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ABSTRACT
Knowledge tracing (KT) is a crucial task in online learning, aimed at
tracing and predicting each student’s knowledge states throughout
their learning process. Over the past decade, it has garnered wide-
spread attention due to it provides the potential for more tailored
and adaptive online learning experiences. Although most current
KT methodologies emphasize optimizing network structures to en-
hance predictive accuracy for future student performance, they of-
ten neglect anomalous interactions in students’ learning processes,
whichmay arise from low data quality (i.e., inferior question quality)
and abnormal student behaviors (i.e., guessing andmistakes). To this
end, in this paper, we propose a novel framework, termed HD-KT,
designed to enhance the robustness of existing KT methodologies
with Hybrid learning interactions Denoising approach. Specifi-
cally, we introduce two detectors for anomalous learning interac-
tions, namely knowledge state-guided anomaly detector and stu-
dent profile-guided anomaly detector. In the first detection module,
we design a sequential autoencoder to identify anomalous learning
interactions by detecting atypical student knowledge states. In the
second module, we incorporate an attention mechanism by model-
ing a student’s long-term profile to capture irregular interactions.
Extensive experiments on four real-world benchmark datasets have
decisively shown our HD-KT markedly boosts the robustness of
numerous prevailing KT models, consequently increasing the accu-
racy of future student performance predictions. Additionally, our
case studies highlight the versatility of HD-KT in addressing diverse
downstream tasks, such as exercise quality analysis and learning
behavior-based student clustering.

KEYWORDS
Intelligent education, online learning, knowledge tracing, anomaly
detection

1 INTRODUCTION
In recent years, online learning has seen significant growth [28],
delivering substantial assistance to educators in their teachingmeth-
ods and empowering students in their learning journeys [27, 36].
Knowledge tracking (KT) stands as a pivotal task in online learn-
ing, focusing on tracing students’ knowledge states through their
sequential exercises on various knowledge concepts, ultimately
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enabling us to predict their future performance [6, 34, 44]. Conse-
quently, online learning systems employ KT to provide educators
and students with a comprehensive understanding of their strengths
and weaknesses in mastering knowledge, as well as the patterns in
students’ learning behaviors. This, in turn, enables the delivery of
more tailored and adaptive online learning services [24].

In the realm of KT, the pivotal aspect is modeling the learning
interaction sequences between students and exercises to capture
the evolving states of student knowledge. Traditional approaches,
such as Bayesian Knowledge Tracing (BKT) [6] and its variants [51,
16], employ the Hidden Markov Process for this purpose. Over the
past decade, with the rapid advancements in deep learning, neural
KT models (KTMs) utilizing architectures like recurrent neural net-
works (RNNs) and transformers have been introduced, elevating the
efficacy of KT [35, 17, 15]. While most current approaches prioritize
optimizing network structures to boost the predictive accuracy of fu-
ture student performance, they frequently overlook the anomalous
interactions in students’ learning processes, thereby compromising
the reliability of inferred students’ knowledge states. Such anoma-
lous learning interactions might stem from low question quality or
abnormal student behaviors. For instance, as illustrated in Figure 1,
when a student presents two conflicting responses for exercise 𝑒6
over a short period, it is reasonable to deduce that one of these
interactions constitutes data noise. Meanwhile, at the 5-th moment,
as diagnosed by the KTM, the student exhibits a high mastery level
on “Square Root”, however, he/she mistakenly answers exercise
𝑒4 incorrectly. This anomalous learning interaction could be at-
tributed to either the student’s inadvertence or the poor quality
of exercise 𝑒4, subsequently resulting in an inaccurate inference
regarding the student’s state of this particular concept. To delve
deeper into the impact of anomalous interactions on KTMs, we
introduced random noise into the ASSISTment12 dataset [8] by
randomly learning interactions and inverting the corresponding
responses. Subsequently, we employed the DKT method to infer
students’ knowledge proficiency and predict their future perfor-
mance at the next time step. As shown in Figure 2, with the rise
of anomalous data, there is a notable increase in the variability of
students’ proficiency states and the AUC metric declines by 2.04%.

Indeed, identifying anomalies within students’ learning interac-
tions and subsequently elevating the performance of KTMs presents
a significant challenge, particularly in light of our absence of his-
torically labeled anomalous data. To this end, in this paper, we
propose a novel framework, namely HD-KT, designed to enhance
the robustness of existing KTMs withHybrid learning interactions
Denoising approach. Specifically, we start with an embedding layer
to learn the representations for students, exercises, and concepts
based on the student’s learning sequence. Then, we design two
novel detectors for anomalous learning interactions, namely knowl-
edge state-guided anomaly detector and student profile-guided
anomaly detector. In the first detector, a sequential variational au-
toencoder is crafted to identify anomalous learning interactions by
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Figure 1: The illustrative examples of a sequence of interactions for a student learning online and the corresponding diagnosed
knowledge states. The record comprises 9 learning interactions, spanning 6 exercises and encompassing 5 knowledge concepts.
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Figure 2: The impact of different proportions of noise data on
theDKTmethod [35] in theASSISTment12 dataset. The range
of change in knowledge proficiency denotes the maximum
rate of change in each student’s mastery level for different
knowledge concepts within a learning process.
detecting atypical student knowledge states. In the second detec-
tor, we present an effective attention mechanism, integrated with
modeling students’ long-term characteristics, to capture irregular
interactions. In particular, both modules modeling different aspects
of anomaly perception are jointly exploited to denoise and refine the
sequential exercising behaviors of learners. Subsequently, we intro-
duce the KTM adaptor, which allows the integration of different KT
models is conducted to realize the prediction of the future response
performance of students. Extensive experiments on four real-world
benchmark datasets have decisively shownHD-KTmarkedly boosts
the robustness of numerous prevailing KT models, consequently
increasing the accuracy of future student performance predictions.
Additionally, our case studies highlight the versatility of HD-KT
in addressing diverse downstream tasks, such as exercise quality
analysis and learning behavior-based student clustering.
2 RELATEDWORK
2.1 Knowledge Tracing
Researchers have explored different modes of KT conduction. Ex-
isting KT methods can be divided into two types: probabilistic or
logistic model-based traditional methods and deep learning-based
methods. Probabilistic model-based methods generally define a
student’s knowledge states as a binary variable and use Hidden
Markov Model to estimate the student’s conceptual mastery level,
and the representatives include BKT [6] and its variants [14]. Lo-
gistic model-based methods mainly estimate student performance

