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Abstract
Aligning language models (LMs) based on
human-annotated preference data is a crucial step
in obtaining practical and performant LM-based
systems. However, multilingual human prefer-
ence data are difficult to obtain at scale, making it
challenging to extend this framework to diverse
languages. In this work, we evaluate a simple
approach for zero-shot cross-lingual alignment,
where a reward model is trained on preference
data in one source language and directly applied
to other target languages. On summarization and
open-ended dialog generation, we show that this
method is consistently successful under compre-
hensive evaluation settings, including human eval-
uation: cross-lingually aligned models are pre-
ferred by humans over unaligned models on up
to >70% of evaluation instances. We moreover
find that a different-language reward model some-
times yields better aligned models than a same-
language reward model. We also identify best
practices when there is no language-specific data
for even supervised finetuning, another compo-
nent in alignment.

1. Introduction
Alignment has become an indispensable stage for build-
ing practical language models (LMs) adjusted to human
preferences. This additional step, however, makes it chal-
lenging to develop LMs for many languages: unlike for
autoregressive language modeling where multilingual unla-
beled data may be easy to obtain (Joshi et al., 2020), such
as religious texts (Christodouloupoulos & Steedman, 2015),
labeled preference data can be expensive to gather. How do
we align a LM in a target language without any preference
data in that language?
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Figure 1. Cross-lingual reward model (RM) transfer. To align in a
target language (in this example, Spanish), common monolingual
alignment uses a RM for that target language. Instead, we re-
purpose a RM for a different source language (in this example,
English).

We propose a novel reward model (RM) transfer setup,
where we re-purpose a trained RM for some source lan-
guage to align a LM in a target language (Figure 1), and
investigate the effectiveness of this simple recipe. Across
two tasks (summarization and open-ended dialog gener-
ation), two reward optimization methods (reinforcement
learning and best-of-n reranking), and various evaluation
settings, we demonstrate substantial and consistent zero-
shot cross-lingual utility of RMs. Surprisingly, alignment
using a different-language RM sometimes outperforms us-
ing a same-language RM, both when judged by humans and
LMs. We also show that our RM transfer framework is use-
ful even when target-language data for supervised finetuning
(SFT), another component in alignment, is inaccessible.

Our results show that RM signals are generalizable and ro-
bust to input distribution changes, which could be leveraged
for more future applications. Practically, our findings pave
the path towards lowering the costs for training LMs that
more equitably serve users around the world.
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Figure 2. Performing target-language alignment using a RM
for a different source language improves performance, when
evaluated exclusively in the target language. This improve-
ment is sometimes even larger than using the target-language
RM (monolingual alignment). Here we measure the win rate
against the target-language (unaligned) SFT model judged by hu-
mans, and the 95% confidence interval across validation instances.
“source→target“ denotes using a source-language RM to drive
alignment in the target language.

2. Background: Alignment From Human
Feedback

In addition to traditional unsupervised LM pretraining, many
recent LMs also include an alignment phase to improve
helpfulness, harmlessness, etc., supervised by human feed-
back (Bai et al., 2022a; Ouyang et al., 2022; i.a.). A com-
mon recipe includes three stages: supervised finetuning
(SFT), reward modeling (RM), and reward optimization.
We give an overview of each and refer readers to Ouyang
et al. (2022) and Bai et al. (2022a) for details. We assume
a base model already pretrained using a usually next-token
prediction objective.

The SFT stage initializes from the base model and takes
task inputs x ∈ X to train the model to simulate example
outputs y ∈ Y . Specifically, it optimizes the conditional
log-likelihood of y given some input x, similar to regular
language modeling. We denote the trained SFT model using
πSFT.

The RM stage trains a model r : X × Y → R as a proxy
for human-judged quality of y under x. It initializes from
πSFT and is trained using a dataset of human judgments of

generations. We consider two types of feedback to train the
RM:

1. Pointwise feedback judges the quality of a single gen-
eration; in particular we only consider binary (good or
bad) pointwise judgments. Denoting it as z ∈ {0, 1} and
letting DRM be a dataset of judgments, the RM can be a
standard classifier trained using the cross-entropy loss,

−E(x,y,z)∼DRM [z log σ (r(x, y))+

(1− z) log (1− σ (1− r(x, y)))].

2. Pairwise feedback chooses a better generation out of
two. We denote the chosen one as yw and the other as yl.
To train a pointwise RM on such data, the Bradley-Terry
model (Bradley & Terry, 1952) is often used, maximizing

E(x,yw,yl)∼DRM [log σ (r(x, yw)− r(x, yl))].

It is also generalizable to more than two outputs.

The reward optimization stage also initializes from
πSFT and further adjusts the model outputs using hu-
man feedback (as captured by the RM). Two common
methods are reinforcement learning (RL) and best-of-n.
Best-of-n is an inference-time procedure that does not
change the underlying model, where multiple generations
are sampled from πSFT and then reranked using the
RM; the highest-scoring generation is returned as the
output. In RL, the model itself is changed such that its
samples are scored highly by the RM, with the objective

Ex∼DRO,ỹ∼πθ(x)[r(x, ỹ)−
β (log πθ(ỹ | x)− log πSFT(ỹ | x))].

DRO is a dataset of inputs and β is a regularization hy-
perparameter. The above is typically optimized with
PPO (Schulman et al., 2017). While we generally experi-
ment with both methods, in some of our analyses we focus
on best-of-n for a clean testbed without confounders from
RL training.

3. Reward Model Transfer for Cross-Lingual
Alignment

The pipeline in §2 is usually performed monolingually, com-
monly in English. Aligning for a new language requires
both SFT data and RM data in that language. While the
former may be relatively easier to obtain due to automatic
construction methods, such as by re-purposing existing mul-
tilingual datasets (Muennighoff et al., 2023) or by eliciting
from LMs (Wang et al., 2023c), RM data for a new language
can be more expensive to gather, as it in principle requires
human judgments. Additionally, RM data should ideally
be periodically re-collected to avoid over-optimization (Bai
et al., 2022a), further increasing data demand. Thus, we
are mainly interested in alignment without target-language
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RM data, though, in §5.3, we investigate dispensing with
target-language SFT data too.

