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Abstract

Automating scientific discovery has been a grand goal of Artificial Intelligence (AI)1

and will bring tremendous societal impact if it succeeds. Despite exciting progress,2

most endeavor in learning scientific equations from experiment data focuses on the3

horizontal discovery paths, i.e., they directly search for the best equation in the4

full hypothesis space. Horizontal paths are challenging because of the associated5

exponentially large search space. Our work explores an alternative vertical path,6

which builds scientific equations in an incremental way, starting from one that7

models data in control variable experiments in which most variables are held as8

constants. It then extends expressions learned in previous generations via adding9

new independent variables, using new control variable experiments in which these10

variables are allowed to vary. This vertical path was motivated by human scientific11

discovery processes. Experimentally, we demonstrate that such vertical discovery12

paths expedite symbolic regression. It also improves learning physics models13

describing nano-structure evolution in computational materials science.14
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Figure 1: Vertical paths fur-
ther scale up AI-driven scien-
tific discovery.

Automating scientific discovery has been a grand goal of Artificial16

Intelligence (AI) dating back its founders (Herbert Simon et. al.17

[13, 11, 30]) but remains a holy grail. The underlying societal18

impact is immense because of its multiplier effect. Indeed, much19

effort has been made, especially in symbolic equation regression,20

including search-based methods [12, 14], genetic programming [26,21

29, 24, 5], reinforcement learning [21, 25, 18, 21], deep function22

approximation [17, 2, 23, 22, 16, 31, 3, 7, 1], integrated systems23

[28, 10, 9, 15], or simply yet effectively, collecting big datasets24

[15, 8]. Most endeavor focuses on horizontal discovery paths, i.e.,25

they directly search for the best equation in the full hypothesis space26

involving all independent variables (red path in Figure 1). The27

horizontal search can be challenging because of the exponentially28

large space. After the conventional wisdom of training with larger29

models and more data has been stretched to its extremity (e.g., GPT-30

4), what is the next paradigm-changing idea?31

Interestingly, the vertical paths have been largely overlooked in AI.32

To discover the ideal gas law pV = nRT , scientists first held n33

(gas amount) and T (temperature) as constants and find p (pressure)34

is inversely proportional to V (volume). They then studied the35

relationship between pV and n, T . This led to a vertical discovery path (green path in Figure 1).36

The first few steps of a vertical path can be significantly cheaper than the horizontal path, because37
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Figure 2: Motivating example to demonstrate vertical scientific discovery. (a) A challenging symbolic
regression task. It is difficult to read out the equation y = f(x1, x2, x3) which connects the dependent
variable y with the independent variables x1, x2, x3. (b) When we focus on studying the relationship
of x1, x3 and y while holding x2 at 1, a simple equation y = x1 + x3 can be discovered. (c)
y = −x1+x3 can be discovered when we hold x2 at -1. (d) Combining (b) and (c), a good candidate
equation is y = x1x2 + x3, which turns out to be the ground-truth equation.

the searches are in reduced spaces involving a small number of independent variables. As a result,38

vertical discovery has the potential to supercharge state-of-the-art approaches in modeling complex39

scientific phenomena with more interlocking contributing factors or processes than what current40

approaches can handle.41

This paper demonstrates the power of vertical scientific discovery, in which automated reasoning42

(e.g., mathematical programming, constraint satisfaction, reinforcement learning, etc) acts as robot43

scientists to guide the learning process (i.e., pointing out the directions of the green path in Figure 1).44

Our first example is in symbolic regression, where the task is to discover symbolic expressions45

describing experiment data. State-of-the-art approaches in this domain are limited to learning simple46

expressions. Regressing expressions involving many independent variables still remain out of reach.47

Motivated by the control variable experiments widely utilized in science, in a recently published48

paper [6] we propose Control Variable Genetic Programming (CVGP) for symbolic regression49

over many independent variables. CVGP expedites symbolic expression discovery via customized50

experiment design, rather than learning from a fixed dataset collected a priori. CVGP starts by fitting51

simple expressions involving a small set of independent variables using genetic programming, under52

controlled experiments where other variables are held as constants. It then extends expressions53

learned in previous generations by adding new independent variables, using new control variable54

experiments in which these variables are allowed to vary. Experimentally, CVGP outperforms several55

baselines in learning symbolic expressions involving multiple independent variables.56

