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ABSTRACT

Learning in hyperbolic spaces has gained increasing attention due to the superior
capability of modeling hierarchical structures. Existing hyperbolic learning meth-
ods use a fixed distance measure that assumes a uniform hierarchical structure
across all data points. However, this assumption does not always hold in real-
world scenarios, considering the diversity of the hierarchical structures of data.
This work proposes to learn geometry aware distance measures that dynamically
adjust to accommodate diverse hierarchical structures in hyperbolic spaces. We
derive geometry aware distance measures by generating projections and curvatures
for each pair of samples, which maps each pair to a suitable hyperbolic space.
We introduce a revised low-rank decomposition scheme and a hard-pair mining
mechanism to reduce the computational cost incurred by the pairwise generation
without compromising accuracy. Moreover, we derive an upper bound of the
low-rank approximation error via Talagrand concentration inequality to guarantee
the effectiveness of our low-rank decomposition scheme. Theoretical analysis and
experiments on standard image classification and few-shot learning tasks affirm the
effectiveness of our method in refining hyperbolic learning through our geometry
aware distance measures.

1 INTRODUCTION

The hyperbolic space is defined as a smooth Riemannian manifold with constant negative curvature.
A notable property of Hyperbolic spaces lies in the exponential growth of a ball’s volume relative to
its radius, mirroring the exponential increase in the volume of hierarchical data with depth. Such a
property enables the hyperbolic space to serve as a continuous analogous to trees (Sala et al., 2018;
Balazevic et al., 2019), enabling to model hierarchical data with minimal distortion(Sarkar, 2011).
The use of hyperbolic spaces for data embedding has shown to be superior in representing hierarchical
structures across various applications such as classification (Gao et al., 2021; Zhang et al., 2022; Gao
et al., 2022), clustering (Lin et al., 2022; 2023a), retrieval (Ermolov et al., 2022), segmentation (Hsu
et al., 2021b; Atigh et al., 2022a; Chen et al., 2022), multi-modal (Hong et al., 2023a; Long & van
Noord, 2023) and 3D vision (Hsu et al., 2021a; Montanaro et al., 2022; Leng et al., 2023; Lin et al.,
2023b).

Existing hyperbolic learning methods usually deploy a fixed distance measure, i.e., geodesic distance,
to assess the similarities between data points, based on the expectation that the geodesic can effectively
reflect the connecting paths between two nodes on the corresponding graph/tree(Behrstock et al.,
2019). Employing a fixed distance measure implicitly includes the assumption of having a uniform
hierarchical structure across all data points(Nickel & Kiela, 2018; Behrstock et al., 2017; 2019).
However, this assumption does not always hold in real-world scenarios, as the hierarchical structures
between data are diverse and complex. Thus, using a fixed distance measure in real-world scenarios
may cause data distortion for diverse hierarchical structures, leading to sub-optimal performance.

For example, as shown in Figure 1(a), the “dog-wolf” data pair has a simple semantic hierarchical
structure, while the “aircraft carriers-school bus” data pair has a more complex semantic hierarchical
structure. In this case, a fixed distance measure fails to accurately represent the two different
hierarchical relationships, unable to pass through the respective common ancestors, leading to a
misalignment between distance and hierarchical structures, as detailed in Figure 1(b). Employing
adaptive distance measures on data with diverse hierarchical structures seems a natural choice, which
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(c) Appropriate distance measure 
for the "dog-wolf" pair.

(b) A fixed hyperbolic distance 
measure for two data pairs with 
different hierarchical structures.

(d) Appropriate distance measure 
for the "aircraft carriers-school 

buses" pair.

Canidae

Dog Wolf

(a) Hierarchical structures.

Transportation

Sailboats Road vehicles

Cars Tanks TrucksBusesShipsMotor
boats

Aircraft carriers School buses

"dog-wolf" pair

"aircraft carriers-school buses" pair ❌ ✅ ✅

Figure 1: Modeling data with diverse hierarchical structures will benefit from adaptive distance
measures. (a) The “dog-wolf” data pair has a simple semantic hierarchical structure, while the
“aircraft carriers-school bus” data pair has a more complex structure. (b) A fixed distance measure
fails to conform to the hierarchical structures of both data pairs simultaneously. (c) Lower |c| (smaller
space volume) and shorter distance are suitable for the simple structure. (d) Higher |c| (larger space
volume) and larger distances are suitable for the complex structure. The dashed lines represent
geodesics in hyperbolic space. The solid lines represent the semantic subtrees. The color of the image
border represents the category.

could take the complexity of the hierarchical structures into consideration and dynamically fit the
diverse hierarchical structures, as shown in Figure 1(c) and (d).

In this paper, we propose to learn geometry-aware distance measures that automatically adapt to
diverse hierarchical structures in hyperbolic spaces. Our main idea is to learn to generate adaptive
projection and curvature for each pair of samples in the hyperbolic spaces, conforming to the
hierarchical relationship between any two data points. In doing so, we design a curvature generator
to produce adaptive curvatures for different data pairs and a projection matrix generator to map data
pairs from the original hyperbolic space to an adaptive hyperbolic space with the new curvature. By
applying adaptive projections and curvatures to the geodesic distance function for each sample pair,
we obtain geometry-aware distance measures.

Two challenges need to be solved in learning to generate geometry-aware distance measures in the
hyperbolic space: (1) Given that unique projections and curvatures are required for every data pair,
reducing the computational cost becomes a critical consideration. (2) As a variety of hierarchical
structures are encountered during the optimization process, the continuity of the optimization direction
or trajectory for the pairwise level learning and training stability is not easily maintained. To address
the first challenge, we introduce a low-rank decomposition scheme and a hard-pair mining mechanism.
The former reduces computational complexity via low-rank approximation, and the latter eliminates
easy samples, i.e., we only generate adaptive distances for the remaining challenging ones. For the
second challenge, we show that by incorporating residual connections into the projection matrix
during the generation process, training stability can be well maintained. Experimental results in
standard image classification and few-shot learning tasks confirm the effectiveness of our method in
refining hyperbolic learning through geometry-aware distance measures.

The primary contributions of our work can be summarized as follows:

• We propose to learn to generate adaptive hyperbolic distances, enabling a more nuanced
representation of diverse hierarchical structures inherent in data.

• We introduce a low-rank decomposition scheme and a hard-pair mining mechanism to
significantly reduce computational costs without compromising accuracy.

• Theoretically, we prove that with a high probability, the low-rank decomposition in hyper-
bolic spaces yields small errors relative to the original full-rank matrix.
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2 RELATED WORK

2.1 ADAPTIVE DEEP METRIC LEARNING

Adaptive metric learning is a pivotal machine learning technique that adapts embeddings or distance
measures to handle data diversity (Li et al., 2021; 2019; Yoon et al., 2020; Liu & Wang, 2021).
Adaptive embeddings are crafted through flexible prototypes (Li et al., 2021), tailored discriminative
features (Li et al., 2019; Yoon et al., 2020), or episode-specific learning (Liu & Wang, 2021). Adaptive
distance measurements range from task-specific metric spaces (Oreshkin et al., 2018; Qiao et al.,
2019; Zhou et al., 2023) to optimized dynamic classifiers using subspaces (Simon et al., 2020). Recent
advances include neighborhood-adaptive metric learning (Song et al., 2022; Li et al., 2022), yet these
methods often rely on Euclidean space, limiting their effectiveness on data with intricate hierarchical
structures. Different from these Euclidean-based methods, we propose to learn geometry-aware
distance measures in hyperbolic spaces, which can exploit the inherent hierarchical structures of the
data.

2.2 HYPERBOLIC GEOMETRY

Hyperbolic geometry has shown superior performances in many applications due to their capabilities
in modeling data with hierarchical structures. Research on hyperbolic geometry can be divided into
three categories. Methods of the first category opt for modeling several applications on hyperbolic
spaces, such as medical image recognition (Yu et al., 2022), action recognition (Long et al., 2020),
audio-visual learning (Hong et al., 2023b), image segmentation (Atigh et al., 2022b), anomaly
detection (Li et al., 2024), and 3D Visual Grounding (Wang et al., 2024) . Methods of the second
category work on extending convincing neural architectures from Euclidean spaces to hyperbolic
spaces, such as convolutional network (Shimizu et al., 2021) and graph network (Dai et al., 2021).
Methods of the third category focus on extending learning paradigms from Euclidean spaces to
hyperbolic manifolds, such as contrastive learning (Ge et al., 2023), self-supervised learning (Franco
et al., 2023), and metric learning (Yan et al., 2021). Different from these methods, we propose to
learn geometry-aware hyperbolic distance measures for each data pair to match its unique hierarchical
structure.

2.3 CURVATURE LEARNING

Previous studies (Gu et al., 2019) have established that selecting the appropriate curvature is crucial for
effective hyperbolic learning, as it significantly impacts the quality of the learned representations. Re-
search on curvatures has continually advanced, encompassing the application of constant (Bachmann
et al., 2020) in graph neural networks, as well as the exploration of curvature learning methods (Yang
et al., 2023). Gu et al. (Gu et al., 2019) address embedding diverse hierarchical data by using a
product manifold that combines multiple spaces with heterogeneous curvature. Inspired by these
methods, our model takes it a step further by dynamically adjusting curvature for pair-wise distance
measures. Our method stands out by dynamically adapting curvature for each pair during inference,
based on their specific characteristics.

3 MATHEMATICAL PRELIMINARIES

Notations. In the following sections, Rn denotes n-dimensional Euclidean space and ∥ · ∥ denotes
the Euclidean norm. The vectors are denoted by lower-case letters, such as x and y. The matrices
are denoted by upper-case letters, such as M . The Poincaré ball model of an n-dimensional
hyperbolic space with curvature c (c < 0) is defined as a Riemannian manifold

(
Bn
c , h

B
c

)
, where

Bn
c = {x ∈ Rn : −c∥x∥ < 1, c < 0} is the open ball with radius 1/

√
|c| and hB

c is the Riemannian
metric. The tangent space at x ∈ Bn

c , a Euclidean space, is denoted by TxBn
c . We use the Möbius

gyrovector space (Ungar, 2001) that provides operations for hyperbolic learning and several used
operations are shown as follows. More details regarding the Poincaré ball model and its properties
are provided in the Appendix A.
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Addition. For a pair x,y ∈ Bn
c , the Möbius addition is defined as

x⊕c y =

(
1− 2c⟨x,y⟩ − c∥y∥2

)
x+

(
1 + c∥x∥2

)
y

1− 2c⟨x,y⟩+ c2∥x∥2∥y∥2
. (1)

Distance function. The geodesic distance dc(·, ·) between two points x,y ∈ Bn
c can be obtained as

dc(x,y) =
2√
c
arctanh

(√
c ∥−x⊕c y∥

)
. (2)

Möbius matrix multiplication. In the Gyrovector space, the Möbius matrix multiplication ⊗c for
the matrix M ∈ Bn×n and vector x ∈ Bn is defined as

M ⊗c x =
1√
|c|

tanh(
∥Mx∥
∥x∥

arctanh(
√

|c|∥x∥)) Mx

∥Mx∥
. (3)
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Figure 2: Overview of the proposed method. Two data pairs(one positive and one negative) are
encoded with the feature extractor, while the color of the embeddings indicates the class of each data
point. “HDMG” indicates the hyperbolic distance measure generator, which generates the distance
measures according to the data pair. dM12,c12 and dM34,c34 are computed from Eq. (5). Under the
transformed distance measure, the positive samples are pulled closer, while the negative samples are
pushed further away.