We propose to perform reward optimization using a RM
trained for a different language (Figure 1). Intuitively, as-
suming model generation quality transfers cross-lingually
(e.g., good English generations are still good when trans-
lated into Spanish1), a model that can judge the output
quality in one language should generalize to others, as long
as the RM understands the languages, which is enabled by
multilingual base model training. This generalizability is
often observed for other tasks in the zero-shot cross-lingual
transfer literature (Wu & Dredze, 2019; Pires et al., 2019;
Conneau et al., 2020b; Hu et al., 2020; i.a.), and we expect
it to work for RMs too. A simple baseline would be to use
automatically translated RM data, to which we compare in
§5.1. In this paper, we use source language to denote the
RM language, and target language for the language of the
aligned model.

4. Experimental Setup
We consider two tasks: summarization, common in align-
ment research (Stiennon et al., 2020; Ziegler et al., 2020;
Lee et al., 2023; i.a.), and open-ended dialog generation,
with substantial real-world relevance. §A describes dataset
details and §B training details. §G.1 contains our task in-
structions.

Summarization. The Seahorse dataset (Clark et al., 2023)
contains documents and summaries in six languages (Ger-
man, English, Spanish, Russian, Turkish, and Vietnamese)
with pointwise human ratings which we use. For SFT, we
gather the data sources of Seahorse: XSum (Narayan et al.,
2018), XL-Sum (Hasan et al., 2021), MLSum (Scialom
et al., 2020), and WikiLingua (Ladhak et al., 2020). We use
mT5-XL (Xue et al., 2021) as our multilingual base model,
with 3.7B parameters.

Open-Ended Dialog Generation. We use the OpenAssis-
tant dataset (Köpf et al., 2023) with multilingual, pairwise
human-rated chat transcripts. For the SFT data, we use
the human-preferred response in each pair to finetune the
model. Many languages in OpenAssistant have only limited
data, so we only consider three languages with the most
amounts of data: English, Spanish, and Russian. We use
PaLM-2-XXS as the base model (Anil et al., 2023). The
authors of OpenAssistant found RL to be ineffective for
this dataset (Köpf et al., 2023), which we confirmed in our
experiments (Figure 4). We therefore focus on best-of-n for

1We believe this is a weak assumption, though for tasks and
instances more subject to culture-specific factors, generations may
be judged more differently across languages (Costa et al., 2014;
Hershcovich et al., 2022; Shwartz, 2022).

this task.

Evaluation. We assess model quality across several set-
tings. First, we use the target-language RM, which is by
design finetuned to judge target-language generation qual-
ity. But because of potential RM biases (Gao et al., 2023;
Coste et al., 2023; Eisenstein et al., 2023), we also include
two zero-shot-prompted evaluation models with much larger
backbones—GPT-4 (OpenAI, 2023) and PaLM-2-L (Anil
et al., 2023). This latter evaluation setup is common in
prior work and has been demonstrated to correlate well with
human judgments (Lee et al., 2023; Rafailov et al., 2023;
An et al., 2023; Mu et al., 2023; i.a.). We also confirm its
validity in §5.1 and §C. Finally, we also perform human
evaluations by self-reported native or advanced speakers,
though only for a subset of language pairs and 250 (RL) /
100 (best-of-n) instances per pair due to its cost. For both
human and LM evaluation, we elicit pairwise judgments
to compare responses from the aligned model and the SFT
model (Bai et al., 2022b; Lee et al., 2023; i.a.). We measure
the win rate, i.e., how often the judge prefers the former.
A 50% win rate indicates no improvement from alignment.
§G.2 includes more details such as the evaluation prompts
and positional bias control.

5. Results
Here we report the results of cross-lingual alignment. See
§H for numerical results that correspond to the plots in this
section.

5.1. Cross-Lingual Alignment Is Effective

When evaluated by the finetuned target-language RM, Fig-
ure 3 shows that monolingual best-of-n or RL always im-
proves model quality, as expected. Encouragingly, cross-
lingual reward optimization improves over the SFT model in
all cases too. Similarly, when judged by a general-purpose
LM, PaLM-2-L in Figure 4 and GPT-4 in §D, in-language
and cross-lingual reward optimization both generally im-
prove model quality. Importantly, we observe high agree-
ment between the two LMs: on an instance level, they agree
>70% across setups (see §D); if we consider how often they
agree in the relative ranking of two source languages, they
agree 78% for summarization (both best-of-n and RL) and
100% for dialog generation (best-of-n). This indicates the
reliability of a LM judge.

Human evaluation (Figure 2) reveals the same trend, though
with larger confidence intervals due to the cost. It also
justifies LM-based evaluation. For summarization, PaLM-
2-L (GPT-4) agrees with humans 65% (69%) of the time
in English and 66% (62%) in Spanish, matching the 63%
human-human agreement for English reference summaries
and 67% for Spanish in Seahorse (Clark, personal commu-
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nication, April 15, 2024). For dialog, PaLM-2-L (GPT-4)
agrees with humans 69% (59%) of the time in English and
62% (60%) in Spanish, again similar to the 63% human-
human agreement in Bai et al. (2022a) and 66% in Dubois
et al. (2024). With further evidence in §C, we believe our
LM judges reasonably reflect output quality.

We also compare our cross-lingual transfer setup to an al-
ternative strategy, sometimes dubbed “translate-train” (Con-
neau et al., 2018; i.a.), that first trains a silver target-
language RM by automatically translating the source-
language data and then using the silver RM for target-
language alignment. Averaged across all 30 (= 62 − 6)
cross-lingual language pairs, under best-of-n and judged by
PaLM-2-L, our RM transfer strategy outperforms translate-
train2 (average win rate 58.8 vs. 57.5; see Table 6 and 17 for
raw numbers). RM transfer also has an efficiency advantage:
to align in multiple target languages, it suffices to train one
source-language RM, rather than different ones for each
target language. In §F, we also explore alignment using
bilingual RMs with two source languages (Mulcaire et al.,
2019), though without noticeable improvements.

5.2. Cross-Lingual Alignment Sometimes Outperforms
Monolingual Alignment

Remarkably, cross-lingual reward optimization often yields
an even better model than using the target-language RM.
This is validated by (1) the consistent trend when evaluated
by PaLM-2-L, GPT-4, and humans, (2) their instance-level
and ranking-level agreement (§5.1), and (3) the small confi-
dence intervals. This may be due to a regularization effect:
the target-language RM may possess language-specific spu-
rious artifacts, to which the target-language policy model
overfits (Gao et al., 2023) more than artifacts in a different
language in the source-language RM. Suppose, for example,
that the target-language RM assigns higher rewards when
the generation contains certain target-language words (due
to bias in the RM training data). A different-language policy
model is unlikely to exploit this, as it rarely generates these
words, but a same-language policy model may.

