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Abstract

We study risk-sensitive reinforcement learning (RL) based on the entropic risk
measure. Although existing works have established non-asymptotic regret guar-
antees for this problem, they leave open an exponential gap between the upper
and lower bounds. We identify the deficiencies in existing algorithms and their
analysis that result in such a gap. To remedy these deficiencies, we investigate
a simple transformation of the risk-sensitive Bellman equations, which we call
the exponential Bellman equation. The exponential Bellman equation inspires us
to develop a novel analysis of Bellman backup procedures in risk-sensitive RL
algorithms, and further motivates the design of a novel exploration mechanism.
We show that these analytic and algorithmic innovations together lead to improved
regret upper bounds over existing ones.

1 Introduction

Risk-sensitive reinforcement learning (RL) is important for practical and high-stake applications,
such as self-driving and robotic surgery. In contrast with standard and risk-neutral RL, it optimizes
some risk measure of cumulative rewards instead of their expectation. One foundational framework
for risk-sensitive RL maximizes the entropic risk measure of the reward, which takes the form of

V π =
1

β
log{Eπ[eβR]},

with respect to the policy π, where β 6= 0 is a given risk parameter and R denotes the cumulative
rewards.

Recently, the works of [20, 21] investigate the online setting of the above risk-sensitive RL problem.
Under K-episode MDPs with horizon length of H , they propose two model-free algorithms, namely
RSVI and RSQ, and prove that their algorithms achieve the regret upper bound (with its informal
form given by)

Regret(K) . e|β|H
2

· e
|β|H − 1

|β|H
√

poly(H) ·K

without assuming knowledge of the transition distribution or access to a simulator. They also provide
a lower bound (informally presented as)

Regret(K) &
e|β|H

′ − 1

|β|H
√

poly(H) ·K

that any algorithm has to incur, where H ′ is a linear function of H . Despite the non-asymptotic
nature of their results, it is not hard to see that a wide gap exists between the two bounds. Specifically,
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the upper bound has an additional e|β|H
2

factor compared to the lower bound, and even worse, this
factor is dominating in the upper bound since the quadratic exponent in e|β|H

2

makes it exponentially
larger than e|β|H−1

|β|H even for moderate values of |β| and H . It is unclear whether the factor of e|β|H
2

is intrinsic in the upper bound.

In this paper, we show that the additional factor in the upper bound is not intrinsic for the upper bound
and can be eliminated by a refined algorithmic design and analysis. We identify two deficiencies
in the existing algorithms and their analysis: (1) the main element of the analysis follows existing
analysis of risk-neutral RL algorithms, which fails to exploit the special structure of the Bellman
equations of risk-sensitive RL; (2) the existing algorithms use an excessively large bonus that results
in the exponential blow-up in the regret upper bound.

To address the above shortcomings, we consider a simple transformation of the Bellman equations
analyzed so far in the literature, which we call the exponential Bellman equation. A distinctive feature
of the exponential Bellman equation is that they associate the instantaneous reward and value function
of the next step in a multiplicative way, rather than in an additive way as in the standard Bellman
equations. From the exponential Bellman equation, we develop a novel analysis of the Bellman
backup procedure for risk-sensitive RL algorithms that are based on the principle of optimism. The
analysis further motivates a novel exploration mechanism called doubly decaying bonus, which helps
the algorithms adapt to their estimation error over each horizon step while at the same time exploring
efficiently. These discoveries enable us to propose two model-free algorithms for RL with the entropic
risk measure based on the novel bonus. By combining the new analysis and bonus design, we prove
that the preceding algorithms attain nearly optimal regret bounds under episodic and finite-horizon
MDPs. Compared to prior results, our regret bounds feature an exponential improvement with respect
to the horizon length and risk parameter, removing the factor of e|β|H

2

from existing upper bounds.
This significantly narrows the gap between upper bounds and the existing lower bound of regret.

In summary, we make the following theoretical contributions in this paper.

1. We investigate the gap between existing upper and lower regret bounds in the context of
risk-sensitive RL, and identify deficiencies of the existing algorithms and analysis;

2. We consider the exponential Bellman equation, which inspires us to propose a novel analysis
of the Bellman backup procedure for RL algorithms based on the entropic risk measure. It
further motivates a novel bonus design called doubly decaying bonus. We then design two
model-free risk-sensitive RL algorithms equipped with the novel bonus.