by usually learning a logistic function, based on different factors in
some students who solve the same set of problems, and the represen-
tatives include Performance Factor Analysis [33] and Learning Factor
Analysis [4]. Differently, deep learning-based KT methods leverage
various neural network techniques to solve the sequential predic-
tion task of the student answering exercises for tracing the student’s
knowledge states, which are commonly implicit in the hidden states
of models. The representatives include the RNN-based method
DKT [35], memory-augmented methods (e.g., DKVMN [53]), atten-
tion mechanism-based methods [29, 9], transformer-based meth-
ods [17, 15] and graph neural network-based methods [40, 39, 46].

Among them, some KT methods not only focus on designing
novel network architectures but also try to solve some intrinsic
difficulties in KT. For example, CL4KT [20] and CMKT [25] aim
to address the student-exercise interaction sparseness problem;
ATKT [10] and DLKT [12] pursue to improve model generaliza-
tion performance; LPKT [38], HawkesKT [42] and CT-NCM [26]
attempt to model the forgetting behaviors of students during the
learning process; DTransformer [48] was proposed to obtain stable
knowledge state estimation and tracing, instead of only improving
the prediction performance, by inventing a new training paradigm.
It can be observed that many intrinsic difficulties (including sparse-
ness, forgetting, stable tracing, and so on) in KT have been well
solved, but how to overcome the influence caused by the abnormal
conditions that occur among students during the online learning
process has been less explored. The abnormal conditions may arise
from low data quality and abnormal student behaviors, which is
ubiquitous in online learning system and will affect the accuracy
and interpretability of KT tasks, and thus it is urgent for us to
develop corresponding KT methods to solve this difficulty.

2.2 Anomaly Detection
Anomaly detection is an important research topic with broad appli-
cation prospects. For example, in the recommendation system, there
are certain abnormal behaviors in the user’s click sequence (such
as clicking on a product that he does not like), which will affect the
recommendation of the next item for the user [55, 50]. In industry,
researchers detect whether abnormalities occur in the sensors to
improve production efficiency [3, 37, 30]. Anomaly detection has
been applied for various types of data. Here we focus on anomaly
detection for time series data. These existing researches can be
divided into prediction-based methods [7, 54] and reconstruction-
based methods [21, 41]. Prediction-based models utilize advanced
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machine learning components to predict the future variable per-
formance based on the historical time series through modeling the
spatiotemporal correlation between variables in time series data.
The abnormality is detected through prediction probabilities. In
order to improve the accuracy of abnormality detection, a variety
of discriminant models attempt to better learn the complex relation-
ship between variables to enhance the prediction performance. For
example, Deng and Hooi [7] proposed a graph neural network based
prediction model to capture complex inter-sensor relationships to
detect and explain anomalies that deviate from these relationships.
Zhao et al. [54] combined feature-oriented graph attention network
(GAT) and time-oriented GAT to handle spatial dependence and
temporal dependence in predicting. Reconstruction-based methods
pursue precise representations of the entire time series data for data
reconstruction, and detect anomalies according to the difficulty of
reconstruction. To be specific, it is more difficult to reconstruct ab-
normal data and less difficult to reconstruct normal data. Therefore,
this category pursues to learn robust and accurate representations
of input data for reconstructing input data. For example, Li et al. [21]
used the generative adversarial network (GAN) framework with
long short-term memory (LSTM) as the basic unit to accurately
reconstruct input data by considering the entire set of variables
concurrently. In the literature [41], the proposed OmniAnomaly
uses stochastic recurrent neural networks (RNN) to find robust rep-
resentations for multivariate time series.Audibert et al. [2] proposed
an AutoEncoder architecture with adversarial learning inspired by
GANs. Recent work [1] exploits spectral analysis of latent represen-
tations and produces simultaneous representations of multivariate
data. However, to the best of our knowledge, no researchers have
head-on addressed the anomaly issue in knowledge tracing tasks.