This hypothesis is consistent with our observed patterns.
First, there are many fewer cases of cross-lingual reward op-
timization outperforming the monolingual setting when mea-
sured by the finetuned target-language RM evaluator than
the prompted LM evaluators (Figure 3): under this hypothe-
sis, the finetuned evaluator RMs would be more susceptible
to such artifacts and (incorrectly) assign higher scores in
the monolingual settings. The underperformance of the
translate-train baseline (§5.1) also provides weak evidence:
in principle, a source-language RM and a source-translated-
into-target-language RM should capture the same reward
signal, as they are derived from the same data source, and

2Which we implement using Google Translate.
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Figure 3. Cross-lingual alignment effectiveness judged by a fine-
tuned target-language RM evaluator, measured in its score increase
between the aligned model and the target-language SFT model.
Each group in (a) and subplot in (b) represents one target language,
and different dots/lines within each represent different source lan-
guages. RL is difficult to train for OpenAssistant (§4), so we omit
it here. In most cases, the RM evaluator score improves for
cross-lingually aligned models.

would lead to similar downstream performance. However,
the former is less susceptible to reward over-optimization
due to the language mismatch, leading to better performance,
though this is admittedly confounded by translation quality.

Corroborating this hypothesis, we also find that when used
monolingually, the RMs behave more like a bag-of-word
(BoW) model. We take each of the 6 summarization RMs
and infer on the validation set of each dataset in each lan-
guage (Table 1). In every setting, we fit a BoW linear
regressor to predict the RM-assigned score for each instance
and compute the R2 across instances as a proxy for the
RM’s similarity to a BoW model in that setting. For each
dataset, and for every source language that differs from the
dataset’s language, we check whether inferring using the
source-language RM or the dataset-language RM results in
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Figure 4. Alignment effectiveness, compared to the target-language SFT model judged by PaLM-2-L, and the 95% confidence interval
across validation instances. “source→target“ denotes a source-language RM driving alignment in the target language. Cross-lingual
alignment is generally effective, sometimes outperforming monolingual alignment. RL is hard to train for OpenAssistant, in line
with what its authors found (Köpf et al., 2023).

a larger R2. The latter monolingual usage has a higher R2

(0.65 vs. 0.63), so it is more likely that the RMs overfit to
lexical patterns when used in-language.

5.3. Cross-Lingual Alignment Without
Target-Language SFT Data

So far we assumed access to target-language SFT data since,
as §3 argues, SFT data could be more easily obtained than
RM data. We now relax this assumption and instead trans-
late the source-language SFT data into the target language
using Google Translate. We investigate if it, combined with
RM transfer, still enables cross-lingual alignment. As a case
study, we only consider summarization and when English is
the source or target language.

Using translated SFT data substantially degrades the quality
of the SFT model (Figure 5(a)) and the best-of-n-aligned
LM (Figure 5(b)). There are however two factors: (1) qual-
ity loss due to translation, and (2) domain/style mismatch.
For (2), we note that different languages have SFT data com-
posed of different datasets, following Seahorse (Table 1).3

And these datasets differ stylistically: for example, while
XSum includes news articles, WikiLingua consists of how-

3SFT data quantity may also be a confounder, but we con-
sider directions both from and to English, and the degradation is
substantial in both. So quantity is not the biggest factor.

to articles and with formulaic summaries. There would thus
be a domain difference between organic target-language
SFT data vs. data translated from a different language.

To account for this, we employ round-trip back-translation,
first translating the target-language SFT data into the source
language and then back to the target language. This setup
is not practically useful but it upper-bounds the effect of
translation errors alone. In Figure 5(a), we see that this
bridges most of the gap, in some cases leading to models
that win over the SFT model >50% of the time. Alterna-
tively, we artificially control for domain by repeating our
experiments solely using WikiLingua for both SFT and RM
as it is present for all languages. From Figure 5(c), the gap
indeed reduces, with the translated SFT models sometimes
even outperforming the original, and back-translation is no
longer consistently beneficial.

Other than genre control, we also hypothesize that the gap
would be smaller for RL than best-of-n because the RM,
whose transferability we verified (§5), intuitively plays a
bigger role in the RL pipeline. Best-of-n, on the other hand,
is more reliant on the SFT model quality, as reflected by the
high resemblance between the transfer performance patterns
in Figure 5(b) and the SFT model quality in Figure 5(a).
Figure 5(d) indeed shows that the translated models have
little performance drop, except for cases where the former
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Figure 5. Cross-lingual alignment results without target-language SFT data using various strategies and on different data. Training
the SFT model using data translated from another language can be helpful when aligning using RL ((d)), but domain match is
important for best-of-n ((c) and the back-translation results).

degenerates.4 Again, apart from the degenerate cases, back-
translation is not helpful.

To summarize,5 cross-lingual alignment could still be help-
ful even without target-language SFT data, though care
needs to be taken when training the surrogate SFT model.
While we only experimented on summarization, we believe
there will be larger text diversity for dialog generation in
the wild, for which this issue warrants greater attention.

4Which we believe is due to a lack of careful case-by-case
hyperparameter tuning, which we did not perform as it would be
very expensive to tune for each transfer pair.

5No pun intended.

5.4. Practical Recommendations

Our findings suggest that, for SFT, it is always beneficial
to use organic target-language data, but when inaccessible,
automatic translation may be a remedy, though one should
be mindful of the data distribution match between the data
source and the application, or relying more on RL.

For RM, cross-lingual transfer is often successful, but how
does one select the source RM language to align in a new
target language? In Figure 6, we show the source languages
ranked by transfer effectiveness for each target language.
The rankings across target languages are generally stable,
especially for best-of-n: source languages effective for one
target language are usually effective for others too. Thus,
one may select the source language by extrapolating from its
performance on other target languages. In practice, English
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Figure 6. PaLM-2-L-judged rankings of source language effective-
ness when driving alignment in different target languages. English
is generally a good source.

RMs are usually the most accessible. Our results show that
it is a decent strategy to use them as the source: English is
often a highly-ranked source language, most frequently the
best, perhaps due to the relatively higher annotator quantity
and quality (Yu et al., 2022) or implicit modeling assump-
tions (Dyer et al., 2019). Beyond this empirical observation,
we try to causally predict the pairwise transferability from
various features in §6, but without success.