Our second example is in materials science. Our approach was motivated by tracking and learning the57

phase-field models describing nano-scale crystalline defect evolution in materials. In a preliminary58

study, we showed vertical discovery schedules improve the learning of phase-field models for59

dendritic solidification. In the vertical schedule, first the learning is concentrated on a subset of60

model parameters. This is done by feeding the model with designed training data in which remaining61

parameters do not affect the spatial and temporal dynamics. After this phase, the learning is expanded62

to all parameters. We demonstrate that the machine learning model is able to discover the ground-truth63

phase-field model following this vertical schedule, but cannot following the normal schedule (see the64

Figure in Section 4).65

2 A Motivating Example66

Discovering scientific laws automatically from experiment data has been a grand goal of Artificial67

Intelligence (AI). Its success will greatly accelerate the pace of scientific discovery. Recently, exciting68

progress [26, 29, 4, 21, 18, 21, 24, 5] has been made in this domain, especially taking advantages of69

the progress in deep neural networks. Consistent strides for higher throughput (less time and data70

required to identify an equation) and better quality (equations better fit the data) have been the main71
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Figure 3: Running example of CVGP. (a) Initially, a reduced-form equation ϕ′ = C1x1 − C2 is
found via fitting control variable data in which x2, x3, x4 are held as constants and only x1 is allowed
to vary. (b) This equation is expanded to C3x1 − C4x2 in the second stage via fitting the data in
which only x3, x4 are held as constants. (c,d) This process continues until the ground-truth equation
ϕ = x1x3 − x2x4 is found. The data generated for control variable experiment trials in each stage
are shown at the bottom.

drivers in this domain. We notice that almost all prior work follows the horizontal discovery path,72

which is also the standard machine learning pipeline – first collecting a dataset, then learning the73

full model, finally evaluating its performance on a separate, yet still fixed test set. Nevertheless, the74

vertical discovery path, which is heavily utilized by human scientists, is almost forgotten in AI-driven75

scientific discovery. When studying a complex process involving many interacting subprocesses,76

scientists always try to isolate each individual process and study their effects separately, via carefully77

designed control variable experiments. They also use this tool to challenge competing models.78

Vertical paths increase the throughput of scientific discovery. Let us verify this assertion from a79

small human experiment. Figure 2 (a) depicts a symbolic regression task where one needs to find80

a symbolic expression y = f(x) which best maps the input x to the output y. The author ran this81

experiment in front of hundreds of undergraduate, graduate students, and a few faculty members.82

Nobody was able to discover the correct equation given the data in (a). However, when the author83

controlled the value of x2 in (b) and (c), a majority of the audience were able to identify the equations84

in both cases. A little bit of additional thinking combining these two equations yields the ground-truth85

equation in (d). Clearly, control variable experiments in (b) and (c) helped the audience navigate the86

regression task. This controlled experiment depicts the essence of vertical scientific discovery.87

3 Symbolic Regression via Control Variable Genetic Programming88

Our recently proposed Control Variable Genetic Programming (CVGP) [6] implements the vertical89

scientific discovery process using Genetic Programming (GP) for symbolic regression over many90

independent variables. The key insight of CVGP is to learn from a customized set of control variable91

experiments; in other words, the experiment data collection adapts to the learning process. This is in92

contrast to the current learning paradigm of most symbolic regression approaches, where they learn93

from a fixed dataset collected a priori.94

In CVGP, first, we hold all independent variables except for one as constants and learn an expression95

that maps the single variable to the dependent variable using GP. GP maintains a pool of candidate96

expressions and improves the fitness of these equations via mating, mutating, and selection over97

several generations. Mapping the dependence of one independent variable is easy. Hence GP can98

usually recover the ground-truth reduced-form equation. Then, CVGP frees one independent variable99

at a time. In each iteration, GP is used to modify the equations learned in previous generations to100

incorporate the new independent variable, via mating, mutating, and selection. Such a procedure101

repeats until all the independent variables have been incorporated into the symbolic expression.102

See figure 3 for the high-level idea of algorithm execution. Theoretically, in the original paper we103

show CVGP as an incremental builder can reduce the exponential-sized search space for candidate104
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Table 1: Median (50%) and 75%-quantile Normalized Mean Squared Error (NMSE) values of the
symbolic expressions found by all the algorithms on several noisy benchmark datasets (Gaussian
noise with zero mean and standard deviation 0.1 is added). Our CVGP finds symbolic expressions
with the smallest NMSEs.

