introduced by (He et al., [2019), consists of video sequences of length
20 frames. Each frame is a 128 x128 RGB image. It features multiple sprites moving linearly
on a black background. The sprite can have one of four shapes and one of six colors. For more
information, refer to the original paper (He et al.,[2019). We generate a training set consisting of 9600
examples, validation set of 384 samples and test set of 1,000 examples using the author-provided
public codebaseﬂ However, instead of using the default setting of 20 frames per sequence, we instead
generate sequences of length 10, in order to facilitate comparison to the other datasets in our study
which have only 10 frames per sequence.

Frames are downsampled to a resolution of 64 x64 for training VIMON, OP3 and SCALOR.

B.3 VIDEO OBJECTS RooM (VOR)

We generate a video dataset based on the static Objects Room dataset (Greff et al., [2019), with
sequences of length 10 frames each at a resolution of 128x128. This dataset is rendered with
OpenGL using the gym-miniworl(ﬂ reinforcement learning environment. It features a 3D room with
up to four static objects placed in one quadrant of the room, and a camera initialized at the diagonally
opposite quadrant. The objects are either static cubes or spheres, assigned one of 6 colors and a
random orientation on the ground plane of the room. The camera then follows one of five trajectories
moving towards the objects, consisting of a small fixed distance translation and optional small fixed
angle of rotation each time step. The wall colors and room lighting are randomized, but held constant
throughout a sequence. The training set consists of 10,000 sequences whereas the validation set and
the test set contain 1,000 sequences each.

Frames are downsampled to a resolution of 64 x64 for training VIMON, OP3 and SCALOR.

C METHODS

In this section we describe the various methods in a common mathematical framework. For details
about implementation and training, please refer to Section

C.1 MONET

Multi-Object-Network (MONET) (Burgess et al., 2019) is an object-centric representation model
designed for static images. It consists of a recurrent attention network that sequentially extracts
attention masks of individual objects and a variational autoencoder (VAE) (Kingma & Welling, [2014)
that reconstructs the image region given by the attention mask in each processing step.

Attention Network: The attention network is a U-Net (Ronneberger et al.,|2015) parameterized
by 1. At each processing step k, the attention network receives the full image x € [0, 1]#*Wx3
as input together with the scope variable s; € [0, 1]77*W . The scope s}, keeps track of the regions
of the image that haven’t been attended to in the previous processing steps and thus remain to be
explained. The attention network outputs a soft attention mask my, € [0, 1]#*"W and the updated
scope with the current mask subtracted:

*https://github.com/zhen—he/tracking-by-animation
‘https://github.com/maximechb/gym-miniworld
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mj; = Sk,1a¢(x, Skfl) (3)
Sk4+1 = Sk(l - Oé¢(X,S]€)) (4)

where ay (%, s1) € [0, 1]7*W is the output of the U-net and sy = 1. The attention mask for the last

slot is given by m i = sx 1 to ensure that the image is fully explained, i.e. Zszl my = 1.

VAE: The VAE consists of an encoder g : [0, 1]7>Wx3 x [0, 1]H*W — RI*2 and a decoder
h @ RE — [0, 1JHXWx3 » [0,1]7*W which are two neural networks parameterized by ¢ and
0, respectively. The VAE encoder receives as input the full image x and the attention mask
my, and computes (p;,logoy), which parameterize the Gaussian latent posterior distribution
qs(zg|x,my) = N(p, o). Using the reparametrization trick (Kingma & Welling, 2014),
z; € R” is sampled from the latent posterior distribution. z; is decoded by the VAE decoder
into a reconstruction of the image component X, € [0, 1]7*" >3 and mask logits, which are used to
compute the reconstruction of the mask my, € [0, 1] <" via a pixelwise softmax across slots. The
reconstruction of the whole image is composed by summing over the K masked reconstructions of

the VAE: X = Y1 iy, © X,

Loss: MONET is trained end-to-end with the following loss function:

K K
L(¢; 0; ;%) = —log Y myp (x|2x) + BDku( H (zr|x, my)[|p(z))
k=1 k=1

K

+7) Dicr.(gy (my[x) [p (my|21,))
k=1

o)

where pg(x|z;) is the Gaussian likelihood of the VAE decoder and z;, € R” is the latent representa-
tion of slot k.

The first two loss terms are derived from the standard VAE objective,

the Evidence Lower BOund (ELBO) (Kingma & Welling, [2014), i.e. R, R
the negative log-likelihood of the decoder and the Kullback-Leibler A A
divergence between the unit Gaussian prior p(z) = N(0, ) and 4 -'
the latent posterior distribution ¢, (z|x, my) factorized across slots. L

Notably, the decoder log-likelihood term py(x|zy) constrains only X Vol

the reconstruction within the mask, since it is weighted by the mask
my,. Additionally, as a third term, the Kullback—Leibler divergence
of the attention mask distribution g, (my|x) with the VAE mask
distribution pg (M |z) is minimized, to encourage the VAE to learn
a good reconstruction of the masks.

ht-l,k" > ht,k

C.2 VIDEO MONET

We propose an extension of MONET (Burgess et al.,[2019), called
Video MONet (VIMON), which accumulates evidence over time
about the objects in the scene (Fig. [C.).

VIMON processes a video recurrently by reconstructing one frame
at a time and predicting the next frame of the video. The processing
of each frame follows a logic similar to MONET with some notable
differences. In the following, we use ¢ to indicate the time step in the
video and k to indicate the processing step within one video frame.

Attention Network: The attention network of VIMON outputs an

attention mask m, ;, € [0, 1]H *W in each step k conditioned on Figure C.1: VIMON. Atten-

the full frame x; € [0, 1]7*W >3  the scope s, 1 € [0,1]7*" and tion network followed by VAE

additionally the mask my; € [0, 1]#>"W that was predicted by the encoder and GRU computes
latent z; 1.
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VAE in the previous time step, in order to provide it with information about which object it should
attend to in this specific slot k.