6. Analysis
The effectiveness of cross-lingual alignment motivates us to
better understand how it relates to various factors. We show
that while RM generalizability within the original reward
modeling task is a prerequisite, it does not uniquely explain
the downstream success. Similarly, we also show that the
pairwise win rates (judged by PaLM-2-L unless otherwise
mentioned) cannot be fully explained by, and thereby not
predictable from, language features or the KL-divergence
from the SFT model.

6.1. Impact of RM Generalizability Within Reward
Modeling

The RMs’ cross-lingual utility in downstream alignment
is predicated on their generalizability within the original
reward modeling task, but the latter is not sufficient for the
former. So how much does this generalizability explain the
alignment success? We analyze this generalizability follow-
ing the cross-lingual transfer tradition, zero-shot applying a
source-language RM to the target-language validation data
and computing accuracy (Wu & Dredze, 2019; 2020; Pires
et al., 2019; i.a.). We also consider a majority baseline
and a length baseline to check if the RMs are only super-
ficially capturing generation length (Wang et al., 2023b;

Singhal et al., 2023). To compute this length baseline: for
dialog generation, a pairwise task, all longer, or shorter, re-
sponses in each pair are chosen, depending on which (long
or short) yields higher training set accuracy. For summariza-
tion, a pointwise task, all responses longer (or shorter) than
a threshold are chosen. The direction (long or short) and the
threshold are also selected using the training set.

Figure 7 confirms cross-lingual RM generalizability: cross-
lingual RMs often perform above the majority baseline for
summarization and random performance (50%) for dialog.
§E verifies this generalizability with another setup.

Nevertheless, the improvements over the majority/random
baselines are modest. The dialog models even sometimes
underperform the length baseline (though this does not mean
the RMs only rely on length6). Part of this is due to the high
subjectivity of the reward modeling task: the RM accuracies
here are near the human agreement level for Seahorse (Clark
et al., 2023), plotted in Figure 7, and generally match the
human agreement numbers in dialog generation work (Bai
et al., 2022a; Dubois et al., 2024). But it is still interesting
that seemingly weak RMs, like the Vietnamese RM which
performs similarly to the majority baseline when used mono-
lingually or the dialog RMs which are often surpassed by the
length baseline, can achieve high cross-lingual alignment
effectiveness (Figure 4).

Furthermore, the results here do not match their downstream
utility, regardless of whether we consider the quality of the
RMs as measured by their in-language validation accuracy
(Turkish, for example, is the best in Figure 7, but not so in
Figure 6), the generalizability of the RMs which we opera-
tionalize as the difference between in-language training and
validation loss (or accuracy—they yield the same ranking:
Russian, German, English, Turkish, Vietnamese, and Span-
ish, from the least amount of overfitting to the most, again
different from Figure 6), or the specific pairwise transfer ef-
fectiveness (for each target language, we compare the effec-
tiveness of source languages ranked by the reward modeling
task generalizability here vs. by downstream alignment win
rate; on summarization, averaged across target languages,
Kendall’s τ=0.1 (same when using best-of-n or RL), indi-
cating low ranking agreement). Overall, while cross-lingual
alignment depends on RM generalizability on the original
task, there are other factors at play too.

6.2. Impact of Language Features

Can the cross-lingual alignment performance be predicted
from simple language features, such as their frequency in the
pretraining corpus or typological similarity? The summa-

6The RMs agree with the length baseline on 72.6% of the
validation instances, higher than the baseline agreement level of
56.6% (how often two random models at their accuracy levels
agree on average), but far from full agreement.
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Figure 7. Source-language RM generalizability within the original reward modeling task and the 95% confidence interval across validation
instances. “source→target“ denotes training a source-language RM and measuring its accuracy on the target language validation data.
The baselines are explained in §6.1. Dialog generation, a pairwise task, does not have a majority baseline; the dataset authors also did
not report human agreement. RMs generally exhibit cross-lingual generalizability, exceeding the majority baseline and often the
length baseline.

rization languages ranked by frequency in the mT5 corpus,
the base model for this task, are: English, Russian, Spanish,
German, Turkish, Vietnamese (Xue et al., 2021). This does
not match the transfer utility ranking in Figure 6. Similarly,
neither does the ranking match the SFT data quantity or RM
data quantity (in §A).

Linguistic typology and orthography are also common pre-
dictors of cross-lingual transferability (Gerz et al., 2018;
K et al., 2020; Muller et al., 2021; i.a.). This, however, is
not the case for us either: for summarization RL, for exam-
ple, English benefits from Vietnamese the most, but they
belong to disparate language families. Orthography may
be playing a role: Russian overall does not transfer well
to other languages, and it is the only language that does
not use the Latin script, but this trend is not clear. Sys-
tematically, we compute the correlation between alignment
utility and WALS features of linguistic typology (Dryer &
Haspelmath, 2013). For each WALS feature present for all
6 summarization languages, we divide all win rates into two
groups: those between language pairs that have the same,
or different, feature values. Under a one-sided unpaired
t-test, no feature shows statistical significance at α = 0.05
with Bonferroni correction (Dunn, 1961).7 Therefore, align-
ment utility does not strongly correlate with such language
features.
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Figure 8. Win rate (PaLM-2-L-judged) vs. KL-divergence for sum-
marization across different (source, target) language pairs. For
best-of-n, we use the upper bound formula in Stiennon et al. (2020),
Beirami et al. (2024), i.a., which is a function of n and thus appears
as a vertical line. KL-divergence does not fully explain the final
alignment performance.

6.3. Impact of Policy Divergence

From a learning angle, it has been shown that the reward
that a learned policy can obtain strongly correlates with
its KL-divergence from the base (SFT) policy (Bai et al.,
2022a). This could be concerning, if the model deviates
from the base policy to “hack” the reward (Gao et al., 2023;
Coste et al., 2023; Eisenstein et al., 2023), but not if the eval-

7Even without correction, only 4 show statistical significance
at α = 0.05 out of 123: 1A, 3A, 37A, and 54A. The first two are
phonological features, and the other two minor syntactic features,
thus likely being spurious correlations.
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uation metric is robust. As we perform human evaluation
and also verified that our LM judges correlate with human
judgments, this is less of a problem for us. Nevertheless,
in Figure 8, we plot the correlation between the win rates
and the KL-divergence of the aligned models. There is not
a clear correlation, and hence we do not observe reward
over-optimization.

