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Abstract
Large language and vision-language models are
rapidly being deployed in practice thanks to their
impressive capabilities in instruction following,
in-context learning, and so on. This raises an ur-
gent need to carefully analyse their robustness so
that stakeholders can understand if and when such
models are trustworthy enough to be relied upon
in any given application. In this paper, we high-
light a specific vulnerability in popular models,
namely permutation sensitivity in multiple-choice
question answering (MCQA). Specifically, we
show empirically that popular models are vulner-
able to adversarial permutation in answer sets for
multiple-choice prompting, which is surprising as
models should ideally be as invariant to prompt
permutation as humans are. These vulnerabilities
persist across various model sizes, and exist in
very recent language and vision-language models.
Code is available at https://github.com/
ys-zong/FoolyourVLLMs.

1. Introduction
Large language models (LLMs) (Brown et al., 2020; Ope-
nAI, 2023a; Touvron et al., 2023a) and large vision-
language models (VLLMs) (Alayrac et al., 2022; Li et al.,
2023c) have made astonishing progress in recent years.
They have attained strong capabilities across a diverse ar-
ray of language tasks, enabling nuanced text generation,
sophisticated instruction following, and natural dialogue
with multimodal input and output. One task where they
demonstrate particular prowess is multiple-choice question
answering (MCQA) (Robinson & Wingate, 2023). This is
an important capability with many real-world applications,
from education to recruitment exams. Current LLMs and
VLLMs have widely utilized the task format of MCQA for
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Q: Who is under the umbrella?
A. Two women.     B. A child.
C. An old man.      D. A cat

Q: Who is under the umbrella?
A. A cat.                  B. A child.
C. Two women.      D. An old man. 

Permutate the Choices
(V)LLMs

Groundtruth: A
Prediction: A

Groundtruth: C
Prediction: D
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Figure 1. a. Schematic Illustration of an MCQA permutation at-
tack. b. Summary of MCQA adversarial attack results for both
LLMs and VLLMs. The values are average accuracy across all
benchmarking datasets.

benchmarking and evaluation (Hendrycks et al., 2020; Lu
et al., 2022; Zhong et al., 2023; Liang et al., 2022; Schwenk
et al., 2022). This has built confidence that they can generate
accurate and robust answers, underpinned claims of LLM
competence at professional level human qualifications such
as the bar exam (OpenAI, 2023b), and even led to reports of
surpassing human-level performance on various tasks.

Surprisingly, contrary to the confidence instilled by high-
performance metrics on established benchmarks, these mod-
els are surprisingly brittle when subjected to simple permu-
tations in the answer choices, i.e., randomly changing the
option positions. In this paper, we show that even a simple
permutation of the answer sets, as illustrated in Figure 1,
can lead to a dramatic decline in accuracy for both LLMs
and VLLMs in a wide range of MCQA datasets, some-
times even below the random chance levels. For instance,
Llama2-13B (Touvron et al., 2023a) experiences a 33.89%
degradation in accuracy on the MMLU dataset (Hendrycks
et al., 2020) following random permutation of option posi-
tions, with results falling below the random chance. A wide
variety of popular LLMs and VLLMs, suffer significantly
from this vulnerability, as summarised in Figure 1 b.

Furthermore, our investigations reveal an even more discon-
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certing aspect: the vulnerability to permutations persists in
LLMs and VLLMs even when multiple distractor options
are deliberately removed from the answer sets. Intuitively,
one expects that by eliminating incorrect choices, the task
should become simpler due to increasing chance perfor-
mance, thereby enhancing the models’ performance. How-
ever, our empirical findings contradict this notion. Even
with a reduced number of distractors, the performance of
both LLMs and VLLMs remains susceptible to degradation,
affirming the deeply ingrained nature of this vulnerability.

To further investigate the source of the brittleness, we
demonstrate through our adversarial attack that it is not
merely a selection bias towards/against certain positions,
such as moving correct answers to a fixed position that a
given model is biased against picking. While positional fac-
tors may moderately influence model performance, they do
not explain the strength of our adversarial attack results, sug-
gesting a more systemic issue that extends beyond simple
position bias.

This issue should be of intrinsic concern to those seeking
to understand and design trustworthy and reliable LLMs
and VLLMs, or emulate human capabilities. However, one
might speculate that the issue could be mitigated in practice
through the engineering solution of majority voting across
different permutations or by employing calibration strategies
as suggested in previous work (Zhao et al., 2021). However,
our findings indicate that while majority voting may offer
some degree of improvement, the resulting performance
still lags behind the original metrics, despite incurring a
k!× computational cost of the original inference time. Addi-
tionally, calibration techniques such as calibrate-before-use
(Zhao et al., 2021) fail to alleviate this problem effectively.

In summary, our research unveils a glaring yet often over-
looked vulnerability in large language models and vision-
language models, specifically within the domain of multiple-
choice question answering (MCQA). Despite their impres-
sive metrics on well-established benchmarks, these models
reveal a disconcerting fragility when faced with simple ma-
nipulations such as option permutations. Existing mitigation
strategies fall short of effectively resolving this issue. Our
observations not only raise pivotal questions about the mod-
els’ robustness but also accentuate the necessity for height-
ened scrutiny in assessing their MCQA capabilities. We
argue that stakeholders should be vigilant in relying on such
models until these vulnerabilities are adequately addressed.

2. Simple Adversarial Attack Breaks LLMs
and VLLMs

In this section, we analyse the brittleness of a broad array
of large language models and vision-language models to
random adversarial attacks in MCQA. By simply shuffling

answer choices, we find that these models fail to maintain
their performance, revealing a critical vulnerability.

2.1. Experiment Setup

In an ideal scenario, robust models should offer consistent
predictions that are invariant to permutations that have no
semantic influence on the question being posed. To test
this, we simply iterate through the possible permutations
of MCQ options. A robust model should be correct in
every case. While there are k! possible combinations in
total, we cease permutation once the model produces an
incorrect prediction (succumbs to the permutation attack),
which usually requires far less than k! attempts1.

Formally, Given a question q and an answer list A =
{a1, a2, . . . , ak}, the permutation adversarial attack can be
described by the Equation 1. We maximize the loss func-
tion (L) with respect to all possible permutations (Π) of the
answer list. Here, prompt(q, A) prompts the model with the
given query and answer list, and the model’s response is
then evaluated by the loss.

Maximize: L (prompt(q, A∗))

s.t. A∗ ∈ Π(A) (1)

Table 1. Statistics of the language datasets evaluated.
# Choices # QA Pairs Task

MMLU 4 14079 Aggregated
ARC-c 4 1165 Commonsense Reasoning
BoolQ 2 3270 Reading Comprehension

SocialiQA 3 1954 Commonsense Reasoning
MedMCQ 4 2816 Out-of-domain

Table 2. Statistics of the vision-language datasets evaluated.

# Choices # QA pairs Task

ScienceQA 2,3,4,5 2021 Scientific QA
A-OKVQA 4 1145 Commonsense Reasoning
MMBench 4 4377 Aggregated
SEED-Bench 4 14233 Aggregated

Models We evaluate a wide range of LLMs and VLLMs
of diverse sizes, different pretrained backbones, and both
auto-regressive pretrained and instruction-following fine-
tuned models. Specifically, for LLMs, we have evalu-
ated LLaMA-2 (7B/13B) (Touvron et al., 2023b), Vicuna
(7B/13B) (Chiang et al., 2023), WizardLM-13B (Xu et al.,

1Since typical MCQA benchmarks use k = 4, the brute force
algorithm is cheaper than a gradient-based solution. But gradient-
based solutions could be used if the attack needs to scale to sub-
stantially larger k.
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2023), InternLM-20B (Team, 2023a), Falcon-7B (Penedo
et al., 2023), and MPT-7B (Team, 2023b). For VLLMs,
InstructBLIP (Vicuna-based, 7B/13B) (Dai et al., 2023),
Open-Flamingo (MPT-based, 9B) (Awadalla et al., 2023),
Otter (Llama-based, MPT-based) (Li et al., 2023b), LLaVA
(7B/13B) (Liu et al., 2023b), LLaVA-v1.5 (7B/13B) (Liu
et al., 2023a), Emu2-Chat (Sun et al., 2024), Limber
(7B) (Merullo et al., 2023), and mPLUG-Owl (pretraining,
intruction) (Ye et al., 2023) are used for evaluation.