3 PROBLEM DEFINITION
In this section, we formally define the problem of knowledge trac-
ing (KT). Suppose there is a set of 𝑁 students, S = {𝑠1, 𝑠2, . . . , 𝑠𝑁 },
a set of 𝑀 exercises, E = {𝑒1, 𝑒2, . . . , 𝑒𝑀 }, and s set of 𝐶 knowl-
edge concepts, K = {𝑘1, 𝑘2, . . . , 𝑘𝐶 }. Each exercise is associated
with specific knowledge concepts and the 𝑄-matrix 𝑄 = {𝑞𝑖 𝑗 ∈
{0, 1}}𝑀×𝐶 is utilized to indicate the relationship between exercises
and knowledge concepts, where 𝑞𝑖 𝑗 = 1 if exercise 𝑒𝑖 involves con-
cept 𝑘 𝑗 and 𝑞𝑖 𝑗 = 0 otherwise. For the exercise-solving sequence
for each student during the learning process, we denote it with
R = {(𝑒1, 𝑘1, 𝑟1), (𝑒2, 𝑘2, 𝑟2), . . . , (𝑒𝑇 , 𝑘𝑇 , 𝑟𝑇 )}, where the triplet
(𝑒𝑡 , 𝑘𝑡 , 𝑟𝑡 ) is the 𝑡-th learning interaction behavior, and 𝑒𝑡 ∈ E,
𝑘𝑡 ∈ K , 𝑟𝑡 ∈ {0, 1} represent the answered question, the related
knowledge concept and the response result, respectively.

Problem Definition. Given students’ learning sequence R =

{(𝑒1, 𝑘1, 𝑟1), (𝑒2, 𝑘2, 𝑟2), . . . , (𝑒𝑇 , 𝑘𝑇 , 𝑟𝑇 )}, the KT task aims to moni-
tor students’ evolving knowledge state during the learning process and
predict their future performance at the next time step 𝑇 + 1, which
can be further applied to individualize students’ learning scheme and
maximize their learning efficiency.

4 METHODOLOGY
In this section, we initially provide an overall overview of our pro-
posed framework HD-KT (short for Hybrid learning interactions
Denoising Knowledge Tracing). Subsequently, we explore each
component of the model with a detailed explanation.

Overview. Our HD-KT model innovatively introduces the mea-
surement of anomalous factors during the students’ learning pro-
cesses, effectively achieving robust knowledge tracing through
the implementation of the hybrid learning interaction denoising
strategy. As shown in Figure 3, the overall architecture of HD-KT
consists of four main components, including the embedding layer,
the knowledge state-guided anomaly detector, the student profile-
guided anomaly detector, and the KTM adaptor. Specifically, by
taking learning sequence, the embedding layer first outputs the
vectorized representation of students, exercises and concepts. In the
first detector, a knowledge concept-aware sequential variational
autoencoder is designed to reconstruct the proficiency distribution
of students with the dimension of knowledge concepts. Meanwhile,
we leverage an effective attention mechanism with modeling stu-
dents’ long-term characteristics to explore anomalous interactions
in the student profile-guided anomaly detector. In particular, both
of these signals modeling different aspects of anomaly perception
are jointly exploited to denoise and refine the sequential exercising
behaviors of learners. Finally, the KTM adaptor that allows the inte-
gration of different KT models is conducted to realize the prediction
of the future response performance of students.

4.1 Embedding Layer
As is well known, the learning process of students is inherently
intricate, characterized by students progressively engaging with
exercises and continually enhancing their cognitive abilities [6, 35].
In HD-KT, to effectively model the response interaction behaviors
during the learning process of students, we consider the following
elements: students, exercises, concepts, answers, and knowledge
status. We define the basic unit of the learning process as the triplet
exercise-concept-response and construct an embedding layer to en-
code them with trainable parameter matrices. Specifically, for the
𝑡-th exercising behavior (𝑒𝑡 , 𝑘𝑡 , 𝑟𝑡 ) of student 𝑠 , we transform them
into the corresponding embedded representations by multiplying
their one-hot vectors with the parameter matrices:

x𝑒𝑡 = e𝑡𝑾𝐸 , x𝑎𝑡 = a𝑡𝑾𝐴, (1)

where e𝑡 ∈ R𝑀 and a𝑡 ∈ R2𝐶 denote the one-hot vector of the exer-
cise and the response interaction, respectively; x𝑒𝑡 ∈ R𝑑𝑒 and x𝑎𝑡 ∈
R𝑑𝑎 stand for their embeddings representations;𝑾𝐸 ∈ R𝑀×𝑑𝑒 and
𝑾𝐴 ∈ R2𝐶×𝑑𝑎 denote the trainable weight matrices; 𝑑𝑒 and 𝑑𝑎 are
corresponding dimensions. In particular, a𝑡 here is the response in-
teraction vector representing the knowledge performance, which is
obtained by combining the knowledge concept 𝑐𝑡 and the answer 𝑟𝑡 :

a𝑡,𝑖 =
{1, 𝑖 = 𝑘𝑡 +𝐶 · 𝑟𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

Furthermore, we introduce an adaptable embedding representa-
tion x𝑠 = s𝑾𝑆 for student 𝑠 to delineate its profile, which supports
the consistency of knowledge evolution, thus facilitating the ex-
ploration of the learning trajectory, where s ∈ R𝑁 denotes the
one-hot vector of student 𝑠 , x𝑠 ∈ R𝑑𝑠 is the global student profile,
𝑊 𝑆 ∈ R𝑁×𝑑𝑠 denotes the trainable weight matrix, and 𝑑𝑠 is the
corresponding embedding size. Finally, to effectively model each of
the student’s learning behaviors, with reference to [38], we acquire
the learning embedding by fusing the exercise representation and
the knowledge performance representation together and employing
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Figure 3: The overall framework of the proposed HD-KT.

a multi-layer perceptron (MLP) as follows:
x𝑡 = [x𝑒𝑡 ∥x𝑎𝑡 ]𝑾1 + 𝒃1, (3)

where ∥ denotes the operation of concatenating,𝑾1 ∈ R(𝑑𝑒+𝑑𝑎 )×𝑑
is the weight matrix, 𝒃1 ∈ R𝑑 is the bias term, 𝑑 is the dimension.
As a result, we get the representation of the learning sequence of
student 𝑠: X𝑠 = [x1, x2, . . . , x𝑇 ] ∈ R𝑇×𝑑 .