4 METHOD

4.1 ANALYSES

We first analyze the relationship between the distance measure and the complexity of hierarchical
structures in the hyperbolic space. We define the complexity of the hierarchical structure of the data
pair xi and xj as

C(xi,xj) = P (xi → o) + P (xj → o), (4)

where o is the origin, and P (· → o) is the connectivity from x to o, measured by the connected
graph distance(Balbuena et al., 1996).

We find that the suitable distance measure varies to be faithful to different hierarchical structures, as
shown in the following proposition.

Proposition 4.1. In a hyperbolic space Bn
c , a steeper geodesics d(xi,xj) (e.g., a large curvature c)

can better conform to complex hierarchical structures with higher C(xi,xj) in equation 4, and vice
versa.

The proof can be found in Appendix B.2, which motivates us to design geometry-aware distance
measures to match diverse hierarchical structures in practical data.
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4.2 FORMULATION

Given the hyperbolic features {x}, our method produces an adaptive projection matrix Mij ∈ Bn×n
cij

and curvature cij for one pair of features (xi,xj). For ease of exposition, we will use M to denote
the Mij and use c to refer to cij . In this case, the distance between (xi,xj) is

dM ,c(xi,xj) = dc(M ⊗c xi,M ⊗c xj), (5)
where dc(·, ·) is the Poincaré geodesic distance function (Eq. (2)).

The goal of our method is to train the matrix generator gt and curvature generator gc, through which
positive pairs are closer and negative pairs are pushed farther apart. M is produced by the matrix
generator gt : M = gt(xi,xj), and c is generated by the curvature generator gc: c = gc(xi,xj).

In practical applications, generating projection matrices and curvatures for all pairs would result
in significant computational costs. To reduce the computation overhead, we introduce a hard-pair
mining mechanism to filter out the hard pairs H = HPM(Dtrain), where H denotes the hard cases,
Dtrain is the training set and HPM(·) denotes the hard-pair mining. Our method only generates
projection matrices and curvatures for pairs in H. In the following section, we will introduce gt, gc,
and hard-pair mining in detail.

4.3 GEOMETRY-AWARE HYPERBOLIC DISTANCE MEASURES

The schematic overview of our method is depicted in Figure 2. We begin by using a feature extractor
to obtain hyperbolic features from image pairs. We then produce an adaptive projection matrix and
curvature for each pair of images through which we are able to conform to the hierarchical structures
between the images.

4.3.1 PROJECTION MATRIX GENERATOR

The distance measure generator takes a pair of feature points xi and xj as inputs and provides a
transformation matrix M as output. In this paper, we utilize an adaptive matrix generator to produce
the projection matrix M . Excessive changes of M will result in instability of training. Instead of
directly generating the matrix M , we learn a residual M res between the original distance measure
(in Eq. (2)) and the geometry aware distance measure (in Eq. (5)) to tackle this issue. Therefore,
the projection matrix M is computed by M = I + M res. From Equations (5), it can be seen
that the Poincaré geodesic distance is a special case of our distance measure when M res is a zero
matrix. Considering that when the dimension of the embeddings n is relatively large, generating and
operating on M res ∈ Bn×n can cause substantial computational overhead. Therefore, we decompose
M res into the product of two low-rank matrices: M res = M res

a M res
b

⊤, where M res
a ∈ Bn×k and

M res
b ∈ Bn×k are computed by M res

ij,a = fa(xi,xj),M
res
ij,b = fb(xi,xj), respectively, fa/b(·, ·)

are fully connected layers and k is the rank(much smaller than n). Substituting the residual matrix of
low-rank decomposition Substituting the residual matrix of low-rank decomposition into M , we can
obtain that

M = I +M res
a M res

b
⊤. (6)

Low-rank approximation Based on polynomial partitioning (developed by Larry Guth and Nets Katz
when dealing with the Erdös’ distinct distances problem (L. Guth, 2015) and Talagrand concentration
inequality (Talagrand, 1995), we prove that the low-rank matrices M ′ = I+M res

a M res
b

⊤ can be
well approximated to the full-rank matrix M = I + M res . We provide the upper bound of the
approximation error, i.e., |M ⊗ x−M ′ ⊗ x|, as well as the lower bound of the probability for this
upper bound to hold, where ⊗ is möbius matrix multiplication (Eq. 3) with c = −1 and | · | represents
absolute value calculation.
Theorem 4.2. Suppose the variance of systematic error σ2 = ϵ2/n and ϵ is significantly smaller
than (say ∼ 1

10 of) the mean of error, and the samples feature space distribute relatively continuously.
Then with high probability (1− ce−k for some constant c > 0 say for k ∼ n/10 or k ∼

√
n), for any

x ∈ Rn, the low rank (say ≤ k ≤ n/10 or ∼
√
n with n the dimension of features) approximation

error |M ⊗ x−M ′ ⊗ x| is bounded by Cϵ for some absolute constants C > 0.

Remark. Theorem 4.2 encapsulates the lower bound of the probability of maintaining acceptable
error bounds when substituting a full-rank matrix M with its low-rank counterpart M ′. Note that in
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practice the dimension n is taken to be hundreds say 512 in most of our experiments. The theorem
only claims that with high probability which goes to 1 as k and n grows, the low-rank approximation
is bounded by the system error but not that it diminishes to none as the number of parameters grows.
Also, the probability bound is not optimal. Detailed derivation can be found in the Appendix D.

4.3.2 CURVATURE GENERATOR

We use the factorized bilinear pooling(Yu et al., 2017) to produce suitable curvature for the pair of xi

and xj since the expressive second-order information in the factorized bilinear pooling could benefit
from discovering how curvature reflects the degree of warping in the hyperbolic space(Gao et al.,
2021). More details can be found in Appendix C. Firstly, we used two fully connected layers f1 and
f2 to process xi and xj separately: x′

i = f1(xi), x′
j = f2(xj).

Then, the Hadamard product of the matrices was computed, producing the matrix W = x′
1 ◦ x′

2,
where ◦ denotes the Hadamard product. W is subsequently transformed into curvature c by using
sum pooling. Finally, to limit c within the range of [0, 1], we applied a sigmoid layer(σ(·)):

c = σ(sum pooling(W )). (7)

4.4 HARD-PAIR MINING IN HYPERBOLIC SPACE

Poincaré ball 
model

𝑑!

𝑑!

𝑑"

𝑑"

(a) Easy case,  !#
!$
≤ 𝑇. (b) Hard case,  !#

!$
> 𝑇.

Prototype

Query sample

Figure 3: Hard-pair mining mechanism in hy-
perbolic space. The threshold T ∈ [0, 1] is a
margin hyperparameter. Embedding classes are
color-coded, and Poincaré geodesic distances
are shown as dashed lines. The distances from
the query sample to the closest and second
closest prototypes are d1 and d2, respectively.
Hard cases, difficult to classify, are defined by
d1/d2 > T .

In real-world scenarios, hierarchical complexity
varies widely. Many samples with simple hierar-
chies can be described well by a fixed hyperbolic
distance measure, while creating geometry-aware
measures may incur high computational costs. To
tackle this, we propose a hard-pair mining mecha-
nism to identify difficult pairs without extra param-
eters. Our approach exclusively generates distance
measures for these pairs.

For the classification task, we compute the hyper-
bolic distance between the query sample and all
prototypes in the Poincaré ball model. We then
identify the two closest prototypes, with distances
d1 (nearest) and d2 (second nearest). By calculat-
ing the ratio d1/d2, we determine the proximity
of the sample to the classification boundary. A ra-
tio closer to 1 indicates a harder case for accurate
classification. For a feature set Fq of the query set
and prototypes P , the hard-case mining process
can be represented as

H = {x | x ∈ Fq,
d(x,p1)

d(x,p2)
> T}, (8)

where d(·, ·) is the Poincaré geodesic distance function in Eq. (2), while p1 = argminp∈P d(x,p)
and p2 = argminp∈P−p1

d(x,p). T ∈ [0, 1] is a margin hyperparameter. Figure 3 shows the
hard-pair mining mechanism applied in the Poincaré ball model.

4.5 TRAINING PROCESS

The goal of this work is to learn the distance measure generator, including gt and gc. During
the training process, we partition the training set D into the support set Ds and the query set Dq.
We extract features Fs and Fd from Ds and Dq, respectively, using the backbone network with
exponential map. We denote the set of prototypes of P . The hard cases H are selected from Fq via
hard-pair mining in Eq. (8). Then we generate the adaptive matrices and curvatures using gt and
gc via Eq. (6) from the pair set H×P , and compute the adaptive distance as the logits via Eq. (5).
We update gt and gc by minimizing the cross entropy loss of Dq. The pseudo-code of training is
summarized in Algorithm 1.
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Algorithm 1 Training process of our method.
Require: Training set D.
Ensure: The updated metric generator gt and gc.
1: while Not converged do
2: Randomly sample the support set Ds and query set Dq from D.
3: Extract features Fs and Fd from Ds and Dq , respectively.
4: Calculate the Einstein mid-point as prototypes P from Fs.
5: Select the hard cases H from Fq via Eq. (8).
6: Generate the adaptive matrices and curvatures via gt and gc using Eq. (6) from the pair set H×P , and

compute the distance as the logits via Eq. (5).
7: Compute the cross entropy loss, and update gt and gc.
8: end while

4.6 COMPLEXITY ANALYSIS

Low-rank distance measures reduce computational costs in generating projection matrices. Our
method produces two low-rank matrices (n × k) with a cost of O(n2k), compared to O(n3) for
directly generating an n× n matrix, where k ≪ n.

The time complexities for our method’s components are O(pq) for hard-pair mining, O(n2) for
curvature generation, and O(n2k) for projection matrix generation. Here, p is the number of classes,
q the number of queries, n the dimensionality, and k the rank. The overall time complexity is
O(n2(k + 1) + pq) = O(n2(k + 1)), as p and q are much smaller than n.