Datasets We utilize a diverse array of language and
vision-language MCQA datasets for comprehensive evalua-
tion. These datasets cover multiple domains and require
different aspects of the models to give correct answers,
ensuring our findings are generalizable. Specifically, for
LLMs, we utilize MMLU (Hendrycks et al., 2020), ARC
challenge (ARC-c) (Clark et al., 2018), BoolQ (Clark et al.,
2019), SocialiQA (Sap et al., 2019), and MedMCQA (Pal
et al., 2022). For VLLMs, we use ScienceQA (Lu et al.,
2022), A-OKVQA (Schwenk et al., 2022), MMBench (Liu
et al., 2023c), and SEED-Bench (Li et al., 2023a). We use
the questions in ScienceQA that have corresponding images,
the MCQA subsets of MMBench, and the image-based MC-
QAs in SEED-Bench.

Evaluations We use accuracy as our primary metric. Dur-
ing testing, we prompt the model to generate the possible
option symbols (e.g., A to D) and extract the probability
assigned to each choice in the first position. The option with
the highest probability is then selected as the model’s an-
swer for that specific question. For both LLMs and VLLMs,
we use greedy decoding to ensure reproducibility. All of
the datasets we use are publicly available. All of the model
weights (except GPT-3.5-Turbo) can be obtained from the
HuggingFace model zoo or the original official Github repos-
itories. GPT-3.5-Turbo can be accessed from OpenAI API.
Experiments are conducted on A100-80GB GPUs.

2.2. Main Results

We present the main results in Table 3 and 4 for language
and vision-language models respectively.

Language Models In our experiments, large language
models manifested a significant susceptibility to adversarial
permutations, a finding consistent across various MCQA
benchmarks. Our evaluation extended beyond the typical
four-option MCQA datasets to include more diverse for-
mats like the two-option BoolQ (Clark et al., 2019) and
the three-option SocialIQA (Sap et al., 2019) that are nat-
urally more resilient to the permutations. Intriguingly, the
presence of only one or two distractor options did not miti-
gate the model’s vulnerability to permutations. For instance,
Llama2-7B’s accuracy on BoolQ plummeted from 61.79%
to a mere 8.23%, a performance even worse than random
chance. Moreover, out of 50 experiments conducted with

large language models, only 12 non-GPT-3.5-turbo models
managed to perform better than random chance. And all
of them, including GPT-3.5-turbo, suffer from significant
performance decreases.

Vision-Language Models In the vision-language model
evaluations, the susceptibility to adversarial permutations is
also severe. Despite the presence of visual context, which
may intuitively add a layer of resilience, the VLLMs were
not spared from the adverse effects of our permutation at-
tacks. Among 48 experiments, more than half of them
fell below random chance performance after the adversarial
attack. While InstructBLIP (Dai et al., 2023) and LLaVA-
v1.5 (Liu et al., 2023a) show relatively strong robustness to
the adversarial attack, all of the models experienced signifi-
cant accuracy drops ranging from 20% to 45%.

Further Observations We note that within the same
model family but with varying parameter sizes (e.g.,
InstructBLIP-7B v.s. InstructBLIP-13B), scaling up gener-
ally enhances both the baseline performance and resilience
to adversarial attacks with relatively smaller declines in
accuracy. We can also observe that models have different
success rates over random chance in different datasets. For
example, all of the LLMs failed the adversarial attack on
MedMCQA dataset except GPT-3.5-turbo, which is also
only slightly above the random chance. It shows the chal-
lenges of LLMs to generalize to out-of-domain data, and
suggests caution about their use in unconstrained practical
scenarios.

2.3. Answer Set Pruning

In this subsection, we examine the impact of a stricter test
condition on MCQA, specifically by reducing the number
of distractor options, while obviously retaining the true an-
swer. This is expected to improve baseline performance by
increasing random chance level, but also we expected it to
reduce vulnerability to adversarial permutation by substan-
tially reducing the degrees of freedom that the permutation
attack can explore. However, we found that models remain
highly susceptible to even the few permutations available in
the reduced set of options.

Experiment Setup Specifically, we constrain the answer
set by reducing the number of total choices from four to
either three or two, inclusive of the ground-truth answer.
We then compare the performance metrics between these
pruned sets in both permuted and non-permuted conditions
to assess the relative susceptibility of the models.

Results We present the results of answer set pruning of
MMLU datasets in Table 5 and other datasets in the ap-
pendix. As can be seen from Table 5, reducing the num-
ber of options increases the base prediction accuracy as
expected, but performing adversarial permutation on the
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Table 3. Performance comparisons of LLMs before and after adversarial attack. Numbers in each represent original accuracy, accuracy
after adversarial attack, and relative performance drop. Red shading indicates experiments where the permutation attack reduced
performance below chance level. All models suffer substantially with most experiments leading to below chance performance.

Method MMLU ARC-c BoolQ SocialiQA MedMCQA

Llama2-7B 40.91/ 6.17 (34.74 ↓) 47.04/ 7.98 (39.06 ↓) 61.79/ 8.23 (53.56 ↓) 52.00/15.71 (36.29 ↓) 37.96/ 1.60 (36.36 ↓)

Llama2-13B 52.22/18.33 (33.89 ↓) 61.80/21.63 (40.17 ↓) 67.16/38.29 (28.87 ↓) 61.21/34.14 (27.07 ↓) 39.78/ 7.35 (32.43 ↓)

Llama2-70B 64.68/33.16 (31.52 ↓) 80.00/51.50 (28.50 ↓) 76.39/56.21 (20.18 ↓) 71.60/49.85 (21.75 ↓) 49.61/ 7.35 (32.43 ↓)

Vicuna-v1.5 48.57/18.09 (30.48 ↓) 58.37/23.43 (34.94 ↓) 64.04/29.60 (34.44 ↓) 64.99/38.33 (26.66 ↓) 39.28/ 7.67 (31.61 ↓)

Vicuna-v1.5-13B 54.68/26.27 (28.41 ↓) 69.27/38.80 (30.47 ↓) 68.96/42.14 (26.82 ↓) 66.07/44.42 (21.65 ↓) 41.80/11.90 (29.90 ↓)

WizardLM-13B 48.60/15.87 (32.73 ↓) 58.20/21.12 (37.08 ↓) 67.49/42.11 (25.38 ↓) 63.46/31.78 (31.68 ↓) 34.87/ 6.32 (28.55 ↓)

InternLM-7B 45.72/10.45 (35.27 ↓) 56.14/17.34 (38.80 ↓) 65.83/26.41 (39.42 ↓) 59.47/30.30 (29.17 ↓) 32.63/ 2.56 (30.07 ↓)

InternLM-20B 59.14/29.52 (29.62 ↓) 78.28/54.42 (23.86 ↓) 85.20/82.91 ( 2.29 ↓) 79.48/65.97 (13.51 ↓) 43.61/13.92 (29.69 ↓)

Falcon-7b 31.66/ 2.49 (29.17 ↓) 34.74/ 0.09 (34.65 ↓) 55.35/ 2.66 (52.69 ↓) 36.29/ 0.55 (35.74 ↓) 28.12/ 0.07 (28.05 ↓)

MPT-7B 35.60/ 3.52 (32.08 ↓) 37.76/ 1.06 (36.70 ↓) 58.46/ 7.03 (51.43 ↓) 41.61/ 2.53 (39.08 ↓) 26.31/ 1.60 (24.71 ↓)

GPT-3.5-turbo 64.81/40.39 (24.42 ↓) 82.23/61.55 (20.68 ↓) 87.92/81.35 ( 6.57 ↓) 70.62/56.29 (14.33 ↓) 52.22/32.07 (20.15 ↓)

Random Chance 25.0 25.0 50.0 33.33 25.0

reduced answer set still dramatically reduces the accuracy
even in the 2-option cases. In most cases, the performance
is below the chance level given the number of options. This
means that, surprisingly, even in the simplest case of a binary
choice, models are not robust to whether the true answer is
presented as the first or second option.

3. Understanding Vulnerability Causes
In this section, we delve into a detailed analysis of the po-
tential causes behind the demonstrated vulnerability and ex-
amine related attack types and potential symbol-content spu-
rious correlation. We also refer readers to the Appendix A.2
for the effect of different prompting and attack techniques
and A.4for qualitative results.

3.1. Posisition Bias and Other Attacks

A concurrent study to ours argued for the existence of posi-
tion bias in language model MCQA (Zheng et al., 2023a).
For example, in an A/B/C/D MCQ situation, a given model
might have a predisposition to selecting a particular option
such as “C” and an aversion to selecting some other option
such as “A”, irrespective of the correctness of the answer
associated with each label. Position bias could potentially
explain adversarial permutation vulnerability if a model is
so averse to selecting a particular option, that rotating the
true answer into that slot would reliably cause it to fail.

To analyse whether position bias can explain our results, we
compare our adversarial permutation results to the perfor-
mance of each LLM under position bias analysis – always
rotating the correct answer to a specific slot (A/B/C/D) in

the answer list.