3. The novel analytic framework and bonus design together enable us to prove that the preced-
ing algorithms achieve nearly optimal regret bounds, which improve upon existing ones by
an exponential factor in terms of the horizon length and risk sensitivity.

2 Related works

The problem of RL with respect to the entropic risk measure is first proposed by the classical work
of [24], and has since inspired a large body of studies [2, 4–8, 13, 16–18, 22, 23, 25, 26, 31, 33, 37,
38, 40, 41, 43]. However, the algorithms from this line of works require knowledge of the transition
kernel or assume access to a simulator of the underlying environment. Theoretical properties of these
algorithms are investigated based on these assumptions, but the results are mostly of asymptotic
nature, which do not shed light on their dependency on key parameters of the environment and agent.

The work of [20] represents the first effort to investigate the setting where transitions are unknown
and simulators of the environment are unavailable. It establishes the first non-asymptotic regret or
sample complexity guarantees under the tabular setting. Building upon [20], the authors of [21]
extend the results to the function approximation setting, by considering linear and general function
approximations of the underlying MDPs. Nevertheless, as discussed in Section 1, both works leave
open an exponential gap between the regret upper and lower bounds, which the present work aims to
address via novel algorithms and analysis motivated by the exponential Bellman equation.

We remark that although the exponential Bellman equation has been previously investigated in
the literature of risk-sensitive RL [2, 5], this is the first time that it is explored for deriving regret
and sample complexity guarantees of risk-sensitive RL algorithms. In Appendix A, we also make
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connections between risk-sensitive RL and distributional RL through the exponential Bellman
equation.

Notations. For a positive integer n, we let [n] := {1, 2, . . . , n}. For two non-negative sequences
{ai} and {bi}, we write ai . bi if there exists a universal constant C > 0 such that ai ≤ Cbi for
all i, and write ai � bi if ai . bi and bi . ai. We use Õ(·) to denote O(·) while hiding logarithmic
factors. For functions f, g : U → R, where U denotes their domain, we write f ≥ g if f(u) ≥ g(u)
for any u ∈ U . We denote by I{·} the indicator function.

3 Problem background

3.1 Episodic and finite-horizon MDP

The setting of episodic Markov decision processes can be denoted by MDP(S,A, H,P,R), where S
is the set of states,A is the set of actions,H ∈ Z>0 is the length of each episode, and P = {Ph}h∈[H]

and R = {rh}h∈[H] are the sets of transition kernels and reward functions, respectively. We let
S := |S| and A := |A|, and we assume S,A < ∞. We let Ph(· | s, a) denote the probability
distribution over successor states of step h+ 1 if action a is executed in state s at step h. We assume
that the reward function rh : S ×A → [0, 1] is deterministic. We also assume that both P andR are
unknown to learning agents.

Under the setting of an episodic MDP, the agent aims to learn the optimal policy by interacting with
the environment throughout K > 0 episodes, described as follows. At the beginning of episode k, an
initial state sk1 is selected by the environment and we assume sk1 stays the same for all k ∈ [K]. In
each step h ∈ [H] of episode k, the agent observes state skh ∈ S, executes an action akh ∈ A, and
receives a reward equal to rh(skh, a

k
h) from the environment. The MDP then transitions into state

skh+1 randomly drawn from the transition kernel Ph(· | skh, akh). The episode terminates at step H + 1,
in which the agent does not take actions or receive rewards. We define a policy π = {πh}h∈[H] as a
collection of functions πh : S → A, where πh(s) is the action that the agent takes in state s at step h
of the episode.

3.2 Risk-sensitive RL

For each h ∈ [H], we define the value function V πh : S → R of a policy π as the cumulative utility
of the agent at state s of step h under the entropic risk measure, assuming that the agent commits to
policy π in later steps. Specifically, we define

∀(h, s) ∈ [H]× S, V πh (s) :=
1

β
log
{
E
[
eβ

∑H
i=h ri(si,πi(si))

∣∣∣ sh = s
]}

, (1)

where β 6= 0 is a given risk parameter. The agent aims to maximize his cumulative utility in step
1, that is, to find a policy π such that V π1 (s) is maximized for all state s ∈ S. Under this setting, if
β > 0, the agent is risk-seeking and if β < 0, the agent is risk-averse. Furthermore, as β → 0 the
agent tends to be risk-neutral and V πh (s) tends to the classical value function.

