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Abstract

Recent studies have found that removing the001
norm-bounded projection and increasing search002
steps in adversarial training can significantly003
improve robustness. However, we observe that004
a too large number of search steps can hurt005
accuracy. We aim to obtain strong robustness006
efficiently using fewer steps. Through a toy007
experiment, we find that perturbing the clean008
data to the decision boundary but not crossing009
it does not degrade the test accuracy. Inspired010
by this, we propose friendly adversarial data011
augmentation (FADA) to generate “friendly”012
adversarial data. On top of FADA, we propose013
geometry-aware adversarial training (GAT) to014
perform adversarial training (e.g., FGM) on015
friendly adversarial data so that we can save a016
large number of search steps. Comprehensive017
experiments across two widely used datasets018
and three pre-trained language models demon-019
strate that GAT can obtain stronger robustness020
via less steps. In addition, we provide exten-021
sive empirical results and in-depth analyses on022
robustness to facilitate future studies.023

1 Introduction024

Deep neural networks (DNNs) outperform humans025

on many natural language processing (NLP) tasks026

(Kim, 2014; Vaswani et al., 2017; Devlin et al.,027

2019). However, recent studies have shown that028

DNNs are vulnerable to crafted adversarial exam-029

ples (Szegedy et al., 2013; Goodfellow et al., 2014).030

For instance, an attacker can mislead an online sen-031

timent analysis system by making minor changes032

to the input sentences (Papernot et al., 2016; Liang033

et al., 2017). It has raised concerns among re-034

searchers about the security of DNN-based NLP035

systems. As a result, a growing number of studies036

are focusing on enhancing robustness to defend037

against textual adversarial attacks (Jia et al., 2019;038

Ye et al., 2020; Jones et al., 2020; Zhu et al., 2020).039

Existing adversarial defense methods fall into040

two categories: empirical and certified defenses.041
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Figure 1: The clean accuracy achieved with ADA,
FADA, and the original training set. During training,
both ADA and FADA have close to 100% accuracy.
However, ADA only achieves ∼15% accuracy during
testing while FADA maintains the same test accuracy
with the original training set. This indicates that train-
ing data which crosses the decision boundary hurts the
accuracy significantly.

Empirical defenses include gradient-based adver- 042

sarial training (AT) and discrete adversarial data 043

augmentation (ADA). Certified defenses provide a 044

provable guaranteed robustness boundary for NLP 045

models. This work focuses on empirical defenses. 046

There was a common belief that gradient-based 047

AT methods in NLP was ineffective compared with 048

ADA in defending against textual adversarial at- 049

tacks (Li and Qiu, 2021; Si et al., 2021). Li et al. 050

(2021) find that removing the norm-bounded pro- 051

jection and increasing the number of search steps 052

in adversarial training can significantly improve ro- 053

bustness. Nonetheless, we observe that increasing 054

the number of search steps further does not signifi- 055

cantly improve robustness but hurts accuracy. 056

We give a possible explanation from a geometry- 057

aware perspective. Removing the norm-bounded 058

projection enlarge the search space. Appropriately 059

increasing the number of search steps brings the 060

adversarial data closer to the decision boundary. In 061
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Figure 2: Illustration of GAT. Our GAT can save many
search steps since friendly adversarial examples are
located near the decision boundary.