5 EXPERIMENT

We evaluate our method on standard classification and few-shot learning tasks. We use common
backbone networks with the exponential map as the feature extractor, then we apply the hard-pair
mining mechanism to select the hard cases, and finally generate the distance measures for the hard
cases. The rank is set to 16 for all settings in Section 5.1 and Section 5.3. More experiments
(visualization and ablation) and model setups can be found in the Appendix E and Appendix F.

5.1 STANDARD CLASSIFICATION

Table 1: Accuracy (%) comparisons with existing
hyperbolic learning methods on the MNIST, CI-
FAR10 and CIFAR100 datasets.

Method MNIST CIFAR10 CIFAR100
Hyp-Optim 94.42 88.82 72.26
HNN++ 95.01 91.22 73.65
Hyp-ProtoNet 93.53 93.30 73.83
Ours 96.56 94.75 75.61

We conduct experiments on three datasets:
MNIST (LeCun & Cortes, 2010), CIFAR10
(Krizhevsky et al., 2009) and CIFAR100
(Krizhevsky et al., 2009) datasets. Full details
of the datasets, implementation and pretraining
are described in the Appendix F. We learn class
prototypes and classify by calculating distances
between these prototypes and test set features.
Table 1 compares our method with existing hy-
perbolic learning methods. On MNIST, CIFAR10, and CIFAR100, our method improves by 3.03%,
1.45%, and 1.78% over Hyp-ProtoNet (Khrulkov et al., 2020), and by 2.14%, 5.93%, and 3.35% over
Hyp-Optim (Ganea et al., 2018). Compared to HNN++ (Shimizu et al., 2021), our method achieves
1.55%, 3.53%, and 1.9% higher accuracy. These results demonstrate that our adaptive distance
measures outperform existing hyperbolic learning methods by better matching inherent hierarchical
structures.

5.2 HIERARCHICAL CLASSIFICATION

We utilize the CIFAR100 dataset and its 5-level hierarchical annotations from (Wang et al., 2023)
(detailed annotations can be found in the Appendix F.2.1). We report our accuracies on the 5
hierarchical levels using Resnet50 and Resnet101, as shown in Table 2. Compared with using a
fixed distance measure (denoted as ‘fixed’ in Table 2), our adaptive distance measure has better
performance on all hierarchical levels, indicating that classes belonging to the same parent node are
closely grouped after our projection. Then results demonstrate that our model can effectively capture
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Table 2: Hierarchical accuracy (%) of the fixed distance measure vs. our method on the CIFAR-100
dataset. Levels 0 to 4 (coarse-to-fine) represent test results at different levels of annotation.

Method Level 0 Level 1 Level 2 Level 3 Level 4
Resnet50+fixed 95.62 90.65 88.68 86.30 78.49
Resnet50+ours 96.50 91.88 90.22 88.11 81.19
Resnet101+fixed 95.95 91.51 90.08 87.87 80.97
Resnet101+ours 97.88 93.68 92.27 90.13 83.44

the implicit hierarchical structure within the data. We also visualize the embedding distribution at
each level, details can be found in Appendix E.7.1.

5.3 FEW-SHOT LEARNING

We conducted experiments on two popular few-shot learning datasets: mini-ImageNet (Vinyals
et al., 2016) and tiered-ImageNet (Ren et al., 2018). Full details of the datasets, implementation and
pretraining are described in the Appendix F. We compare our method with the hyperbolic methods,
the metric-based Hyp-ProtoNet (Khrulkov et al., 2020) and the optimization-based Hyp-Kernel (Fang
et al., 2021), C-HNN (Guo et al., 2022) and CurAMl(Gao et al., 2023), as shown in Table 3. Note that
Hyp-ProtoNet (Khrulkov et al., 2020) is a fixed metric-based hyperbolic few-shot learning method,
compared with it, our method is 5.28% 1-shot and 5.05% 5-shot higher than it, suggesting that our
method generates better distance measures for matching the inherent hierarchical structures of data.
We also compare our method with the popular Euclidean optimization-based (Finn et al., 2017; Baik
et al., 2020; 2021; Gao et al., 2021; Sun & Gao, 2023) and Euclidean metric-based (Snell et al.,
2017; Vinyals et al., 2016; Lee et al., 2019; Lu et al., 2021; Simon et al., 2020; Oreshkin et al., 2018;
Li et al., 2020; Yoon et al., 2020; Khrulkov et al., 2020) few-shot learning methods. Our method
improves the optimization-based methods in the Euclidean space on both the 1-shot and the 5-shot
tasks. Compared with the fixed Euclidean metric-based methods(Snell et al., 2017; Simon et al.,
2020; Huang et al., 2021) , our method brings more than 1% improvements on the 1-shot task and 2%
on the 5-shot task. Compared with the adaptive metric-based methods in the Euclidean space, such as
TADAM (Oreshkin et al., 2018) and XtarNet (Yoon et al., 2020), our method exceeds them in both
1-shot and 5-shot accuracy. The main reason is that performing metric learning in the hyperbolic
space preserves the hierarchical structures of data and avoids undesirable data distortion.

Table 3: Accuracy (%) comparisons with popular few-shot learning methods on the mini-ImageNet
and tiered-ImageNet datasets. ‘Optim’ and ‘Metric’ mean the optimization-based and metric-based
few-shot learning methods, respectively. ‘Euc’ and ‘Hyp’ mean the methods are performed in the
Euclidean space and the Hyperbolic space, respectively. ‘*’ indicates that results use ResNet-18 (He
et al., 2016) as the backbone, while the others use ResNet-12 (He et al., 2016).

Method Space Category min-ImageNet tiered-ImageNet
1-shot 5-shot 1-shot 5-shot

MAML (Finn et al., 2017) Euc Optim 51.03 ± 0.50 68.26 ± 0.47 58.58 ± 0.49 71.24 ± 0.43
L2F (Baik et al., 2020) Euc Optim 57.48 ± 0.49 74.68 ± 0.43 63.94 ± 0.84 77.61 ± 0.41

MeTAL (Baik et al., 2021) Euc Optim 59.64 ± 0.38 76.20 ± 0.19 63.89 ± 0.43 80.14 ± 0.40
Meta-AdaM (Sun & Gao, 2023) Euc Optim 59.89 ± 0.49 77.92 ± 0.43 65.31 ± 0.48 85.24 ± 0.35

ProtoNet (Snell et al., 2017) Euc Fixed Metric 56.52 ± 0.45 74.28 ± 0.20 53.51 ± 0.89 72.69 ± 0.74
DSN (Simon et al., 2020) Euc Fixed Metric 62.64 ± 0.66 78.83 ± 0.45 66.22 ± 0.75 82.79 ± 0.48

LMPNet (Huang et al., 2021) Euc Fixed Metric 62.74 ± 0.11 80.23 ± 0.52 70.21 ± 0.15 7945 ± 0.17
TADAM (Oreshkin et al., 2018) Euc Adaptive Metric 58.50 ± 0.30 76.70 ± 0.30 - -

XtarNet (Yoon et al., 2020) Euc Adaptive Metric 55.28 ± 0.33 66.86 ± 0.31 61.37 ± 0.36* 69.58 ± 0.32*
Hyp-Kernel (Fang et al., 2021) Hyp Optim 61.04 ± 0.21* 77.33 ± 0.15* 57.78 ± 0.23* 76.48 ± 0.18*

C-HNN (Guo et al., 2022) Hyp Optim 53.01 ± 0.22 72.66 ± 0.15 - -
CurAML (Gao et al., 2023) Hyp Optim 63.13 ± 0.41 81.04 ± 0.39 68.46 ± 0.56 83.84 ± 0.40

Hyp-ProtoNet (Khrulkov et al., 2020) Hyp Fixed Metric 59.47 ± 0.20* 76.84 ± 0.14* - -
Ours Hyp Adaptive Metric 64.75 ± 0.20 81.89 ± 0.15 72.59 ± 0.22 86.14 ± 0.16

5.4 ABLATION

5.4.1 EFFECTIVENESS OF THE HYPERBOLIC DISTANCE MEASURE GENERATOR

We evaluate the effectiveness of different components in our hyperbolic distance measure generator
on the tiered-ImageNet dataset. We compare ours (iv) with the following three distinct experimental
setups. (i) Fixed hyperbolic metric: We employ the Poincaré geodesic distance function, as defined in
Eq. (2). (ii) Adaptive curvature only: We deactivate the projection matrices generator gt and solely
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Table 4: 5-shot accuracy(%) and and 95 % confidence interval on tiered-ImageNet dataset. The
hard-pair mining is deactivated.

Metric Fixed hyp metric Ours w/o gt Ours w/o gc Ours
5-shot acc(%) 83.94 ± 0.16 84.67 ± 0.15 84.85 ± 0.16 86.10 ± 0.16

utilize the adaptive curvature generator gc with Eq. (2). (iii) Projection matrices only : We activate
the gt but disable the gc, setting the curvature to 0.5. Results are shown in Table 4.

In Table 4, the adaptive curvature generator gc provides a more discriminative feature space than the
fixed curvature space, i.e., (i) vs.(ii). As evidenced in rows (i) and (iii) of Table 4, our method benefits
from the projection matrix generator gt and the geometry aware distance measures match better with
the inherent hierarchical structures than the fixed distance measure.

5.4.2 EFFECTIVENESS OF THE RESIDUAL CONNECTION

(a) Loss curve w/o residual connection. (b) Loss curve w/ residual connection.

Acc: 74.54% Acc: 75.61%

lo
ss

lo
ss

iteration iteration

Figure 4: Loss curves on the CIFAR100
dataset.

We conduct experiments about the accuracy and training
loss w/ and w/o the residual connection to verify its ef-
fectiveness on the CIFAR100 dataset. Using the residual
solution brings 1.07% improvements (w/o res (74.54%)
vs. w/ res(75.61%)). The loss curves in Figure 4 show
that using the residual connection brings stable training
process with faster convergence and smoother loss curves.

5.4.3 EFFECT OF THE RANK IN MATRIX DECOMPOSITION

Table 5: 5-shot accuracy(%), memory
cost(MB) and time cost(ms) per few shot
learning task with different ranks. The mem-
ory cost of one inference process with the
setting of 5w5s and 15 queries. We disable
the hard-pair mining when testing the mem-
ory cost.