We may also define the action-value function Qπh : S ×A → R, which is the cumulative utility of the
agent who follows policy π, conditional on a particular state-action pair; formally, this is given by

∀(h, s, a) ∈ [H]× S ×A, Qπh(s, a) :=
1

β
log
{
E
[
eβ

∑H
i=h ri(si,ai)

∣∣∣ sh = s, ah = a
]}

, (2)

Under some mild regularity conditions [2], there always exists an optimal policy, which we denote as
π∗, that yields the optimal value V ∗h (s) := supπ V

π
h (s) for all (h, s) ∈ [H]× S .

Bellman equations. For all (s, a) ∈ S × A, the Bellman equation associated with a policy π is
given by

Qπh(s, a) = rh(s, a) +
1

β
log
{
Es′∼Ph(· | s,a)

[
eβ·V

π
h+1(s′)

]}
, (3)

V πh (s) = Qπh(s, π(s)), V πH+1(s) = 0
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for h ∈ [H]. In Equation (3), it can be seen that the action value Qπh of step h is a non-linear function
of the value function V πh+1 of the later step. This is in contrast with the linear Bellman equations in
the risk-neutral setting (β → 0), where Qπh(s, a) = rh(s, a) +Es′ [V πh+1(s′)]. Based on Equation (3),
for h ∈ [H], the Bellman optimality equation is given by

Q∗h(s, a) = rh(s, a) +
1

β
log
{
Es′∼Ph(· | s,a)

[
eβ·V

∗
h+1(s′)

]}
, (4)

V ∗h (s) = max
a∈A

Q∗h(s, a), V ∗H+1(s) = 0.

Exponential Bellman equation. We introduce the exponential Bellman equation, which is an
exponential transformation of Equations (3) and (4) (by taking exponential on both sides): for any
policy π and tuple (h, s, a), we have

eβ·Q
π
h(s,a) = Es′∼Ph(· | s,a)

[
eβ(rh(s,a)+V πh+1(s′))

]
. (5)

When π = π∗, we obtain the corresponding optimality equation

eβ·Q
∗
h(s,a) = Es′∼Ph(· | s,a)

[
eβ(rh(s,a)+V ∗h+1(s′))

]
. (6)

Note that Equation (5) associates the current and future cumulative utilities (Qπh and V πh+1) in a
multiplicative way. An implication of Equation (5) is that one may estimate eβ·Q

π
h(s,a) by a quantity

of the form

wh(s, a) = SampAvg({eβ(rh(sh,ah)+Vh+1(sh+1)) : (sh, ah) = (s, a)}) (7)

given some estimate of the value function Vh+1. Here, we denote by SampAvg(X ) the sample
average computed over elements in the set X throughout past episodes, and it can be seen as an
empirical MGF of cumulative rewards from step h + 1. Equation (5) also suggests the following
policy improvement procedure for a risk-sensitive policy π:

πh(s)← argmax
a′∈A

Qh(s, a′) =

{
argmaxa′∈A e

β·Qh(s,a′), if β > 0

argmina′∈A e
β·Qh(s,a′), if β < 0,

(8)

where Qh denotes some estimated action-value function, possibly obtained from the quantity wh.

In the next section, we will discuss how the exponential Bellman equation (5) inspires the development
of a novel analytic framework for risk-sensitive RL. Before proceeding, we introduce a performance
metric for the agent. For each episode k, recall that sk1 is the initial state chosen by the environment and
let πk be the policy of the agent at the beginning of episode k. Then the difference V ∗1 (sk1)−V πk1 (sk1)
is called the regret of the agent in episode k. Therefore, after K episodes, the total regret for the
agent is given by

Regret(K) :=
∑
k∈[K]

[V ∗1 (sk1)− V π
k

1 (sk1)], (9)

which serves as the key performance metric studied in this paper.