4.2 Knowledge State-Guided Anomaly Detector
The consistency and gradual progression of competence growth
are recognized as inherent characteristics of the student’s learning
process [38, 47]. Nonetheless, in real and intricate learning environ-
ments, anomalous signals can manifest due to external influences,
e.g., a student correctly answers multiple questions that he has
not genuinely mastered, potentially due to cheating, or a highly
proficient student may inaccurately respond to straightforward
exercises due to carelessness, among other possibilities. Therefore,
in this part, we develop a knowledge state-guided anomaly detec-
tor to explore the anomalous signals thus enabling more effective
modeling and diagnosing of student learning behaviors.

Firstly, to proficiently exploit the sequential learning behaviors
of students and capture dependencies in the contextual knowledge
states, the encoded bidirectional long short-term memory network
(Bi-LSTM) [13] is utilized to model and process the embedded learn-
ing sequence representation X𝑠 as follows:

H̃𝐿
𝑠 , H̃

𝑅
𝑠 = Bi-LSTM(X𝑠 ,Θ1),

H𝑠 = H𝐿
𝑠 ⊕ H𝑅

𝑠 ,
(4)

where H̃𝐿
𝑠 , H̃

𝑅
𝑠 ∈ R𝑇×𝑑𝑠 represent the bidirectional intermediate

hidden states, respectively,H𝑠 = [h1,h2, . . . ,h𝑇 ] ∈ R𝑇×𝑑𝑠 denotes
the knowledge state matrix, Bi-LSTM(·) refers to the Bi-LSTM net-
work architecture, Θ1 is the corresponding trainable parameterset,
and ⊕ stands for the element-wise addition operator. After obtain-
ing the student knowledge states, inspired by [23], we contemplate

utilizing a Variational Autoencoder (VAE[11]) to reconstruct the
temporal evolving competencies for capturing anomalous signals
during the learning process. Specifically, we model the latent vari-
able Ĥ𝑠 to adhere to a Gaussian distribution for deriving more
robust embedding as follows:

Ĥ𝑠 ∼ N(𝝁,𝝈2), 𝝁 = 𝑀𝐿𝑃𝜇 (H𝑠 ),𝝈 = 𝑀𝐿𝑃𝜎 (H𝑠 ), (5)
where Ĥ𝑠 = [ĥ1, ĥ2, . . . , ĥ𝑇 ] ∈ R𝑇×𝑑𝑠 represents the reconstructed
sequential competency level consisting of the knowledge state at
each time step, and both MLP𝜇 (·) and 𝑀𝐿𝑃𝜎 (·) are two trainable
MLP networks for learning the distribution parameters. After get-
ting the reconstructed knowledge state sequence, we can calculate
the completed reconstruction loss as follows:

L𝑅𝑒𝑐 =
1
𝑇

𝑇∑︁
𝑡=1

(ĥ𝑡 − h𝑡 )2 + L𝑘𝑙 ,

L𝑘𝑙 =
∑︁

1≤𝑡≤𝑇
𝝁2𝑡 + 𝝈2

𝑡 − 𝑙𝑜𝑔(𝝈𝑡 ) .
(6)

After acquiring the reconstructed student knowledge state, in-
tuitively, we can capture the inconsistency by integrating it with
the student’s initial knowledge level and inputting this combined
information into the fully connected layers. Nevertheless, the min-
imization of the reconstruction loss can make it challenging to
discern the distinctions between the aforementioned representa-
tions. Inspired by previous works [22, 52], we endeavor to leverage
a convolutional neural network (CNN) to enhance the detection
capacity for capturing disparities among distinct representations
of the same dimension. Specifically, we concatenate the original
embedding of the knowledge state with the decoded representa-
tion at each moment and utilize a convolution operator to preserve
dimensional information by:

𝜶𝑡 = 𝜎 (C𝑡𝑾2),

C𝑡 = Conv( [ĥ𝑡 ∥h𝑡 ],Θ2),
(7)
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where C𝑡 ∈ R𝑑𝑠 is the output of the convolution layer, conv(·) is
a two-dimensional convolution operation with a filter size of 2×1
and a stride of 1, Θ2 is the trainable parameter of each channel,
𝑾2 ∈ R𝑑𝑠×2 is the trainable parameter matrix. Notably, 𝜶𝑡 ∈ R2
denotes the relation vector, where the first dimension represents
the consistency between ĥ𝑡 and h𝑡 , while the second dimension
refers to the inconsistency. Therefore, the scores can be treated as a
binary distribution (i.e., consistency vs. inconsistency). To generate
binary values (i.e., 0 vs. 1) and facilitate gradient back-propagation,
we utilize a Gumbel-Softmax function [43, 45, 49] to support the
learning of model via:

�̂�𝑡 = Gumbel-Softmax(𝜶𝑡 , 𝜏),

=
exp(log(𝜶𝑡,𝑖 ) + 𝑔𝑖 )/𝜏∑1
𝑗=0 exp(log(𝜶𝑡, 𝑗 ) + 𝑔 𝑗 )/𝜏

.
(8)

where �̂�𝑡 ∈ R2 denotes whether the changes in student’s knowl-
edge status is stable,𝑔 𝑗 is i.i.d sampled from the Gumbel distribution
as noise disturber,Gumbel-Softmax(·) denotes the Gumbel-Softmax
function and 𝜏 > 0 is the temperature parameter that controls the
selection distribution. When 𝜏 −→ 0, �̂�𝑡 approximates a one-hot
vector (i.e. hard selection). When 𝜏 −→ ∞, �̂�𝑡 approximates a uni-
form distribution. When 𝜏 −→ 1, the Gumbel-Softmax function is
the same as the general Softmax function.