From the results in Table 6, we do see the position bias effect
remarked upon by Zheng et al. (2023a). The models tested
exhibit varying degrees of position bias, as results fluctuate
with respect to original performance (left column). For
example, Vicuna suffers limited position bias, while Falcon-
7B is highly position biased. Falcon-7B’s baseline accuracy
of 31% rises to 70.9% when the true answer is placed in slot
A – indicating a strong preference for choosing A; but drops
to 3.7% when the true answer is placed in slot B, indicating
a strong aversion to selecting B.

Comparing the observed position bias to the impact of our
adversarial permutation, we can see that our adversarial
permutation has a much stronger effect. The results after
permutation (right column) are substantially worse than the
position bias results. For example, Llama2-7B performs
above chance level for answers in every possible position
(A/B/C/D), but is reduced to below chance by our adver-
sarial permutation. Thus we conclude that the impact of
our adversarial permutation is not explainable by position
bias. Evidently, models rely on the relationships between
choices, including the distractors, which the adversarial per-
mutation manipulates to fool them. I.e., it is not just the true
answer, and the location of the true answer (position bias),
but also the pattern of the distractor answers around the
true answer (as explored by adversarial permutations) that
determine model success or failure. This reveals a complex
and concerning form of vulnerability.

Additionally, to further investigate the potential causes of
the vulnerability and compare with other types of attacks,
we consider circular evaluation (CircularEval) (Liu et al.,
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Table 4. Performance comparisons of VLLMs before and after adversarial attack. Numbers in each cell represent original accuracy,
accuracy after adversarial attack, and relative performance drop. Red shading indicates performance below chance level after the
permutation attack. All models suffer substantially with most experiments leading to below chance performance.

Method ScienceQA A-OKVQA SEED-Bench MMBench

InstructBLIP-7B 59.46/33.31 (26.15 ↓) 74.06/51.62 (22.44 ↓) 51.61/25.68 (25.93 ↓) 64.91/41.01 (23.90 ↓)

InstructBLIP-13B 64.15/41.84 (22.31 ↓) 77.90/55.38 (22.52 ↓) 53.65/28.79 (24.86 ↓) 67.12/45.49 (21.63 ↓)

OpenFlamingo 39.43/1.37 (38.06 ↓) 46.90/3.58 (43.32 ↓) 37.99/0.87 (37.12 ↓) 38.99/5.18 (33.81 ↓)

Otter-Llama7B 59.92/32.54 (27.38 ↓) 57.99/28.30 (29.69 ↓) 40.77/9.91 (30.86 ↓) 55.24/19.67 (35.57 ↓)

Otter-MPT7B 63.11/31.38 (31.73 ↓) 68.21/43.19 (25.02 ↓) 46.76/10.82 (35.94 ↓) 61.31/36.46 (24.85 ↓)

LLaVA-7B 45.20/2.28 (42.92 ↓) 52.91/ 0.09 (52.82 ↓) 38.36/5.67 (43.03 ↓) 46.03/5.07 (40.96 ↓)

LLaVA-13B 60.63/46.53 (14.10 ↓) 63.14/25.85 (37.29 ↓) 44.00/13.68 (30.32 ↓) 59.13/31.30 (27.83 ↓)

LLaVA-v1.5-7B 67.78/45.61 (22.17 ↓) 81.31/36.24 (45.07 ↓) 59.17/12.44 (46.73 ↓) 69.57/27.39 (42.18 ↓)

LLaVA-v1.5-13B 71.60/52.55 (19.05 ↓) 83.32/47.25 (36.07 ↓) 61.50/18.95 (42.55 ↓) 72.33/58.42 (13.91 ↓)

Limber 49.33/14.03 (35.30 ↓) 39.57/1.22 (38.35 ↓) 31.50/0.26 (31.24 ↓) 34.93/1.62 (33.31 ↓)

mPLUG-Owl-pt 53.24/10.20 (43.04 ↓) 39.91/1.83 (38.08 ↓) 35.57/0.91 (34.66 ↓) 42.57/8.54 (34.03 ↓)

mPLUG-Owl-instr 54.87/11.43 (43.44 ↓) 37.12/2.01 (35.11 ↓) 36.74/2.72 (34.02 ↓) 43.74/6.12 (37.62 ↓)

Emu2-Chat 64.60/44.27 (20.33↓) 81.91/63.67 (18.24↓) 62.11/38.02 (24.09↓) 73.21/52.44 (20.77↓)

Random Chance Min 20.0 25.0 25.0 25.0

Table 5. Performance of LLMs on the MMLU dataset under an-
swer set pruning. Numbers in each cell represent original accuracy,
accuracy after adversarial attack, and relative performance drop.
Baseline performances improve as the number of distractors is re-
duced, but performance is reduced below chance after adversarial
permutation.

Method 4 Choices 3 Choices 2 Choices

Llama2-7B 40.91 48.75/ 8.67 (39.08↓) 63.33/20.26 (43.07↓)

Llama2-13B 52.22 70.77/22.85 (47.92↓) 71.13/31.85 (39.28↓)

Llama2-70B 64.68 69.90/35.34 (34.56↓) 75.23/45.88 (29.35↓)

Vicuna-v1.5-7B 48.57 56.65/30.60 (26.97↓) 68.81/32.60 (36.21↓)

Vicuna-v1.5-13B 54.68 61.75/29.02 (32.66↓) 72.97/28.06 (44.91↓)

WizardLM-13B 48.60 56.57/17.74 (38.83↓) 69.09/28.96 (40.13↓)

InternLM-7B 45.72 51.76/12.39 (39.37↓) 65.88/19.65 (46.23↓)

InternLM-20B 59.14 65.25/30.48 (34.67↓) 76.09/43.51 (32.58↓)

Falcon-7b 31.66 52.88/ 5.92 (46.96↓) 58.31/11.41 (46.90↓)

MPT-7B 35.60 53.31/ 6.27 (47.03↓) 58.31/15.44 (42.87↓)

GPT-3.5-turbo 64.81 70.80/42.99 (27.81↓) 79.30/50.82 (28.48↓)

Random Chance 25.0 33.33 50.0

2023c) and symbol attack. Specifically, CircularEval in-
volves rotating options while maintaining their relative po-
sitions. Symbol attack refers to using different option sym-
bols (here we consider A/B/C/D, a/b/c/d, I/II/III/IV). In
both cases, the predictions are counted as correct only if the
model predicts all of the variations correctly. As shown in
Table 6, while these attacks degrade performance to some

extent, our adversarial attack exhibits the most substantial
impact and causes the largest performance drop.

3.2. Symbol-Content Spurious Correlation

In this subsection, we investigate the potential existence
of shortcut correlations between option symbols and con-
tent. We ask whether the permutation required to fool the
model’s prediction is independent of the chosen symbols or
not. Here we consider two sets of symbols, Capital letters
vs. Lowercase letters, and Capital letters vs. Roman Numer-
als. For each set of symbols, we calculated the correlations
across all permutations of test set predictions. Specifically,
we examined the similarity in response patterns to permuta-
tions between different symbol sets, with a high correlation
indicating similar responses to permutations across two sets,
and a low correlation indicating the opposite.

Our findings reveal a notably low correlation between
the sets of capital letters (A/B/C/D) and Roman numerals
(I/II/III/IV), in stark contrast to the correlation observed
between capital letters (A/B/C/D) and lowercase letters
(a/b/c/d). This discrepancy suggests that, while the baseline
and permuted accuracies remain largely consistent across
different symbol sets, their responses to permutations di-
verge significantly. Such behavior implies that the model
might be exploiting symbol-answer shortcuts (Geirhos et al.,
2020; Du et al., 2023) and spurious correlations (Sagawa
et al., 2020) inadvertently learned during training, indicating
another potential underlying cause of our observed vulner-
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Table 6. Comparison of positional bias, circular evaluation, symbol attack, and our adversarial permutation on MMLU dataset. Position
bias and other attacks have moderate impact. In contrast, our adversarial permutation severely degrades performance, usually below
random chance level.