My = S¢ p—100 (X¢, St k—1, My i) (6)

VAE: The VAE of VIMON consists of an encoder g(x;, m, 1;¢) and a decoder h(z,;6). In
contrast to MONET, the encoder in VIMON is followed by a gated recurrent unit (GRU) (Cho et al.|
2014) with a separate hidden state % j per slot k. Thus, the GRU aggregates information over time
for each object separately. The GRU outputs (p, 5., 10g o+ 1.) which parameterize the Gaussian latent
posterior distribution g, (z; x|x¢, My 1) Where z, j, € RE is the latent representation for slot k at
time ¢:

b = 9(xe, my g5 P) (N
(kg 1, log o, k) tk = F(GRU (211, hy_11))) ¥
Q6(Ze kXt My k) = Ny g o06d)  VE K )

where g is the VAE encoder and f is a linear layer. The latent representation z; ; is sampled
from the latent posterior distribution using the reparametrization trick (Kingma & Welling}, 2014).
Subsequently, z;  is linearly transformed into Z;1; 5, via a learned transformation A € RExL,
Ziy1,x = Az, with Z,44 5, being the predicted latent code for the next time step ¢ + 1. Both
zy, and Zyq1 ; are decoded by the shared VAE decoder hy into a reconstruction of the image
Xk € [0,1]H*W>3 and a reconstruction of the mask my , € [0, 1]7*W as well as X, and
My i, respectively.

Loss: VIMON is trained in an unsupervised fashion with the following objective adapted from
the MONET loss (Eq. (3) for videos. To encourage the model to learn about object motion, we
include a prediction objective in the form of a second decoder likelihood on the next-step prediction
Po(Xt41|Zt4+1,,) and an additional mask loss term, which encourages the predicted VAE mask

distribution pg (M11 k|Z¢+1,%) to be close to the attention mask distribution gy, ( ) of the
next time step for each slot k:
T
L(¢7 9; 1/}; X) = Z LnegLL + 5Lprior + ’7Lmask
t=1
K K
Lyegrt, = —(log Z my . pg(X¢|2z¢ 1) + log Z my 1 xP0 (Xe41|Ze41,1))
k=1 k=1
K
Lpvior = Dxr(] ] a6 (2 /%, mi 1) [p(2))
k=1
K
Lyask = ZDKL(Q¢(mt,k|Xt)Hpe(mt,k|Zt,k)) + Dkr(qy (Mg k| Xe1) [P0 (M1 1 [Ze41,1))
k=1

C.3 TRACKING BY ANIMATION

Tracking by Animation (TBA) (He et al.,2019) is a spatial transformer-based attention model which
uses a simple 2D rendering pipeline as the decoder. Objects are assigned tracking templates and pose
parameters by a tracker array, such that they can be reconstructed in parallel using a renderer based
on affine spatial transformation (Fig.[C.2). In contrast to VIMON, TBA uses explicit parameters
to encode the position, size, aspect ratio and occlusion properties for each slot. Importantly, TBA
is designed for scenes with static backgrounds, and preprocesses sequences using background
subtraction (Bloisi & Iocchi, [2012) before they are input to the tracker array.
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Tracker Array: TBA uses a tracker array to output a latent repre- 5
sentation z; € RE*X at time ¢ using a feature extractor f(x;; 1)) and Ap
a recurrent ’state update’, where c; € RM*NXC g a convolutional

feature representation. The convolutional feature and latent repre-

sentation have far fewer elements than x;, acting as a bottleneck: t
K slots parallel

|
¢t = f(x¢;9), 10) Tra%%?gra*er
hy , = RAT (hy_y , c4; ), (11)
z; = g(hy; ¢). (12)

Though the state update could be implemented as any generic recur-
rent neural network block, such as an LSTM (Hochreiter & Schmid-
huber] |1997) or GRU (Cho et al.|[2014), TBA introduces a Reprior-
itized Attentive Tracking (RAT) block that uses attention to achieve J,_; ;-
explicit association of slots with similar features over time. Firstly,
the previous tracker state h;_ j is used to generate key variables

k; . and B; Igtg[atui'e
/ Extractor \

{0k, B} = Thy_y g, (13) Ay
Bik =1+ In(1+ exp(Byr)), (14) __

"ht,k

X

where T is a learned linear transformation, k; , € RS is the ad- Figure C.2: TBA. Feature ex-
dressing key, and 5; € R is an un-normalized version of a key ~tractor CNN f and tracker ar-
strength variable $3; j, € (1, 400). This key strength acts like a tem- ray g to get latent z, . MLP
perature parameter to modulate the feature re-weighting, which is  / outputs mid-level represen-
described in the following. Each feature vector in ¢;, denoted by tation y; x, and Spatial Trans-

Ct.mn €ERY, wherem € {1,2,...,M} and n € {1,2,..., N} are former renders reconstruction.
the convolutional feature dimensions, is first used to get attention
weights:

exp(ﬂt,kSim(kt,k; Ct,m,n))

: . (15)
Em’,n’ eXp(,@t)kSZm(kt7k7 Ct,m’7n’))

Wt,k,m,n =

Here, Sim is the cosine similarity defined as Sim(p,q) = pq'/(||p|/l|lal]), and W; g m » is an
element of the attention weight W, ;. € [0, 1]V satisfying Yo Wi kmmn = 1. Next, a read
operation is defined as a weighted combination of all feature vectors of c;:

Ty = Z Wt,k,'m,n Ct,m,n (16)

m,n

where r; ;, € R¥ is the read vector, representing the associated input feature for slot k. Intuitively, for
slots in which objects are present in the previous frame, the model can suppress the features in r j,
that are not similar to the features of that object, helping achieve better object-slot consistency. On
the other hand, if there are slots which so far do not contain any object, the key strength parameter
allows r; j, to remain similar to c; facilitating the discovery of new objects.