4.3 Student Profile-Guided Anomaly Detector
Due to the unique attributes of each student within the learning
process, even when subjected to the same learning experience,
differential learning outcomes and memory retention may be ob-
served. We contend that this phenomenon imparts crucial insights
into sequence denoising, specifically, the fact that abnormal learn-
ing behaviors frequently exhibit substantial deviations from the
individual characteristics of students throughout the learning pro-
cess. Therefore, we design a student profile-guided anomaly detec-
tion module to explore the asymptotic smoothness of the student’s
evolving competency. Specifically, we develop an attention module
as the discriminator to detect inconsistency between the learning
status and the student profile, which utilizes the student represen-
tation as a query vector and assign different attention weight to
each learning encoding within the learning sequence:

𝜷𝑡 = 𝜎 (tanh( [x𝑡 ∥h𝑡 ]𝑾3 + h𝑠𝑾4)𝑾5), (9)

where 𝜷𝑡 ∈ R2 is the 𝑡-th attention vector, 𝑾3 ∈ R2𝑑𝑠×𝑑 , 𝑾4 ∈
R𝑑𝑠×𝑑 and 𝑾5 ∈ R𝑑×2 are the trainable parameter matrix, and
𝜎 (·) and tanh(·) denote the sigmoid and tanh activation function,
respectively. Notably, the first dimension of 𝜷𝑡 represents the consis-
tency between student response performance and student learning
profile, as well as the second dimension denotes the inconsistency.
Therefore, the scores can be viewed as binary distributions (i.e., con-
sistency vs. inconsistency), and then we leverage a similar process
to generate binary value for 𝜷𝑡 via:

𝜷𝑡 = Gumbel-Softmax(𝜷𝑡 , 𝜏),

=
exp(log(𝜷𝑡,𝑖 ) + 𝑔𝑖 )/𝜏∑1
𝑗=0 exp(log(𝜷𝑡, 𝑗 ) + 𝑔 𝑗 )/𝜏

,
(10)

where 𝜷𝑡 ∈ R2 denotes the predicted anomalous vector about
the knowledge state of student 𝑠 , and 𝜏 is the same temperature

parameter used in formula Eq. (8) to tune the learned distribution
from the Gumbel-Softmax function.

4.4 KTM Adaptor
With the previously mentioned anomaly detectors, the proposed
HD-KT model enables to detect noise components within the se-
quence based on signals derived from the knowledge state and
student profile levels, which involves labeling a response as noise
when it exhibits inconsistencywith the respective student attributes
or the amalgamated knowledge state. Nevertheless, in practical ap-
plications, the false positives may be introduced, leading to the
inadvertent exclusion of valuable information essential for predict-
ing student performance. Hence, we advocate the development of a
more stringent criterion for the elimination of anomalous learning
interaction, aimed at retaining solely dependable noise-free data
while preserving valuable information. An instance is categorized
as noise only when incongruities are concurrently identified in
both signals, typically adhering to the principle of consensus. For-
mally, we generate noise-free sequences from the input sequential
learning behaviors of individual KTM via the following steps:

𝑝𝑡 = 1 − 𝑎𝑡 × 𝑏𝑡 , (11)

X+
𝑠 = [𝑝1x1, 𝑝2x2, . . . , 𝑝𝑇 x𝑇 ], (12)

where 𝑝𝑡 ∈ {0, 1} indicates whether an learning interaction is noisy
(i.e., 𝑝𝑡 = 0 ) or not, 𝑎𝑡 and 𝑏𝑡 denote the second dimension scalar
of above mentioned 𝜶𝑡 and 𝜷𝑡 , respectively. Note that we apply
the denoised signal to the embedding representation of learning
sequence X𝑠 to support the gradient backpropagation. Particularly,
we design a KTM adaptor to adapt our proposed HD-KT framework
for the integration into various mainstream knowledge tracing
model for predicting the feature response performance of students,
and we formalize as follows:

𝑦 = KTM(X+
𝑠 ), (13)

where KTM is a basic knowledge tracing model (e.g., DKT, LPKT,
etc.), which takes the denoised learning sequence representation
X+
𝑠 as input , and outputs the predicted future performance 𝑦.

