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Abstract

Standard reinforcement learning aims to learn a policy that maps each state to a single1
optimal action. Recent work has proposed alternative formulations inspired by health-2
care applications, including Set-Valued Policies (SVP), which maps each state to mul-3
tiple near-optimal actions to support clinician-in-the-loop decision making, as well as4
Dead-End Discovery (DeD), which eliminates high-risk actions in order to avoid un-5
desirable outcomes. While SVP and DeD appear complementary–in that the actions6
not chosen by SVP could correspond to the same actions eliminated by DeD, and vice7
versa–the consistency of their recommendations has not been systematically studied.8
In this work, we empirically evaluate the consistency of SVP and DeD in a clinically9
inspired grid-world domain, analyzing how their consistency varies across different hy-10
perparameter settings. Our results reveal the complexity of this problem, where seem-11
ingly reasonable heuristics on hyperparameter values or action set sizes fail to guarantee12
consistency. We demonstrate a method to visualize consistency patterns across hyper-13
parameter configurations, highlight conditions under which consistency is more likely14
achieved, and explore possible reasons for divergence between the two approaches. Our15
findings underscore the importance of empirically analyzing potential inconsistencies16
of SVP and DeD before they are deployed and used together on real-world applications.17

1 Introduction18

Reinforcement learning (RL) has been framed as the problem of solving the optimal policy, which19
identifies one action for each state that yields the highest discounted expected cumulative reward20
(Sutton & Barto, 1998; 2018). This is done both for simplicity of algorithm implementation and be-21
cause such deterministic policies are sufficient in fully observable environments (Puterman, 1994).22
However, under this standard formulation, the non-optimal actions (per state) are entirely ignored.23
Among recent developments, Set-Valued Policies (SVP) by Tang et al. (2020) and Dead-End Dis-24
covery (DeD) by Fatemi et al. (2021) are two notable approaches that proposed different paradigms,25
both motivated by applications in healthcare.26

SVP produces a set of near-optimal actions for each state that lead to similar returns in the worst case27
rather than a single best action that leads to the highest return, which enables the clinician-in-the-28
loop decision making (Fard & Pineau, 2011). In contrast, DeD adopts a risk-sensitive perspective29
by proactively identifying irreversible states (e.g., severe deterioration or mortality) and eliminating30
actions with a high possibility of leading to such states (Fatemi et al., 2019; Killian et al., 2023).31

While both SVP and DeD move beyond the rigid single-action policy of standard RL, they each32
tackle the problem from a different angle. SVP compares all non-optimal actions with the optimal33
action by their Q-values (for a particular state) and provides a set of actions that are within a prede-34
fined “near-optimality margin” (e.g., 5%) of the optimal action. On the other hand, DeD eliminates35
potentially high-risk actions through a “death threshold” (e.g., actions that lead to a probability of36
death > 95% will be flagged as unsafe) and thereby retaining a set of viable actions. Both SVP and37
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DeD can be seen as a mechanism to partition the action space into a desirable action set and an un-38
desirable action set for each state, and they share a similar goal of communicating action recommen-39
dations to a more user-friendly format. However, it is unclear whether the recommendations from40
SVP and DeD are guaranteed to be consistent with each other. Due to mis-estimation of Q-values41
with insufficient data and depending on choices of the hyperparameters (near-optimality margin and42
death threshold), SVP may include unsafe actions whereas DeD may discard viable actions. Thus,43
it may be possible that the same action is flagged as high-risk by DeD but also included in the SVP’s44
near-optimal set. Understanding whether and how these two approaches may produce conflicting45
recommendations can guide us to better leverage their strengths and provide a consistent output to46
end-users receiving these recommendations, especially in high-stakes domains like healthcare.47

In this paper, we begin to answer this question via an empirical evaluation on a grid-world domain,48
investigating the consistency between SVP and DeD across different hyperparameters. Specifically,49
we study two seemingly reasonable heuristics for ensuring consistency: (1) where the number of50
actions flagged as unsafe by DeD plus the number of actions recommended by SVP is smaller51
than the total number of available actions; (2) when the near-optimal margin and death threshold52
sums to less than 1. We also examine what kind of states are more vulnerable to conflicts across53
different hyperparameter combinations. Our results show that SVP and DeD can indeed produce54
conflicting recommendations, and there does not appear to be simple, generalizable conditions for55
guaranteeing consistency. Our findings highlight the challenging nature of the problem, motivating56
further mathematical study into their theoretical foundations and new strategies for unifying them.57