4 Analysis of risk-sensitive RL

4.1 Mechanism of existing analysis

In this section, we provide an informal overview of the mechanism underlying the existing analysis of
risk-sensitive RL. Let us focus on the case β > 0 for simplicity of exposition; similar reasoning holds
for β < 0. A key step in the existing regret analysis of RL algorithms is to establish a recursion on
the difference V kh − V π

k

h over h ∈ [H], where V kh is the iterate of an algorithm in step h of episode k
and V π

k

h is the value function of the policy used in episode k. Such approach can be commonly found
in the literature of algorithms that use the upper confidence bound [27, 28], in which the recursion
takes the form of

V kh − V π
k

h ≤ V kh+1 − V π
k

h+1 + ψkh, (10)

4



for β → 0 and some quantity ψkh. The work of [20], which studies the risk-sensitive setting under
the entropic risk measure, also follows this approach and derives regret bounds by establishing the
recursion of the form

V kh − V π
k

h ≤ eβH
(
V kh+1 − V π

k

h+1

)
+

1

β
b̃kh + eβHm̃k

h, (11)

where b̃kh denotes the bonus which enforces the upper confidence bound and leads to the inequality
V kh ≥ V πh for any policy π, and m̃k

h is part of a martingale difference sequence. The derivation of
Equation (11) is based on the Bellman equation (3), which shows that the action value Qπ

k

h is the
sum of the reward rh and the entropic risk measure of V π

k

h+1. Following [20], we may then unroll the
recursion (11) from h = H to h = 1 to get

V k1 − V π
k

1 ≤ 1

β
eβH

2 ∑
h

b̃kh + eβH
2 ∑

h

m̃k
h, (12)

given that V kH+1 = V π
k

H+1 = 0. Using the inequality Regret(K) ≤
∑
k(V k1 − V π

k

1 ),
∑
k,h b̃

k
h .

(eβH − 1)
√
K and

∑
k,h m̃

k
h .

√
K, we obtain the regret bound in [20] as Regret(K) .

eβH
2 eβH−1

βH

√
K. Therefore, it can be seen that the dominating factor eβH

2

in their regret bound
originates in Equation (12), which can be further traced back to the exponential factor eβH in the
error dynamics (11).

4.2 Refined approach via exponential Bellman equation

While the existing analysis in (11) is motivated by the Bellman equation of the form given in (3), we
propose to work on the exponential Bellman equation (5). Equation (5) operates on the quantities
eβ·Q

π
h and eβ·V

π
h+1 , which can be thought of as the MGFs of the current and future values, while the

reward function rh is involved as a multiplicative term. This motivates us to derive a new recursion:

eβ·V
k
h − eβ·V

πk

h ≤ eβ·r
k
h
(
eβ·V

k
h+1 − eβ·V

πk

h+1
)

+ bkh +mk
h, (13)

where bkh,m
k
h denote some bonus and martingale terms, respectively, and rkh stands for the reward in

step h of episode k. Unrolling Equation (13) yields

eβ·V
k
1 − eβ·V

πk

1 ≤
∑
h

eβ·D
k
h(bkh +mk

h), (14)

where Dk
h =

∑
i∈[h−1] r

k
i . In words, the error of eβ·V

k
1 − eβ·V π

k

1 is bounded by the weighted sum

of bonus and martingale difference terms, where the weights are given by eβ·D
k
h , the exponential

rewards up to step h− 1. We may then apply a localized linearization of the logarithmic function,

which gives Regret(K) ≤ 1
β

∑
k(eβ·V

k
1 − eβ·V π

k

1 ), and arrives at a regret upper bound (the formal
regret bounds will be established in Theorems 1 and 2 below). Different from Equation (11) where
rewards are only implicitly encoded in V kh , in Equation (13) rewards are explicitly involved in the
error dynamics via an exponential term.

To see why Equation (13) is intuitively correct, we may divide both sides of the equation by β and
take β → 0. By doing so, we should expect to obtain quantities from the error dynamics (10) of
risk-neutral RL. Since the function fβ(x) = (eβx − 1)/β satisfies that fβ(x)→ x as β → 0 for any
fixed x, we have

lim
β→0

1

β
(eβ·V

k
h − eβ·V

πk

h ) = V kh − V π
k

h ,

lim
β→0

1

β
(eβ·r

k
h(eβ·V

k
h+1 − eβ·V

πk

h+1)) = rkh + V kh+1 − (rkh + V π
k

h+1) = V kh+1 − V π
k

h+1,

recovering terms in (10). Therefore, the recursion (13) can be seen as generalizing those in the
analysis of risk-neutral RL.