this case, the model learns a robust decision bound-062

ary. Further increasing the number of search steps063

can make the adversarial data cross the decision064

boundary too far, hindering the training of natural065

data and hurting natural accuracy.066

To verify our hypothesis, we train a base model067

using adversarial data, which are generated by ad-068

versarial word substitution (AWS) on the SST-2069

(Socher et al., 2013) dataset. We report its train-070

ing accuracy (“ada training acc”) on adversarial071

data and test accuracy (“ada test acc”) on the clean072

test set in Figure 1. Although achieving nearly073

100% training accuracy, its test accuracy is only074

about 15%, which implicates the adversarial data075

make the test performance degraded. Then we076

train another base model, whose training data is077

more “friendly”. We just recover their last mod-078

ified words to return to the correct class, namely079

friendly adversarial data augmentation (FADA). It080

means that only one word is different in each sen-081

tence. Surprisingly, it achieves a high test accuracy082

of ∼93%.083

This preliminary inspired us to address two ex-084

isting problems:085

• The number of search steps is always large,086

which is computationally inefficient.087

• A too large number of steps leads to de-088

graded test performance.089

Geometrically speaking, the friendly adversar-090

ial data are close to the ideal decision boundary.091

We can address the above two issues in one fell092

swoop if we perform gradient-based adversarial093

training on these friendly adversarial data. It is094

like we start one step before the end, allowing us 095

to obtain strong robustness through a tiny number 096

of search steps. We name it geometry-aware ad- 097

versarial training (GAT). Figure 2 illustrates our 098

proposed GAT. 099

In addition, the friendly adversarial data only 100

need to be generated once per dataset. It can be 101

reused, so it is computationally efficient. It can 102

also be updated for every iteration or epoch but 103

computationally expensive. 104

Our contributions are summarized as follows: 105

1) We propose FADA to generate friendly ad- 106

versarial data which are close to the decision 107

boundary (but not crossing it). 108

2) We propose GAT, a geometry-aware adver- 109

sarial training method that adds FADA to the 110

training set and performs gradient-based ad- 111

versarial training. 112

3) GAT is computationally efficient, and it out- 113

performs state-of-the-art baselines even if us- 114

ing the simplest FGM. We further provide ex- 115

tensive ablation studies and in-depth analyses 116

on GAT, contributing to a better understanding 117

of robustness. 118

2 Related Work 119

2.1 Standard Adversarial Training 120

Let fθ(x) be our neural network, L(fθ(x), y) be 121

the loss function (e.g., cross entropy), where x ∈ X 122

is the input data and y ∈ Y is the true label. The 123

learning objective of standard adversarial training 124

is 125

min
θ

E(X,Y )∼D

[
max
∥δ∥≤ϵ

L(fθ(X + δ), y)

]
, (1) 126

where D is the data distribution, δ is the minor per- 127

turbation, ϵ is the allowed perturbation size. To op- 128

timize the intractable min-max problem, we search 129

for the optimal δ to maximize the inner loss and 130

then minimize the outer loss w.r.t the parameters θ, 131

step by step. 132

The gradient g of the inner loss w.r.t the input x is 133

used to find the optimal perturbation δ. Goodfellow 134

et al. (2014) proposed fast gradient sign method 135

(FGSM) to obtain δ by one step: 136

δ = ϵ · sgn(g), (2) 137

where sgn(·) is the signum function. Madry et al. 138

(2018) proposed projected gradient descent (PGD) 139
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to solve the inner maximization as follows:140