7. Related Work
Zero-shot cross-lingual transfer. There is a long line of
research on cross-lingual representation generalizability,
such as with sentence embeddings (Conneau et al., 2018)
or more recently, LMs (Wu & Dredze, 2019; 2020; Pires
et al., 2019; Siddhant et al., 2020). Commonly, a multilin-
gual LM (Devlin et al., 2019; Conneau & Lample, 2019;
Conneau et al., 2020a; i.a.) is finetuned on a task in a
source language and evaluated on the task’s test set in a
different language. This is generally effective. Our RM
transfer setup can be viewed under this framework, but we
go further and show that this generalizability is useful for
downstream tasks, in our case alignment. Shaham et al.
(2024) and Chirkova & Nikoulina (2024) are close to us
in studying cross-lingual generalizability in alignment, but
only focusing on SFT and only using translated data.

Multilingual Alignment. For SFT, it is common to as-
semble existing multilingual task datasets into instruction
datasets (Muennighoff et al., 2023; Asai et al., 2023; Ahuja
et al., 2023). Some have directly collected SFT data for non-
English languages, either on a per-language basis (Zhang
et al., 2023; Xu et al., 2023; Ni et al., 2023; i.a.) or mul-
tilingually (Zhao et al., 2024; Singh et al., 2024), though
this can be expensive. Past work has also used automatic
translation for SFT (Li et al., 2023a; Lai et al., 2023; Sha-
ham et al., 2024; i.a.) and RM data (Lai et al., 2023; Shen
et al., 2024). We also use translation for SFT, but showed
that cross-lingual transfer outperforms translation for RM.

8. Conclusion
We showed through two different tasks that we can perform
alignment using a different-language RM. Surprisingly, we
find this to be sometimes more effective than using a same-
language RM. We also identified issues and remedies when
we dispense with target-language SFT data. We hope our
findings can motivate future work to build better LMs for
more languages. Adapting our RM transfer setup to other
settings such as domain generalization would also be excit-
ing future directions.
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Table 1. Number of summarization instances for the SFT and re-
ward optimization stages. The datasets are taken from the GEM
release (Gehrmann et al., 2021) and with certain validation in-
stances removed (§A).

Train Validation

German MLSum 220748 8932
WikiLingua 40839 3699

English
XSum 23206 642

XL-Sum 306522 9690
WikiLingua 99020 12021

Spanish
XL-Sum 38110 3170
MLSum 259888 8374

WikiLingua 79212 9730

Russian XL-Sum 62243 5492
WikiLingua 37028 3209

Turkish XL-Sum 27176 1953
WikiLingua 3148 194

Vietnamese XL-Sum 32111 2341
WikiLingua 13707 679

A. Dataset Details and Statistics
We report dataset statistics in Table 1, 2, 3, and 4. We reuse
the SFT data for reward optimization (for both training and
evaluation for RL, and for only evaluation for best-of-n
since it does not have a training stage), but only the input x,
without reference generations y.

The summarization SFT datasets, reported in Table 1, are the
original data sources of Seahorse, which we take from the
GEM release (Gehrmann et al., 2021). They are evenly
mixed at the instance level for both SFT training and
RL training. For evaluation of the aligned model, we
macro-average the per-dataset metrics (e.g., win rate) for
a language-level score. Because the Seahorse dataset was
created using the validation and test instances of the original
summarization datasets, to be clean, we exclude the Sea-
horse training instances from these splits when performing
SFT and reward optimization. OpenAssistant does not have
this issue and has clean split separations. The Seahorse
summaries are human-rated along six axes, and we only use
the sixth axis for our pointwise reward as it encapsulates
previous axes (Clark et al., 2023). We limit the maximum
length of model inputs to 1,024 tokens and outputs to 512 to-
kens. See also §G.1 for instructions we attach to the dataset
instances during training and inference.

B. Training Details
SFT. The model is trained using Adafactor (Shazeer &
Stern, 2018) with a constant learning rate at 10−3 for sum-

Table 2. Number of summarization instances for reward model-
ing.

Train Validation

German 8389 1250
English 14031 2071
Spanish 8741 1310
Russian 7679 1112
Turkish 7855 1096

Vietnamese 7844 1166

Table 3. Number of dialog generation instances for the SFT and
reward optimization stages.

Train Validation

English 8898 472
Spanish 5681 311
Russian 1884 99

Table 4. Number of dialog generation instances for reward model-
ing.

Train Validation

English 22076 1026
Spanish 13714 699
Russian 2627 135

marization and 10−5 for dialog generation, batch size 32,
and dropout 0.1. We perform checkpoint selection using
validation ROUGE-L score (Lin, 2004).

RM. The model is trained using Adafactor with a constant
learning rate at 10−4 after 1,000 linear warm-up steps, batch
size 32, and dropout 0.1. We perform checkpoint selection
using validation loss.

RL. We use PPO for RL training with a constant learning
rate at 10−4, batch size 32, for 3,000 steps for summariza-
tion and 2,500 steps for dialog generation. The value model
has 1,000 linear warm-up steps and we only start training
the policy model after 2,000 steps elapse. We set the regu-
larization coefficient at β = 0.1.

Best-of-n. We use n = 64.

C. LM Judge Accuracy on Ground-truth
Reward Modeling Data

We verify the validity of using LM as a judge for our tasks
by computing its accuracy on the validation splits of the RM
datasets we used. We only consider PaLM-2-L as a case
study. For OpenAssistant, a pairwise dataset, we simply
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Table 5. The accuracy of evaluating the PaLM-2-L judge on the RM validation data. We also report the number of comparisons based on
which the accuracy is calculated.

De En Es Ru Tr Vi

Summarization Acc. 73.5% 73.0% 73.2% 73.7% 73.6% 78.2%
N 306 1672 295 255 720 349

Dialog Acc. – 72.0% 70.8% 73.3% – –
N – 472 311 99 – –

Figure 9. Alignment effectiveness, compared to the target-language SFT model judged by GPT-4, and the 95% confidence interval across
validation instances. “source→target“ denotes a source-language RM driving alignment in the target language. Cross-lingual alignment
is generally effective, sometimes outperforming monolingual alignment. RL is hard to train for OpenAssistant, in line with what its
authors found (Köpf et al., 2023).

check if the RM ranks the candidate generations correctly
according to human preference. For Seahorse, a pointwise
dataset, we group summaries for the same source document,
and for each summary pair in such groups, we compute the
ranking correctness.