4.5 Model Optimization
In the training phase, we mainly evaluate the performance of the
predicted student’s responses in the interaction sequences. Similar
to [38, 35], the binary cross entropy loss function between the
predicted value 𝑦𝑡 of student 𝑠 at time step 𝑡 and the ground truth
𝑟𝑡 is utilized, as follows:

L𝑃𝑟𝑒 = −
𝑇∑︁
𝑡=1

(𝑟𝑡 log(𝑦𝑡 ) + (1 − 𝑟𝑡 ) log(1 − 𝑦𝑡 )) . (14)

where L𝑃𝑟𝑒 represents the prediction loss. Meanwhile, we also
introduce the reconstruct loss to enhance the stability of parameter
training of the anomaly detector according to Eq. (6), and build the
final training loss as follows:

L =
1
|S|

∑︁
𝑠∈S

(L𝑃𝑟𝑒
𝑠 + L𝑅𝑒𝑐

𝑠 ) + 𝜆∥Θ∥22, (15)

where 𝜆 represents the hyperparameter of𝐿2 regularization strength,
and Θ is the set of all model parameters. The objective function
was minimized using Adam optimizer [18] on mini-batches. More
details of settings are specified in the part of experiments.
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Table 1: Statistics of all datasets.
Dataset #Students #Concepts #Exercises #Interactions
ASSISTment12 25.3k 245 50.9k 2,621.3k
ASSISTment17 1.7k 102 3.2k 942.8k
Slepemapy.cz 81.7k 1,458 2.9k 9,786.5k
Junyi 175.4k 40 0.7k 25,670.2k

5 EXPERIMENT
In this section, we conduct a series of experiments using four real-
world benchmark datasets to validate the efficacy of our proposed
model. We aim to address the subsequent research questions:
• RQ1: Can our proposed HD-KT framework effectively enhance

the performance and robustness of the existing KT models?
• RQ2: What benefit does each component of the proposed HD-KT

model offer?
• RQ3: Does our approach facilitate the analysis of question quality

and enable student clustering based on learning behaviors?

5.1 Experimental Setting
5.1.1 Datasets. In this paper, we conducted our experiments on
four public benchmark datasets, i.e., ASSISTment12, ASSISTment17,
Slepemapy.cz, and Junyi. The ASSISTment12 dataset, referenced
in [8], was collected from the ASSISTments online tutoring sys-
tem and encompasses student activity data for the academic year
2012-2013. ASSISTment17 [32] was released during the ASSIST-
ments Longitudinal Data Mining Competition in 2017. The dataset
Slepemapy.cz [31] originates from an online adaptive system, i.e.,
slepemapy.cz, for practicing geography. The Junyi dataset [5] was
collected from the Junyi Academy, an E-learning platform estab-
lished in 2012. To optimize calculation efficiency, we followed [38]
to set the maximum sequence length to 50 and truncate the learning
sequences exceeding this length into multiple sub-sequences. To
ensure reasonableness, we screened out the sequences with lengths
less than 5. The statistics of four datasets are shown in Table 1.

5.1.2 Evaluation Metrics. We employed both accuracy (ACC) and
the area under the receiver operating characteristics curve (AUC)
as metrics to assess the efficacy of various methods in predicting
the binary outcomes of future student responses to exercises.

5.1.3 Baseline Methods. To validate that our proposed HD-KT
framework can significantly enhance the performance of different
KT models, we selected three representative KT models as the
backbone, including DKT, HawkesKT, and LPKT. The details are
displayed as follows:
• DKT [35] pioneered the use of Recurrent Neural Networks

(RNNs) to model students’ knowledge states, inferring current
exercise performance from past learning records. In our imple-
mentation, we employed the LSTM architecture.

• HawkesKT [42] posits that students’ proficiency in each knowl-
edge concept is influenced not only by prior interactions with
that concept but also by other relevant concepts, termed as cross-
effects among knowledge concepts. HawkesKT employs collabo-
rative filtering and matrix factorization to discover the temporal
cross-effects between different concepts.

• LPKT [38] distinguishes students’ absorption of knowledge and
forgetting of knowledge during the learning process through spe-
cially designed learning gates and forgetting gates respectively.
The state undergoes intermittent updates via a straightforward
weighted blend of both learning and forgetting factors.

We applied our framework to these models, resulting in three vari-
ants named HD-DKT, HD-HawkesKT, and HD-LPKT. Additionally,
we selected two representative anomaly information section meth-
ods in the field of time series and sequential recommendation to
serve as the baselines, including:

• DSAN [50], known as the dual sparse attention network, is
designed to pinpoint items in a recommendation system that
diverge from the user’s anticipated preferences by assigning
unique weights to each item in the sequence. In our experiment,
we treated students and exercises as target item and interactive
items, respectively. By integrating DSAN with various KT mod-
els, we leveraged the unique weights within DSAN to detect
anomalous data.

• GDN [7], known as the graph deviation network, is a prediction-
based multivariate temporal anomaly detection method leverag-
ing graph attention (GAT) to capture the relationships within
each feature of the time series data. In our experiments, we treat
the sequential knowledge states on different concepts as the
multivariate time series.

Moreover, we compared our HD-KT with the state-of-the-art robust
KT model, that is,

• DTransformer [48], which introduces a unique transformer-
based architecture combined with a novel training paradigm to
achieve consistent and reliable knowledge state tracing.

5.1.4 Implementation Details. In our experiment, we performed 5-
fold cross-validation. Specifically, the 80% of the learning sequences
are split as the training set (70%) and the validation set (10%), while
the rest 20% are used as the test set. We faithfully implemented DKT,
HawkesKT and LPKT based on their original papers. To be specific,
if parameters were consistent across various datasets in the origi-
nal paper, we retained them as described (e.g., all parameters for
HawkesKT). However, if the sensitivity to datasets was indicated,
we performed parameter tuning on the validation set, adhering to
the value ranges specified in the original works (e.g., parameters
for DKT). We performed hyperparameter tuning for each KTM
combined with HD based on the validation set. We searched the em-
bedding size in [16, 32, 64, 128], hidden size in [16, 32, 64, 128], and
dropout rate in [0, 0.1, 0.2, 0.25]. We used the Adam algorithm [19]
as the optimizer. All experiments were implemented with PyTorch
by Python and conducted with GeForce RTX4090 GPU.