δ(t+1) = Π α · g(t)/∥g(t)∥, ∀t ≥ 0, (3)141

where α > 0 is the step size (i.e., adversarial learn-142

ing rate), Π is the projection function that projects143

the perturbation onto the ϵ-norm ball. Convention-144

ally PGD stops after a predefined number of search145

steps K, namely PGD-K. In addition, TRADES146

(Zhang et al., 2019), MART (Wang et al., 2020)147

and FAT (Zhang et al., 2020) are also effective148

adversarial training methods for boosting model149

robustness.150

Regarding FAT, the authors propose to stop ad-151

versarial training in a predefined number of steps152

after crossing the decision boundary, which is a153

little different from our definition of “friendly”.154

2.2 Adversarial Training in NLP155

Gradient-based adversarial training has signifi-156

cantly improved model robustness in vision, while157

researchers find it helps generalization in NLP. Miy-158

ato et al. (2016) find that adversarial and virtual ad-159

versarial training have good regularization perfor-160

mance. Sato et al. (2018) propose an interpretable161

adversarial training method that generates reason-162

able adversarial texts in the embedding space and163

enhance models’ performance. Zhu et al. (2020)164

develop FreeLB to improve natural language un-165

derstanding.166

There is also a lot of work focused on robustness.167

Wang et al. (2021) improve model robustness from168

an information theoretic perspective. Dong et al.169

(2021) use a convex hull to capture and defense170

against adversarial word substitutions. Zhou et al.171

(2021) train robust models by augmenting train-172

ing data using Dirichlet Neighborhood Ensemble173

(DNE).174

Besides, adversarial data augmentation is an-175

other effective approach to improve robustness176

(Ebrahimi et al., 2017; Li et al., 2018; Ren et al.,177

2019; Jin et al., 2019; Zang et al., 2020; Li et al.,178

2020; Garg and Ramakrishnan, 2020; Si et al.,179

2021). However, it only works when the augmenta-180

tion happens to be generated by the same attacking181

method and often hurts accuracy.182

It is worth noting that recent empirical results183

have shown that previous gradient-based adversar-184

ial training methods have little effect on defending185

against textual adversarial attacks (Li et al., 2021;186

Si et al., 2021). The authors benchmark existing187

defense methods and conclude that gradient-based188

Algorithm 1 Friendly Adversarial Data Augmenta-
tion (FADA)
Input: The original text x, ground truth label

ytrue, base model fθ, adversarial word sub-
stitution function AWS(·)

Output: The friendly adversarial example xf
1: Initialization:
2: xf ← x
3: the last modified word w∗← None
4: the last modified index i∗← 0
5: xadv, w

∗, i∗ = AWS(x, ytrue, fθ)
6: if w∗ = None then
7: return xf
8: end if
9: Replace wi∗ in xadv with w∗

10: xf ← xadv
11: return xf

AT can achieve the strongest robustness by remov- 189

ing the norm bounded projection and increasing 190

the search steps. 191

3 Methodology 192

3.1 Friendly Adversarial Data Augmentation 193

For a sentence x ∈ X with a length of n, it can 194

be denoted as x = w1w2...wi...wn−1wn, where wi 195

is the i-th word in x. Its adversarial counterpart 196

xadv can be denoted as w′
1w

′
2...w

′
i...w

′
n−1w

′
n. In 197

this work, xadv is generated by adversarial word 198

substitution, so xadv has the same length with x. 199

Conventional adversarial data augmentation gen- 200

erates adversarial data fooling the victim model 201

and mixes them with the original training set. As 202

we claim in section 1, these adversarial data can 203

hurt test performance. An interesting and critical 204

question is when it becomes detrimental to test 205

accuracy. 206

One straightforward idea is to recover all the 207

xadv to x word by word and evaluate their impact 208

on test accuracy. We train models only with these 209

adversarial data and test models with the original 210

test set. We are excited that the test accuracy imme- 211

diately returns to the normal level when we recover 212

the last modified word. We denote these data with 213

only one word recovered as xf . Geometrically, the 214

only difference between xadv and xf is whether 215

they have crossed the decision boundary. 216

To conclude, when the adversarial data cross the 217

decision boundary, they become incredibly harm- 218

ful to the test performance. We name all the xf 219
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Algorithm 2 Ideal Geometry-aware Adversarial
Training (GAT)
Input: Our base network fθ , cross entropy loss LCE , training

set D = {xi, yi}ni=1, number of epochs T , batch size m,
number of batches M

Output: robust network fθ
1: for epoch = 1 to T do
2: for batch = 1 to M do
3: Sample a mini-batch b = {(xi, yi)}mi=1

4: for all xi in b do
5: Generate friendly adversarial example xf

i via
Algorithm 1

6: Apply an adversarial training method (e.g.,
FreeLB++) on both xi and xf

i to obtain their
adversarial counterpart x̃i and x̃f

i

7: end for
8: Update fθ via ∇xLCE(fθ(x̃i), yi) and

∇xLCE(fθ(x̃
f
i ), yi)