By comparing Equations (13) and (11), we see that while both error dynamics are derived from the
same underlying Bellman equation, they inspire drastically different forms of recursion. Note that
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Algorithm 1 RSVI2
1: Qh(·, ·), Vh(·)← H − h+ 1, Nh(·, ·)← 0 and wh(·, ·)← 0 for all h ∈ [H + 1]
2: for episode k = 1, . . . ,K do
3: for step h = H, . . . , 1 do
4: for (s, a) ∈ S ×A such that Nh(s, a) ≥ 1 do
5: wh(s, a)← 1

Nh(s,a)

∑
τ∈[k−1] I{(sτh, aτh) = (s, a)} · eβ[rh(s,a)+Vh+1(sτh+1)]

6: bh(s, a)← c|eβ(H−h+1) − 1|
√

S log(HSAK/δ)
Nh(s,a) where c > 0 is a universal constant

7: Gh(s, a)←
{

min{wh(s, a) + bh(s, a), eβ(H−h+1)}, if β > 0

max{wh(s, a)− bh(s, a), eβ(H−h+1)}, if β < 0

8: Vh(s)← maxa′∈A
1
β log{Gh(s, a′)}

9: end for
10: end for
11: ∀h ∈ [H], take ah ← argmaxa′∈A

1
β log{Gh(sh, a

′)}; observe rh(sh, ah), sh+1

12: Add 1 to Nh(sh, ah)
13: end for

the multiplicative factor eβ·r
k
h in Equation (13) is milder than the factor eβH in Equation (11), since

rkh ∈ [0, 1]. This is the source of an improvement of our refined analysis over existing works. On the
other hand, the success of applying the error dynamics (13) in our analysis crucially depends on the

choice of bonus terms {bkh}, as an improper choice would blow up the error eβ·V
k
1 − eβ·V π

k

1 . This
observation motivates our novel bonus design, as we explain next in Section 5.

5 Algorithms

5.1 Overview of algorithms

In this section, we propose two model-free algorithms for RL with the entropic risk measure. We first
present RSVI2, which is based on value iteration, in Algorithm 1. The algorithm has two main stages:
it first estimates the value function using data accumulated up to episode k − 1 (Line 3–10) and then
executes the estimated policy to collect new trajectory (Line 11). In value function estimation, it
computes the weights wh, or the empirical MGF of some estimated cumulative rewards evaluated
at β, which can be seen as a simple moving average over τ ∈ [k − 1]. Therefore, Line 5 functions
as a concrete implementation of Equation (7) where the sample average is instantiated as a simple
moving average. Then in Line 7, it computes an augmented estimate Gh by combining wh with a
bonus term bh (defined in Line 6). This is followed by thresholding to put Gh in the proper range.
Note that Gh is an optimistic estimator of the quantity eβ·Q

π
h in Equation (5): the construction of

Gh is augmented by bh so that it encourages exploration of rarely visited state-action pairs in future
episodes, and thereby follows the principle of Risk-Sensitive Optimism in the Face of Uncertainty
[20]. When β < 0, the bonus is subtracted from wh, since a higher level of optimism corresponds to
a smaller value of the estimate. In addition, Line 11 follows the reasoning of policy improvement
suggested in Equation (8).

Next, we introduce RSQ2 in Algorithm 2, which is based on Q-learning. Similar to Algorithm 1, it
consists of value estimation (Line 8–11) and policy execution (Line 6) steps. By combining Lines 9
and 10, we see that Algorithm 2 computes the optimistic estimateGh as a projection of an exponential
moving average of empirical MGFs:

Gh(sh, ah)← Πh{EMA({eβ[rh(sh,ah)+Vh+1(sh+1)]})}, (15)

where Πh denotes a projection that depends on step h. In particular, Line 9 can be interpreted as a
computation of empirical MGFs evaluated at β and thus a concrete implementation of Equation (7)
using an exponential moving average. This is in contrast with the simple moving average update in
Algorithm 1.