2 Background58

Reinforcement learning formalizes sequential decision-making as a Markov decision process59
(MDP), defined by the tuple (S,A, P,R, γ), where S is the set of states, A is a set of actions,60
P (s′|s, a) is the transition probability from state s to s′ under action a, R(s, a) is the reward func-61
tion computing the expected reward under action a given state s, and γ ∈ [0, 1) is the discount62
factor. In the standard RL formulation, the goal is to learn a policy π(a|s) that produces the highest63
expected discounted return. State-action value function Qπ(s, a) estimates the expected return from64
taking action a in state s and following policy π thereafter.65

In this work, we consider two approaches that move beyond standard RL policy formulation, namely66
SVP (Tang et al., 2020) and DeD (Fatemi et al., 2021). To aid our explanation, we will use a unified67
notation for the “policies” produced by both approaches, πSVP(s) ⊆ A and πDeD(s) ⊆ A.68

2.1 Set-Valued Policies (SVP)69

An SVP policy maps each state to a set of near-optimal actions. Formally,70

πSVP(s) = {a ∈ A |QπSVP(s, a) ≥ (1− ζ)V ∗(s)} .

where ζ ∈ [0, 1] is a hyperparameter that specifies the acceptable margin of near-optimality.71

A larger ζ produces a more inclusive policy that considers a broader set of actions as near-optimal,72
whereas a smaller ζ produces a more conservative policy with very few action choices, and in the73
limit of ζ = 0, only the optimal action is included. Importantly, QπSVP(s, a) is the worst-case74
Q-value (details in Tang et al. (2020)) that considers the worst future trajectory possible under75
the SVP’s recommendation such that, no matter which action the end-user chooses from the near-76
optimal set, the long-term reward is still ζ-close to the optimal value V ∗(s).77

2.2 Dead-End Discovery (DeD)78

A DeD policy maps each state to a set of risky/unsafe actions. Formally,79

πDeD(s) = {a ∈ A |−QD(s, a) ≥ θD} .
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DeD estimates a separate value function QD(s, a) ∈ [−1, 0], which is the value function resulting80
from a specific MDP and reward structure (the “death MDP”, details in Fatemi et al. (2021)) such that81
−QD(s, a) represents the probability of eventual death after taking action a in state s. QD(s, a) =82
−1 indicates a 100% probability of reaching a terminal death state.83

The main hyperparameter of DeD is the death threshold θD ∈ [0, 1]. A larger threshold (closer to 1)84
makes DeD more tolerant of risky actions (only eliminating actions that are almost certainly leading85
to death), while a smaller threshold (closer to 0) results in a more conservative, risk-averse policy.86

3 Consistency between SVP and DeD87

While SVP recommends the best few actions with the highest expected cumulative rewards, DeD88
eliminates the worst few actions with the highest possibility of death. Ideally, the two approaches89
should produce consistent recommendations, where the treatments eliminated by DeD should not90
overlap with those selected as near-optimal by SVP. Understanding where and why inconsistencies91
or conflicts occur is key to designing a unified framework for combining these two approaches. To92
quantify the inconsistency, we propose both a state-level and a policy-level measure.93

State-Level Inconsistency. Policies πSVP and πDeD are said to be inconsistent at state s ∈ S if94
πSVP(s) ∩ πDeD(s) ̸= ∅, i.e., there exists at least one action that is both near-optimal (according to95
SVP) and risky (according to DeD) for state s.96

Policy-Level Inconsistency. Given πSVP and πDeD, we can quantify their extent of inconsistency by97
calculating the fraction of states that are inconsistent. If there are any inconsistent states, we say98
πSVP and πDeD are inconsistent.99

4 Experimental Setup100

We conduct our experiments using the LifeGate environment (Fatemi et al., 2021), a synthetic grid101
world domain designed to simulate the clinical setting. An agent’s action set comprises moving up,102
down, right, left, or staying in place. For both SVP and DeD, we set the discount factor γ = 1 to103
ensure that SVP properly account for eventual recovery as the final objective without introducing104
any temporal preferences, and that DeD accurately estimates the probability of reaching death zones.105
The LifeGate environment (Figure 1) includes the following key components:106

Figure 1: LifeGate environment

Barriers: The gray areas in the figure. If the agent attempts to move into a barrier, it will be107
redirected back to stay at its current position without receiving any reward or penalty.108