The tracker state h, ;, of the RAT block is updated with an RNN parameterized by 7, taking r; j,
instead of c; as its input feature:

hyp = RNN (h—1,k, e 53 7) A7)
The RAT block additionally allows for sequential prioritization of trackers, which in turn allows only
a subset of trackers to update their state at a given time step, improving efficiency. For full details

on the reprioritization and adaptive computation time elements of the RAT block, please refer to the
original paper (He et al., 2019).
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Mid-Level Representation: The key feature of TBA is that each latent vector z; ;, is further decoded
into a mid-level representation y; j, = {ytC k> yé k> yf > Yf) &> Yg . corresponding to interpretable,
explicit object properties, via a fully-connected neural network i (z, ;@) as follows:

Yir = h(zt,k; 9)' (18)

hg is shared by all slots, improving parameter efficiency. The different components of the mid-level
representation are:

e Confidence y; ;. € [0, 1]: Probability of existence of an object in that slot.

e Layer yéy « € {0, 1}9: One-hot encoding of the discretized pseudo-depth of the object
relative to other objects in the frame. Each image is considered to be composed of O object
layers, where higher layer objects occlude lower layer objects and the background is the
zeroth (lowest) layer. E.g., when O = 4, yi,k = [0,0,1,0] denotes the third layer. For
simplicity and without loss of generality, we can also denote the same layer with its integer
representation yi k= 9

e Posey;, =[57;,5] k,tAff kfi’ ] €[—1,1]*: Normalized object pose for calculating the scale
[st koSt = [L+0787 , 1+1Ys] ] and the translation [t7, .t/ ] = [Wtf,€7 12{?’ ], where

n®,nY > 0 are constants.

e Shape Y7, €{0,1}"*" and Appearance Y¢, €0, 1]”**®: Object template, with hyperpa-
rameters U and V typically set much smaller than the image dimensions H and W. Note
that the shape is discrete (for details, see below) whereas the appearance is continuous.

In the output layer of hg, yf , and Y/, are generated by the sigmoid function, y? . is generated

by the tanh function, and yt . as well as Y7, are sampled from the Categorical and Bernoulli
distributions, respectively. As sampling is non- dlfferentlable the Straight-Through Gumbel-Softmax
estimator (Jang et al.;[2017)) is used to reparameterize both distributions so that backpropagation can
still be applied.

Renderer: To obtain a frame reconstruction, the renderer scales and shifts Y, and Y}, according
to yt & via a Spatial Transformer Network (STN) (Jaderberg et al., 2015):
my . = STN(Y; ., ¥ 1) (19)
th*STN( tkaytk) (20)

where my j, € {0,1}? and X;; € [0,1]7"® are the spatially transformed shape and appearance
respectlvely To obtain the final object masks m;, > an occlusion check is performed by initializing
myy = Y; My i, then removing the elements of m my, k for which there exists an object in a higher

layer. Thatis, for k=1,2,..., K and Vj # k where yt’] > yt,k.
my = (1 —my ;) ©myg. (21)

In practice, the occlusion check is sped up by creating intermediate ‘layer masks’, partially paral-
lelizing the operation. Please see the original paper for more details (He et al., 2019). The final

reconstruction is obtained by summing over the K slots, X; = o1 Mg g © X k.

Loss: Learning is driven by a pixel-level reconstruction objective, defined as:

T

K
1 .
L(g;p;m;0;x) = g (MSE X, Xt) + A Ve E sf)k sfik> , (22)
k=1

t=1

where M SE refers to the mean squared error and the second term penalizes large scales [s7 ., s? , |
in order to make object bounding boxes more compact.
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C.4 IODINE

The Iterative Object Decomposition Inference
NEtwork (IODINE) (Greff et al.l [2019), sim-
ilar to MONET (Burgess et al., [2019), learns
to decompose a static scene into a multi-slot
representation, in which each slot represents an
object in the scene and the slots share the under- M refinements
lying format of the independent representations. sequential

In contrast to MONET, it does not recurrently |
segment the image using spatial attention, rather
it starts from an initial guess of the segmenta-
tion of the whole image and iteratively refines
it. Thus, the inference component of both mod-
els differ, while the generative component is the  (u,,,;., 6,010+
same. oo Ll

t-1,k

~

>2><:>

4

1
K slots parallel

?\}g][- > (Hest 1k G114

> hyy
Iterative Inference. As with MONET, 10-
DINE models the latent posterior ¢(zg|x)
per slot k£ as a Gaussian parameterized by
(B Om,k) € REX2. To obtain latent rep-
resentations for independent regions of the input
image, IODINE starts from initial learned pos-
terior parameters (f; ;, 0'1,%) and iteratively re-

fines them using the refinement network fy, for - Figure C.3: OP3. Refinement network f followed

a fixed number of refinement steps M. fs con- by [.STM and dynamics network d compute la-
sists of a convolutional neural network (CNN)  ep¢ 7, .

in combination with an LSTM cell (Hochreiter

& Schmidhuber, [1997) parameterized by ¢. In

each processing step, f, receives as input the image x € , a sample from the current
posterior estimate z,, , € R’ and various auxiliary inputs aj, which are listed in the original pa-
per (Greff et al.,|2019). The posterior parameters are concatenated with the output of the convolutional
part of the refinement network and together form the input to the refinement LSTM. The posterior
parameters are additively updated in each step m in parallel for all K slots:

[0 1]H><W><3

(Nm+1,k= o'm+1,k) = (Nm,lw o'm’k) + f¢>(zm,/€7 X, ak) (23)

Decoder. In each refinement step m, the image is represented by K latent representations z, .
Similar to MONET, each z,, j is independently decoded into a reconstruction of the image X,,, 1, €
[0, 1]7XW>3 and mask logits m,,, &, which are subsequently normalized by applying the softmax
across slots to obtain the masks m,, . € [0,1]7*W . The reconstruction of the whole image at
each refinement step m is composed by summing over the K masked reconstructions of the decoder:
X= Zle my, i O) §m,k-

Training. IODINE is trained by minimizing the following loss function that consists of the the
Evidence Lower BOund (ELBO) (Kingma & Welling},2014)) unrolled through N iterations:

M K K
m
L(ea ¢7 (l"’l,ka Ul,k); X) = Z M - log Z My, kPeo (X|zm,,k) + DKL (H q¢(zm,k|x) |p(Z)>‘|
m=1 k=1 k=1
(24)

where pg(X|2zm, 1) is the decoder log-likelihood weighted by the mask my, and Dk, is the Kullback-
Leibler divergence between the unit Gaussian prior p(z) = A(0, ) and the latent posterior distribu-
tion ¢(z, x|x) factorized across slots.
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C.5 OBIJECT-CENTRIC PERCEPTION, PREDICTION, AND PLANNING (OP3)

Object-centric Perception, Prediction, and Planning (OP3) (Veerapaneni et al.,|2019) extends 10-
DINE to work on videos and in a reinforcement learning (RL) setting. It uses the above described
IODINE as an observation model to decompose visual observations into objects and represent them
independently. These representations are subsequently processed by a dynamics model that models
the individual dynamics of the objects, the pairwise interaction between the objects, as well as the
action’s effect on the object’s dynamics, predicting the next frame in latent space (Fig.[C.3). By
modeling the action’s influence on individual objects, OP3 can be applied to RL tasks.