Rank 5-shot acc(%) Mem(MB) Time(ms)
4 81.41 ± 0.14 98.06 5.02
8 81.53 ± 0.14 179.56 5.25

w/ ours 16 81.80 ± 0.14 352.86 6.10
32 81.48 ± 0.14 703.10 8.67
64 81.45 ± 0.14 1371.64 14.26

w/o ours 512 81.74 ± 0.14 7231.24 60.88

We further explore the effect of rank in matrix de-
composition on the mini-ImageNet dataset. Our low-
rank decomposition decomposes the original n× n
matrices (for ResNet-12 backbone, n = 512) mul-
tiplication into two n × k matrices multiplication,
greatly reducing the computational complexity from
O(n3) to O(nk2), k << n. Here, we evaluate the
value of k in the range of [4, 8, 16, 32, 64], and report
the accuracy and memory cost. As shown in Table 5,
the accuracy increased first and then decreased as the
rank increased. As the rank increases, we retain more
and more information, resulting in an increase in ac-
curacy. However, when the rank becomes too large,
excessive information, including errors and noise, may be preserved, which can lead to overfitting and
a decrease in accuracy. As rank increases, the number of model parameters and the computational
cost both increase significantly. As shown in Table 5, when k = 64, the total memory consumption is
nearly four times that of k = 16. Considering the trade-off between accuracy and computational cost,
this paper selects k = 16.

5.4.4 EFFECTIVENESS OF THE HARD-PAIR MINING

Table 6: Effectivness of the hard-pair mining. Threshold is the T = d1/d2. The ‘Percentage’
represents the proportion of hard cases in the query set. The rest columns represent the 5-shot
accuracy(%) of the easy cases with Eq. (2), hard cases with Eq. (2), hard cases with our methods,
total query set with Eq. (2) and total query set with our method, respectively.

Threshold Percentage Easy cases w/ Eq. (2) Hard cases w/ Eq. (2) Hard cases w/ ours Total w/ Eq. (2) Total w/ ours
0.1 100% - 81.26 ± 0.14 81.61 ± 0.14 81.26 ± 0.14 81.61 ± 0.14
0.8 89% 98.48 ± 0.14 78.97 ± 0.14 79.39 ± 0.14 81.18 ± 0.14 81.54 ± 0.14
0.9 57% 97.07 ± 0.08 69.17 ± 0.17 69.91 ± 0.17 81.14 ± 0.14 81.53 ± 0.14

0.96 22% 89.29 ± 0.11 53.52 ± 0.24 55.62 ± 0.25 81.38 ± 0.14 81.89 ± 0.14
0.98 14% 86.51 ± 0.13 49.40 ± 0.35 52.41 ± 0.36 81.27 ± 0.14 81.66 ± 0.14
0.99 7% 83.73 ± 0.23 45.92 ± 0.51 50.35 ± 0.53 81.21 ± 0.23 81.49 ± 0.23

We further evaluate the effectiveness of the hard-pair mining mechanism on the mini-ImageNet dataset,
as shown in Table 6. We assess threshold values in the range of [0.1, 0.8, 0.9, 0.96, 0.98, 0.99] and
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report 5-shot accuracy using both the fixed distance measure (Eq. (2)) and the adaptive distance
measure (Eq. (5)) for easy cases, hard cases, and the total query set. The results in Table 7 show that
our mechanism effectively selects hard examples. At T = 0.9, 57% of samples are classified as hard.
As the threshold increases, the proportion of hard cases decreases, reducing computational complexity
by focusing on adaptive measures for hard cases. The mechanism also distinguishes effectively
between easy and hard cases, with higher accuracy for the former. Our hyperbolic distance measure
generator significantly improves classification accuracy for hard cases. As difficulty increases, the
benefits of our method become more pronounced. For thresholds of 0.96, 0.98, and 0.99, accuracy
improvements for hard cases are 2.1%, 3.01%, and 4%, respectively, compared to cases without our
method.

Table 7: Percentage of hard pairs, 5-shot accuracy(%) and time per few-shot learning task on the
mini-ImageNet dataset. HPM denotes the hard-pair mining.

Hard-pair percentage(%) Hard-pair percentage(%) Time of HPM(ms) Running time(ms)
w/o HPM 100 81.80 ± 0.14 0 6.10
w/ HPM 21 81.89 ± 0.15 0.243 1.52

Efficiency Analysis. The results presented in Table 7 indicate that hard-pair mining effectively
filters out 79% of all pairs while requiring only 0.243 ms per few-shot learning task. This leads to a
significant decrease in the total run time, from 6.10 ms to just 1.52 ms. This reduction stems from
computing distances for only 21% of pairs selected by the hard-pair mining. Additionally, using
hard-pair mining even slightly improves performance (81.80% vs. 81.89%).
5.5 VISUALIZATION

(a) Feature distributions w/o ours
in the poincaré disk.

(b) Feature distributions w/ ours
in the poincaré disk.

Figure 5: Feature distribution on the mini-
ImageNet dataset for 5-ways, 5-shots, and
8-queries. Dotted lines connect prototypes
(⋆) and query samples (•). Shaded regions
represent classification areas, with colors in-
dicating categories. Comparison is shown for
w/o and w/ our method.

We present estimated feature distributions for the
mini-ImageNet dataset using horopca for dimension-
ality reduction. We applied the 1-nearest-neighbor
algorithm (with Poincaré distance) to compute classi-
fication boundaries, shown in Figure 5. Our method
(Figure 5(b)) corrects misclassifications present in
Figure 5(a), resulting in more uniform classifica-
tion zones. Additionally, the distance between query
points and prototypes is closer, improving cohesion
within categories. For example, in Figure 5(a), yel-
low and red prototypes are closely positioned, caus-
ing yellow query samples to fall into the red zone.
Our method (Figure 5(b)) effectively separates these
prototypes, correcting the misclassification. By ex-
panding distances between prototypes, our method
enhances discriminative capabilities and strengthens
class identification by clustering query samples near
the new prototypes, leading to clearer class separation.
More visualization can be found in the Appendix E.

6 CONCLUSION

In this paper, we have presented geometry aware hyperbolic distance measures that accommodate
diverse hierarchical data structures through adaptive projection matrix and curvature. The adaptive
curvature endows embeddings with more flexible hyperbolic spaces that better match the inherent
hierarchical structures. The low-rank projection matrices bring positive pairs closer and push negative
pairs farther apart. Moreover, the hard-pair mining mechanism enables the efficient selection of hard
cases from the query set without introducing additional parameters, reducing the computational cost.
Theoretical analysis and experiments show the effectiveness of our method in refining hyperbolic
learning through geometry aware distance measures.

Limitations. A primary limitation of our work is potential bias, as the distance measure generator
may be sensitive to specific data distributions. Additionally, while we use low-rank decomposition to
reduce computational costs, this is a preliminary implementation. Future work will explore other
decomposition methods to maintain geometric consistency and enhance efficiency.
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A POINCARÉ BALL MODEL

Hyperbolic space is a smooth Riemannian manifold with constant negative curvature c and has five
isometric models (Beltrami, 1868; Cannon et al., 1997), including Lorentz (hyperboloid) model, the
Poincaré ball model, Poincaré half-space model, the Klein model, and the hemisphere model. Here,
we consider the Poincaré ball model (Cannon et al., 1997) in light of optimization simplicity and
stability. The Poincaré ball model of an n-dimensional hyperbolic space with curvature c(c < 0)
is defined as a Riemannian manifold

(
Bn
c , h

B
c

)
, where Bn

c = {x ∈ Rn : −c∥x∥ < 1, c < 0} is the
open ball with radius 1/

√
|c|. The tangent space at x ∈ Bn

c , a Euclidean space, is denoted by TxBn
c .

The Riemannian metric hB
c at x is defined as hB

c = λc
x
2hE , where hE = I is the Euclidean metric

tensor and the conformal factor λc
x is defined as

λc
x :=

2

1 + c∥x∥2
. (9)

We use the Möbius gyrovector space (Ungar, 2001) that provides operations for hyperbolic learning
and several used operations are shown as follows.

Addition. For a pair x,y ∈ Bn
c , the Möbius addition is defined

x⊕c y =

(
1− 2c⟨x,y⟩2 − c∥y∥2

)
x+

(
1 + c∥x∥2

)
y

1− 2c⟨x,y⟩2 + c2∥x∥2∥y∥2
. (10)

Distance measure. The geodesic distance between two points x,y ∈ Bn
c can be obtained as

dc(x,y) =
2√
c
arctanh

(√
c ∥−x⊕c y∥

)
. (11)

Exponential map. The exponential map expmc
x(v) projects a vector v from the tangent space TxBn

c
to the poincaré ball Bn

c ,

expmc
x(v) = x⊕c

(
tanh

(√
|c|λ

c
x∥v∥
2

)
v√
|c|∥v∥

)
. (12)

Logarithmic map. The logarithmic map logmc
x maps a vector y ∈ Bn

c from the poincaré ball to the
tangent space TxBn

c ,

logmc
x(y) =

2√
|c|λc

x

arctanh
(√

|c| ∥−x⊕c y∥
) −x⊕c y

∥−x⊕c y∥
. (13)

Matrix multiplication. In the Gyrovector space, the Möbius matrix multiplication ⊗c for matrix
M ∈ B and vector x ∈ B is defined as

M ⊗c x =
1√
|c|

tanh(
∥Mx∥
∥x∥

arctanh(
√

|c|∥x∥)) Mx

∥Mx∥
(14)

Hyperbolic Averaging. We use Einstein mid-point as the counterpart of Euclidean averaging in
hyperbolic space. The Einstein mid-point has the most simple form in Klein model K, thus for
(x1, . . . ,xN ) ∈ B, we first map {x} from B to K, then do the averaging in Klein model, and finally
map the mean in K back to B to obtain the poincaré mean:

ui =
2xi

1 + c ∥xi∥2
, u =

∑N
i=1 γiui∑m
i=1 γi

, x =
u

1 +
√
1− c∥u∥2

, (15)

where ui ∈ K, u is the mean in K, x is the mean in B, and γi =
1√

1−c∥xi∥2
is the Lorentz factor.

δ-hyperbolicity. The Gromov δ-hyperbolicity (Gromov, 1987) is a measure of how closely the
hidden structure of data resembles a hyperbolic space. A lower value of δ implies that the data
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exhibits a higher degree of intrinsic hyperbolic structure. The Gromov δ-hyperbolicity is computed
as follows. First, we start from the Gromov product for x, y, z ∈ X, denoted as

(y, z)x =
1

2

(
d (x, y) + d (x, z)− d (y, z)

)
. (16)

where X is an arbitrary space endowed with the distance function d. Following (Fournier et al., 2015),
we compute the pairwise Gromov product of all the data, and the results of all pairs are denoted as a
matrix A. Then δ-hyperbolicity is computed by

δ = (max
k

min{Aik,Akj})−A. (17)

Relative δ-hyperbolicity is computed by δrel =
2δ(X)

diam(X) ∈ [0, 1], where diam(X) denotes the set
diameter (maximal pairwise distance). Values of δrel closer to 0 indicate a stronger hyperbolicity of a
dataset. The value of δrel on the image datasets we used are shown in Table 8. As can be seen from
Table 8, these image datasets all have a clear hierarchical structure (the δrel of these datasets is close
to 0).