9: end for
10: end for

as friendly adversarial examples (FAEs) because220

they improve model robustness without hurting ac-221

curacy. Similarly, we name the generation of FAEs222

as friendly adversarial data augmentation (FADA).223

We show our proposed FADA in Algorithm 1.224

3.2 Geometry-aware Adversarial Training225

3.2.1 Seeking for the optimal δ226

Recall the inner maximization issue of the learning227

objective in Eq. (1). Take PGD-K for instance.228

It divides the search for the optimal perturbation229

δ into K search steps, and each step requires a230

backpropagation (BP), which is computationally231

expensive.232

We notice that random initialization of δ0 is233

widely used in adversarial training, where δ0 is234

always confined to a ϵ-ball centered at x. However,235

we initialize the clean data via discrete adversar-236

ial word substitution in NLP. It is similar to data237

augmentation (DA), with the difference that we per-238

turb clean data in the direction towards the decision239

boundary, whereas the direction of data augmenta-240

tion is random.241

By doing so, we decompose the δ into two parts,242

which can be obtained by word substitution and243

gradient-based adversarial training, respectively.244

We denote them as δl and δs. Therefore, the inner245

maximization can be reformulated as246

max
∥δl+δs∥≤ϵ

L(fθ(X + δl + δs), y). (4)247

We aim to find the maximum δl that helps im-248

prove robustness without hurting accuracy. As we249

claim in Section 3.1, FADA generates friendly ad- 250

versarial data which are close to the decision bound- 251

ary. Furthermore, the model trained with these 252

friendly adversarial data keeps the same test accu- 253

racy as the original training set (Figure 1). There- 254

fore we find the maximum δl which is harmless to 255

the test accuracy through FADA. 256

Denote Xf as the friendly adversarial data gen- 257

erated by FADA, Eq. (4) can be reformulated as 258

259

max
∥δs∥≤ϵ

L(fθ(Xf + δs), y). (5) 260

The tiny δs can be obtained by some gradient-based 261

adversarial training methods (e.g., FreeLB++ (Li 262

et al., 2021)) in few search steps. As a result, a large 263

number of search steps are saved to accelerate ad- 264

versarial training. We show our proposed geometry- 265

aware adversarial training in Algorithm 2. 266

3.2.2 Final Learning Objective 267

It is computationally expensive to update friendly 268

adversarial data for every mini-batch. In practice, 269

we generate static augmentation (Xf ,Y) for the 270

training dataset (X,Y) and find it works well with 271

GAT. The static augmentation (Xf ,Y) is reusable. 272

Therefore, GAT is computationally efficient. 273

Through such a tradeoff, our final objective func- 274

tion can be formulated as 275

L =LCE(X,Y, θ)

+ LCE(X̃, Y, θ) + LCE(X̃f , Y, θ),
(6) 276

where LCE is the cross entropy loss, X̃ and X̃f 277

are generated from X and Xf using gradient-based 278

adversarial training methods, respectively. 279

4 Experiments 280

4.1 Datasets 281

We conduct experiments on the SST-2 (Socher 282

et al., 2013) and IMDb (Maas et al., 2011) datasets 283

which are widely used for textual adversarial learn- 284

ing. Statistical details are shown in Table 1. We 285

use the GLUE (Wang et al., 2019) version of the 286

SST-2 dataset whose test labels are unavailable. So 287

we report its accuracy on the develop set in our 288

experiments. 289

Dataset # train # dev / test avg. length
SST-2 67349 872 17
IMDb 25000 25000 201

Table 1: Summary of the two datasets.
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SST-2 Clean % TextFooler TextBugger BAE