OP3 performs M refinement steps after each dynamics step.

Refinement network. The refinement steps proceed as in the description for IODINE in Section[C.4]
The input image x; € [0, 1]#>*W >3 which is the frame from a video at time ¢, is processed by the
refinement network f, conditioned on a sample from the current posterior estimate z; ,, ; € R%.
The refinement network outputs an update of the posterior parameters (i, ,,, ., T't.m.k) (see Eq. 23)).
The posterior parameters (11,15, 01,1,%) are randomly initialized.

Dynamics model. After refinement, samples from the current posterior estimate z; s, for each
slot k are used as input to the dynamics network. The dynamics model d,; consists of a series of
linear layers and nonlinearities parameterized by ). It models the individual dynamics of the objects
per slot k, the pairwise interaction between all combinations of objects, aggregating them into a
prediction of the posterior parameters for the next time step ¢ + 1 for each object k. The full dynamics
model additionally contains an action component that models the influence of a given action on each
object, which we do not use in our tracking setting. The predicted posterior parameters are then used
in the next time step as initial parameters for the refinement network.

(g1 kOt 1) = dy(Ze—1, 0k Be—1,0,[k])) (25)

Training. OP3 is trained end-to-end with the ELBO used at every refinement and dynamics step,
with the loss L(0, ¢; x) given by:

1 N min K a
ZT < 10gzmt m kD6 (Xt|Ze,m. k) + Dir( H (Zt,m,k1%e) [|0(Ze,1,1[%¢))

t=1" m=1 k=1 k=1
(26)
where for time step 1, ¢(z1,1,x|x1) = N(0, I).

C.6 SCALABLE OBJECT-ORIENTED REPRESENTATION (SCALOR)

SCALable Object-oriented Representation (SCALOR) (Jiang et al.l 2020) is a spatial transformer-
based model that extends SQAIR (Kosiorek et al., 2018) to scale to cluttered scenes. Similar to
TBA is factors the latent representations in pose, depth and appearance per object and uses spatial
transformers (Jaderberg et al.| 2015)) to render objects in parallel. In contrast to TBA, it can handle
dynamic backgrounds by integrating a background RNN that models background transitions.

Proposal-Rejection Module:: SCALOR uses a proposal-rejection module g to discover new objects.
All frames up to the current time step x1.; are first encoded using a convolutional LSTM f. The
resulting features are then aggregated with an encoding of propagated object masks and divided into
H x W grid cells.

™ = fx10) 27)
cmesk — MaskEncoder(MF) (28)
c;99 = Concat([c; img ,cnask], (29)

Per grid cell a latent variable z; j, ,, is proposed. Proposal generation is done in parallel. Each z; j,

. . pres pose depth _what
consists of existence, pose, depth and appearance parameters (2 1, ., 2t b > Zt pao > Bt h.w)-

21



Under review as a conference paper at ICLR 2021

Zy v ~ Bern(-gi(ci??)) (30)
2P~ N (] ga (o)) 31)
zy e ~ N(|ga(ci??)) (32)

where g1, g2 and g3 are convolutional layers.

The appearance parameters z!*}%*

t hap are obtained by first taking a glimpse from frame x; of the area
specified by z}’", via a Spatial Transformer Network (STN) (Jaderberg et al., 2015) and subsequently

extracting features from it via a convolutional neural network:

thw = STN (4,2757%,) (33)
2% ~ N (-|GlimpseEnc(c{ ) (34)
Ot hws My oy = STNfl(GlimpseDec(zi’f,’lL%), szi}) (35)

where 0y 5, 4, is the object RGB glimpse and my j, ,, is the object mask glimpse.

In the rejection phase, objects that overlap more

than a threshold 7 in pixel space with a prop- <

agated object from the previous time step are !

rejected. A 4

Propagation Module:: During propagation, for [ |

each object k from the previous time step ¢ — 1 A

a feature attention map a ;, from the encoded K slots parallel $/&

frame features c; "7 is extracted centered on the " ~bg

position of the object in the previous time step Trasng?gsrh or t

and used to update the hidden state h, ;, of the

tracker RNN for object k. BG-
Network

ap i = att(STN (c;", 20°%)) (36)
ht,k = GRU([at,thfl,k]»htfl,k) 37)
zy 1, = update(ay i, hy k., zi—1,1) (38)

Sk

where STN is a spatial transformer module
(Jaderberg et al., [2015). If z}"® = 1 the la-
tent representation z; j of the respective object h |
k will be propagated to the next time step. -1k

Background:: The background of each frame
x; is encoded using a convolutional neural net-
work conditioned on the masks M; of the ob-
jects present at time step ¢ and decoded using a
convolutional neural network.

(1%, o) = BgEncoder(z, (1 — My))

(39
bg bg b Figure C.4: SCALOR Feature extractor CNN
2’ ~ N(u™, o) (40) fol%owed by tracker RNNs or proposal—rejectioﬁ
R0 = BgDecoder(z%9) (41) module to compute latent z, j. Spatial Transformer
in addition to background module renders recon-
Rendering:: To obtain frame reconstructions struction.
x; foreground object appearances and masks
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are scaled and shifted using via a Spatial Trans-

former Network (STN):
2{1 = STN_l(Ot,k>Z§(;€se) @)
Veu = STN ™ (e -2 o (—25 ™), 2050) 3)
§{9 - Z ﬁfﬁcpﬁ,k (44)
K

Subsequently, foreground objects and background reconstruction are combined as follows to obtain
the final reconstruction:

R =%+ (1-M)oRY (45)
Training:: SCALOR is trained on frame reconstruction using the evidence lower bound (ELBO):

T

> —logpo(xe|ze) + Dkr(qs (2| z<r, x<t) |l q(ze]2 1)) (46)
t=1

D MODEL IMPLEMENTATION DETAILS

D.1 VIDEO MONET

VAE: Following (Burgess et al.,|2019), the VAE encoder is a CNN with 3x3 kernels, stride 2, and
ReLU activations (Table [D.I)). It receives the input image and mask from the attention network
as input and outputs (i, log o) of a 16-dimensional Gaussian latent posterior. The GRU has 128
latent dimensions and one hidden state per slot followed by a linear layer with 32 output dimensions.
The VAE decoder is a Broadcast decoder as published by (Watters et al., 2019b) with no padding,
3x3 kernels, stride 1 and ReLU activations (Table D.2). The output distribution is an independent
pixel-wise Gaussian with a fixed scale of o = 0.09 for the background slot and o = 0.11 for the
foreground slots.