Table 8: The relative delta δrel values calculated for different datasets. For image datasets, we
measured the Euclidean distance between the features produced by our feature extractors. Values
of δrel closer to 0 indicate a stronger hyperbolicity of a dataset. Results are averaged across 1000
subsamples of size 20000.

Dataset Encoder δrel
CIFAR10 Wide-Res 28×2(Zagoruyko & Komodakis, 2016) 0.354
CIFAR100 Wide-Res 28×2(Zagoruyko & Komodakis, 2016) 0.280
Mini-ImageNet ResNet-12(He et al., 2016) 0.328
Tiered-ImageNet ResNet-12(He et al., 2016) 0.228

B MORE ANALYSES OF OUR OBSERVATION ON THE HYPERBOLIC SPACE
VOLUME AND GEODESIC DISTANCE.

B.1 THE RELATIONSHIP BETWEEN THE CURVATURE AND SPACE VOLUME.

Research in differential geometry has unveiled a profound relationship between curvature and spatial
volume across various geometric structures. Topping et al. (Topping, 2008) demonstrated that the
volume of a sphere increases in proportion to its mean curvature for a given diameter, elucidating a
fundamental principle encapsulated in Theorem B.1. Additionally, Wu et al.(Wu & Zheng, 2011)
provided further insights by establishing that higher curvature enables the accommodation of more
intricate structures, such as submanifolds, within a given space.

Theorem B.1. Consider an n-dimensional hyperbolic manifold Bn
c = x ∈ Rn : −c||x|| < 1, c < 0.

There exists a constant D(n), dependent solely on n, such that the intrinsic diameter dint of the
hyperbolic manifold and its curvature c are related by the inequality dint ≤ D(n)

∫
Bn
c
|c|n−1dµ.

This theorem sheds light on the intrinsic connection between the diameter of a hyperbolic manifold
and the distribution of its curvature, emphasizing the influence of curvature on the spatial extent of
such geometries.

B.2 THE RELATIONSHIP BETWEEN GEODESIC AND GEOMETRY COMPLEXITY.

Definition B.2 (Complexity of the hierarchical structures for the pair in hyperbolic space). The o
is the origin of the n-dimensional hyperbolic manifold Bn

c = x ∈ Rn : −c||x|| < 1, c < 0 . The
complexity of the hierarchical structure between x1, x2 is designated by

C(x1, x2) = P (x1 → o) + P (x2 → o),

where P (· → o) is the connectivity from x to o, measured by the connected graph distance(Balbuena
et al., 1996).
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The distance measure (determined by curvature c) and defined complexity are related in the following
intuitive way. We explain it in the 2-dimensional case where the hierarchical structure is represented
by a tree, the simplest planar graph. Now for any two vertices x1 and x2 in the tree, the complexity
between them is just the number of edges through which the path between them passes, or in other
words, the number of hierarchical levels their path runs across. For pairs of different complexity,
the learned curvatures and geodesics are supposed to lie in different “phase spaces”. If one insists
on picturing them as a common space (which might turn out to be what the neural network actually
configures), the geodesic edges hence the hierarchical structure would better be embedded into a
deformed hyperbolic surface with sufficiently large genus (to allow for enough homotopy classes of
the geodesics i.e. larger fundamental group) rather than as a planar tree. Then the total complexity or
total curvature of the hierarchical structure is afforded by the topological complexity of the deformed
hyperbolic surface, i.e. its genus or equivalently its Euler characteristics. Note that for a (closed
orientable) hyperbolic surface S of genus g, its Euler characteristic χ(S) = 2−2g. Actually, the total
curvature of a compact closed surface S equals to 2πχ(S) by the classical Gauss-Bonnet theorem.
More generally, total curvature and Euler characteristic are related by Cohn-Vossen’s inequality.

Theorem B.3 (Cohn-Vossen’s inequality(Cohn-Vossen, 1959)). For a non-compact complete surface
S without boundary and K its Gaussian curvature,∫

S

KdS ≤ 2πχ(S).

Thus we see for surfaces bearing hierarchical structures, to allow more complexity or equivalently
more topological complexity, i.e. large genus (more negative Euler characteristics), |K| and c must
be varied according to the complexity of the structure. In higher dimensions, the explanation of
curvature variation is not as intuitive as in the surface case, but it seems to be a similar consequence of
topological rigidity since Mostow rigidity theorem says the geometry of higher dimensional (complete
finite-volume) hyperbolic manifolds are determined by their fundamental groups(Mostow, 1968).

Besides the topological reasoning above, the connected paths between pairs of points in a hierarchical
structure (i.e., trees) are designated to be expressed by truly geometric geodesics between pairs in
hyperbolic manifolds(Masur & Minsky, 1998). In the context of this paper, a conformal relationship
between geodesics and complexity is sought. The existence of such geodesics is guaranteed by the
Hopf-Rinow theorem in complete Riemannian manifolds (see chapter 7, Theorem 2.8 of (Do Carmo
& Flaherty Francis, 1992)). Moreover, it can be generalized to locally compact path connected metric
geometry, the conditions of which are automatically satisfied by the spaces in our consideration, as
follows.

Theorem B.4 (Hopf-Rinow theorem(Gromov et al., 1999)). If (X, d) is a complete, locally compact
path metric space, then:
1. Closed balls are compact, or, equivalently, each bounded, closed domain is compact.
2. Each pair of points can be joined by a minimizing geodesic.

In our case, the geodesic distance between x1, x2 are given by Equation (2) :

d(x1, x2) =
2√
c
arctanh

(√
c |−x1 ⊕c x2|

)
.

Equation (2) demonstrates that with increased curvature, geodesics become steeper with a larger
distance. Higher curvature corresponds to ”steeper” geodesics d(x1, x2) (larger distance), which can
conform to complex hierarchical structures with higher C(x1, x2), as shown in Figure 1.

C MODE DETAILS ABOUT CURVATURE GENERATOR

Our design prioritizes computational efficiency and embeds specific inductive biases (e.g., the bilinear
form and bounding the curvature) to capture the geometry of hyperbolic space effectively. We choose
the factorized bilinear pooling yu2017multi to produce suitable curvature by using expressive second-
order information of data. Second-order information unveils the dynamics and trends within data, akin
to how curvature reflects the degree of warping in the hyperbolic space. Using this information allows
us to comprehend the local curvature of data distributions, deepening our grasp of the geometric
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structures. Gao et al. (2021) have empirically demonstrated the effectiveness of utilizing second-order
information to generate curvature. Details about the factorized bilinear pooling are shown as follows.

Details about the factorized bilinear pooling. We use a factorized bilinear pooling that produces
suitable curvature by using expressive second-order information of data, where the sum pooling
and sigmoid function are used to reduce dimension of second-order information and constrain the
produced curvature |c| in a valid range.

In a non-factorized bilinear pooling method, the second-order information of a pair of data (x1 ∈
Rn, x2 ∈ Rn) is the outer products x1x

T
2 , and the curvature |c| can be computed by a fully-connected

layer f(·), |c| = f(x1x
T
2 ). The second-order information captures expressive characterization of

data, and thus can produce suitable curvature. However, the non-factorized bilinear pooling method
has large computation consumption, since the dimension of x1x

T
2 ∈ Rn×n is high, causing a large

number of parameters in f(·). To solve this issue, the parameter of f(·) is factorized into two
parameters via matrix factorization, and the two parameters are applied to two fully-connected layers
f1(·) and f2(·), respectively.

In this case, f(x1x
T
2 ) can be rewritten as f(x1x

T
2 ) = 1(f1(x1)◦f2(x2)), where 1 is an all one-vector,

serving as a summation function (sum pooling). The detailed derivation can be found in (Yu et al.,
2017). The range of 1(f1(x1) ◦ f2(x2)) is (−∞,∞), while some hyperbolic methods (Khrulkov
et al., 2020; Ermolov et al., 2022) show that the curvature |c| in a valid range(eg. [0, 1]) is suitable
for much data. Thus, we use a sigmoid function |c| = sigmoid(sum pooling(f1(x1) ◦ f2(x2))) to
rescale it into a valid range.

D PROOF OF THEOREM 4.2

In this section, we will present a theoretical analysis of low-rank approximation mainly based on
polynomial partitioning which is strengthened the polynomial method in incidence geometry, and
Talagrand concentration inequality (Talagrand, 1995) which is now a fundamental tool in random
matrix theory. We provide the upper bound of the error (as shown in Eq. (18)) in the gyro-vector
multiplication, as well as the lower bound of the probability for this upper bound to hold. Without
specialization, the vector x is bounded away from the boundary, i.e. ∥x∥ ≤ c < 1 for some constant
c > 0 and the range of data Mx is bounded.

D.1 MOTIVATION AND VALIDATION OF USING RANDOM MATRIX THEORY

The low-rank approximation is a commonly used technique in computation to reduce computational
complexity and cost. Its effectiveness is usually attributed to the following Eckart-Young-Mirsky
theorem:

Theorem D.1 ((Eckart & Young, 1936; Mirsky, 1960)). Let ∥ · ∥2 be spectral norm on M ∈ Rm×n.
Suppose A ∈ M has singular value decomposition A =

∑r
j=1 σjujv

T
j with σ1 ≥ σ2 ≥ · · ·σr ≥ 0.

If k ≥ r, then the matrix Ak =
∑k

j=1 σjujv
T
j satisfies

∥A−Ak∥2 ≤ ∥A−B∥2, for any B ∈ M with rank at most k.

So if we use a rank-k matrix to approximate a target matrix with a rapidly decaying spectrum, the
effectiveness is already easily validated by the above theorem. For example in cluster analysis, if
a graph consists of n − k sub-graphs which are weakly connected to each other, its eigenvalues
σi, i ≥ k + 1 would be close to zero whence has good rank-k approximation. However, whether the
matrices in practice have a rapidly decaying spectrum is a random issue. More precisely, the matrices
in consideration may vary according to some distribution, typically such as Gaussian i.i.d or so, which
only allows us to investigate how well the matrices can be approximated by low-rank ones in the
sense of probability. Though this is a natural question in machine learning, solid theoretical analysis
has been rarely done on this matter to our knowledge. Moreover, the matrices in our consideration
act by Möbius multiplication, which requires more careful specialized analysis through a meshing
process as we will show below.
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D.2 APPROXIMATION WITH MÖBIUS MULTIPLICATION

For short, we denote M = M res ∈ Rn×n and M ′ = M res
a M res

b
⊤ ∈ Rn×n, where M res

a ∈ Rn×k

and M res
b ∈ Rn×k so that M res

a M res
b

⊤ is of rank ≤ k ≪ n (say k < n/10). Then simply (∥ · ∥
denotes vector norm)

error = ∥(I +M)⊗ x− (I +M ′)⊗ x∥
= ∥M ⊗ x−M ′ ⊗ x∥.