Method Original A B C D CircularEval Symbol Attack Permutation Attack

Llama2-7B 40.91 60.02 37.28 30.69 35.43 27.26 25.70 6.17
Llama2-13B 52.22 36.15 58.69 59.08 54.91 35.80 30.76 18.33
Llama2-70B 64.68 63.63 64.28 67.45 62.43 48.18 47.40 33.16
Vicuna-7B 48.57 49.83 63.22 45.46 37.85 20.23 33.85 18.09
Vicuna-13B 54.68 47.33 70.00 51.73 52.04 41.42 45.40 26.27
WizardLM-13B 48.60 34.75 56.38 45.86 57.56 22.42 29.07 15.87
InternLM-7B 45.72 37.23 65.12 41.49 42.33 25.23 29.38 10.45
InternLM-20B 59.14 51.05 68.75 53.47 62.35 34.99 47.06 29.52
Falcon-7B 31.66 70.86 3.77 10.52 14.85 7.69 14.38 2.49
MPT-7B 35.60 0.82 75.35 34.72 2.03 2.44 21.62 3.52
GPT-3.5-turbo 64.81 65.84 67.77 73.81 56.55 58.21 63.99 40.39

ability. Figure 2 illustrates these dynamics, showcasing
the Llama2-13B model’s predictions and correlation across
various symbol sets.

In summary: not only are the models not invariant to permu-
tation, but the specific way in which they are not invariant
is dependent on the choice of symbols.

Table 7. Comparisons of Pearson correlation scores of different
symbol sets on ARC-Challenge dataset averaged over different
permutations.

Symbol Set Correlation Original Acc. Permuted Acc.

Capital vs. Lowercase 0.76 55.06 vs. 54.87 23.73 vs. 21.68

Capital vs. Roman 0.36 55.06 vs. 52.49 23.73 vs. 19.33
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Figure 2. The correlation analysis of Llama2-13B model’s predic-
tions across different pairs of options symbols of each permutation
reveals a notable finding: the low correlation score between permu-
tation predictions when using capital letters and Roman numerals
suggests that the model may have learned shortcuts or spurious
correlations linking option symbols with answer content.

4. Exploring Mitigation Strategies
The previous analysis of adversarial permutation vulnera-
bility should be concerning to stakeholders interested in
trustworthy and reliable AI, and suggests a new focus for re-
searchers in developing models with improved intrinsic per-
mutation robustness. Nevertheless, one might ask whether
any post-hoc engineering fixes or fine-tuning could alleviate
this issue in practice for existing models. We explore this
question in this section.

4.1. Post-hoc Mitigation Strategies

For post-hoc strategies, we consider three strategies that
have previously proven effective in improving model per-
formance, namely, majority voting (Wang et al., 2023), con-
textual calibration (Zhao et al., 2021) and confidence-based
voting, and ask whether they can alleviate adversarial per-
mutation vulnerability.

Setup Majority voting (Wang et al., 2023) has been shown
highly successful in self-ensembling over stochastic predic-
tions. In our context, we apply it by obtaining the predic-
tions for all possible permutations and then selecting the
most frequent prediction. If most permutations lead to a
correct prediction and there are only one or two patholog-
ical permutations that lead to an incorrect prediction, then
majority voting should provide complete robustness to ad-
versarial permutation. Contextual calibration (Zhao et al.,
2021) is designed to mitigate the prior bias introduced from
the in-context examples by estimating the model’s bias to-
ward each answer with a “content-free” query and fitting a
calibration parameter. Here we consider the input question
and options as the language prior bias. We first feed the
model with content-free options (e.g. “N/A”) as the content-
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free input, and then calibrate the real prediction based on
the calibration parameters calculated from the content-free
input. Additionally, we also apply confidence voting by
taking the output that has maximum confidence among all
permutations as the final prediction (M-confidence).

Results From the results in Table 8 for LLMs, we can
see that neither defense proved effective at restoring the
original performance levels. The majority voting and M-
confidence certainly ameliorated the permutation attack as
expected, but still fell short of the baseline accuracy with
only very few models gaining improvement. This is despite
their being highly impractical defenses due to imposing a k!-
fold increase in inference cost. We also additionally analyze
the pattern of majority vote in Appendix Table 18 and 19.
Contextual calibration, on the other hand, completely failed
to make a meaningful impact on mitigating the adversarial
attack. This re-confirms that the position bias is not the
primary reason for models’ permutation vulnerability.

We additionally examine whether Pride (Zheng et al., 2023a)
can alleviate this issue, which introduces an inference-time
debiasing method to mitigate token selection bias. Here, we
debiased the prediction distribution of all possible permu-
tations using their method and report original option order
accuracy and permuted accuracy on the MMLU dataset in
Table 9. Although PriDe can indeed improve accuracy for
the original order, it cannot effectively restore the perfor-
mance with the permutation attack. It is understandable
why PriDE almost completely fails: It learns a recalibration
matrix that adjusts the relative probabilities of options (A, B,
C, D). But this recalibration matrix is not input dependent,
making it in the end a sophisticated amelioration against
fixed positional/option bias. However, as we show here, the
different permutations can lead to radically different prefer-
ences over options. In this case, no single fixed recalibration
matrix can possibly alleviate this attack.

4.2. Fine-tuning on Training Set

While (V)LLMs are typically evaluated in zero-shot on the
MCQ benchmarks without within-dataset fine-tuning, we
study whether fine-tuning on the training set can enhance
the robustness to the permutation.

Setup As many of the benchmarks do not provide a train-
ing set, we conduct two fine-tuning experiments using
Llama2-7B on two datasets that do provide training sets:
ARC-Challenge (Clark et al., 2018) and MedMCQA (Pal
et al., 2022). We also consider two fine-tuning variations:
using the original training data and augmenting the training
data with option permutations (n!) during fine-tuning. The
latter is inspired by adversarial training (Madry et al., 2018),
to ensure that the model learns robustness to permutations
during training. We fine-tune with LoRA (Hu et al., 2022)
for 1 epoch.

Results We present the results before and after fine-tuning
in Table 10. We observe that fine-tuning indeed improves
the baseline accuracy and the permuted accuracy. However,
regular fine-tuning is not a very effective solution because
the fine-tuned models still suffer substantially from permu-
tation vulnerability, and not all datasets have training set for
fine-tuning. On the other hand, fine-tuning with permuta-
tion, while does not reliably defeat the attack, substantially
alleviates it compared to the zero-shot and regular fine-
tuning baseline. Although this is not a universal solution
as we expect the model to generalize in a zero-shot manner,
this shows the potential of mitigating the sensitivity during
the pre-training or supervised fine-tuning stage with more
robust training strategies.

5. Related Work
Large Language Models and Vision-Language Models.
In recent years, the natural language processing commu-
nity has seen astonishing progress in large language models
(LLMs) with billions of trained parameters, such as GPT-
3 (Brown et al., 2020) and Llama (Touvron et al., 2023a;b),
and become more intelligent after instruction-following fine-
tuning (Ouyang et al., 2022; Zheng et al., 2023b). With the
strong capabilities of LLMs, there is a growing interest in
grounding vision with LLMs to enable the models to per-
ceive multimodal information (Yin et al., 2023; Zong et al.,
2023; Li et al., 2023c), usually by utilizing pretrained lan-
guage and vision encoders with trainable alignment modules
to connect them. Such models have shown strong capabil-
ities across a diverse range of tasks including multimodal
generation, question-answering, dialogue, and more.

Multiple-Choice Question Answering (MCQA).
Multiple-Choice Question Answering (MCQA) requires
selecting the correct option from a set of choices and is
prevalent in numerous real-world applications, making
it a key performance metric for both LLMs and VLLMs.
Various benchmarks such as MMLU (Hendrycks et al.,
2020), AGI-Eval (Zhong et al., 2023), MedMCQA (Pal
et al., 2022), and SocialIQA (Sap et al., 2019) have been
designed to assess MCQA proficiency across different
domains. Different prompting approaches approaches have
been considered for MCQA with multiple-choice prompting
being the currently recommended state of the art (Robinson
& Wingate, 2023). On these benchmarks, LLMs and
VLLMs frequently achieve, or even surpass, human-level
accuracy (Anil et al., 2023; OpenAI, 2023b), suggesting a
high degree of reliability and robustness. However, we cast
doubt on this presumed robustness, exposing the underlying
fragility of these models in MCQA scenarios.

Robustness of LLMs and VLLMs. Despite their im-
pressive capabilities, concerns remain about the robustness
and reliability of LLMs and VLLMs (Liu et al., 2023d). Pre-
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Table 8. Impact of majority vote, contextual calibration (C-Calibration), and maximum confidence (M-Confidence) defenses against the
permutation attack on the MMLU dataset. Contextual calibration fails completely. Majority vote and M-Confidence ameliorate the attack,
but do not completely restore performance. Red shading indicates below-chance results.