Attention Network: The attention network is a U-Net (Ronneberger et al.,|2015)) and follows the
architecture proposed by (Burgess et al.||2019). The down and up-sampling components consist each
of five blocks with 3x3 kernels, 32 channels, instance normalisation, ReLLU activations and down- or
up-sampling by a factor of two. The convolutional layers are bias-free and use stride 1 and padding 1.
A three-layer MLP with hidden layers of size 128 connect the down- and the up-sampling part of the
U-Net.

Training: MONET and VIMON are implemented in PyTorch (Paszke et al.,|2019) and trained with
the Adam optimizer (Kingma & Ba,[2015]) with a batch size of 64 for MONET and 32 for VIMON,
using an initial learning rate of 0.0001. Reconstruction performance is evaluated after each epoch
on the validation set and the learning rate is decreased by a factor of 3 after the validation loss
hasn’t improved in 25 consecutive epochs for MONET and 100 epochs for VIMON, respectively.
MONET and VIMON are trained for 600 and 1000 epochs, respectively. The checkpoint with
the lowest reconstruction error is selected for the final MOT evaluation. MONET is trained with
B =0.5and v = 1 and VIMON is trained with 8 = 1 and v = 2. K = 5 for SpMOt, K = 6 for
VMDS and K = 8 for VOR. Due to the increased slot number for VOR, batch size for VIMON
had to be decreased to 24 to fit into the GPU memory. Respectively, the initial learning rate is set to
0.000075 for VIMON on VOR. We initialize the attention network and the VAE in VIMON with the
pre-trained weights from MONET to facilitate learning and speed up the training. Note that for all
evaluations, the reconstructed masks m from the VAE were used.

Sprites-MOT Initialization: When training MONET and Video MONET on Sprites-MOT from
scratch, MONET struggles to learn the extreme color values of the objects that Sprites-MOT features.
Instead it completely focuses on learning the shapes. To circumvent that, we initialized the weights
of the models with MONET weights that were trained for 100 epochs on Multi-dSprites.
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Table D.1: Architecture of VIMON VAE Encoder.

Type Size/Ch.  Act. Func. Comment
Input 4 RGB + Mask
Conv 3x3 32 ReLU

Conv 3x3 32 ReLLU

Conv 3x3 64 ReLU

Conv 3x3 64 ReLLU

MLP 256 ReLU

MLP 32 Linear

Table D.2: Architecture of VIMON VAE Decoder.

Type Size/Ch.  Act. Func. Comment
Input 16

Broadcast 18 + coordinates
Conv 3x3 32 RelLU

Conv 3x3 32 ReLU

Conv 3x3 32 RelLU

Conv 3x3 32 RelLU

Conv 1x1 4 Linear RGB + Mask

D.2 TRACKING BY ANIMATION

Preprocessing: TBA expects its input frames to contain only foreground objects. In (He et al.,
2019), the authors use Independent Multimodal Background Subtraction (IMBS) (Bloisi & locchi,
2012) to remove the background from datasets consisting of natural videos with static backgrounds.
Background subtraction algorithms maintain a spatio-temporal window around each pixel in the
sequence, and remove the dominant mode based on a histogram of color values. Since the default
implementation of IMBS has several hand-tuned thresholds corresponding to natural videos (e.g., for
shadow suppression), it cannot be directly applied to synthetic datasets like VMDS without significant
hyper-parameter tuning. We instead re-generate all of the VMDS datasets with identical objects and
motion but a black background for our experiments with TBA, to mimic a well-tuned background
subtraction algorithm.

Architecture: For SpMOT, we follow the same architecture as in (He et al.|[2019), while we increase
the number of slots from K = 4 to K = 5 and number of layers from O = 3 to O = 4 for VMDS.
Since TBA does not model the background, this makes the number of foreground slots equal to the
other models in our study.

Further, we increase the size prior parameters U x V used for the shape and appearance templates
from 21 x 21 which is used for SpMOT, to 64 x 64 for VMDS, which we empirically found gave the
best validation loss among 48 x 48, 56 x 56, 64 x 64 and 72 x 72. All other architectural choices are
kept fixed for both datasets, and follow (He et al.,[2019). Note that due to this, we trained the TBA
models at its default resolution of 128 x 128 unlike the 64 x 64 resolution used by MONET and OP3.

Training and Evaluation: We train for 1000 epochs using the same training schedule as in (He
et al.;2019). The checkpoint with the lowest validation loss is selected for the final MOT evaluation.
Further, we observed that the discrete nature of the shape code used in TBA’s mid-level representation
leads to salt-and-pepper noise in the reconstructed masks. We therefore use a 2 X 2 minimum pooling
operation on the final output masks to remove isolated, single pixel foreground predictions and
generate 64 x 64 resolution outputs, similar to MONET and OP3 before evaluation.

Deviation of SpMOT results compared to original publication: Our results were generated with
100k training frames, while the original TBA paper (He et al.l |2019) uses 2M training frames for
the simple SpMOT task. Further, we report the mean of three training runs, while the original paper
reports one run (presumably the best). Our best run achieves MOTA of 90.5 (Table [E.T)). Third, we
evaluate using intersection over union (IoU) of segmentation masks instead of bounding boxes.
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D.3 OP3

Training: The OP3 loss is a weighted sum over all refinement and dynamics steps (Eq. (26)).
For our evaluation on multi-object tracking, we weight all time steps equally. In contrast to the
original training loss, in which the weight value is linearly increased indiscriminately, thus weighting
later predictions more highly, we perform the linear increase only for the refinement steps between
dynamics steps, thus weighting all predictions equally.