Although Algorithms 1 and 2 are inspired by RSVI and RSQ of [20], respectively, we note that the
main novelty of our algorithms lies in the bonus terms (bh in Algorithm 1 and bh,t in Algorithm 2),
which we call the doubly decaying bonus. We discuss this new bonus design in the following.
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Algorithm 2 RSQ2
1: Qh(·, ·), Vh(·)← H − h+ 1 if β > 0; Qh(·, ·), Vh(·)← 0 otherwise, for all h ∈ [H + 1]
2: Nh(·, ·)← 0 for all h ∈ [H]; αu ← H+1

H+u for u ∈ Z
3: for episode k = 1, . . . ,K do
4: Receive the initial state s1

5: for step h = 1, . . . ,H do
6: Take action ah ← argmaxa′∈A

1
β log{Gh(sh, a

′)} and observe rh(sh, ah) and sh+1

7: Add 1 to Nh(sh, ah); t← Nh(sh, ah)

8: bh,t ← c|eβ(H−h+1) − 1|
√

H log(HSAK/δ)
t for some universal constant c > 0

9: wh(sh, ah)← (1− αt) ·Gh(sh, ah) + αt · eβ[rh(sh,ah)+Vh+1(sh+1)]

10: Gh(sh, ah)←
{

min{wh(sh, ah) + αtbh,t, e
β(H−h+1)}, if β > 0

max{wh(sh, ah)− αtbh,t, eβ(H−h+1)}, if β < 0

11: Vh(sh)← maxa′∈A
1
β log{Gh(sh, a

′)}
12: end for
13: end for

5.2 Doubly decaying bonus

Let us focus on β > 0 for this discussion. In optimism-based algorithms, the bonus term is used
to enforce the upper confidence bound in order to encourage sufficient exploration in uncertain
environments. It takes the form of a multiplier times a factor that is inversely proportional to visit
counts {Nh}. Our bonus follows this structure and is given by

bh(s, a) ∝ (eβ(H−h+1) − 1)

√
1

Nh(s, a)
, (16)

ignoring factors that do not vary in (h, s, a). In Equation (16), the quantity eβ(H−h+1) plays
the role of the multiplier and

√
1/Nh(s, a) is the factor that decreases in the visit count. While

the component
√

1/Nh(s, a) is common in bonus terms, our new bonus is designed to shrink its
multiplier deterministically and exponentially across the horizon steps, as eβ(H−h+1) − 1 decreases
from eβH − 1 in step h = 1 to eβ − 1 in step h = H . This is in sharp contrast with the bonus terms
typically found in risk-neutral RL algorithms, where the multipliers are kept constant in h (usually as
a constant multiple of H). Furthermore, our bonus design is also in contrast with that in RSVI and
RSQ proposed by [20], whose multiplier is eβH − 1 and kept fixed along the horizon. Because bh
decays both in the visit countNh(s, a) (across episodes) and the multiplier eβ(H−h+1)−1 (across the
horizon), we name it as doubly decaying bonus. We remark that this is a novel feature of Algorithms 1
and 2, compared to RSVI and RSQ. Let us discuss how this new exploration mechanism is motivated
from the error dynamics (14).

Motivation of exponential decay. From Equation (14), we see that the error of the iterate is
bounded by the sum of weighted bonus terms, where the weights are of the form eβ·Dh and Dh ∈
[0, h− 1]. Choosing bh ∝ eβ(H−h+1)− 1 ensures that the weighted bonus is on the order of eβH − 1
at maximum. On the other hand, if we use the bonus as in [20], which is proportional to eβH − 1,
then we would end up with a multiplicative factor e2βH − 1 in regret, which is exponentially larger
than eβH − 1. An alternative way to understanding the exponential decay of our bonus is as follows.
At step h, the estimated value function is Vh ∈ [0, H−h+ 1], which implies eβ·Vh ∈ [1, eβ(H−h+1)].
The iterate Gh (of Algorithm 1 or 2) is used to estimate eβ·Q

π
h , with its estimation error given by

|eβ·Q
π
h −Gh| ≈ |eβ·Q

π
h − P̂heβ(rh+Vh+1)| ≤ eβ(H−h+1) − 1,

where P̂h denotes an empirical average operator over historical data in step h. Therefore, the
estimation error of Gh shrinks exponentially across the horizon. Since bonus is used to compensate
for and dominate the estimation error, the minimal order of bh required is thus eβ(H−h+1)− 1, which
is exactly the multiplier in Equation (16).
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As a passing note, we remark that the decaying multiplier is not necessary in risk-neutral RL
algorithms, since the estimation error therein satisfies |Qh − P̂h(rh + Vh+1)| ≤ H − h+ 1, which is
upper bounded by H for all h ∈ [H]. This implies that it suffices to simply set the bonus multiplier
as a constant multiple of H . In contrast, as we have explained, the estimation error of our algorithms
decays exponentially in step h, and an adaptive and exponentially decaying bonus is needed.