We show the results in Table 5. The accuracies generally
match the human agreement in Seahorse (Clark et al., 2023),
and while human agreement was not reported in OpenAssis-
tant, they generally match the human agreement numbers in
past work on dialog generation (Bai et al., 2022a; Dubois
et al., 2024) too (see §5.1 for reference human agreement
numbers). Taken together with the LM judges’ agreement
with human evaluation (§5.1), we believe it is valid to use a
LM to assess the generation quality in our setup.

D. GPT-4 as a Judge Results
In this section, we present the alignment evaluation results
as judged by GPT-4, specifically the gpt-4-0125-preview
model. Due to its high cost, we cap the number of evalua-
tion instances for each dataset at 1,000 (i.e., for each row of
Table 1 and 3). The results are shown in Figure 9. We ob-
serve the same trends as in §5.1, where cross-lingual reward
optimization is generally effective, sometimes even more
so than when done monolingually. Compared to PaLM-2-
L, the two LMs agree on 72% of the instances in English
and 71% in Spanish for summarization, and 75% and 73%
for these languages for dialog. These are higher than the
baseline human-human agreement numbers in §5.1. This
shows a sign of homogeneity between LM judges, but also
confirms their reliability.
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Figure 10. Source-language RM generalizability evaluated by in-
creases in scores they assign to target-language generations after
monolingual target-language alignment (best-of-n or RL). We
show all (source, target) language pairs where the two languages
differ as density in (a) and lines in (b). RL is difficult to train
for OpenAssistant (§4), so we omit it here, since the assumption
that the RL’ed model is better would not hold. In most cases,
the source-language RM assigns a higher score (>0 increase)
to aligned models, demonstrating cross-lingual RM generaliz-
ability.

E. Verifying RM Transfer for Reward
Modeling

In §6.1, we observed RM generalizability on the original
reward modeling task, which would be a necessary condition
for successful downstream cross-lingual alignment. There,
we showed that the source-language RMs assign higher
scores to better target-language generations than worse ones.
Here, we consider an alternative setup to study the same
problem: instead of relying on existing RM datasets for
the better and worse generations, we take generations from
monolingually-aligned models as better ones than those
from unaligned (i.e., SFT) models. The assumption here is
that monolingual alignment improves model quality, which
is indeed the case as illustrated in Figure 4 and 9. Like in
§6.1, we indeed see from Figure 10 that source-language
RMs assign higher scores to monolingually-aligned models
than unaligned SFT models. Under RL, this score difference
also increases throughout training. These results confirm
the RMs’ cross-lingual generalizability within the reward
modeling task.

F. Alignment Using Bilingual RMs
Seeing the benefit of cross-lingual RM transferability in §5,
we hypothesize that bilingual RMs could bring further im-
provements since the resulting reward could be encouraged
to be more language agnostic (Mulcaire et al., 2019). It
would be computationally expensive to experiment with all
possible language configurations (there would be a cubic
number of them with pairwise sources), so, for simplicity,
we take the best-performing source languages under the
summarization best-of-n setup as judged by PaLM-2-L, En-
glish and German (Figure 6), and see if a bilingual RM
based on them would lead to further performance improve-
ment. Specifically, we first train a bilingual SFT model by
pooling the SFT data for both languages, and similarly for
the RM, which initializes from this bilingual SFT model.

Figure 11 does not show an improvement from the bilin-
gual RM, which always achieves similar performance to the
English RM, the better of the two monolingual RMs. Never-
theless, if this trend holds consistently, that the bilingual RM
matches the performance of the better monolingual RM, this
could be useful as an alternative to having to perform source
language selection. We leave a more systematic validation
of this phenomenon to future work.

G. Prompts
In this section, we list all the prompts we used.
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Figure 11. Alignment performance, measured in the win rate against the monolingual target-language SFT model, when alignment
is driven by a German RM, an English RM, or a bilingual German + English RM. The bilingual RM does not yield a noticeable
improvement.

G.1. Task Instructions

We prepend the following task-specific instructions to in-
puts for SFT and reward optimization. All occurrences of
[LANGUAGE] are substituted with the target language. The
RM stage does not include such prompts, where we simply
concatenate the texts with delimiters.

Summarization: Summarize the following text in
[LANGUAGE]:

Dialog generation: You are given a dialog between
a human and an assistant in [LANGUAGE]. Please
write one turn of the assistant side in
[LANGUAGE].\n\n”

G.2. Evaluation Prompts

We use the following prompts to elicit pairwise generation
judgments for both human and LM judge evaluation. All oc-
currences of [LANGUAGE], [INPUT], [GENERATION1], and
[GENERATION2] are substituted with the respective content.
For both tasks, we compare the probability of the tokens “1”
and “2”. To control for the positional bias of LMs (Wang
et al., 2023a; Pezeshkpour & Hruschka, 2023; Zheng et al.,
2023) and potentially of our human annotators, we randomly
shuffle the two generations for human evaluation and the
GPT-4 judge. For the PaLM-2 judge for which we have
probability access, we prompt the LM judge twice with both
orderings of the generations and compute the accuracy by
averaging the probabilities of the “1” and “2” tokens.

Summarization. This prompt is adapted from the one in
Lee et al. (2023).

A good summary is a shorter piece of text
that has the essence of the original. It
tries to accomplish the same purpose and

conveys the key information from the
original post. Below we define four
evaluation axes for summary quality:
coherence, accuracy, coverage, and overall
quality.

Coherence: This axis answers the question
“how coherent is the summary on its own?”
A summary is coherent if it's easy to
understand when read on its own and free of
English errors. A summary is not coherent
if it's difficult to understand what the
summary is trying to say. Generally, it's
more important that the summary is
understandable than it being free of
grammar errors.

Accuracy: This axis answers the question
“does the factual information in the
summary accurately match the post?” A
summary is accurate if it doesn't say
things that aren't in the article, it
doesn't mix up people, and generally is
not misleading.

Coverage: This axis answers the question
“how well does the summary cover the
important information in the post?” A
summary has good coverage if it mentions
the main information from the post that's
important to understand the situation
described in the post. A summary has poor
coverage if someone reading only the
summary would be missing several important
pieces of information about the situation
in the post. A summary with good coverage
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should also match the purpose of the
original post (e.g. to ask for advice).