5.2 Overall Performance (RQ1)
To verify the effectiveness of our HD-KT framework, we conducted
future students’ performance prediction experiments in the above
four datasets. Table 2 shows the experimental results of the pro-
posed HD-KT implemented in three KTMs compared with the base-
lines. First, it is clear that integrating our HD-KT framework to
filter out the anomalous learning interaction has resulted in marked
improvements in the performance of various KT models on all the
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Table 2: The overall performance comparison on four real-world datasets. The best results are shown in bold. All improvements
are statistically significant (i.e., two-sided t-test with 𝑝<0.01).

Datasets ASSISTment12 ASSISTment17 Slepemapy.cz Junyi
Metrics ACC AUC ACC AUC ACC AUC ACC AUC
DTransformer 0.7484±.001 0.7650±.001 0.7008±.001 0.7350±.002 0.8030±.001 0.7559±.002 0.8485±.002 0.7772±.001
DKT 0.7205±.002 0.6836±.001 0.6671±.001 0.6816±.001 0.7946±.001 0.6898±.002 0.8366±.002 0.7023±.001
DKT+DSAN 0.7211±.001 0.6845±.001 0.6679±.001 0.6821±.003 0.7967±.001 0.6915±.001 0.8368±.001 0.7054±.001
DKT+GDN 0.7236±.002 0.6863±.001 0.6695±.002 0.6847±.001 0.7973±.001 0.6930±.001 0.8395±.002 0.7063±.001
HD-DKT 0.7258±.001 0.6895±.001 0.6709±.001 0.6857±.001 0.8003±.002 0.6979±.003 0.8424±.001 0.7115±.002
HawkesKT 0.7441±.001 0.7559±.002 0.6845±.001 0.7033±.001 0.8058±.001 0.7574±.001 0.8410±.002 0.7609±.001
HawkesKT+DSAN 0.7449±.002 0.7604±.001 0.6865±.002 0.7078±.001 0.8064±.001 0.7608±.001 0.8430±.002 0.7634±.001
HawkesKT+GDN 0.7462±.001 0.7612±.001 0.6880±.001 0.7136±.001 0.8073±.002 0.7662±.002 0.8436±.001 0.7637±.001
HD-HawkesKT 0.7493±.002 0.7653±.002 0.6921±.002 0.7194±.001 0.8097±.001 0.7685±.003 0.8464±.001 0.7683±.002
LPKT 0.7541±.002 0.7750±.001 0.7172±.001 0.7635±.001 0.8061±.002 0.7648±.002 0.8517±.001 0.7926±.002
LPKT+DSAN 0.7577±.001 0.7764±.001 0.7188±.001 0.7670±.001 0.8096±.001 0.7681±.002 0.8527±.001 0.7931±.001
LPKT+GDN 0.7585±.001 0.7771±.001 0.7193±.001 0.7677±.002 0.8113±.001 0.7709±.001 0.8540±.002 0.7974±.001
HD-LPKT 0.7632±.001 0.7797±.001 0.7231±.002 0.7714±.001 0.8164±.001 0.7768±.001 0.8581±.001 0.8009±.001

Figure 4: The performance comparison of different modules.
datasets. Compared to the original LPKT, the performance improve-
ments of HD-LPKT on four datasets in terms of ACC as well as AUC
are 1.21%, 0.82%, 1.28%, and 0.76% as well as 0.61%, 1.04%, 1.56%,
and 1.04%, respectively. Second, we observed that integrating either
DSAN or GDN with various KTMs can also effectively enhance the
model’s performance. However, compared to these variations, our
method consistently achieved superior results. This further demon-
strates the effectiveness of our approach in identifying anomalous
learning interactions. Third, compared to the state-of-the-art robust
KT model, i.e., DTransformer, our HD-LPKT model outperformed
them on all four datasets. Indeed, rather than modifying the KTM
network structure, our approach offers greater flexibility, allowing
it to adapt to various KTMs.

5.3 Ablation Study (RQ2)
To answer RQ2, we conducted ablation experiments to investigate
the effectiveness of our knowledge state-guided anomaly detector
and student profile-guided anomaly detector. Due to the limited
space, we compared HD-LPKT with HD-LPKT-w/oKS and HD-
LPKT-w/oSP, which denote the variants of HD-LPKT without
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Figure 5: The HD-KT’s performance on simulated noise. (a)
Left: The performance of LPKT and HD-LPKT with different
numbers of noise data. (b) Right: The correct anomaly detec-
tion rate under different noise data proportions.

knowledge state-guided and student profile-guided anomaly detec-
tors, respectively. Figure 4 shows the performance comparison on
ASSISTment12, ASSISTment17, Slepemapy.cz, and Junyi datasets.
Clearly, removing any module will diminish the LPKT’s perfor-
mance. Notably, the removal of the student profile-guided anomaly
detector has a more pronounced impact. However, retaining just
one of the anomaly detectors can still reduce noise in learning
interactions and enhance the effectiveness of the KTM.