RA % ASR % # Query RA % ASR % # Query RA % ASR % # Query

BERTbase 92.4 32.8 64.1 72.8 38.5 57.8 44.3 39.8 56.5 64.0

ADA 92.2 46.7 48.7 79.4 42.0 53.9 47.0 41.2 54.8 64.0
ASCC 87.2 32.0 63.3 71.6 27.8 68.2 42.5 41.7 52.1 63.0
DNE 86.6 26.5 69.6 69.0 23.4 73.1 40.2 44.2 49.3 65.8
InfoBERT 92.2 41.7 54.8 74.9 45.2 51.1 45.8 45.4 50.8 65.6
TAVAT 92.2 40.4 56.3 74.3 42.3 54.2 45.7 42.7 53.8 64.2
FreeLB 93.1 42.7 53.7 75.9 48.2 47.7 45.7 46.7 49.3 67.5

FreeLB++10 93.3 41.9 54.8 75.8 46.1 50.3 45.9 44.2 52.4 65.3
FreeLB++30 93.4 45.6 50.6 78.1 47.4 48.8 45.7 42.9 53.6 66.0
FreeLB++50 92.0 45.5 50.4 77.2 47.4 48.4 45.3 44.6 51.4 67.5

GATFGM (ours) 92.8 45.8 49.8 78.5 49.0 46.3 47.0 45.5 50.1 64.9
GATFreeLB++10 (ours) 93.2 49.5 46.3 80.6 52.4 43.2 47.9 48.3 46.9 68.9
GATFreeLB++30 (ours) 92.7 52.5 42.2 82.3 53.8 40.9 47.5 46.1 50.0 65.8

Table 2: Main defense results on the SST-2 dataset, including the test accuracy on the clean test set (Clean %), the
robust accuracy under adversarial attacks (RA %), the attack success rate (ASR %), and the average number of
queries requiring by the attacker (# Query).

4.2 Attacking Methods290

Follow Li et al. (2021), we adopt TextFooler (Jin291

et al., 2019), TextBugger (Li et al., 2018) and292

BAE (Garg and Ramakrishnan, 2020) as attack-293

ers. TextFooler and BAE are word-level attacks294

and TextBugger is a multi-level attacking method.295

We also impose restrictions on these attacks for a296

fair comparison, including:297

1. The maximum percentage of perturbed words298

pmax299

2. The minimum semantic similarity εmin between300

the original input and the generated adversarial301

example302

3. The maximum size Ksyn of one word’s synonym303

set304

Since the average sentence length of IMDb and305

SST-2 are different, pmax is set to 0.1 and 0.15,306

respectively; εmin is set to 0.84; and Ksyn is set to307

50. All settings are referenced from previous work.308

4.3 Adversarial Training Baselines309

We use BERTbase (Devlin et al., 2019) as the base310

model to evaluate the impact of the following vari-311

ants of adversarial training on accuracy and robust-312

ness and provide a comprehensive comparison with313

our proposed GAT.314

• Adversarial Data Augmentation315

• ASCC (Dong et al., 2021)316

• DNE (Zhou et al., 2021)317

• InfoBERT (Wang et al., 2021) 318

• TAVAT (Li and Qiu, 2021) 319

• FreeLB (Zhu et al., 2020) 320

• FreeLB++ (Li et al., 2021) 321

ASCC and DNE adopt a convex hull during train- 322

ing. InfoBERT improves robustness using mutual 323

information. TAVAT establishes a token-aware 324

robust training framework. FreeLB++ removes 325

the norm bounded projection and increases search 326

steps. 327

We only compare GAT with adversarial training- 328

based defense methods and leave comparisons with 329

other defense methods (e.g., certified defenses) for 330

future work. 331

4.4 Implementation Details 332

We implement ASCC, DNE, InfoBERT, and 333

TAVAT models based on TextDefender (Li et al., 334

2021). We implement FGM, FreeLB, FreeLB++, 335

and our GAT based on HuggingFace Transform- 336

ers 1. We implement ADA and FADA based on 337

TextAttack 2. All the adversarial hyper-parameters 338

settings are following their original papers. All 339

the models are trained on two GeForce RTX 2080 340

GPUs and eight Tesla T4 GPUs. 341

Regarding the training settings and hyper- 342

parameters, the optimizer is AdamW (Loshchilov 343

and Hutter, 2019); the learning rate is 2e−5; the 344

number of epochs is 10; the batch size is 64 for 345

SST-2 and 24 for IMDb. 346

1https://huggingface.co/transformers
2https://github.com/QData/TextAttack
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IMDb Clean % TextFooler TextBugger BAE