Dataset CVGP (ours) GP DSR PQT VPG GPMeld
configs 50% 75% 50% 75% 50% 75% 50% 75% 50% 75% 50% 75%
(4,4,6) 0.036 0.088 0.038 0.108 1.163 3.714 1.016 1.122 1.087 1.275 1.058 1.374
(5,5,5) 0.076 0.126 0.075 0.102 1.028 2.270 1.983 4.637 1.075 2.811 1.479 2.855
(5,5,8) 0.061 0.118 0.121 0.186 1.004 1.013 1.005 1.006 1.002 1.009 1.108 2.399
(6,6,8) 0.098 0.144 0.104 0.167 1.006 1.027 1.006 1.020 1.009 1.066 1.035 2.671

(6,6,10) 0.055 0.097 0.074 0.132 1.003 1.009 1.005 1.008 1.004 1.015 1.021 1.126
(a) Datasets containing operators {sin, cos, inv,+,−,×}.

(3,2,2) 0.098 0.165 0.108 0.425 0.350 0.713 0.351 1.831 0.439 0.581 0.102 0.597
(4,4,6) 0.078 0.121 0.120 0.305 7.056 16.321 5.093 19.429 2.458 13.762 2.225 3.754
(5,5,5) 0.067 0.230 0.091 0.313 32.45 234.31 36.797 229.529 14.435 46.191 28.440 421.63
(5,5,8) 0.113 0.207 0.119 0.388 195.22 573.33 449.83 565.69 206.06 629.41 363.79 666.57
(6,6,8) 0.170 0.481 0.186 0.727 1.752 3.824 4.887 15.248 2.396 7.051 1.478 6.271

(6,6,10) 0.161 0.251 0.312 0.342 11.678 26.941 5.667 24.042 7.398 25.156 11.513 28.439
(b) Datasets containing operators {sin, cos,+,−,×}.

(3,2,2) 0.049 0.113 0.023 0.166 0.663 2.773 1.002 1.992 0.969 1.310 0.413 2.510
(4,4,6) 0.141 0.220 0.238 0.662 1.031 1.051 1.297 1.463 1.051 1.774 1.093 1.769
(5,5,5) 0.157 0.438 0.195 0.337 1.098 3.617 1.018 5.296 1.012 1.27 1.036 3.617
(5,5,8) 0.122 0.153 0.166 0.186 1.009 1.103 1.017 1.429 1.007 1.132 1.07 2.904
(6,6,8) 0.209 0.590 0.209 0.646 1.003 1.153 1.047 1.134 1.059 1.302 1.029 3.365

(6,6,10) 0.139 0.232 0.073 0.159 1.654 3.408 1.027 1.069 1.009 1.654 1.445 2.106
(c) Datasets containing operators {sin, cos, inv,+,−,×}.

expressions into a polynomial one when fitting a class of symbolic expressions. Experimentally,105

we show CVGP outperforms a number of state-of-the-art approaches on symbolic regression over106

multiple independent variables (see Table 1).107

4 Vertical Scientific Discovery in Modeling Nano-structure Evolution in108

Materials Science109
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We intend to apply the idea of vertical scientific discovery in learning nano-scale defect evolution for110

material under extreme conditions. Nano-scale crystalline defects can appear in different forms in111

these materials. Extreme environments of heat and irradiation can cause these defects to evolve in112

size and position. As shown in the left panel of the figure above, void shaped defects are captured by113

transmission electron microscope (TEM) cameras during in-situ radiation experiments. These defects114

appear in round shapes, and drift in position as demonstrated by the change of angles to respectively,115

as time progresses. They also change size. These changes can affect the physical and mechanical116

properties of the material. For this reason, characterizing these defects is essential in designing new117

materials that can resist adverse environments. Collaborating with materials scientists, we have been118

analyzing terabytes of in-situ TEM videos of this type and have already made scientific discoveries119

[27, 32, 20, 19].120

As a preliminary study, vertical discovery schedules are used to improve the learning of phase-field121

models for dendritic solidification. In the vertical schedule, first the learning is concentrated on a122

subset of model parameters. This is done by feeding the model with designed training data in which123

the remaining parameters do not affect the dynamics of the PDEs. After this phase, the learning is124

expanded to all parameters. The right panel of the figure above demonstrate that learning via the125

vertical schedule is able to identify the correct phase-field model while normal schedules cannot.126
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