(18)

Recalling from the gyro-matrix multiplication formula, we have for any M ∈ Rn×n,x ∈ Bn

(∥x∥ < 1):

M ⊗ x = tanh

(
∥Mx∥
∥x∥

arctanh(∥x∥)
)

︸ ︷︷ ︸
a

Mx

∥Mx∥︸ ︷︷ ︸
b

. (19)

Denote the corresponding terms of M ′ ⊗ x by a′ and b′. Since −1 < tanh(x) < 1, we know
|a|, |a′| < 1. Note also that ∥b∥ = ∥b′∥ = 1. Then simply by the triangle inequality,

∥M ⊗ x−M ′ ⊗ x∥ = ∥ab− a′b′∥ = ∥(a− a′)b+ a′(b− b′)∥
≤ |a− a′|∥b∥+ |a′|∥b− b′∥
≤ |a− a′|+ ∥b− b′∥.

(20)

We estimate |a− a′| and ∥b− b′∥ separately, both of which are far from trivial as in the Euclidean
multiplication case (say may be handled by Eckart-Young-Mirsky theorem or so).
(i) For the former |a − a′|, there needs a scalar approximation of the hyperbolic trigonometric
functions. Let u = arctanh(∥x∥) = 1

2 ln
(

1+∥x∥
1−∥x∥

)
> 0 (noticing that tanh(x) = ex−e−x

ex+e−x and

∥x∥ ≤ c < 1), δ = ∥Mx∥
∥x∥ and δ′ = ∥M ′x∥

∥x∥ . Since the function tanh′(x) = 1
cosh2(x)

≤ 1, by
Lagrange’s mean value theorem we get

|a− a′| ≤ u|δ − δ′|. (21)

Note that u is bounded since ∥x∥ ≤ c < 1. Hence we need only concern about |δ − δ′|, the
difference between Rayleigh quotients, which can not be handled simply by SVD and Eckart-
Young-Mirsky theorem D.1 or so. Suppose x =

∑n
j=1 ajvj . Then Mx =

∑n
j=1 σjajuj , while

M ′x is supposed to converge to
∑k

j=1 σjajuj . By Eckart-Young-Mirsky theorem D.1, to better

approxmate M =
∑

σjujv
T
j under SVD, the generator should converge to M res

a =
∑k

j=1 µjuj and

M res
b =

∑k
j=1 νjvj with µjνj = σj . But we do not know which direction is the major contribution

to δ = ∥Mx∥
∥x∥ and set-up δ′ may drift away. More precisely, recall the classical min-max theorem:

Theorem D.2 (see (Hwang, 2004)). For any integer m ≥ 1, let Sm be set of all sub-spaces of
dimension m of Rn. Then

min
V ∈Sn−m+1

{
max

x∈V \{0}

⟨Mx,x⟩
∥x∥2

}
= σm, (22)

where the minimum is attained for V orthogonal to uj’s (or vj’s) appearing in SVD of M , j =
1, . . . ,m− 1.

This simply tells us that learning the Rayleigh quotient δ for x lying in different sub-spaces would
result in totally different low-rank matrices and even any averaging on learned matrices seems
irrational.
(ii) For the latter ∥b− b′∥, it is important to note that b = Mx

∥Mx∥ represents vectors projected onto the
unit sphere Sn−1. This requires an analysis of randomized linear regression on higher dimensional
spheres as introduced in the next subsection.

As we will explain, the real learning process through a multi-layered network should subdivide the
whole space of rank-k matrices into local meshes according to data distribution and store a learned
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matrix for each local mesh, i.e. it is not a real matrix but a piece-wise linear operator varying on
meshes. The effectiveness of learning on both the scalar approximation and linear regression on
spheres as in (i) and (ii) is an implication of Talagrand concentration inequality, which is fundamental
in random matrix theory.

D.3 MESHING FEATURE SPACES BY POLYNOMIAL PARTITIONING AND TALAGRAND
CONCENTRATION INEQUALITY

Recalling that the matrix generator gt() as in (5) of section 4.1 is a local generator which appears
to generate a matrix for each pair. In actual learning stage, it is not likely to fluctuate drastically
pairwise but rather stays invariant amongst pairs within a group of similar features, i.e. it only varies
as a piecewise linear transformation. Thus our primary concern lies with samples of M resxi, where
xi’s are the training data sampled from the feature space of pictures or so. When sampled finely
enough, these samples may be effectively considered as distributed within a local mesh of data, akin
to a Gaussian distribution with a small variance, as demonstrated in subsequent analyses.

We first introduce the material technique of “divide and conquer” for sampling general sets through
polynomial partitioning, developed by Larry Guth and Nets Katz when dealing with the Erdős’
distinct distances problem (L. Guth, 2015).

Theorem D.3 (Theorem 4.1 of L. Guth (2015)). For any set S ⊂ Rn of N points and positive
integer d, there exists a hypersurface Z defined by a polynomial of degree ≤ c2d/n for some absolute
constant c > 0, whose complement Rn ∖ Z is the union of 2d disjoint open cells each containing
≤ 2−dN points of S.

The key point here is that we need very few partitioning parameters (determining a suitable poly-
nomial) to segment big data sets into much smaller clusters with similarities as desired especially
if the data distributes relatively continuously. Note that the hypersurface itself may contain part
of the points. If the samples distribute relatively continuously, we may see these surface points
locally as residing on a tangent space of the hypersurface, which is of dimension n − 1. Hence
we may deal with the surface points inductively so that we need only concern about the points in
cells. For example, if we require each cell to have n points, i.e. d ∼ log(N/n), we only need
O(2log(N/n)/n) = O( n

√
N/n) parameters. In practice, if we use training sets about size in millions

and feature dimension in hundreds, the partitioning parameters are freely spared without any concern.

The above explained polynomial partitioning mechanism seems to reveal at least partially the dark
matter of miracle efficiency of even shallow-layered neural networks. From a more general theoretical
standpoint, any neural network is designed to use elementary operations to segment and model global
datasets with local subsets that align with ambient distributions in assumption, which naturally calls
for and results in polynomial partitioning outcomes. This particularly facilitates the application of
low-rank approximations.

A baby version of low-rank approximation in Euclidean case may be tried out by an older and simpler
result in topology, called Ham sandwich theorem which is a version of the Borsuk-Ulam theorem, to
deal with approximation of local pieces after partitioning.

Theorem D.4 (Theorem 4.2 of Guth-Katz (L. Guth, 2015)). Any n open sets of finite volume in Rn

can be simultaneously bisected by a single hyperplane.

Thus if say each cell contains n− 1 feature points after polynomial partitioning, which we may allow
to reside in small neighborhoods bounding errors, there is a hyperplane bisecting the neighborhoods
and passing the auxiliary origin point 0. Suppose the hyperplane is defined by aTx = 0 for some
a ∈ Rn. Then the matrix I + aaT (with aaT working as M res) is the suitable approximation.

Of course, a more sophisticated method is needed to deal with the general case especially when data
encounters randomized noises. In our context, the network seeks a substantially lower-dimensional
subspace, specifically the range space of M res

a M res
b

⊤xi, to control |δ − δ′| as in (i) and ∥b− b′∥ as
in (ii) while projected onto Sn−1. This projection acts as a linear regression for samples within each
subset. We will first deal with (ii) and identify an optimal b′ that minimizes ∥b− b′∥, a process we
refer to as randomized linear regression.
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The feasibility of randomized linear regression is underpinned by a key theoretical element: the
Talagrand concentration inequality (Talagrand, 1995), which provides the foundational argument for
the possibility of effective randomized linear regression in our context.
Theorem D.5 ( see Corollary 2.1.19 of Tao (Tao, 2023)). Let X ∈ Rn (Cn) be a random vector with
entries of independent random variables with mean 0 and variance 1, and bounded almost surely by
K. Let V be a subspace of Rn (Cn) of dimension k. Then for any λ > 0, one has

Prob(|d(X,V )−
√
n− k| ≥ λK) ≤ Ce−cλ2

for some absolute constants C, c > 0.

D.4 ESTIMATE OF (II) ∥b− b′∥

Now we choose a subspace V of dimension k, which contains the mean µ of X (now ranging
locally in a suitable mesh of M resxi). Note that in practice, we may assume that k ≤ n/10 (or
k ≤

√
n) and the number of training samples N is large (say ∼ 100n). One key idea of applying

the above Talagrand concentration inequality is that, the space V is supposed to be the range of
approximating low rank (≤ k) matrices, hence determines our choices of M ′. Another key idea is
that according to Theorem A.3 in Guth-Katz (L. Guth, 2015) , we can use a low-degree (O( n

√
N/k))

hypersurface to segment out k feature points into each cell of its complement. Then our model is
supposed to construct a subspace V of dimension k to approximate the points in each cell and only
allow systematic error due to data collecting, feature embedding or so. Assuming the entrywise
variance of error of X to be σ2 so that X−µ

σ has entrywise variance 1, then the theorem shows

Prob

(∣∣∣∣d(X − µ

σ
,V )−

√
n− k

∣∣∣∣ ≥ λK

)
=Prob

(∣∣∣d(X − µ,V )− σ
√
n− k

∣∣∣ ≥ λKσ
)

=Prob
(∣∣∣d(X, µ+ V )− σ

√
n− k

∣∣∣ ≥ λKσ
)

=Prob
(∣∣∣d(X,V )− σ

√
n− k

∣∣∣ ≥ λKσ
)

≤Ce−cλ2

,

(23)

where Prob(·) denotes the probability. Note that the last equality holds since µ ∈ V and the
dimensions k and n are relatively fixed. When projected onto the sphere Sn−1, the distance d(X,V )

is rescaled to be ∼ arcsin d(X,V )
∥µ∥ , since distance on unit sphere is measured by the central angle θ

with sin θ = d(X,V )
∥µ∥ , as indicated as in Figure 6. We assume that the variance of systematic error is

σ = n−1/2ϵ, for ϵ > 0 sufficiently smaller than the mean ∥µ∥, so that K = m∥µ∥ with m ∼ 1 (since
X has small variance in assumption). To make λKσ significantly smaller than σ

√
n = ϵ, we choose

λ =
√
k/c so that λKσ =

√
k
cnm∥µ∥ϵ ≪ ϵ noting that k ≪ n and m ∼ 1, ∥µ∥ < 1. Then by (6),

with high probability (1− Ce−k), d(X,V ) is concentrated around σ
√
n = ϵ and the angle θ below

is small since

arcsin
d(X,V )

∥µ∥
∼ d(X,V )

∥µ∥
∼ ϵ

∥µ∥
≪ 1.

𝜇
𝜃

𝑉
𝑑(𝑋, 𝑉)

Figure 6: X distributed around the mean µ which lies in the subspace V .