RA % ASR % # Query RA % ASR % # Query RA % ASR % # Query

BERTbase 91.2 30.7 66.4 714.4 38.9 57.4 490.3 36.0 60.6 613.6

ADA 91.4 34.6 61.7 804.8 40.5 55.2 538.8 37.0 59.1 693.4
ASCC 86.4 22.2 73.9 595.9 27.2 68.0 415.8 34.7 59.1 642.2
DNE 86.1 14.9 82.2 520.2 17.4 79.3 336.9 35.4 57.8 630.4
InfoBERT 91.9 33.0 63.9 694.1 40.4 55.8 469.9 37.3 59.2 619.6
TAVAT 91.5 37.8 58.9 1082.6 48.8 46.9 695.5 41.2 55.2 896.7
FreeLB 91.3 34.6 61.9 782.0 42.9 52.7 542.7 37.6 58.5 646.7

FreeLB++-10 92.1 39.5 56.8 817.9 46.4 49.3 516.5 41.2 55.0 682.3
FreeLB++-30 92.3 49.8 45.6 992.9 56.0 38.8 600.1 48.3 47.2 788.2
FreeLB++-50 92.3 50.2 45.3 1117.7 56.5 38.5 649.8 48.2 47.5 861.3

GATFGM (ours) 91.8 58.3 36.0 1004.3 60.4 33.7 556.1 54.6 40.1 747.4
GATFreeLB++10 (ours) 92.0 50.7 44.7 1093.8 54.7 40.4 648.9 50.7 44.7 908.5
GATFreeLB++30 (ours) 92.4 59.0 35.7 1629.4 62.2 32.2 914.8 54.4 40.7 1213.6

Table 3: Main defense results on the IMDb dataset.

4.5 Main Results347

Our proposed GAT can easily combine with other348

adversarial training methods. In our experiments,349

we combine GAT with FGM (GATFGM ) and350

FreeLB++ (GATFreeLB++), respectively. We aim351

to evaluate if GAT can bring improvements to the352

simplest (FGM) and the most effective (FreeLB++)353

AT methods.354

We summarize the main defense results on the355

SST-2 dataset in Table 2. When GAT works356

with the simplest adversarial training method,357

FGM, the resulting robustness improvement ex-358

ceeds FreeLB++50. The effectiveness and effi-359

ciency of GAT allow us to obtain strong robustness360

while saving many search steps. Further combining361

FreeLB++ on GAT can obtain stronger robustness362

and outperform all other methods.363

Regarding the accuracy, FreeLB++30 obtains the364

highest 93.4%. GAT also significantly improves365

accuracy.366

In addition, ADA is effective in improving ro-367

bustness but hurts accuracy. It is not surprising368

that ASCC and DNE suffer from significant perfor-369

mance losses. However, there is no improvement370

in robustness and even weaker robustness under371

TextFooler and TextBugger attacks than the other372

methods.373

Table 3 shows the defense results on the IMDb374

dataset. The defense performances are generally375

consistent with that on the SST-2 dataset. It is376

worth noting that GATFGM achieved an extremely377

high RA % with a medium #Query, which needs378

further exploration.379

AWS AT method Clean % RA % #Query

None None 92.4 38.5 44.3
None FGM 92.5 39.6 44.7
None FreeLB++30 93.4 47.4 45.7

ADA None 92.2 42.0 47.0
ADA FGM 91.3 42.7 46.6
ADA FreeLB++30 90.9 51.5 47.5

FADA None 92.7 44.4 45.8
FADA FGM 92.8 49.0 47.0
FADA FreeLB++30 92.7 53.8 47.5

Table 4: Ablation studies on the SST-2 dataset. The
attacking method is TextBugger. We only report RA %
and #Query due to the space limit. “AWS” means ad-
versarial word substitution methods.