Method Original Permutation Attack Majority Vote C-Calibration M-Confidence

Llama2-7B 40.91 6.17 (34.74 ↓) 33.64 (7.27 ↓) 5.24 (35.67 ↓) 22.62 (18.29 ↓)

Llama2-13B 52.22 18.33 (33.89 ↓) 48.53 (3.69 ↓) 20.02 (32.20 ↓) 50.83 (1.39 ↓)

Llama2-70B 64.68 33.16 (31.52 ↓) 65.37 (0.69 ↑) 35.77 (28.91 ↓) 64.20 (0.48 ↓)

Vicuna-v1.5-7B 48.57 18.09 (30.48 ↓) 44.10 (4.47 ↓) 11.33 (37.24 ↓) 38.29 (10.28 ↓)

Vicuna-v1.5-13B 54.68 26.27 (28.41 ↓) 52.03 (2.65 ↓) 18.10 (36.58 ↓) 55.58 (0.90 ↑)

WizardLM-13B 48.60 15.87 (32.73 ↓) 30.17 (18.43 ↓) 8.23 (40.37 ↓) 37.81 (11.21 ↓)

InternLM-20B 59.14 29.52 (29.62 ↓) 60.33 (1.19 ↑) 28.94 (30.20 ↓) 64.80 (5.66 ↑)

Falcon-7b 31.66 2.49 (29.17 ↓) 4.38 (27.28 ↓) 3.59 (28.07 ↓) 21.10 (10.56 ↓)

MPT-7B 35.60 3.52 (32.08 ↓) 13.80 (21.80 ↓) 6.24 (29.36 ↓) 21.42 (14.18 ↓)

Table 9. Baseline and permuted accuracy with PriDe on MMLU.
Pride cannot alleviate the vulnerability caused by full permutation.

Models PriDe (Baseline/Permuted Accuracy)

Llama2-7B 42.60/ 6.43 (36.17↓)
Llama2-13B 52.41/19.26 (33.15↓)
Vicuna-7B 49.37/18.42 (30.95↓)
Vicuna-13B 55.27/27.68 (27.59↓)

Table 10. Comparison of baseline and permuted accuracy for differ-
ent fine-tuning strategies across two benchmarks with Llama2-7B.
Fine-tuning with permutation can enhance the robustness to the per-
mutation attacks compared to the zero-shot and regular fine-tuning
baseline.

Fine-tuning Strategy ARC-Challenge MedMCQA

Zero-shot 47.04/ 7.98 (39.06↓) 37.96/ 1.60 (36.36↓)
Regular Fine-tuning 51.42/15.02 (36.40↓) 45.03/14.38 (30.65↓)
Fine-tuning with Permutation 67.64/47.73 (19.91↓) 46.78/26.07 (20.71↓)

vious studies have revealed the sensitivity of LLMs to vari-
ous factors including prompt (Zhu et al., 2023), in-context
examples (Liu et al., 2021; Zhao et al., 2021), irrelevant
context (Shi et al., 2023), etc. Despite its significance, the
robustness of MCQA has been relatively unexamined, par-
ticularly for VLLMs. Our research addresses this gap by
scrutinizing a specific, yet pervasive, vulnerability to answer
choice permutations in MCQA across both model types.
Concurrent work (Zheng et al., 2023a) discusses position-
bias in MCQA and (Liu et al., 2023c) proposes circular
evaluation. Our results show that adversarial permutation
vulnerability is a much deeper problem than position bias,

and position calibration strategy (e.g., (Zheng et al., 2023a))
cannot solve this issue.

6. Discussion
In this paper, we present a comprehensive empirical analy-
sis that unveils a critical but often overlooked vulnerability
in both large language models (LLMs) and large vision-
language models (VLLMs) in the context of multiple-choice
question answering (MCQA). Despite their seemingly ro-
bust performance on established MCQA benchmarks, these
models are highly susceptible to simple manipulations like
option permutations. Our findings raise concerns about
the widespread practice of evaluating and deploying these
models based on MCQA tasks, urging caution in inter-
preting high benchmark scores as evidence of robust ca-
pabilities. We highlight the need for future work to de-
velop training strategies and/or architectures that lead to
intrinsic robustness to such adversarial attacks and develop
parameter-efficient tuning approaches that can fine-tune or
align existing pretrained LLMs and VLLMs to be invariant
to permutations. Notably, although we do not offer a solu-
tion, we believe that our findings will be of interest to many
researchers in the field and spur future works. Furthermore,
these insights are crucial for industry professionals, particu-
larly when deploying Large Language Models (LLMs) and
Vision-Language Models (VLLMs) in real-world scenarios.

Impact Statement
As a large number of LLM and VLLM benchmarks are
based on multiple-choice question answering, the finding
in our paper, that the MCQ evaluation is highly unstable
and can be easily brought to below chance level through
very simple permutations, is like to have a high impact on
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encouraging researchers to rethink the evaluation protocols
and re-assess the capabilities of the developed LLMs and
VLLMs.
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A. Appendix
A.1. Additional Results on Answer Set Pruning

We present the additional results of the answer set pruning of all language and vision-language datasets in Table 11 to 16.

A.2. Additional Results on Different Prompting and Attack Strategies

In this subsection, we investigate the effect of different prompting techniques on the models’ vulnerability to MCQA. The
findings are summarized below.

• Table 17 presents the average number of permutations needed to break the predictions of ARC-Challenge and
MedMCQA datasets. Observations are two fold: (1) stronger LLMs require a larger number of permutations to break,
and (2) LLMs are easier to break on more difficult datasets (ARC-Challenge is relatively easier than MedMCQA for
LLMs).

• Table 18 and 19 analyze the reason for the seemingly counterintuitive ineffectiveness of the majority vote with Llama2-
7B (decrease with majority vote) and InternLM-20B (increase with majority vote). The intuitive summary is as follows
(consistent with (Chen et al., 2024)): For easy queries where an LLM call’s output is correct more than 50% of the
time, the probability of a correct majority vote goes 1 with infinite LLM calls. Conversely, for hard queries (e.g., with
less than a 50% correctness rate), the majority vote’s accuracy trends towards 0 as LLM calls increase.

• Table 20 compares the performance before and after adversarial attack with in-context learning. Although in-context
learning can improve the original performance, the models still suffer substantially from the performance drop after
adversarial permutations.

• Table 21 to Table 25 presents different attack strategies with in-context learning, i.e. permutation of in-context examples
and searching for worst-case in-context examples. While they can decrease the performance, our adversarial attack has
the biggest impact on the final performance and causes the largest performance drop.

• Table 26 compares different sampling strategies and temperatures. The performance of the other decoding strategies is
even worse before and after the permutations compared to the greedy decoding we adopted. Therefore we can ensure
our experiments were conducted properly and the findings can generalize to other decoding strategies.

• Table 27 to Table 29 presents the effect of in-context learning on the position bias. Our findings indicate that while the
original model exhibited a preference for option B, this preference persisted even after introducing in-context examples
with answers set to positions A, B, C, and D. This suggests that while in-context examples can modify the distribution
across various options, they do not entirely override the inherent position bias of the model.

A.3. Further Analysis on Vision-Language Dataset

We present analysis on vision-language dataset A-OKVQA (Schwenk et al., 2022) in Table 30 and 31 about position bias and
different strategies for mitigation. The additional analysis further ensures that our findings on LLMs can also be generalized
to VLLMs.

A.4. Qualitative Results

To illustrate the permutation attack, we present qualitative results for LLMs in Table 32 and VLLMs in Fig. 3.

Language Models In Table 32, we showcase an MCQA example from the ARC-challenge dataset (Clark et al., 2018), with
the original answer order alongside two permutations. The ground-truth answer is underlined in each configuration. We use
Llama-13B for this experiment. The model gives the correct prediction for the original option order. For permutation 1, if we
only swap the position of option C and D, i.e., moving the ground-truth position to C, the model can still successfully give
the prediction. However, for permutation 2, even if we do not move the ground-truth answer but only swap option A and B,
the model incorrectly predicts A as the answer. This qualitative example underscores that the model’s vulnerability extends
beyond mere positional bias and even minor changes in option ordering can result in completely different predictions.

Vision-Language Models In Appendix Figure 3, we present a visual MCQA example from ScienceQA dataset using
Otter-Llama model. In this example, we simply move the ground truth “Asia” from option A to option C. However, the
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model still predicts the answer to be A and shows strong confidence in terms of the token probabilities (right part of the
figure). This might show the model’s preference for the first option as a recency bias.

Analysis on Permutation Distribution While our main focus has been on the permutation-robustness of LLMs and
VLMs, we can also ask about the distribution of responses as a function of permutation. For example, is there only one
specific pathological permutation among all k! options, or are there many mistake-inducing permutations? To analyse this
we report in Figure 4, a histogram over the questions in ARC-challenge where each bin represents the number of questions
where the specified proportion of permutations led to the correct answer that are originally correctly answered. For example,
we see that Llama2-70B has a large number of questions that succeed for almost all permutations, while several models have
a substantial batch of questions that are only correctly answered for around 30% of the potential permutations. Interestingly,
most models have a substantial minority of questions that are only correctly answered for a small fraction of the permutations
(leftmost bin).
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Table 11. Results of answer Set Pruning on ARC (challenge) Dataset.