To be clear, by ∼ we mean bounded both below and above by bounded factors close to 1. For most
of the subsets of a suitable meshing of M resxi, the magnitude of the mean 1 > ∥µ∥ is sufficiently
bounded away from 0. Thus we have abundant choices of V , hence M res, for randomized linear
regression. Note that the samples are meshed in dimension k, i.e. rank-k approximation is used.
Altogether the above argument shows the following
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Lemma D.6. Suppose the variance of systematic error σ2 = ϵ2/n and ϵ is significantly smaller than
(say ∼ 1

10 of) the mean of error, and the samples feature space distribute relatively continuously.
Then with high probability (1− Ce−k for some constant C > 0 say for k ∼ n/10 or k ∼

√
n), for

the estimate of (ii) we have
∥b− b′∥ < ϵ, (24)

for b′ = M ′x
∥M ′x∥ with some matrix M ′ of rank ≤ k (say ≤ n/10 or ∼

√
n).

Thus for rank k smaller than n but not too small (say n in hundreds while k in dozens work well as
shown by experiments), we have plenty of choices of M ′ of rank ≤ k to well approximate the target
matrix M in local meshes.

Next, we deal with the estimate of (i) |a − a′| = u|δ − δ′| which further puts restrictions on the
choices of sub-spaces V .

D.5 ESTIMATE OF (I) |a− a′| = u|δ − δ′|

Note that we assume ∥x∥ ≤ c < 1 so that u = arctanh(∥x∥) ≤ C1 is bounded for some C1 > 0.
Hence we only need to bound |δ − δ′|. More explicitly,

|δ − δ′| = |∥Mx∥ − ∥M ′x∥|
∥x∥

=

∣∣∥Mx∥2 − ∥M ′x∥2
∣∣

∥x∥ (∥Mx∥+ ∥M ′x∥)

=
|⟨(M −M ′)x,Mx⟩+ ⟨(M −M ′)x,M ′x⟩|

∥x∥ (∥Mx∥+ ∥M ′x∥)
. (25)

The denominator of (25) may be written ∥x∥2
(

∥Mx∥
∥x∥ + ∥M ′x∥

∥x∥

)
, in which the first Rayleigh quotient

is supposed to be bounded away from 0 to define a well deformed metric and so is the second as an
approximation (say close to the form as in Eckart-Young-Mirsky theorem D.1). Also, there is no
harm to assume ∥x∥ = 1, i.e. restricting the Rayleigh quotients onto the sphere Sn−1. Hence the
denominator of (25) is also bounded by some constant C2 > 0.

Thus we only need to deal with the numerator N = |⟨(M −M ′)x,Mx⟩+ ⟨(M −M ′)x,M ′x⟩|
of (25). Again we choose any k-dimensional sub-space V passing the mean of data X as the range
space of M ′x. Let πV be the projection of Rn onto V . Note that In − πV is the projection onto the
orthogonal space of V . A specialization of M ′ = πV M definitely gives an upper bound for the
numerator, i.e.

best estimate of N ≤ |⟨(M − πV M)x,Mx⟩+ ⟨(M − πV M)x,πV Mx⟩|
= ⟨(M − πV M)x,Mx⟩
= ⟨(M − πV M)x, (M − πV M)x⟩
= ∥(M − πV M)x∥2, (26)

the last term of which is actually a scale of the distance d(Mx, V ) on the sphere Sn−1 as shown in
Figure 6. The scaling is bounded by the length of Mx, which as we assumed in Talagrand inequality
(Theorem D.5) is bounded by a constant K > 0. Thus by (26) and lemma D.6, we can estimate the
numerator of (25) as

Lemma D.7. Following the same assumptions and notations with lemma D.6, with high probability
(1− Ce−k for some constant C > 0), for the estimate of (i) we have

|a− a′| = u|δ − δ′| < KC1

C2
ϵ, (27)

for K bounding the range of data X , C1, C2 > 0 and M ′ of rank ≤ k.

Finally, altogether by lemma D.6 and D.7, we conclude the Theorem 4.2.
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E MORE ABLATION AND VISUALIZATION

E.1 EXPLOITATION OF SYMMETRY

Our distance measure cannot ensure the strict symmetry of input pair (x, y), since we do not shared
the weights of the subnetworks(fa and fb in the projection matrix gt, f1 and f2 in the curvature
generator gc) within the generator, where fa and f1 are used for x, and fb and f2 are used for y. But
we do not argue this is a problem. For a sample pair (x, y) in the training process, we randomly
sample x and y from the dataset, and the probability of (x, y) and (y, x) are equal. Thus, if we change
(x, y) to (y, x), and send it to our distance measure, their distances will not change significantly.

To demonstrate this point, we do the ablation by swapping fa and fb in the projection matrix
generator(gt) as well as f1 andf2 in the curvature generator(gc), which is equal to swapping the inputs
of gt and gc separately. As shown in Table 9, the impact of swapping the subnetworks in the projection
matrix generator and the curvature generator on the performance of our method is negligible. This
indicates that fa and fb , as well as f1 and f2 , have learned nearly identical knowledge. Although
our method does not ensure the symmetry, it avoids situations where swapping x and y in a pair leads
to a sharp change in distance, showing the robustness of our method.

Table 9: Ablations about the symmetry. 5-shot accuracy(%) and and 95 % confidence interval on the
mini-ImageNet and tiered-ImageNet.

mini-ImageNet tiered-ImageNet
Ours 81.80 ± 0.14 85.22 ± 0.16
Swapping fa and fb 81.81 ± 0.14 85.20 ± 0.16
Swapping f1 and f2 81.80 ± 0.14 85.22 ± 0.16

E.2 EXPLOITATION OF THE DIFFERENT LOSS FUNCTIONS.

We also have tried the supervised contrast loss function, specifically,

L(xi, xj , xk) = max(0,margin+ dis(xi, xj)− dis(xi, xk))

, where xi is the anchor sample, xj is the positive sample, and xk is the negative sample. Our algorithm
is capable of converging with this type of loss function as well as shown in Table 10. However, since
it equally penalizes all negative samples without considering their hierarchical differences, it may
hinder the model’s ability to differentiate between less relevant and highly irrelevant samples. Ideally,
this loss function would require the true hierarchical structure as ground truth, but such detailed
annotations are absent in the current visual datasets. Consequently, we chose direct cross-entropy loss

L = −
C∑
i=1

yi log(pi)

, where yi is the label and pi is the probability of the prediction, allowing the network to implicitly
learn the diverse geometric structures among different pairs.

Table 10: Ablations about the symmetry. 5-shot accuracy(%) and and 95 % confidence interval
contrastive loss vs. cross-entropy loss on the mini-imagenet dataset.

5-ways 1-shot 5-ways 5-shot
Contrastive loss 61.91 ± 0.20 79.45 ± 0.14
Cross-entropy Loss 64.75 ± 0.20 81.89 ± 0.15

E.3 EXPLOITATION OF THE STRUCTURE OF THE PROJECTION MATRIX GENERATOR.

In the design of the projection matrix generator, we use two separate low-rank residual matrices
M res

a M res
b

⊤ to approximate to the projection matrix. We also test the results of using a unified low-
rank residual matrix M res

a M res
a

⊤. Results in Table 11 show that asymmetrical designs outperform
symmetrical ones in effectiveness. Symmetrical designs result in symmetric projection matrices,
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which are limited to linear transformations and may not capture the nonlinearity of real-world scenes.
In contrast, our proposed geometry-aware distance measure leverages an asymmetric structure,
allowing for a more adaptable and diverse fit.

Table 11: Accuracy(%) of symmetric design vs. ours on CIFAR 10 dataset and CIFAR 100 dataset.
Symmetric form(M res

a M res
a

⊤) Ours (M res
a M res

b ⊤)
CIFAR10 88.64 96.56
CIFAR100 71.02 75.61

E.4 RESULTS OF STANDARD CLASSIFICATION ON MULTIPLE BACKBONES

The experimental results on WideRes-28, ResNet-50, and ResNet-101 using the CIFAR100 dataset
are summarized in Table 12. Our method demonstrates consistent improvements across all tested
backbones, achieving an accuracy increase of 1.78% on WideRes28-2, 2.7% on ResNet50, and
2.48% on ResNet101. These results underscore the effectiveness of our proposed adaptive hyperbolic
distance measure in enhancing model performance, regardless of the architecture, and confirm its
generalizability to diverse network structures.

Table 12: Accuracy (%) on WideRes-28, ResNet-50 and ResNet-101 on the CIFAR100 datasets.
Backbone Fixed Ours
WideRes28-2 73.83 75.61
Resnet50 78.49 81.19
Resnet101 80.97 83.45

E.5 COMPARISON WITH HIERARCHICAL-AWARE PROTOTYPE POSITIONING

We conducted experiments comparing our method with hierarchical-aware prototype positioning
(Ghadimi Atigh et al., 2021). Specifically, we replaced the backbone in (Ghadimi Atigh et al., 2021)
with the same backbone (Wide ResNet-28-2) used in our method, and set the dimension to 128,
consistent with our approach. The results shown in Table 13 indicate that our method still exhibits
significant superiority. We will add these results in the revised version.

Table 13: Comparison with Hyperbolic Bussman Learning (Ghadimi Atigh et al., 2021) on CIFAR
10 and CIFAR 100 dataset. * means implemented by ourselves.

Method CIFAR 10 (%) CIFAR 100 (%)
HBL* 91.16 67.42
Ours 94.75 75.61

E.6 HARD CASES

We visually compare the logits before and after applying our method to hard cases. We calculate the
probabilities by applying the softmax function to the logits, and the results are shown in Figure 7.
Each cell in Figure 7 represents a query sample’s probabilities of 5-ways task, where each bar denotes
the probability of being classified into a specific category, with the red bar indicating the correct
category. Within each cell of the Figure 7 , the left figure represents the probabilities without our
method, and the right figure demonstrates that using our method. It can be seen that, after applying
our method to hard cases, the probability of the correct class increases significantly, indicating that
our method is able to correct misclassification caused by fixed distance measures.
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Hard case 1

Hard case 4

Hard case 7

Hard case 10

Hard case 13

Hard case 16

Hard case 2

Hard case 5

Hard case 8

Hard case 11

Hard case 14

Hard case 17

Hard case 3

Hard case 6

Hard case 9

Hard case 12

Hard case 15

Hard case 18

Figure 7: Probability distributions of several hard cases on 5 ways, 5 shots task of the mini-ImageNet
dataset. In each table cell, the histogram on the left shows the class probability distribution without
using our method, while the one on the right shows the distribution with our method applied. The
horizontal axis represents classes, and the vertical axis represents probability. The red bar represents
the correct class.
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(a) Feature distribution on CIFAR 100-level 0 (2 categories)

(c) Feature distribution on CIFAR 100-level 2 (10 categories)

(b) Feature distribution on CIFAR 100-level 1 (5 categories)

(d) Feature distribution on CIFAR 100-level 3 (20 categories)

(e) Feature distribution on CIFAR 100-level 4 (100 categories)

Figure 8: Feature distribution of the 5-level annotations on the CIFAR 100 dataset via T-SNE. For
levels 1-4, we randomly sampled one fine category (out of 100) from each coarse category. For level
0, we sampled five from each.