OP3, as published by (Veerapaneni et al.| 2019)), uses curriculum learning. For the first 100 epochs,
M refinement steps are taken, followed by a single dynamics step, with a final refinement step
afterwards. Starting after 100 epochs, the number of dynamics steps is incremented by 1 every 10
epochs, until five dynamics steps are reached. Thus, only 5 frames of the sequence are used during
training at maximum.

We chose to use an alternating schedule for training, where after each dynamics step, M = 2
refinement steps are taken, and this is continued for the entire sequence. Thus, the entire available
sequence is used, and error is not propagated needlessly, since the model is enabled to refine previous
predictions on the reconstruction before predicting again. Note that this is the schedule OP3 uses by
default at test-time, when it is used for model predictive control. Note that we still use 4 refinement
steps on the initial observation to update the randomly initialized posterior parameters, as in the
released implementation. We split all 10-step sequences into 5-step sequences to avoid premature
divergence.

We train OP3 with a batch size of 16 for 300 epochs using an learning rate of 0.0003 for VMDS and
VOR and 0.0001 for SpMOT. K = 5 for SpMOT, K = 6 for VMDS and K = 8 for VOR are used.
Larger learning rates for SpMOT led to premature divergence. Note OP3 by default uses a batch size
of 80 with the default learning rate of 0.0003, this led to suboptimal performance in our experiments.
Finally, training OP3 is very unstable, leading to eventual divergence in almost all experiments that
have been performed for this study.

The checkpoint prior to divergence with the lowest KL loss is selected for the final MOT evaluation,
as the KL loss enforces consistency in the latents over the sequence. Interestingly, the checkpoint
almost always corresponded to the epochs right before divergence.

D.4 SCALOR

Architecture: We follow the same architecture as in (Jiang et al.,[2020). We use a grid of 4 x 4 for
object discovery with a maximum number of objects of 10. The standard deviation of the image
distribution is set to 0.1. Size anchor and variance are set to 0.2 and 0.1, respectively.

For SpMOT, background modeling is disabled and the dimensionality of the latent object appearance
is set to 8.

For VMDS, the dimensionality of background is set to 3 and the dimensionality of the latent object
appearance is set to 16. For object discovery, a grid of 3 x 3 cells with a maximum number of objects
of 8 is used.

For VOR, the dimensionality of background is set to 8 and the dimensionality of the latent object
appearance is set to 16.

Hyperparameter tuning: For VMDS, we run hyperparameter search over number of grid cells
{3 x 3,4 x 4}, background dimension {1, 3, 5}, maximum number of objects {5, 8, 10} (dependent
on number of grid cells), size anchor {0.2, 0.25, 0.3, 0.4}, 7 What dimenisonality {8, 16, 24} and end
value of tau {0.3, 0.5}.

For SpMOT, we run hyperparameter search over maximum number of objects {4, 10}, size anchor
{0.1, 0.2, 0.3}, z*" dimensionality {8, 16} and whether to model background (with background
dimensionality 1) or not.

For VOR, we run hyperparameter search over size anchor {0.2, 0.3} and background dimensionality
{8, 12}.

We picked best hyper parameters according to the validation loss.
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Figure E.1: Distribution of failure cases dependent on number of objects in VMDS videos split by
failure class. Mean of three training runs. Error bars: SD.

Training: We train SCALOR with a batch size of 16 for 300 epochs using a learning rate of 0.0001
for SpMOT and VOR and for 400 epochs for VMDS. For the final MOT evaluation, the checkpoint
with the lowest loss on the validation set is chosen.

E ADDITIONAL RESULTS

Table [E-T]lists the individual results for the three training runs with different random seeds per model
and dataset. The results of VIMON and SCALOR are coherent between the three runs with different
random seed, while TBA has one run on SpMOT with significantly lower performance than the
other two and shows variation in the three training runs on VMDS. OP3 exhibits one training run on
SpMOT with lower performance than the other two.

Fig. [E-I|shows the fraction of failure cases dependent on the number of objects present in the video
for the three different failure cases separately; ID switches, FPs and misses. For VIMON, TBA and
SCALOR, the number of failures increase with the number of objects present regardless of the type
of failure. In contrast, OP3 shows this pattern for ID switches and misses, while it accumulates a
higher number of false positives (FPs) in videos with fewer (only one or two) objects.

Fig.[E.2] shows a comparison between MONET and VIMON on VMDS. MONET correctly finds and
segments objects, but it does not assign them to consistent slots over time, while VIMON maintains
a consistent slot assignment throughout the video.

ViMON MONet
Ground Truth % ‘. .' ’ % .. .' ’
hd v v % hd v v| %
Reconstruction .' .. . . .. '. . .
hd v

e m -

Figure E.2: Comparison of MONET and VIMON on VMDS. Example sequence of dataset shown
with corresponding outputs of the model. Reconstruction shows sum of components from all slots,
weighted by the attention masks. Color-coded segmentation maps in third row signify slot-assignment.
Note how the object-slot assignment changes for consecutive frames (3rd row) for MONET, while
VIMON maintains a consistent slot assignment throughout the video.

Fig. [E-4]shows failures cases of OP3 on VOR.
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Table[E.2] and Table [E.3]list the results for the four models, VIMON, TBA, OP3 and SCALOR, on
the VMDS challenge sets and out-of-distribution (0.0.d.) sets respectively. Results are shown as the
mean and standard deviation of three training runs with different random seed per model.

Table E.1: Analysis of SOTA object-centric representation learning models for MOT. Results for
three runs with different random training seeds.