Comparison with Bernstein-type bonus. We also compare our bonus in Equation (16) with the
Bernstein-type bonus commonly used to improve sample efficiency of risk-neutral RL algorithms
[1, 27]. The Bernstein-type bonus takes the form of

b̄h(s, a) ∝

√
H + V̂ar(Vh+1)

Nh(s, a)
+ o

(√
1

Nh(s, a)

)
, (17)

where V̂ar(·) denotes an empirical variance operator over historical data and o(·) denotes a vanishing
term as Nh(s, a) → ∞. Our bonus in Equation (16) is different from the Bernstein-type bonus in
Equation (17) in mechanism: our bonus features the multiplier eβ(H−h+1)−1 which decays exponen-

tially and deterministically over h ∈ [H], whereas the Bernstein-type bonus uses
√
H + V̂ar(Vh+1)

as the multiplier (ignoring the vanishing term). The term V̂ar(Vh+1) depends on the trajectory of the
learning process. Therefore the multiplier is stochastic and stays on the polynomial order of H across
the horizon. Moreover, it is unclear how the multiplier behaves in terms of step h.

6 Main results

In this section, we present and discuss our main theoretical results for Algorithms 1 and 2.
Theorem 1. For any δ ∈ (0, 1], with probability at least 1− δ there exists a universal constant c > 0
(used in Algorithm 1), such that the regret of Algorithm 1 is bounded by

Regret(K) .
e|β|H − 1

|β|H

√
H4S2AK log2(HSAK/δ).

Theorem 2. For any δ ∈ (0, 1], with probability at least 1− δ and when K is sufficiently large, there
exists a universal constant c > 0 (used in Algorithm 2) such that the regret of Algorithm 2 obeys

Regret(K) .
e|β|H − 1

|β|H
√
H3SAK log(HSAK/δ).

The proof of the two theorems are provided in Appendices B and C, respectively. Note that the above
results generalize those in the literature of risk-neutral RL: when β → 0, we recover the same regret
bounds of LSVI in [28] and Q-learning in [27].

Let us discuss the connections between our results and those in [20]. The work of [20] proposes two
algorithms, RSVI and RSQ, that attain the regret bound

Regret(K) . e|β|H
2

· e
|β|H − 1

|β|H
√

poly(H) ·K, (18)

and a lower bound incurred by any algorithm

Regret(K) &
e|β|H

′ − 1

|β|H
√

poly(H) ·K, (19)

where H ′ is a linear function in H; for simplicity of presentation, we exclude polynomial dependen-
cies on other parameters and logarithmic factors from the two bounds. In particular, the proof of the
lower bound is based on reducing an hard instance of MDP to a multi-armed bandit. It is a priori
unclear whether the extra exponential factor e|β|H

2

in the upper bound (18) is fundamental in the
MDP setting, or is due to suboptimal analysis or algorithmic design. We would like to mention that
although one trivial way of avoiding the e|β|H

2

factor in the upper bound (18) is to use a sufficiently
small |β| in the algorithms of [20] (e.g., |β| ≤ 1

H2 so that e|β|H
2

. 1), such a small |β| defeats the
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very purpose of have an appropriate degree of risk-sensitivity in the algorithms. Hence, an answer for
all β 6= 0 would be desirable.

In view of Theorems 1 and 2, we see that our Algorithms 1 and 2 achieve regret bounds that are
exponentially sharper than those of RSVI and RSQ. In particular, our results eliminate the e|β|H

2

factor from Equation (18) thanks to the novel analysis and doubly decaying bonus in our algorithms,
which are inspired by the exponential Bellman equation (5). As a result, our bounds significantly
narrow the gap between upper bounds and the lower bound (19).

Acknowledgments and Disclosure of Funding

We thank the reviewers for their constructive feedback. Z. Yang acknowledges Simons Institute
(Theory of Reinforcement Learning). Y. Chen is partially supported by NSF grant CCF-1704828
and CAREER Award CCF-2047910. Z. Wang acknowledges National Science Foundation (Awards
2048075, 2008827, 2015568, 1934931), Simons Institute (Theory of Reinforcement Learning),
Amazon, J.P. Morgan, and Two Sigma for their supports.

References
[1] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for

reinforcement learning. In International Conference on Machine Learning, pages 263–272,
2017.