Dead-ends: The yellow areas in the figure. States that represent irreversible failure conditions.109
When entering a dead-end, the agent faces a 70% probability of remaining in the same position110
(no-move) and a 30% probability of being pushed one cell to the right (death-drag). This simulates111
deterioration that cannot be avoided even with intervention in clinical practice.112
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Death zones: The red areas in the figure. Reaching a death zone immediately terminates the simu-113
lation, indicating that the agent has failed to recover (death).114

Recovery zones (the “life gates”): The blue areas in the figure. Reaching a recovery zone also ends115
the simulation, signifying that the agent has successfully recovered.116

Neutral states: The white areas in the figure. These comprise the majority of the environment and117
allow the agent to continue navigating without immediate reward or penalty. However, there is a118
natural drag mechanism that pushes the agent to the right with a probability of 40%, regardless of119
the chosen action. This simulates unexpected patient deterioration in the medical domain.120

We implemented the environment with two different reward functions tailored to the goals of SVP121
and DeD. For SVP, the agent receives a reward of +1 when reaching a recovery zone and −1 when122
reaching a death zone, with zero reward for all intermediate transitions, so as to ensure the value123
function reflects both long-term success and failure. Since all actions in recovery zones, death124
zones, and dead-end states produce identical rewards, SVP would trivially include every action in125
the recommendation, conflicting with DeD’s exclusions. To enable a meaningful consistency check,126
we therefore restrict SVP to provide recommendations within non-terminal states. For DeD, the127
agent receives a reward of −1 only when entering a death zone, while all other transitions yield128
zero reward, following the setup in Fatemi et al. (2021). This ensures the value function reflects the129
probability of reaching of eventual death.130

5 Experimental Results131

Our analysis aims to investigate the consistency of SVP and DeD across various hyperparameter132
settings. Specifically, we trained 101 versions of SVP policy with ζ from 0 to 1 in increments of133
0.01, and 101 versions of DeD policy with θD from −1 to 0 in increments of 0.01, and compared the134
consistency of SVP and DeD for each pair of hyperparameters (ζ, θD). The results are organized135
in two levels of insights: we first consider global trends, looking at how policy consistency changes136
across the hyperparameter space; we then consider local trends, investigating which specific states137
are more prone to conflict between SVP and DeD, and under what hyperparameter settings.138

5.1 Global Trends139

First, we investigate how ζ affects SVP size and how θD affects DeD size by plotting the average140
number of actions per state across the hyperparameter space (Figure 2). As expected, higher ζ141
tends to produce a larger SVP set, since more actions are considered near-optimal. However, the142
relationship between SVP size and ζ is not monotonic. On the other hand, increasing θD results in143
fewer actions being eliminated by DeD, as the threshold for risk becomes more tolerant.144

Next, we visualize the SVP-DeD policy inconsistency across different hyperparameter combinations145
(ζ, θD) as a heatmap. In Figure 3, dark green regions represent full consistency between the SVP and146
DeD for that hyperparameter pair. The top left corner of the heatmap corresponds to a conservative147
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Figure 2: Left - Average SVP policy size vs. ζ. Right - Average DeD policy size vs. θD.
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Figure 3: Heatmap of SVP-DeD inconsistency (measured as fraction states that are inconsistent)
under different hyperparameter combinations of (ζ, θD).

setting, where DeD only eliminates actions that have 100% probability of death, and SVP only148
includes the optimal actions, and so there is no conflict between the two. The bottom right corner149
corresponds to the situation where DeD retains actions that have 0% probability of death and ends150
up eliminating all actions, and SVP includes all the actions, and this is where we see the highest151
level of inconsistency. For a particular ζ, as θD decreases down the heatmap, the average DeD size152
increases monotonically, which results in more inconsistency. Similarly, for a particular θD, as ζ153
increases towards the right of the heatmap, the average SVP size tends to increase, leading to more154
inconsistency, but the trend here is less pronounced and not monotonic.155

Is consistency guaranteed when SVP size and DeD size sum to fewer than all actions? Since DeD156
eliminates the worst actions and SVP recommends the best actions, a conflict is inevitable when their157
combined set sizes are larger than the total number of actions; by the pigeonhole principle, at least158
one action must be flagged as unsafe by DeD while also being recommended by SVP. Therefore,159
one reasonable heuristic to guarantee consistency is if the combined size of the SVP set and DeD set160
is less than the total number of available actions. At the state-level, we found that among 429,852161
states across all hyperparameter combinations satisfying the criterion |πSVP(s)| + |πDeD(s)| < |A|,162
247 were inconsistent, corresponding to a consistency rate of 99.94%. At the policy-level, however,163
our results show otherwise. Among 9,677 hyperparameter combinations satisfying the criterion that164
the average combined size of the SVP set and DeD set is less than the size of the action set, only165
2,447 were consistent, corresponding to a consistency rate of 25.29%.166