5 Discussions 380

We further explore other factors that affect robust- 381

ness and provide comprehensive empirical results. 382

5.1 Ablation Studies 383

We conduct ablation studies on the SST-2 dataset 384

to assess the impact of each component of GAT. 385

As shown in Table 4, “FADA” consistently 386

outperforms “ADA” and “None” with differ- 387

ent adversarial training methods. Furthermore, 388

“FADA&FGM” achieve a higher RA% than 389

“None&FreeLB++30”, which implies that “FADA” 390

can obtain strong robustness in one adversarial 391

search step. “ADA” also helps improve robust- 392

ness. However, as the number of search steps in- 393

creases, so does the hurt it does to Clean %. On 394

the contrary, “FADA” does not harm Clean % but 395

improves it, implying its friendliness. 396
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Figure 3: (a) Robust and clean accuracy with different search steps. (b) Robust and clean accuracy with different
step sizes. (c) Robust accuracy gradually increases on the SST-2 dataset during training. The adversarial training
method is GATFreeLB++30. Zoom in for a better view.

SST-2 clean % PSO FastGA

RA % #Query RA % #Query

BERTbase 92.4 23.9 322.0 39.2 234.4

ADA 92.2 31.4 348.6 43.2 268.4
ASCC 87.2 29.2 359.4 40.5 233.2
DNE 86.6 17.3 266.2 43.9 250.1
InfoBERT 92.2 29.0 335.7 45.3 256.0
TAVAT 92.2 25.7 316.2 42.0 258.7
FreeLB 93.1 27.8 325.6 42.9 267.9
FreeLB++50 92.0 38.4 368.6 49.2 258.9

GATFGM 92.8 29.9 341.0 46.7 275.1
GATFreeLB++10 93.2 34.5 351.3 51.0 289.5
GATFreeLB++30 92.8 39.7 359.2 53.7 323.9

Table 5: The defense results of different AT methods
against two combinatorial optimization attacks. We
remove ASR % due to the space limit.