Method Original 4 Choices 3 Choices 2 Choices

Llama2-7B 47.04 52.13/25.67 (26.46↓) 69.44/27.04 (42.40↓)

Llama2-13B 61.80 68.07/27.55 (40.52↓) 77.08/39.57 (37.51↓)

Llama2-70B 80.00 83.09/45.88 (37.21↓) 84.21/66.01 (18.20↓)

Vicuna-v1.5-7B 58.37 68.07/29.70 (38.37↓) 78.11/42.66 (35.45↓)

Vicuna-v1.5-13B 69.27 74.85/42.32 (32.53↓) 83.18/56.14 (27.04↓)

WizardLM-13B 58.20 67.38/28.07 (39.31↓) 76.05/4.64 (71.41↓)

InternLM-7B 56.14 61.37/17.42 (43.95↓) 71.93/29.44 (42.49↓)

InternLM-20B 78.28 82.06/48.58 (33.48↓) 84.81/56.03 (28.78↓)

Falcon-7B 34.74 31.76/0.00 (31.76↓) 48.58/0.43 (48.15↓)

MPT-7B 37.76 40.43/12.15 (28.28↓) 50.47/0.09 (50.38↓)

Random Chance 25.0 33.33 50.0

Q: Which continent is marked?
A. Asia B. America
C. South America  D. Africa

Q: Which continent is marked?
A. South America   B. America
C. Asia D. Africa

Permutate the Choices A B      C      D

A B      C      D

(×)

(  )

Figure 3. Qualitative results of permutations of answer options and the corresponding model (Otter-Llama) predictions. The example is
selected from the ScienceQA dataset.
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Table 12. Results of answer set pruning on SocialiQA Dataset.

Method Original 4 Choices 2 Choices

Llama2-7B 52.00 68.42/29.58 (38.84↓)

Llama2-13B 61.21 73.64/45.91 (27.73↓)

Llama2-70B 71.60 81.88/53.99 (27.89↓)

Vicuna-v1.5-7B 64.99 73.29/41.56 (31.73↓)

Vicuna-v1.5-13B 66.07 78.25/53.48 (24.77↓)

WizardLM-13B 79.48 69.75/30.91 (38.84↓)

InternLM-7B 59.47 76.41/53.02 (23.39↓)

InternLM-20B 36.29 86.8/72.82 (13.98↓)

Falcon-7B 41.61 55.83/0.85 (54.98↓)

MPT-7B 70.62 60.08/4.52 (55.56↓)

Random Chance 25.0 50.0

Table 13. Results of answer set Pruning on MedMCQ Dataset.

Method Original 4 Choices 3 Choices 2 Choices

Llama2-7B 37.96 47.94/2.63 (45.31↓) 62.29/5.68 (56.61↓)

Llama2-13B 39.78 50.02/19.35 (30.67↓) 10.37/37.45 (-27.08↓)

Llama2-70B 49.61 55.33/17.86 (37.47↓) 65.66/28.76 (36.90↓)

Vicuna-v1.5-7B 39.28 46.27/10.55 (35.72↓) 59.62/22.13 (37.49↓)

Vicuna-v1.5-13B 41.80 50.33/24.72 (25.61↓) 61.23/28.70 (32.53↓)

WizardLM-13B 34.87 40.39/8.37 (32.02↓) 52.46/10.79 (41.67↓)

InternLM-7B 56.14 38.49/2.66 (35.83↓) 52.02/8.42 (43.60↓)

InternLM-20B 43.61 60.05/17.59 (42.46↓) 65.08/30.61 (34.47↓)

Falcon-7B 28.12 36.18/1.05 (35.13↓) 51.30/5.23 (46.07↓)

MPT-7B 26.31 38.33/3.07 (35.26↓) 53.50/9.71 (43.79↓)

Random Chance 25.0 33.33 50.0
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Figure 4. Analysis on permutation distribution. The histogram shows the number of questions for which the corresponding proportion of
permutations leads to the correct answer (ideal is a full bar at the 100% bin, indicating that all permutations are correctly answered for all
questions). The distribution of bins suggests that many questions have multiple adversarial permutations.
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Table 14. Results of answer set pruning on A-OKVQA dataset. Numbers in each cell represent original accuracy, accuracy after adversarial
permutation attack, and relative performance drop.

Method 4 Choices 3 Choices 2 Choices

InstructBLIP7B 74.06 79.21/45.92 (33.29↓) 85.07/54.85 (30.22↓)

InstructBLIP13B 77.90 81.66/48.33 (33.33↓) 88.56/56.52 (32.04↓)

OpenFlamingo 46.90 54.18/4.88 (49.30↓) 66.90/5.09 (61.81↓)

Otter-Llama7B 57.99 64.98/33.10 (31.88↓) 75.02/39.74 (35.28↓)

Otter-MPT7B 68.21 76.16/46.11 (30.05↓) 81.48/51.44 (30.04↓)

Llava-7B 52.91 42.86/9.44 (33.42↓) 63.55/12.90 (50.65↓)

Llava-13B 63.14 71.09/33.37 (37.72↓) 76.24/41.22 (35.02↓)

Limber 39.91 49.69/4.54 (45.15↓) 65.68/18.08 (47.60↓)

mPLUG-Owl-pt 39.91 45.59/4.95 (40.64↓) 56.42/10.57 (45.85↓)

mPLUG-Owl-instr 37.12 47.86/5.15 (42.71↓) 58.92/16.77 (42.15↓)

Random Chance 25.0 33.33 50.0

Table 15. Results of answer set pruning on SEED-Bench dataset. Numbers in each cell represent original accuracy, accuracy after
adversarial permutation attack, and relative performance drop.

Model Original 4 Choices 3 Choices 2 Choices

InstructBLIP7B 51.61 59.83/38.12(21.71 ↓) 70.69/55.62(15.07 ↓)

InstructBLIP13B 53.65 61.22/42.97(18.25 ↓) 72.79/57.18(15.61 ↓)

OpenFlamingo 37.99 39.64/10.25(29.39 ↓) 55.31/28.35(26.96 ↓)

Otter-Llama7B 50.77 49.46/13.48(35.98↓) 63.57/18.86(44.71 ↓)

Otter-MPT7B 46.76 54.18/17.42(36.76 ↓) 66.43/28.35(38.08 ↓)

Llava-7B 38.36 43.30/6.11(37.19 ↓) 57.50/7.48(50.02 ↓)

Llava-13B 44.00 52.51/17.25(35.26 ↓) 63.37/25.24(38.13 ↓)

Limber 31.50 38.76/1.13(37.63 ↓) 55.58/0.06(55.52 ↓)

mPLUG-Owl-pt 35.57 42.08/1.79(40.29 ↓) 57.72/3.88(53.84 ↓)

mPLUG-Owl-instr 36.74 44.35/2.94(41.41 ↓) 56.61/7.53(49.08 ↓)

Random Chance 25.0 33.33 50.0
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Table 16. Results of answer set pruning on MMBench dataset. Numbers in each represent original accuracy, accuracy after adversarial
attack, and relative performance drop.

Method Original 4 Choices 3 Choices 2 Choices

InstructBLIP7B 64.91 72.61/45.28(27.33 ↓) 79.62/51.15(28.47 ↓)

InstructBLIP13B 67.12 72.79/50.42(22.37 ↓) 81.27/57.30(23.97 ↓)

OpenFlamingo 38.99 46.58/3.81(42.77 ↓) 59.65/7.42(52.23 ↓)

Otter-Llama7B 55.24 61.73/25.11(36.62 ↓) 73.02/32.99(40.03 ↓)

Otter-MPT7B 61.31 66.71/28.53(38.18 ↓) 75.28/46.06(29.22 ↓)

Llava-7B 46.03 45.37/2.14(43.23 ↓) 59.42/3.66(55.76 ↓)

Llava-13B 59.13 65.20/35.66(29.54 ↓) 73.13/42.49(30.64 ↓)

Limber 34.93 44.23/2.56(41.67 ↓) 61.00/12.75(48.25 ↓)

mPLUG-Owl-pt 42.57 53.17/12.24(40.93 ↓) 56.42/16.90(39.52 ↓)

mPLUG-Owl-instr 43.74 50.17/11.15(39.02 ↓) 61.48/18.97(42.51 ↓)

Random Chance 25.0 33.33 50.0

Table 17. Average number of permutations needed to break the predictions of ARC-Challenge and MedMCQA datasets. In each cell,
the first number is the average number of all samples, and the second number is the average number of permutations needed when the
question in the original order is answered correctly.