Does ζ + θD < 1 imply consistency? Another possible heuristic is whether the near-optimal margin167
and death threshold add up to less than 1. Intuitively, since ζ controls the tolerance of SVP for near-168
optimal actions and θD controls the tolerance of DeD for high-risk actions, if ζ + θD = 1 then we169
might reasonably expect the SVP and DeD action sets to be the exact complement of each other. The170
hyperparameter combinations where ζ + θD < 1 correspond to the lower-left triangular region of171
the heatmap in Figure 3. Unfortunately, it is clear that this heuristic does not guarantee consistency172
either. Out of 5,050 parameter combinations satisfying ζ + θD < 1, only 496 resulted in consistent173
policies, corresponding to a consistency rate of merely 9.82%.174

When do we get consistency? Based on Figure 3, we can identify a dense band of hyperparameter175
pairs that always yield consistent policies. Specifically, when ζ ∈ [0.00, 0.44] and θD ∈ [0.69, 1.00],176
all tested combinations result in full consistency. This consistency extends to slightly higher ζ values177
if θD is set to be near 0.79 or higher. Looking at Figure 2, we observe that SVP recommends178
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more than one treatment on average when ζ ∈ (0.00, 0.44] and DeD always eliminates at least one179
treatment on average when θD ∈ [0.69, 1.00], which means that both policies remain non-trivial180
within this hyperparameter range. Given the irregular contours we observed in the heatmap, we181
believe it could be challenging to provide a generalizable rule that guarantees consistency between182
SVP and DeD. Therefore, in practice, it would be essential to empirically test and retrieve a range183
of (ζ, θD) combinations that yield consistenct policies, treating the two methods as a form of cross-184
validation to enhance recommendation reliability.185

5.2 Local Trends186

Which states are more vulnerable to policy conflicts? To empirically investigate state-level vulner-187
ability to policy conflict, we plotted the frequency that each state receives an inconsistent action188
recommendation across all (ζ, θD) combinations (Figure 4). The dark red region in the heatmap189
corresponds to the states with the most conflicts, whereas the white region represents the least vul-190
nerable state. The resulting heatmap reveals distinct spatial trends in policy vulnerability. States191
located near the boundary of the death zone (the rightmost column) and the boundary of dead-end192
corridors (the bottom right region) exhibit the highest normalized conflict frequencies. In contrast,193
all terminal states (recovery, death, dead-end states) and states far from the death zone consistently194
demonstrate negligible conflict rates. This suggests that these regions are largely insensitive to195
variations in ζ and θD, and that policy disagreements are most likely to happen in regions where196
ambiguity exists near critical transitions.197
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Figure 4: Heatmap of normalized frequencies that each state receives inconsistent recommendations
from SVP and DeD across all (ζ, θD) pairs.

Counterexample: conflict under low ζ and moderate θD. While our previous analysis identified a198
broad hyperparameter range where policy consistency is generally maintained, we now highlight a199
notable counterexample. Consider ζ = 0.10 and θD = 0.65, a configuration where the SVP applies200
a relatively conservative margin (near-optimal is within 10% of the optimal) and the death-threshold201
is moderate (actions leading to a death probability exceeding 65% are eliminated). Under this set-202
ting, we examine the consistency between action sets derived from SVP and DeD. We visualize the203
policies produced by SVP and DeD in this scenario, together with another pair of hyperparameters204
where no conflict occurs (ζ = 0.00 and θD = 1.00) as a frame of reference (Figure 5). Despite the205
low value of ζ, which cautiously recommends the near-optimal actions, conflicts between the two206
policies still emerge in several states, particularly those located close to death and dead-end zones207
(highlighted with red rectangle). This example further emphasizes the importance of incorporat-208
ing empirical validation when selecting hyperparameters, as certain states still remain vulnerable to209
conflict even under seemingly conservative settings.210
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(a) SVP with ζ = 0.00 (b) DeD with θD = 1.00 (c) SVP with ζ = 0.10 (d) DeD with θD = 0.65

Figure 5: Comparisons between SVP and DeD strategies under different hyperparameter settings.
Green arrows in the figure represent actions that are recommended by SVP and red arrows points
to actions flagged as high-risk by DeD. No inconsistency is seen between (a) and (b). There are 4
states with conflicting recommendations between (c) and (d). The green arrows represent actions
that are recommended by SVP and red arrows points to actions flagged as high-risk by DeD.