5.2 Results with Other Attacks397

We have shown that GAT brings significant im-398

provement in robustness against three greedy-based399

attacks. We investigate whether GAT is effective400

under combinatorial optimization attacks, such as401

PSO (Zang et al., 2020) and FastGA (Jia et al.,402

2019).403

We can see from Table 5 that GATFreeLB++30404

obtain the highest RA % against the two attacks405

and GATFreeLB++10 has the highest clean ac-406

curacy. The results demonstrate that our pro-407

posed GAT consistently outperforms other defenses408

against combinatorial optimization attacks.409

5.3 Results with More Steps410

As we claim in Section 1, the accuracy should de-411

grade with a large number of search steps. But412

what happens for robustness?413

We aim to see if RA % can be further improved.414

Figure 3(a) shows that the RA % gradually in-415

creases against TextFooler and TextBugger attacks.416

However, RA % decreases against BAE with steps 417

more than 30, which needs more investigation. As 418

the steps increase, the growth rate of RA % de- 419

creases, and the Clean % decreases. We conclude 420

that a reasonable number of steps will be good for 421

both RA % and Clean %. It is unnecessary to 422

search for too many steps since robustness grows 423

very slowly in the late adversarial training period 424

while accuracy drops. 425

5.4 Impact of Step Size 426

A large step size (i.e., adversarial learning rate) will 427

cause performance degradation for conventional 428

adversarial training. Nevertheless, what impact 429

does it have on robustness? We explore the impact 430

of different step sizes on robustness and accuracy. 431

As shown in Figure 3(b), the clean test accuracy 432

slightly drops as the step size increases. The robust 433

accuracy under TextFooler attack increases, while 434

the robust accuracy under Textbugger and BAE 435

attacks decrease. Overall, the impact of step size 436

on robustness needs further study. 437

5.5 Impact of Training Epochs 438

Ishida et al. (2020) have shown that preventing fur- 439

ther reduction of the training loss when reaching 440

a small value and keeping training can help gen- 441

eralization. In adversarial training, it is naturally 442

hard to achieve zero training loss due to the insuf- 443

ficient capacity of the model (Zhang et al., 2021). 444

Therefore, we investigate whether more training 445

iterations result in stronger robustness in adver- 446

sarial training. We report the RA % achieved by 447

GATFreeLB++30 at each epoch in Figure 3(c). We 448

observe that the RA % tends to improve slowly, 449

implying that more training iterations result in 450

stronger model robustness using GAT. 451
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SST-2 Clean % TextFooler TextBugger BAE

RA % ASR % # Query RA % ASR % # Query RA % ASR % # Query

RoBERTabase 93.0 38.8 58.0 74.5 41.4 55.2 45.5 40.3 56.4 63.6

GATFGM 91.4 47.6 47.7 78.6 49.8 45.3 46.3 42.7 53.2 65.3
GATFreeLB++30 93.2 52.1 43.7 95.5 54.2 41.3 55.8 47.0 49.1 76.9

Table 6: Defense results on RoBERTa model on the SST-2 dataset.

SST-2 Clean % TextFooler TextBugger BAE

RA % ASR % # Query RA % ASR % # Query RA % ASR % # Query

DeBERTabase 94.6 53.7 43.4 79.5 55.1 42.0 48.7 49.8 47.5 66.8

GATFGM 94.5 54.6 42.1 82.6 57.7 38.8 50.0 48.9 48.2 66.7
GATFreeLB++30 94.7 60.4 35.7 83.4 62.0 33.9 51.2 52.2 44.4 69.9

Table 7: Defense results on DeBERTa model on the SST-2 dataset.

5.6 Results with Other Models452

We show that GAT can work on more advanced453

models. We choose RoBERTabase (Liu et al., 2019)454

and DeBERTabase (He et al., 2021), two improved455

versions of BERT, as the base models. As shown in456

Table 6 and Table 7, GAT slightly improve robust-457

ness of RoBERTa and DeBERTa models. We can458

also conclude that DeBERTa is significantly more459

robust than RoBERTa.460

5.7 Limitations461

We discuss the limitations of this work as follows.462

• As we clarify in Section 3.2.2, instead of dynami-463

cally generating friendly adversarial data in train-464

ing, we choose to pre-generate static augmenta-465

tion. We do this for efficiency, as dynamically466

generating discrete sentences in training is com-467

putationally expensive. Although it still signifi-468

cantly improves robustness in our experiments,469

such a tradeoff may lead to failure because the470

decision boundary changes continuously during471

training.472

• GAT performs adversarial training on friendly473

adversarial data. It may help if we consider the474

decision boundaries when performing gradient-475

based adversarial training—for example, stop-476

ping early when the adversarial data crosses the477

decision boundary. We consider this as one of478

the directions for future work.479

6 Conclusion480

In this paper, we study how to improve robustness481

from a geometry-aware perspective. We first pro-482

pose FADA to generate friendly adversarial data 483

that are close to the decision boundary. Then we 484

combine gradient-based adversarial training meth- 485

ods on FADA to save a large number of search 486

steps, termed geometry-aware adversarial training 487

(GAT). GAT can efficiently achieve state-of-the-art 488

defense performance without hurting test accuracy. 489

We conduct extensive experiments to give in- 490

depth analysis, and we hope this work can provide 491

helpful insights on robustness in NLP. 492
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