Model Run MOTA{T MOTPtT MD1T MT1 Matcht Miss]| IDS.] FPs| MSE]
SpMOT
1 70.0 90.6 92.8 494 747 4.1 21.2 4.7 10.4
MONET 2 69.4 90.0 92.7 48.1 74.2 4.1 21.6 4.8 13.4
3 71.3 88.1 91.6 538 77.1 4.9 18.0 5.8 15.2
1 92.7 92.0 87.5 87.0 949 4.9 0.2 2.2 10.5
VIMON 2 92.8 92.0 86.9 863 948 5.0 0.2 2.0 11.8
3 93.2 91.6 88.8 88.3 952 4.6 0.2 2.0 10.9
1 90.5 71.4 90.2 89.8 944 53 0.3 39 10.3
TBA 2 58.4 70.7 69.6 60.8  75.0 18.1 6.9 16.6 14.6
3 90.1 71.5 90.3 894  94.0 5.5 0.5 39 10.9
1 92.4 80.0 94.5 93.7 973 2.4 0.4 4.8 43
OP3 2 81.9 74.9 86.9 86.5 928 6.8 0.3 10.9  30.1
3 92.9 80.1 95.9 952 976 2.0 0.4 4.7 5.6
1 94.4 80.1 96.5 923 954 24 2.2 1.0 33
SCALOR 2 94.7 80.2 96.4 93.1 95.8 2.4 1.8 1.1 34
3 95.5 80.2 96.3 940 964 24 1.2 0.9 3.6
VOR
1 28.0 81.3 73.8 26.7 574 18.0 24.6 29.4 14.1
MONET 2 44.5 824 78.2 454  68.7 15.0 16.3 24.2 11.8
3 38.5 81.6 78.7 39.8 67.0 14.4 18.5 28.5 10.8
1 89.0 88.9 90.2 89.8 929 6.8 0.3 39 7.1
VIMON 2 89.0 89.8 89.9 89.6  93.0 6.8 0.2 4.0 6.2
3 89.0 89.9 91.0 90.6  93.8 6.0 0.2 4.8 5.9
1 64.8 89.5 87.2 85.1 90.3 8.8 0.9 25.5 3.1
OP3 2 66.2 88.1 88.6 85.1 90.7 7.9 1.4 245 29
3 65.3 89.3 88.2 86.1 91.1 8.0 0.9 25.8 3.0
1 74.1 85.8 75.6 755 774 22.6 0.0 33 6.4
SCALOR 2 74.6 86.0 75.9 759 781 21.9 0.1 3.5 6.4
3 75.1 86.1 76.5 764 782 21.7 0.0 3.1 6.3
VMDS
1 51.7 79.6 75.1 36.7 67.6 12.9 19.5 159 208
MONET 2 443 76.1 71.8 348 659 15.0 19.1 215 253
3 52.2 80.2 75.6 355  66.5 13.0 20.5 142 204
1 87.0 86.8 86.7 854 924 6.8 0.7 5.5 10.6
VIMON 2 87.1 86.8 86.1 85.1 92.3 7.1 0.6 53 10.8
3 86.5 86.7 86.0 84.6  92.1 7.2 0.7 5.6 10.6
1 68.5 76.1 69.3 653  80.7 16.5 2.8 122 26.0
TBA 2 38.9 73.8 55.1 50.5 70.2 26.6 3.2 31.3  30.8
3 56.0 75.0 64.3 59.2  76.7 19.8 35 20.8 275
1 93.1 94.2 97.2 96.7  98.0 1.9 0.2 4.9 4.0
OP3 2 92.7 934 96.9 96.3 978 2.0 0.2 5.1 43
3 89.4 93.3 96.2 958 97.6 2.2 0.2 8.3 4.6
1 75.7 88.1 69.4 68.3 798 19.4 0.8 4.0 13.9
SCALOR 2 72.7 87.2 66.7 65.6 776 21.6 0.8 4.9 14.2
3 73.7 87.6 67.5 66.2 779 21.2 0.9 4.2 14.0
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Table E.2: Performance on VMDS challenge sets. Results shown as mean =+ standard deviation for
three runs with different random training seeds. Examples sequences for each challenge set shown

below.

Occlusion Same Color Small Objects Large Objects
Model MOTA MOTP MT MOTA MOTP MT MOTA MOTP MT MOTA MOTP MT
VIMON 67.1 04 825+00 63.0x01 722+01 83.6x01 704+03 863=+02 833+02 834+04 70.7+05 851xo01 76.1=+07
TBA 375104 728 +08 383 +46 472+94 73.0x07 45239 T43x07 T19+o04 653 +16 256+150 T34+09 447 67
OP3 853 +10 91.6+04 89.6+09 S51.5+13 865+03 663+13 933+16 93.0+04 97.0x02 838+20 922+04 93.5+04
SCALOR 588 +10 86.6+04 468+12 537+11 834+03 462411 744+07 86.1+04 67.6+13 66.1+19 86.6+05 624+14
Occlusion Same Color Small Objects Large Objects
4 > ®
¢ || . SEHE

t=10

t=10 t t=4 t=7

Table E.3: Performance on VMDS OOD test sets. Results shown as mean = standard deviation for
three runs with different random training seeds. Examples sequences for each 0.0.d. set shown below.

Size Color Rotation
Model MOTA MOTP MD MT MOTA MOTP MD MT MOTA MOTP MD MT
VIMON 614 +25 780+03 713+21 66.8+19 874+04 862+02 864+01 850+02 -104+40 705+04 395+26 29.8+10
VIMON* 803 +09 82.1+05 825+04 79.8+05 845+06 84.6+05 834+05 818103 T8T7+16 820406 792+04 764 +o6
TBA 523487 733 +07 59.8+49 51.8+49 56.1+114 T51+09 637+54 59.0+52 524199 736408 593 +62 498 455
TBA* 13+£78 684 =19 30.6+45 248+34 -165+81 69615 291438 254+33 -75+£79 694 +14 26.6+40 20.6+34
OP3 87.0+19 908 +04 96.4+01 95301 908+12 93505 973 xo01 95801  S547+s57 842+07 871+17 80.5=+2s
OPp3* 84.0+28 91.2+10 959+0s8 945+12 83.6+37 91.6+13 955+05 929=+16 T45+22 898=x07 948+o06 933 +os
SCALOR  68.1+17 849=+o04 633+17 60.0x20 755+11 899=x05 67.0+14 657=x16 465+18 821=x05 41.9x17 371=+x13
SCALOR* 67.5+12 852+06 612+12 57.1+07 733+07 898=+05 648+11 63.0+09 61.6+14 835+04 534+15 502+11
* Models trained on a dataset that featured color, size and orientation changes of objects during the sequence.
Size Color Rotation
t=1 t=3 t=5 t=7 t=9 t=1 t=3 t=5 t=7 t=9 t=1 t=3 t=5 t=7 t=9
E.1 OUT-OF-DISTRIBUTION TEST SETS

To test whether the models can in principle learn additional object transformations as featured in the
VMDS o.0.d. sets, we additionally train the models on a new training set that includes size and color
changes as well as rotation of objects. VIMON, OP3 and SCALOR are able to learn additional
property changes of the objects when they are part of the training data while TBA fails to learn
tracking on this more challenging dataset (Fig.[E3} for absolute values Table [E-3).