Overall quality: This axis answers the
question “how good is the summary overall
at representing the post?” This can
encompass all of the above axes of quality,
as well as others you feel are important.
If it's hard to find ways to make the
summary better, the overall quality is
good. If there are lots of different ways
the summary can be made better, the overall
quality is bad.

You are an expert summary rater and are
knowledgeable in [LANGUAGE]. Given a
piece of text in [LANGUAGE] and two of its
possible summaries, also in [LANGUAGE],
output 1 or 2 to indicate which summary
best adheres to coherence, accuracy,
coverage, and overall quality as defined
above.

Text - [INPUT]
Summary 1 - [GENERATION1]
Summary 2 - [GENERATION2]

Preferred Summary=

Dialog Generation This prompt is adapted from the one
in Li et al. (2023b).

You are a helpful assistant, that ranks
models by the quality of their answers.
You are also knowledgeable in [LANGUAGE].

I want you to create a leaderboard of
different large-language models. To do
so, I will give you the instructions
(prompts) given to the models, and the
responses of two models. Please rank the
models based on which response would be
preferred by humans. All inputs are
python dictionaries.

Here is the prompt, in [LANGUAGE]:
{{

"instruction": """[INPUT]""",
}}

Here are the outputs of the models, also
in [LANGUAGE]:
[

{{

Table 6. Cross-lingual alignment results using best-of-n with
n = 64, for the summarization task, measured in win rate (%)
against the target-language SFT model as judged by PaLM-2-
L (Figure 4).

Src \ Tgt De En Es Ru Tr Vi

De 52.3 50.8 63.0 66.7 63.0 60.4
En 56.4 55.5 66.1 70.7 67.2 63.1
Es 51.9 51.2 62.4 66.0 64.4 57.5
Ru 48.1 46.5 59.2 63.6 59.0 56.3
Tr 53.3 52.9 62.6 66.6 60.4 59.0
Vi 46.5 48.2 60.0 65.6 62.1 58.0

Table 7. Cross-lingual alignment results using best-of-n with
n = 64, for the dialog generation task, measured in win rate
(%) against the target-language SFT model as judged by PaLM-2-
L (Figure 4).

Src \ Tgt En Es Ru

En 62.9 65.0 59.6
Es 59.1 62.4 57.6
Ru 53.4 54.3 52.5

"model": "model_1",
"answer": """[GENERATION1]"""

}},
{{

"model": "model_2",
"answer": """[GENERATION2]"""

}}
]

Respond 1 or 2 to indicate the better
output. Please provide the ranking that
the majority of humans would give.

Better output=

H. Raw Results
We show the raw numerical results that correspond to our
plots in Table 6 to 25.
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Table 8. Cross-lingual alignment results using RL, for the summa-
rization task, measured in win rate (%) against the target-language
SFT model as judged by PaLM-2-L (Figure 4).

Src \ Tgt De En Es Ru Tr Vi

De 59.4 61.0 59.4 49.6 52.5 59.3
En 55.9 59.9 58.5 52.6 54.8 56.6
Es 52.0 56.1 56.8 53.0 55.0 49.9
Ru 54.8 55.2 56.8 51.8 53.3 52.2
Tr 53.1 54.6 55.7 53.1 53.4 56.3
Vi 63.9 61.8 65.2 54.6 55.1 53.6

Table 9. Cross-lingual alignment results using RL, for the dia-
log generation task, measured in win rate (%) against the target-
language SFT model as judged by PaLM-2-L (Figure 4).

Src \ Tgt En Es Ru

En 53.1 54.5 53.5
Es 49.9 51.1 47.5
Ru 51.2 52.7 52.5

Table 10. Cross-lingual alignment results using best-of-n with
n = 64, for the summarization task, measured in win rate (%)
against the target-language SFT model as judged by GPT-4 (Fig-
ure 9).

Src \ Tgt De En Es Ru Tr Vi

De 49.0 50.2 58.2 63.6 57.6 56.6
En 52.6 56.6 62.7 70.2 67.0 62.1
Es 51.7 54.1 59.8 65.9 63.6 59.2
Ru 48.7 51.2 56.0 63.0 59.0 56.8
Tr 56.7 57.8 62.3 69.5 66.6 61.5
Vi 45.2 52.1 56.6 62.8 60.5 56.5

Table 11. Cross-lingual alignment results using best-of-n with
n = 64, for the dialog generation task, measured in win rate
(%) against the target-language SFT model as judged by GPT-
4 (Figure 9).

Src \ Tgt En Es Ru

En 53.7 58.0 60.6
Es 50.7 56.6 56.6
Ru 50.4 48.6 48.5

Table 12. Cross-lingual alignment results using RL, for the sum-
marization task, measured in win rate (%) against the target-
language SFT model as judged by GPT-4 (Figure 9).

Src \ Tgt De En Es Ru Tr Vi

De 59.8 59.9 58.4 50.0 55.8 62.4
En 59.4 61.8 59.7 52.1 59.6 61.2
Es 57.6 59.7 58.8 52.0 60.4 60.1
Ru 56.9 56.5 56.4 52.0 57.4 58.0
Tr 59.9 60.7 59.0 52.2 60.1 62.8
Vi 60.5 64.1 63.1 52.5 64.4 61.6

Table 13. Cross-lingual alignment results using RL, for the dia-
log generation task, measured in win rate (%) against the target-
language SFT model as judged by GPT-4 (Figure 9).

Src \ Tgt En Es Ru

En 51.7 51.9 51.5
Es 49.9 51.5 52.5
Ru 48.5 51.6 51.5

Table 14. Cross-lingual alignment results using best-of-n, for the
summarization task, measured in win rate (%) against the target-
language SFT model as judged by human evaluators (Figure 2).

Src \ Tgt En Es

De 61.0 64.0
En 60.9 67.4
Es 62.6 69.0
Ru 51.9 63.4
Tr 61.8 66.3
Vi 52.3 61.2

Table 15. Cross-lingual alignment results using RL, for the sum-
marization task, measured in win rate (%) against the target-
language SFT model as judged by human evaluators (Figure 2).