6 Discussion and Future Work211

In this work, we investigated the consistency between SVP and DeD, two recent approaches that212
move beyond the standard RL formulation of single-action optimal policies. Although they appear213
intuitively complementary, with SVP retaining near-optimal actions and DeD eliminating high-risk214
actions, our findings demonstrate that their recommendations are not always consistent. Empirically,215
we observed consistency under a subset of hyperparameter configurations, particularly when ζ is216
small and θD is large. While this may seem like a narrow range, we believe they correspond to217
reasonable values to be used in practice, where we want to retain actions very close to optimal218
(small ζ) and eliminate actions that lead to death with high probability (large θD). Beyond this219
region, inconsistencies were observed in some seemingly reasonable settings, especially for states220
near high-risk regions such as the dead-end corridors or close to death zones. These results suggest221
that the interaction between SVP and DeD should be carefully evaluated before they can be deployed222
jointly in real-world applications.223

The inconsistencies we observe could be an indication that SVP and DeD are prioritizing different224
aspects of the action’s quality, which is the consequence of them making use of different reward225
functions and value functions. Specifically, for the “life gate” terminal state, SVP assigns a reward226
of +1 whereas DeD assigns a reward of 0; SVP uses the worst-case value functions whereas DeD227
uses the standard (best-case) value functions. This highlights an opportunity for hybrid frameworks228
(Lizotte & Laber, 2016; Harsh et al., 2021) that can unify these two considerations explicitly rather229
than treating it as a post-processing step. Several promising directions can be further studied. First,230
developing theoretical conditions where consistency is guaranteed can offer practitioners with more231
assurances beyond empirical observation. Second, we can enhance the robustness of SVP by in-232
tegrating an dynamically adaptive margin that can adjust based on state’s risk level into the SVP233
framework. Pursuing these directions may potentially lead to safer and more adaptable decision-234
making support, particularly in high-risk domains such as healthcare, where both flexibility and235
risk-awareness are essential (Gu et al., 2022; Sivaraman et al., 2023).236

7



Under review

References237

M Milani Fard and Joelle Pineau. Non-deterministic policies in markovian decision processes.238
Journal of Artificial Intelligence Research, 40:1–24, 2011.239

Mehdi Fatemi, Shikhar Sharma, Harm Van Seijen, and Samira Ebrahimi Kahou. Dead-ends and240
secure exploration in reinforcement learning. In International Conference on Machine Learning,241
pp. 1873–1881. PMLR, 2019.242

Mehdi Fatemi, Taylor W Killian, Jayakumar Subramanian, and Marzyeh Ghassemi. Medical dead-243
ends and learning to identify high-risk states and treatments. Advances in Neural Information244
Processing Systems, 34:4856–4870, 2021.245

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll.246
A review of safe reinforcement learning: Methods, theory and applications. arXiv preprint247
arXiv:2205.10330, 2022.248

Satija Harsh, Philip S Thomas, Joelle Pineau, Romain Laroche, et al. Multi-objective spibb: Sel-249
donian offline policy improvement with safety constraints in finite mdps. Advances in Neural250
Information Processing Systems, 34:2004–2017, 2021.251

Taylor W. Killian, Sonali Parbhoo, and Marzyeh Ghassemi. Risk sensitive dead-end identification in252
safety-critical offline reinforcement learning. Transactions on Machine Learning Research, 2023.253
ISSN 2835-8856. URL https://openreview.net/forum?id=oKlEOT83gI.254

Daniel J Lizotte and Eric B Laber. Multi-objective markov decision processes for data-driven deci-255
sion support. Journal of Machine Learning Research, 17(210):1–28, 2016.256

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John257
Wiley & Sons, Inc., USA, 1st edition, 1994. ISBN 0471619779.258

Venkatesh Sivaraman, Leigh A Bukowski, Joel Levin, Jeremy M Kahn, and Adam Perer. Ignore,259
trust, or negotiate: understanding clinician acceptance of ai-based treatment recommendations260
in health care. In Proceedings of the 2023 CHI Conference on Human Factors in Computing261
Systems, pp. 1–18, 2023.262

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,263
Cambridge, MA, 1998.264

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT Press, 2018.265

Shengpu Tang, Aditya Modi, Michael Sjoding, and Jenna Wiens. Clinician-in-the-loop decision266
making: Reinforcement learning with near-optimal set-valued policies. In International Confer-267
ence on Machine Learning, pp. 9387–9396. PMLR, 2020.268

8

https://openreview.net/forum?id=oKlEOT83gI