E.7 DISTRIBUTION VISUALIZATION

E.7.1 HIERARCHICAL EMBEDDING DISTRIBUTION

We visualize the distribution of our hyperbolic embeddings at the 5 hierarchical levels, as shown
in Figure 8. We observe that our method leads to clearer boundaries among different categories on
the 5 hierarchical levels, showing that our method can better capture hierarchical structures again.

E.7.2 CURVATURE DISTRIBUTION AND CASE STUDY

We visualize the curvature distributions in the middle epoch and the final epoch when training on the
CIFAR-10 and CIFAR-100 datasets, as shown in Figure 9. We observe that the training process in
CIFAR-10 pushes the curvatures to small values, while the training process in CIFAR-100 pushes the
curvatures to big values. The reason is that the CIFAR-10 dataset has a relatively simple hierarchical
structure, while CIFAR-100 has a complex hierarchical structure. This is also confirmed by the
delta hyperbolicity values in Table 8 in the Appendix A, where CIFAR-100 has a smaller delta
hyperbolicity value than CIFAR-10, showing the more complex hierarchical structure in CIFAR-100.

E.7.3 VISUALIZATION VIA HOROPCA

We draw the feature distributions in the mini-ImageNet dataset using the horopca(Chami et al.,
2021) dimensionality reduction methods. We also plot the classification zones with different colors.
The classification zones are computed by 1-nearest-neighbor algorithm, using the poincaré distance.
Results are shown in Figure 10, 11. Our visualization analysis demonstrates that our method
effectively corrects misclassifications observed in the left subfigures, leading to more averaged
classification zones. This improvement results in a clearer separation between different classes,
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(b) Case study for the curvatures of 
image pairs (sampled from CIFAR 
100) with different hierrarchy. 

Final epoch

Middle epoch

CIFAR 100 

CIFAR 10 

Final epoch

Middle epoch

(a) Curvature distribution during/after training on CIFAR 10 and CIFAR 100 dataset.

telephone telephone

butterfly butterfly

0.032

0.069

Curvature
Image pairs with
same fine-label

raccoon bridge

house camel

Image pairs with
different coarse-label Curvature

1.923

2.101

pickup_truck

tiger wolf

motorcycle

Curvature
Image pairs with
same coarse-label

0.545

0.310

Figure 9: Curvature distribution during (middle epoch) and after (final epoch) training and case study.
The range of the learned curvature is set to [0.0001, 3.0] in the experiment of (a). In (b), image pairs
with closer levels have lower curvature |c|, while image pairs with greater hierarchical differences
have higher curvature.

enhancing the model’s precision. Furthermore, our approach brings query points significantly
closer to their respective class prototypes, achieving stronger intra-class cohesion. This indicates a
more compact clustering of data points within the same category, which directly contributes to the
model’s improved classification accuracy. Our method not only addresses and rectifies errors in class
assignment but also promotes a more organized and interpretable representation of classes through
tighter clustering and clearer boundaries. This advancement underscores our model’s capability to
deliver superior classification performance with enhanced reliability and specificity.

(a) Feature distributions w/o ours 
in the poincaré disk.

(b) Feature distributions w/ ours 
in the poincaré disk.

Figure 10: An example of feature distribution (w/o ours vs. w/ ours) on the mini-ImageNet dataset
for the setting of 5-ways, 5-shots, and 8-queries. Different colors indicate different categories. ⋆
indicates the prototype. • indicates the query sample.
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(b) Feature distributions w/ ours 
in the poincaré disk.

(a) Feature distributions w/o ours 
in the poincaré disk.

Figure 11: An example of feature distribution (w/o ours vs. w/ ours) on the mini-ImageNet dataset
for the setting of 5-ways, 5-shots, and 8-queries. Different colors indicate different categories. ⋆
indicates the prototype. • indicates the query sample.

E.7.4 VISUALIZATION VIA T-SNE

We also draw the feature distributions in the mini-ImageNet dataset using the t-SNE dimensionality
reduction methods. Results are shown in Figure 12, 13, 14. From the figures, we have the following
conclusions: (1) Our method increases the distance between prototypes and improves the discrimina-
tive ability of prototypes. (2) By making the query samples closely surround the new prototypes, the
method enhances the ability to discern and distinguish different classes.

★: Prototypes  ●: Query samples. 

Feature distributions w/ ours.
★: Prototypes  ●: Query samples. 

Feature distributions w/o ours.

Figure 12: An example of feature distribution (w/o ours vs. w/ ours) on the mini-ImageNet dataset
for the setting of 5-ways, 5-shots, and 40-queries. Different colors indicate different categories. ⋆
indicates the prototype, highlighted by the blue circle. • indicates the query sample.

F MORE EXPERIMENTAL DETAILS

F.1 STANDARD CLASSIFICATION

F.1.1 DATASET

We conduct experiments on three popular datasets, namely MNIST(LeCun & Cortes, 2010), CI-
FAR10(Krizhevsky et al., 2009), and CIFAR100(Krizhevsky et al., 2009). MNIST contains 10 classes
with 60000 training images and 10000 testing images. Each image has a resolution of 28× 28, and
the numerical pixel values are in greyscale. The CIFAR-10 dataset consists of 60000 color images in
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★: Prototypes  ●: Query samples. 

Feature distributions w/ ours.
★: Prototypes  ●: Query samples. 

Feature distributions w/o ours.

Figure 13: An example of feature distribution (w/o ours vs. w/ ours) on the mini-ImageNet dataset
for the setting of 5-ways, 5-shots, and 40-queries. Different colors indicate different categories. ⋆
indicates the prototype, highlighted by the blue circle. • indicates the query sample.

★: Prototypes  ●: Query samples. 

Feature distributions w/ ours.
★: Prototypes  ●: Query samples. 

Feature distributions w/o ours.

Figure 14: An example of feature distribution (w/o ours vs. w/ ours) on the mini-ImageNet dataset
for the setting of 5-ways, 5-shots, and 40-queries. Different colors indicate different categories. ⋆
indicates the prototype, highlighted by the blue circle. • indicates the query sample.
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10 classes, each class having 6000 images with a size of 32× 32. We use 50000 images for training
and 10000 images for testing. CIFAR-100 has 100 classes containing 600 32× 32 color images each,
with 500 training and 100 testing images per class.

F.1.2 MODEL DETAILS

Our method regards that the features from the backbones are located in the hyperbolic space’s
tangent space at the origin, and we utilize an exponential map on top of the backbone to transfer
these features from the tangent space to the hyperbolic space. We pre-train the backbones on the
training set using the cross-entropy loss. The backbones are fixed in our metric learning process. We
calculate Einstein mid-point of all the features from the training set as the prototypes and do the
classification according to the similarities between samples and prototypes. For the MNIST(LeCun &
Cortes, 2010) dataset, we use a LeNet-like(LeCun et al., 1998) net as the backbone network. For
CIFAR10(Krizhevsky et al., 2009) and CIFAR100(Krizhevsky et al., 2009) we use Wide-ResNet
28×2(Zagoruyko & Komodakis, 2016) as the backbone network. The Wide-ResNet 28×2 is trained
for 120 epochs with the SGD optimizer. The learning rate is set to 0.01 at first and decayed per 30
epochs with a decay rate of 0.1.

F.2 HIERARCHICAL CLASSIFICATION

F.2.1 DATASET

Using the CIFAR100 dataset and its 5-level hierarchical annotations from (Wang et al., 2023), we
compared our adaptive distance measure with a fixed one, using Resnet50 and Resnet101. The
category IDs of the 5 hierarchical levels are as follows:

• Level 4 (100 categories): The original fine labels in CIFAR-100.

• Level 3 (20 categories): The original coarse labels in CIFAR-100.

• Level 2 to Level 0: Constructed based on the 20 coarse labels (Level 3), provided by [a].
Specifically:

– Level 2: ([0-1]), ([2-17]), ([3-4]), ([5-6]), ([12-16]), ([8-11]), ([14-15]), ([9-10]),
([7-13]), ([18-19]).

– Level 1: ([0-1-12-16]), ([2-17-3-4]), ([5-6-9-10]), ([8-11-18-19]), ([7-13-14-15]).
– Level 0: ([0-1-7-8-11-12-13-14-15-16]) and ([2-3-4-5-6-9-10-17-18-19]).

F.3 FEW-SHOT LEARNING

F.3.1 DATASET

We conduct the few-shot learning task on mini-ImageNet (Vinyals et al., 2016) and tiered-ImageNet
(Ren et al., 2018) datasets. The mini-ImageNet dataset contains 100 classes from the ImageNet
dataset(Russakovsky et al., 2015), containing 600 images for each class. We split the 100 classes into
64, 16, and 20 classes for training, validation, and testing, respectively. The tiered-ImageNet dataset
has 779165 images from 608 classes, where 351, 97, and 160 classes are used for training, validation,
and testing, respectively. All images in both mini-ImageNet and tiered-ImageNet datasets are resized
to 84× 84.

F.3.2 MODEL DETAILS

We use the ResNet-12(He et al., 2016) plus the exponential map as the feature extractor. We pre-train
the ResNet-12 on the training set over 120 epochs with the SGD optimizer, using the cross-entropy
loss. In the pre-training stage, the learning rate is initially set to 0.01. The learning rate decays by 0.1
after every 40 epochs. Once the pre-training is completed, we remove the last fully-connected layer
and the softmax layer of the pre-trained model, and the rest layers are used in our feature extractor.
The feature extractor is fixed in the learning process of our distance measures generator.
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Figure 15: Architecture of the hyperbolic distance measure generator. x are the feature points.

F.4 EXPERIMENTAL CONFIGURATION

We use an Intel(R) Xeon(R) Gold 6226R 2.90GHz CPU, a GeForce RTX 3090 GPU, and 256GB
RAM to conduct experiments. We use CUDA 12.0, Python 3.8.12, and PyTorch 1.13.1.

F.5 GENERATOR DETAILS

As illustrated in Fig. 15, our distance measure generator consists of a projection matrix generator and a
curvature generator. For a pair of data points xi,xj , the curvature generator produces a curvature that
accommodates their hierarchical structure. Subsequently, the projection matrix generator produces
two low-rank matrices M res

a ,M res
b , which, with the support of a residual strategy, complete the

generation of the projection matrix.
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