Src \ Tgt En Es

De 64.4 64.2
En 61.4 65.9
Es 58.7 62.7
Ru 61.9 60.6
Tr 63.3 64.9
Vi 66.2 64.7

Table 16. Cross-lingual alignment results using best-of-n with
n = 64, for the dialog generation task, measured in win rate
(%) against the target-language SFT model as judged by human
evaluators (Figure 2).

Src \ Tgt En Es

En 67.6 52.0
Es 71.4 56.4
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Table 17. Alignment quality using RM trained by translating the
source language data into the target language using best-of-n with
n = 64, for the summarization task, measured in win rate (%)
against the target-language SFT model as judged by PaLM-2-
L (§5.1).

Src \ Tgt De En Es Ru Tr Vi

De – 50.0 61.9 66.1 66.1 54.6
En 47.9 – 63.3 64.9 64.5 53.1
Es 50.6 52.9 – 64.1 64.5 59.0
Ru 47.4 51.2 60.3 – 63.3 57.7
Tr 50.6 52.5 61.8 65.6 – 50.8
Vi 42.0 50.8 59.1 64.4 63.6 –

Table 18. RM generalizability within the reward modeling task
evaluated by accuracy (%) on in-task validation data for the sum-
marization task, on the six Seahorse languages, as well as the
majority baseline and the length baseline (§6.1) (Figure 7).

Src \ Tgt De En Es Ru Tr Vi

De 71.0 64.8 68.0 67.9 67.5 67.7
En 62.2 67.4 67.9 66.3 66.5 70.8
Es 67.4 62.7 72.3 69.7 71.4 65.2
Ru 66.5 61.3 65.4 65.7 66.5 63.6
Tr 66.8 64.6 68.5 69.1 73.2 68.7
Vi 63.0 66.7 68.6 66.5 67.8 71.3

Majority 52.9 59.5 63.1 55.1 56.2 67.9
Length 56.6 59.5 63.1 55.1 55.2 67.9

Table 19. RM generalizability within the reward modeling task
evaluated by accuracy (%) on in-task validation data for the dialog
generation task, in three languages, as well as the length baseline
(§6.1) (Figure 7).

Src \ Tgt En Es Ru

En 68.4 68.4 76.3
Es 65.4 67.8 77.0
Ru 56.6 63.5 64.4

Length 66.1 68.1 71.1

Table 20. KL-divergence of the RL models from the corresponding
target-language SFT model for the summarization task (Figure 8).

Src \ Tgt De En Es Ru Tr Vi

De 0.92 0.78 0.83 0.01 0.37 1.92
En 1.50 1.32 1.01 0.02 0.83 3.30
Es 1.78 1.63 1.51 0.10 1.39 3.92
Ru 0.79 0.45 0.46 0.02 0.36 1.26
Tr 2.20 1.91 1.83 0.15 1.34 4.28
Vi 1.78 2.52 1.74 0.02 1.47 4.37

Table 21. ROUGE-L score when the SFT model is trained us-
ing different strategies, either monolingually, translated from a
source language, or back-translated into a source language and
then back (Figure 5(a)).

Lg. De En Es Ru Tr Vi

Mono. 36.2 38.9 32.9 16.9 35.2 41.8
Lg→En 27.8 – 27.1 22.4 28.2 26.7
En→Lg 16.1 – 24.6 13.6 29.9 40.3

En→Lg→En 36.5 – 36.1 35.4 36.5 35.8
Lg→En→Lg 32.5 – 26.6 12.2 32.1 34.9

Table 22. Alignment performance using best-of-n, measured in
the win rate against the monolingual target language SFT model
as judged by PaLM-2-L, when the SFT model is trained using
different strategies. The first section uses a SFT model that is
trained on target-language datasets (same as Table 6), while the
second uses translated or back-translated SFT data (Figure 5(b)).

Lg. De Es Ru Tr Vi

Target-language SFT; RM transfer only

Lg→En 50.8 51.2 46.5 52.9 48.2
En→Lg 56.4 66.1 70.7 67.2 63.1

(Back-)Translated SFT

Lg→En 36.6 26.6 29.8 37.5 31.8
En→Lg 14.4 43.5 43.9 47.1 41.6

En→Lg→En 42.7 43.2 40.1 41.4 37.1
Lg→En→Lg 45.3 54.0 60.1 61.7 51.1

Table 23. Alignment performance using best-of-n, measured in
the win rate against the monolingual target language SFT model
as judged by PaLM-2-L, when the SFT model is trained using dif-
ferent strategies. The first section uses a SFT model that is trained
on target-language datasets, while the second uses translated or
back-translated SFT data. Here, we only consider the WikiLingua
dataset for both SFT and RM (Figure 5(c)).

Lg. De Es Ru Tr Vi

Target-language SFT; RM transfer only

Lg→En 38.3 32.4 38.6 32.9 29.2
En→Lg 62.8 59.4 53.7 47.4 66.4

(Back-)Translated SFT

Lg→En 40.5 29.1 33.2 26.0 19.4
En→Lg 45.7 50.3 60.3 37.1 67.6

En→Lg→En 31.4 33.9 34.0 40.8 31.7
Lg→En→Lg 40.3 31.2 40.1 45.9 61.4
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Table 24. Alignment performance using RL, measured in the win
rate against the monolingual target language SFT model as judged
by PaLM-2-L, when the SFT model is trained using different
strategies. The first section uses a SFT model that is trained on
target-language datasets, while the second uses translated or back-
translated SFT data (Figure 5(d)).

Lg. De Es Ru Tr Vi

Target-language SFT; RM transfer only

Lg→En 61.0 56.1 55.2 54.6 61.8
En→Lg 55.9 58.5 52.6 54.8 56.6

(Back-)Translated SFT

Lg→En 60.2 37.5 22.7 54.9 19.2
En→Lg 28.8 57.0 56.5 59.6 51.9

En→Lg→En 47.5 46.7 42.1 42.4 48.3
Lg→En→Lg 44.7 45.1 46.6 49.5 30.7

Table 25. Alignment performance using best-of-n, measured in
the win rate against the monolingual target language SFT model as
judged by PaLM-2-L, when using either a monolingual RM (same
as Table 6) or a bilingual RM (Figure 11).

Src \ Tgt De En Es Ru Tr Vi

De 52.3 50.8 63.0 66.7 63.0 60.4
En 56.4 55.5 66.1 70.7 67.2 63.1

De + En 56.6 55.7 66.6 70.6 66.7 64.1
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