[2] Nicole Bäuerle and Ulrich Rieder. More risk-sensitive Markov decision processes. Mathematics
of Operations Research, 39(1):105–120, 2014.

[3] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. In International Conference on Machine Learning, pages 449–458. PMLR,
2017.

[4] Vivek S. Borkar. A sensitivity formula for risk-sensitive cost and the actor-critic algorithm.
Systems & Control Letters, 44(5):339–346, 2001.

[5] Vivek S. Borkar. Q-learning for risk-sensitive control. Mathematics of Operations Research,
27(2):294–311, 2002.

[6] Vivek S. Borkar. Learning algorithms for risk-sensitive control. In Proceedings of the 19th
International Symposium on Mathematical Theory of Networks and Systems–MTNS, pages
55–60, 2010.

[7] Vivek S. Borkar and Sean P. Meyn. Risk-sensitive optimal control for Markov decision processes
with monotone cost. Mathematics of Operations Research, 27(1):192–209, 2002.

[8] Rolando Cavazos-Cadena and Daniel Hernández-Hernández. Discounted approximations for
risk-sensitive average criteria in Markov decision chains with finite state space. Mathematics of
Operations Research, 36(1):133–146, 2011.

[9] Lin Chen, Yifei Min, Mikhail Belkin, and Amin Karbasi. Multiple descent: Design your own
generalization curve. In Advances in Neural Information Processing Systems, 2021.

[10] Lin Chen, Bruno Scherrer, and Peter L Bartlett. Infinite-horizon offline reinforcement learning
with linear function approximation: Curse of dimensionality and algorithm. arXiv preprint
arXiv:2103.09847, 2021.

[11] Lin Chen and Sheng Xu. Deep neural tangent kernel and laplace kernel have the same rkhs. In
International Conference on Learning Representations, 2021.

[12] Lin Chen, Qian Yu, Hannah Lawrence, and Amin Karbasi. Minimax regret of switching-
constrained online convex optimization: No phase transition. In Advances in Neural Information
Processing Systems, 2020.

9



[13] Stefano P. Coraluppi and Steven I. Marcus. Risk-sensitive, minimax, and mixed risk-
neutral/minimax control of Markov decision processes. In Stochastic Analysis, Control, Opti-
mization and Applications, pages 21–40. Springer, 1999.

[14] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pages
1096–1105. PMLR, 2018.

[15] Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforce-
ment learning with quantile regression. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[16] Giovanni B. Di Masi and Lukasz Stettner. Risk-sensitive control of discrete-time Markov
processes with infinite horizon. SIAM Journal on Control and Optimization, 38(1):61–78, 1999.

[17] Giovanni B. Di Masi and Lukasz Stettner. Infinite horizon risk sensitive control of discrete time
Markov processes with small risk. Systems & Control Letters, 40(1):15–20, 2000.

[18] Giovanni B. Di Masi and Łukasz Stettner. Infinite horizon risk sensitive control of discrete time
Markov processes under minorization property. SIAM Journal on Control and Optimization,
46(1):231–252, 2007.

[19] Amir-massoud Farahmand. Value function in frequency domain and the characteristic value
iteration algorithm. In Advances in Neural Information Processing Systems, 2019.

[20] Yingjie Fei, Zhuoran Yang, Yudong Chen, Zhaoran Wang, and Qiaomin Xie. Risk-sensitive
reinforcement learning: Near-optimal risk-sample tradeoff in regret. In Advances in Neural
Information Processing Systems, 2020.

[21] Yingjie Fei, Zhuoran Yang, and Zhaoran Wang. Risk-sensitive reinforcement learning with
function approximation: A debiasing approach. In International Conference on Machine
Learning, pages 3198–3207. PMLR, 2021.

[22] Wendell H Fleming and William M McEneaney. Risk-sensitive control on an infinite time
horizon. SIAM Journal on Control and Optimization, 33(6):1881–1915, 1995.

[23] Daniel Hernández-Hernández and Steven I. Marcus. Risk sensitive control of Markov processes
in countable state space. Systems & Control Letters, 29(3):147–155, 1996.

[24] Ronald A. Howard and James E. Matheson. Risk-sensitive Markov decision processes. Man-
agement Science, 18(7):356–369, 1972.

[25] Wenjie Huang and William B Haskell. Stochastic approximation for risk-aware markov decision
processes. IEEE Transactions on Automatic Control, 66(3):1314–1320, 2020.
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