E.2 STABILITY OF TRAINING AND RUNTIME

To assess runtime in a fair way despite the mod-
els being trained on different hardware, we re-

T T T T 100 e MQIA_ . e MT .
port the training progress of all models after one  **° ¥ Y vy 1YY v
hour of training on a single GPU (Table E4.In g . ; T et
addition, we quantify inference time on the full ¢ Vv oTear
VMDS test set using a batch size of one. g oY v M.
= A\
-50 -'r T 1 r T 1
E.3 VIMON ABLATIONS Size  Color Rota- Size  Color Rota-
tion tion

Removing the GRU or the mask conditioning
of the attention network reduces tracking perfor-
mance (MOTA on VMDS from 86.8% to 70.6%
and 81.4%, respectively; Table [E.3))

Figure E.3: Performance on out-of-distribution
sets relative to VMDS test set (100%). * indicates
that models were trained on a dataset that included
color, size and orientation changes of objects.

F SUPPLEMENTARY FIGURES

See figures [F1] - [F.8] for additional, randomly
picked examples of reconstruction and segmentation for VIMON, TBA, OP3 and SCALOR on the
three datasets (VMDS, SpMOT and VOR).
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Table E.4: Runtime analysis (using a single RTX 2080 Ti GPU). Training: models trained on VMDS
for one hour. Inference: models evaluated on VMDS test set with batch size=1 (10 frames).

Training Inference
Model Resolution No. Param. Batch Size Memory [MiB] No. Iters Epochs Memory [MiB] Avg. runtime / batch  Total runtime
VIMON 64x64 714,900 18 10,860 3687 6.63 910 0.28 s/it 4min 39s
TBA 128x128  3,884,644* 64 10,564 4421 28.29 972 0.24 s/it 4min 05s
OP3 64x64 876,305 10 10,874 2204 220 4092 0.54 s/it 9min 04s
SCALOR  64x64 2,763,526 48 10,942 2547 12.23 930 0.29 s/it 4min 48s

* The TBA parameter count scales with the feature resolution, which is kept fixed using adaptive pooling. This makes the parameter count
independent of input resolution.

Table E.5: Ablation experiments for VIMON on VMDS.

Model MOTA1t MOTP1T MD?T MT?T Matcht Miss] IDS.] FPs]| MSE/|
VIMON w/0 MASK CONDITIONING  70.6 87.8 75.7 66.0 81.4 13.4 52 10.8 16.9
VIMON w/0 GRU 81.4 86.9 79.8 773 882 10.3 1.4 6.8 18.9
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A

LEEER

S

Figure E.4: Failure cases of OP3 on VOR. Exam-
ple sequences of VOR test set shown with corre-
sponding outputs of the model after final refine-
ment step. Binarized colour-coded segmentation
maps in third row signify slot-assignment.
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Figure F.1: Results of VIMON on VMDS. Random example sequences of VMDS test set shown
with corresponding outputs of the model. Reconstruction shows sum of components from all slots,

weighted by the reconstructed masks from the VAE. Binarized colour-coded segmentation maps in
third row signify slot-assignment.

Segm. Recon.

30



Under review as a conference paper at ICLR 2021

Ground
Truth

Truth Segm. Recon.

Ground

Segm. Recon.

Ground
Truth

Truth Segm. Recon.

Ground

Truth Segm. Recon.

Ground

Segm. Recon.

Figure F.2: Results of VIMON on SpMOT. Random example sequences of SpMOT test set shown
with corresponding outputs of the model. Reconstruction shows sum of components from all slots,
weighted by the reconstructed masks from the VAE. Binarized colour-coded segmentation maps in
third row signify slot-assignment.
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Figure F.3: Results of VIMON on VOR. Random example sequences of VOR test set shown with
corresponding outputs of the model. Reconstruction shows sum of components from all slots,
weighted by the reconstructed masks from the VAE. Binarized colour-coded segmentation maps in
third row signify slot-assignment.
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Figure F.4: Results of TBA on VMDS. Random example sequences of VMDS test set shown with
corresponding outputs of the model. Binarized colour-coded segmentation maps in third row signify
slot-assignment. Note that background subtraction is performed in the preprocessing of TBA, hence
the black background in the reconstructions.
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Figure F.5: Results of TBA on SpMOT. Random example sequences of SpMOT test set shown with
corresponding outputs of the model. Binarized colour-coded segmentation maps in third row signify
slot-assignment.
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Figure F.6: Results of OP3 on VMDS. Random example sequences of VMDS test set shown with
corresponding outputs of the model after final refinement step. Binarized colour-coded segmentation
maps in third row signify slot-assignment.
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Figure F.7: Results of OP3 on SpMOT. Random example sequences of SpMOT test set shown with
corresponding outputs of the model after final refinement step. Binarized colour-coded segmentation
maps in third row signify slot-assignment.
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Figure F.8: Results of OP3 on VOR. Random example sequences of VOR test set shown with
corresponding outputs of the model after final refinement step. Binarized colour-coded segmentation
maps in third row signify slot-assignment.
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Figure F.9: Results of SCALOR on VMDS. Random example sequences of VMDS test set shown

with corresponding outputs of the model. Binarized colour-coded segmentation maps in third row
signify slot-assignment.
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Figure F.10: Results of SCALOR on SpMOT. Random example sequences of SpMOT test set shown
with corresponding outputs of the model. Binarized colour-coded segmentation maps in third row
signify slot-assignment.
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Figure F.11: Results of SCALOR on VOR. Random example sequences of VOR test set shown with
corresponding outputs of the model. Binarized colour-coded segmentation maps in third row signify
slot-assignment.
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