Models ARC-C MedMCQA

Llama2-7B 3.73/7.96 2.01/5.26
Llama2-13B 7.53/12.19 3.40/8.90
Llama2-70B 13.80/17.16 5.46/11.10
Vicuna-v1.5 7.47/12.80 3.18/8.14
Vicuna-v1.5-13B 10.77/15.55 4.42/10.60
WizardLM-13B 7.19/12.35 2.73/8.08
InternLM-7B 6.00/10.69 1.58/4.84
InternLM-20B 14.19/18.13 4.72/10.82
Falcon-7b 1.31/5.83 1.88/5.71
MPT-7B 1.59/2.87 0.58/2.18

Table 18. Majority vote performance when considering the easy sample with respect to a certain model to be the ones where 50% of the
permutations are correct. If we consider the easy sample with respect to a certain model to be the ones where 50% of the permutations are
correct, the majority vote accuracy of easy samples will be 100%, and we calculate the accuracy of the majority of the difficult samples.
For both Llama2-7B and InternLM-20B, the majority vote accuracies of difficult samples are very low. However, there are more easy
samples wrt InternLM-20B compared to Llama2-7B, and therefore InternLM-20B overall improves with the majority vote while the
accuracy of Llama2-7B decreases with the majority vote.

Model Performance (original/majority vote) Easy sample Acc. (# samples) Difficult sample Acc. (# samples)

Llama2-7B 40.91/33.64 100 (4148) 16.56 (9334)
InternLM-20B 59.14/60.33 100 (9957) 10.69 (3512)
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Table 19. Majority vote performance when considering the easy sample with respect to a certain model to be the ones where 25% of the
permutations are correct on the MMLU dataset. If we consider the easy sample with respect to a certain model to be the ones where 25%
of the permutations are correct, the majority vote accuracy of difficult samples will be 0%, and we calculate the accuracy for majority vote
on the easy samples. As shown in the table, both models have improved with majority vote on easy samples but the final performance may
or may not be improved overall when considering the average accuracy across both easy and difficult samples.

Model Performance (original/majority vote) Easy sample Acc. (# samples) Difficult sample Acc. (# samples)

Llama2-7B 40.91/33.64 46.08 (10252) 0 (3790)
InternLM-20B 59.14/60.33 75.28 (11530) 0 (2512)

Table 20. Performance comparisons of LLMs before and after adversarial attack with in-context learning prompt. Numbers in each
represent original accuracy, accuracy after adversarial attack, and relative performance drop. Red shading indicates experiments where the
permutation attack reduced performance below chance level. All models suffer substantially with most experiments leading to below
chance performance.

Method MMLU ARC-c BoolQ SocialiQA MedMCQA

Llama2-7B 45.80/11.16 (34.64 ↓) 47.04/ 7.98 (39.06 ↓) 61.79/ 8.23 (53.56 ↓) 52.00/15.71 (36.29 ↓) 37.96/ 1.60 (36.36 ↓)

Llama2-13B 55.37/21.69 (33.68↓) 61.80/21.63 (40.17 ↓) 67.16/38.29 (28.87 ↓) 61.21/34.14 (27.07 ↓) 39.78/ 7.35 (32.43 ↓)

Llama2-70B 68.86/41.30 (27.56↓) 80.00/51.50 (28.50 ↓) 76.39/56.21 (20.18 ↓) 71.60/49.85 (21.75 ↓) 49.61/ 7.35 (42.26 ↓)

Vicuna-v1.5 49.89/19.61 (30.28↓) 58.37/23.43 (34.94 ↓) 64.04/29.60 (34.44 ↓) 64.99/38.33 (26.66 ↓) 39.28/ 7.67 (31.61 ↓)

Vicuna-v1.5-13B 55.80/27.33 (28.47↓) 69.27/38.80 (30.47 ↓) 68.96/42.14 (26.82 ↓) 66.07/44.42 (21.65 ↓) 41.80/11.90 (29.90 ↓)

WizardLM-13B 48.93/14.40 (34.53↓) 58.20/21.12 (37.08 ↓) 67.49/42.11 (25.38 ↓) 63.46/31.78 (31.68 ↓) 34.87/ 6.32 (28.55 ↓)

InternLM-7B 48.36/15.90 (32.46↓) 56.14/17.34 (38.80 ↓) 65.83/26.41 (39.42 ↓) 59.47/30.30 (29.17 ↓) 32.63/ 2.56 (30.07 ↓)

InternLM-20B 60.50/32.14 (28.36↓) 78.28/54.42 (23.86 ↓) 85.20/82.91 ( 2.29 ↓) 79.48/65.97 (13.51 ↓) 43.61/13.92 (29.69 ↓)

Falcon-7b 26.95/ 0.00 (26.95↓) 34.74/ 0.09 (34.65 ↓) 55.35/ 2.66 (52.69 ↓) 36.29/ 0.55 (35.74 ↓) 28.12/ 0.07 (28.05 ↓)

MPT-7B 38.73/ 5.21 (33.52 ↓) 37.76/ 1.06 (36.70 ↓) 58.46/ 7.03 (51.43 ↓) 41.61/ 2.53 (39.08 ↓) 26.31/ 1.60 (24.71 ↓)

Random Chance 25.0 25.0 50.0 33.33 25.0

Table 21. Comparisons of different attacks on the MMLU Dataset. In-context learning (ICL) improves the zero-shot performance, and
attacks on in-context examples can decrease the performance. However, our adversarial attack has the biggest impact on the final
performance (largest drop).

Model Original 0-shot ICL ICL Permutation ICL Search Permutation Attack

Llama2-7B 40.91 45.80 35.09 34.46 6.17

Llama2-13B 52.22 55.37 46.65 46.07 18.33

Llama2-70B 64.68 68.86 59.82 59.68 33.16

Vicuna-v1.5 48.57 49.89 40.85 41.92 18.09

Vicuna-v1.5-13B 54.68 55.80 54.65 49.17 26.27

WizardLM-13B 48.60 48.93 39.98 48.27 15.87

InternLM-7B 45.72 48.36 37.35 38.17 10.45

InternLM-20B 59.14 60.50 54.94 54.45 29.52

Falcon-7b 31.66 26.95 27.18 26.79 2.49

MPT-7B 35.60 38.73 30.51 27.33 3.52
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Table 22. Comparisons of different attacks on the ARC-Challenge Dataset. In-context learning (ICL) improves the zero-shot performance,
and the attack on in-context examples can decrease the performance. However, our adversarial attack has the biggest impact on the final
performance (largest performance drop).

Model Original 0-shot ICL ICL Permutation ICL Search Permutation Attack

Llama2-7B 47.04 54.16 45.75 38.20 7.98

Llama2-13B 61.80 66.70 59.31 53.91 21.63

Llama2-70B 80.00 84.55 80.00 79.23 51.5

Vicuna-v1.5 58.37 60.60 54.33 50.64 23.43

Vicuna-v1.5-13B 69.27 72.02 66.44 60.52 38.8

WizardLM-13B 58.20 59.74 49.01 43.26 21.12

InternLM-7B 56.14 65.06 55.54 51.59 17.34

InternLM-20B 78.28 80.52 76.74 74.33 54.42

Falcon-7b 34.74 37.98 28.46 22.15 0.09

MPT-7B 37.76 41.26 31.99 26.37 1.06

Table 23. Comparisons of different attacks on the BoolQ Dataset. In-context learning (ICL) improves the zero-shot performance, and
the attack on in-context examples can decrease the performance. However, our adversarial attack has the biggest impact on the final
performance (largest performance drop).

Model Original 0-shot ICL ICL Permutation ICL Search Permutation Attack

Llama2-7B 61.79 63.85 51.49 40.09 8.23

Llama2-13B 67.16 65.84 54.95 54.27 38.29

Llama2-70B 76.39 84.62 66.42 55.29 56.21

Vicuna-v1.5 64.04 69.51 61.47 57.71 29.60

Vicuna-v1.5-13B 68.96 80.24 71.90 68.23 42.14

WizardLM-13B 67.49 76.33 55.62 54.14 42.11

InternLM-7B 65.83 57.55 48.56 51.43 26.41

InternLM-20B 85.20 86.33 83.79 81.41 82.91

Falcon-7b 55.35 57.61 53.47 39.45 2.66

MPT-7B 58.46 58.99 55.15 44.02 7.03
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Table 24. Comparisons of different attacks on the SocialIQA Dataset. In-context learning (ICL) improves the zero-shot performance,
and the attack on in-context examples can decrease the performance. However, our adversarial attack has the biggest impact on the final
performance (largest performance drop).

Model Original 0-shot ICL ICL Permutation ICL Search Permutation Attack

Llama2-7B 52.00 57.63 46.37 33.52 15.71

Llama2-13B 61.21 67.14 55.78 45.75 34.14

Llama2-70B 71.60 75.64 66.99 64.53 49.85

Vicuna-v1.5 64.99 64.38 56.81 47.80 38.33

Vicuna-v1.5-13B 66.07 68.58 58.96 51.07 44.42

WizardLM-13B 63.46 62.64 50.97 43.19 31.78

InternLM-7B 59.47 64.64 52.66 46.16 30.30

InternLM-20B 79.48 78.86 75.49 70.47 65.97

Falcon-7b 36.29 36.89 31.34 28.25 0.55

MPT-7B 41.61 42.91 33.87 20.78 2.53

Table 25. Comparisons of different attacks on the MedMCQA Dataset. In-context learning (ICL) improves the zero-shot performance,
and the attack on in-context examples can decrease the performance. However, our adversarial attack has the biggest impact on the final
performance (largest performance drop).

Model Original 0-shot ICL ICL Permutation ICL Search Permutation Attack

Llama2-7B 37.96 39.67 32.10 26.57 1.60

Llama2-13B 39.78 39.74 33.24 28.46 7.35

Llama2-70B 49.61 51.78 41.37 41.76 7.35

Vicuna-v1.5 39.28 38.32 30.72 27.96 7.67

Vicuna-v1.5-13B 41.80 43.22 36.72 30.68 11.90

WizardLM-13B 34.87 36.54 26.24 23.59 6.32

InternLM-7B 32.63 37.43 28.69 25.18 2.56

InternLM-20B 43.61 42.58 38.14 33.20 13.92

Falcon-7b 28.12 29.79 21.88 14.03 0.07

MPT-7B 26.31 32.24 19.64 17.05 1.60
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Table 26. Results of using different sampling strategies and temperatures on MMLU dataset: before/after permutation.

Model Greedy Decoding Temperature=0.5 Temperature=1.5 Top-k Sampling Nucleus Sampling

Llama2-7B 40.91/6.17 28.39/0.03 10.35/0.00 21.71/0.00 21.95/0.00

Llama2-13B 52.22/18.33 44.00/3.67 13.94/0.00 32.54/0.00 32.42/0.02

Llama2-70B 64.68/33.16 58.13/12.56 17.66/0.00 44.21/0.07 44.44/0.42

Vicuna-v1.5 48.57/18.09 47.64/12.29 34.43/0.04 42.71/3.60 44.77/8.10

Vicuna-v1.5-13B 54.68/26.27 53.71/21.65 38.18/0.11 49.24/7.34 51.99/17.10

WizardLM-13B 48.60/15.87 47.56/12.43 38.11/0.57 44.61/5.86 45.83/10.30

InternLM-7B 45.72/10.45 0.01/0.00 0.53/0.00 0.16/0.00 0.07/0.00

InternLM-20B 59.14/29.52 33.53/3.89 19.81/0.00 30.82/0.31 31.91/1.24

Falcon-7B 31.66/2.49 0.02/0.00 0.46/0.00 0.06/0.00 0.01/0.00

MPT-7B 35.60/3.52 0.01/0.00 0.67/0.00 0.12/0.00 0.04/0.00

Table 27. Comparisons of position bias of Vicuna-13B with setting ground truth answers of in-context examples to specific positions.

A B C D

Original positional bias 47.33 70.00 51.73 52.04

Moving ICL answers to A 57.98 63.28 55.28 47.37

Moving ICL answers to B 58.13 61.39 56.22 49.02

Moving ICL answers to C 56.81 63.61 54.49 48.68

Moving ICL answers to D 58.02 60.64 54.45 50.99

Table 28. Comparisons of position bias of InternLM-7B with setting ground truth answers of in-context examples to specific positions.

A B C D

Original positional bias 45.72 37.23 65.12 41.49

Moving ICL answers to A 31.55 74.76 44.70 43.42

Moving ICL answers to B 38.71 73.49 43.94 42.47

Moving ICL answers to C 31.58 69.05 49.27 46.47

Moving ICL answers to D 32.63 69.39 44.34 51.22

Table 29. Comparisons of position bias of InternLM-20B with setting ground truth answers of in-context examples to specific positions.

A B C D

Original positional bias 51.05 68.75 53.47 62.35

Moving ICL answers to A 51.33 72.52 62.81 55.29

Moving ICL answers to B 49.70 73.07 64.34 56.31

Moving ICL answers to C 48.01 70.00 64.36 60.61

Moving ICL answers to D 46.99 67.54 62.20 65.72

21



Fool Your (Vision and) Language Model with Embarrassingly Simple Permutations

Table 30. Comparison of positional bias and our adversarial permutation attack on A-OKVQA dataset. While position bias exists, its
impact is moderate. In contrast, our adversarial method severely degrades performance, usually below random chance level.

Method Original A B C D Permutation Attack

InstructBLIP-7B 74.06 67.16 75.28 75.90 75.11 51.62

InstructBLIP-13B 77.90 77.29 72.75 80.35 73.54 55.38

OpenFlamingo 64.68 52.34 72.77 41.19 35.86 3.58

Otter-Llama7B 57.99 83.14 53.45 55.02 44.10 28.30

Otter-MPT7B 68.21 53.36 79.74 69.00 65.59 43.19

LLaVA-7B 52.91 77.18 22.71 14.85 10.94 0.09

LLaVA-13B 63.14 69.43 77.79 63.76 48.08 25.85

Limber 39.57 47.77 55.72 31.88 27.11 1.22

mPLUG-Owl-pt 39.91 33.26 45.16 47.57 36.49 1.83

mPLUG-Owl-instr 37.12 34.25 41.27 45.78 39.55 2.01

Table 31. Impact of majority vote, contextual calibration (C-Calibration), and maximum confidence (M-Confidence) defenses against the
permutation attack on the A-OKVQA dataset. Contextual calibration fails completely. Majority vote and M-Confidence ameliorates the
attack, but do not completely restore performance. Red shading indicates below-chance results.

Method Original Adversarial Attack Majority Vote C-Calibration M-Confidence

InstructBLIP-7B 74.06 51.62 (22.44 ↓) 57.47 (16.59 ↓) 38.12 (35.94 ↓) 69.79(4.27 ↓)

InstructBLIP-13B 77.90 55.38 (22.52 ↓) 60.26 (17.64 ↓) 45.99 (31.91 ↓) 70.83 (7.07 ↓)

OpenFlamingo 46.90 3.58 (43.32 ↓) 15.12 (31.78 ↓) 7.98 (38.92 ↓) 44.20 (2.70 ↓)

Otter-Llama7B 57.99 28.30 (29.69 ↓) 27.63 (30.36 ↓) 21.33 (36.66 ↓) 38.29 (19.70 ↓)

Otter-MPT7B 68.21 43.19 (25.02 ↓) 55.11 (13.10 ↓) 42.46 (25.75 ↓) 51.97 (16.24 ↓)

LLaVA-7B 52.91 0.09 (52.82 ↓) 27.86 (25.05 ↓) 8.23 (44.68 ↓) 50.04 (2.87 ↓)

LLaVA-13B 63.14 29.52 (33.62 ↓) 53.36 (9.78 ↓) 28.94 (34.20 ↓) 64.80 (1.66 ↑)

Limber 39.57 1.22 (38.35 ↓) 38.69 (0.88 ↓) 3.59 (35.98 ↓) 38.14 (1.43 ↓)

mPLUG-Owl-pt 39.91 1.83 (38.08 ↓) 14.33 (25.58 ↓) 4.28 (35.63 ↓) 15.21 (24.70 ↓)

mPLUG-Owl-instr 37.12 2.01 (35.11 ↓) 12.01 (25.11 ↓) 2.19 (34.93 ↓) 13.37 (23.75 ↓)

Table 32. Qualitative results of permutations of answer options and corresponding predictions (Llama2-7B) from ARC-challenge dataset.

Question: A physicist wants to determine the speed a car must reach to jump over a ramp. The physicist conducts three trials.
In trials two and three, the speed of the car is increased by 20 miles per hour. What is the physicist investigating when he changes the speed?
True Answer: the independent (manipulated) variable.

Original Answer Set: A. the control B. the hypothesis statement C. the dependent (responding) variable D. the independent (manipulated) variable.
Model Prediction: D.

Permutation 1: A. the control B. the hypothesis statement C. the independent (manipulated) variable D. the dependent (responding) variable
Model Prediction: C.

Permutation 2: A. the hypothesis statement B. the control C. the dependent (responding) variable D. the independent (manipulated) variable.
Model Prediction: A.
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