5.4 Case Study (RQ1 & RQ3)
5.4.1 The HD-KT’s Performance on Simulated Noise. Given that we
do not have actual labels for anomalous learning interactions, to
further validate the effectiveness of our method under noisy data
conditions, we constructed simulated anomalous learning interac-
tion data on the ASSISTment17 dataset for additional verification.
Specifically, we randomly reversed the interaction data for each
student. That is, if the original 𝑟𝑡 was 1, we changed it to 0, and
vice versa. The left side of Figure 5 illustrates the performance
difference between our HD-LPKT model and the original LPKT
after introducing varying numbers of noise data points for each
student. We can observe that as the amount of noise data increases,
the performance of both models declines. However, the decline
is more gradual for HD-LPKT, thereby validating that our model
is more robust compared to the original KTM. It is noteworthy
that even without adding any simulated noise data, our model still
outperforms, as it can capture potential anomalies present in the

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW’24, May 13-17, 2024, Singapore Submitted for Blind Review

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Knowledge Concepts Exercises
C1:Isosceles Triangle #26,#18
C2:Subtraction #45,#266
C3:Area #56
C4:Perimeter #14
C5:Equation Solving #7
C6:Square #41
C7:Addition #13

#26 #45 #56 #45 #26 #14

Drop

HD

#26 #45 #56 #45 #26 #14

#7

#7
0.86

0.75

0.740.83

0.86

()

(*
(+

(,

(-

0.63

0.74

0.730.83

0.85

()

(*
(+

(,

(-
LPKT

HD-LPKT

Models #18 #41 #266 #13
LPKT 0 0 1 0
HD-LPKT 1 1 1 1
Truth 1 1 1 1

Figure 6: A case study of HD-LPKT. This experiment shows
the knowledge proficiency radar chart of the student with
ID #14 in the Junyi data set using LPKT or HD-LPKT.
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Figure 7: Distribution of anomalous proportions for exercises
in ASSISTment17’s learning interactions.

original dataset. Additionally, the right side of Figure 5 presents the
proportion of noise data correctly identified by our HD-LPKT after
introducing varying percentages of noise data into each student’s
learning sequence. It can be observed that even added 2% noise data,
our framework can still accurately capture approximately 70% of
them. Moreover, as the amount of noise data increases, the effective
detection rate of our model gradually rises. This is because the
more noise introduced, the more volatile the student’s knowledge
state becomes, making it easier for our model to detect.

5.4.2 One Case Study of KT on Junyi Dataset. In this case study,
we showcased the results of knowledge tracing for student #14’s
learning sequence in the Junyi dataset using both HD-LPKT and
LPKT. The results are presented in Figure 6. We can observe that
our HD-LPKT model identified the second interaction with exer-
cise #26 as anomalous, leading to the HD-LPKT and LPKT models
diagnosing the student’s mastery level of the knowledge concept
“𝑐1: Isoseles triangle" as 0.86 and 0.63, respectively. Subsequently,
we found that for future answer predictions related to exercise #18,
which is associated with the knowledge concept 𝑐1, our HD-LPKT
model could predict accurately, while LPKT could not. Moreover,
for the knowledge concept “𝑐6: Square", which potentially relates to
𝑐1, our model also predicts the student’s future performance more
effectively. This validates that our HD-KT framework can robustly
diagnose students’ knowledge states by removing anomalous data
from learning interactions.

5.4.3 Exercise Quality Analysis. In online learning systems, an im-
portant task is to evaluate the quality of exercises, since high-quality
exercises can more precisely track the students’ knowledge states.
Our method enables the detection of anomalous learning interac-
tions within the data, facilitating an analysis of the proportion of

Figure 8: Student clustering based on the proportion of de-
tected anomalous interactions, wherein we sampled 1000 stu-
dents in ASSISTment12. We used K-means to cluster the stu-
dents and marked them with different colors accordingly.
anomalies across various exercises during data interaction. Figure
7 illustrates the distribution of exercise across different anomaly
proportions in ASSISTment17. This result can serve as a basis for
exercise quality analysis, whereby exercises detected with a higher
anomaly rate can be revisited and reviewed by domain experts.

5.4.4 Learning Behavior-based Student Clustering. As previously
mentioned, some anomalous interactions in a student’s learning
sequence result from their learning behavior, such as carelessness.
Here, we identify student groups with similar learning behaviors
by analyzing the detected anomalous interactions from our HD-KT.
Specifically, we first computed the proportion of detected anoma-
lous interactions per student, for each knowledge concept, relative
to all interactions associated with that concept. Subsequently, we
utilized these proportions as feature vectors, representing poten-
tial anomalous behaviors of students across various knowledge
concepts. These vectors were visualized after dimensionality reduc-
tion using t-distributed stochastic neighbor embedding (t-SNE). As
shown in Figure 8, students with similar anomalous behavior are
grouped into distinct clusters. These separated student groups assist
educators in identifying representative student behavior patterns,
enabling the creation of more tailored online learning experiences.

6 CONCLUSION
In this paper, we proposed a novel framework, termed HD-KT,
to enhance the robustness of existing knowledge tracing (KT)
methodologies with Hybrid learning interactions Denoising ap-
proach. In HD-KT, two detectors for anomalous learning inter-
actions (namely knowledge state-guided anomaly detector and
student profile-guided anomaly detector) were specially designed.
More specifically, in the first detection module, a sequential autoen-
coder was designed to identify anomalous learning interactions by
detecting atypical student knowledge states. In the second module,
an attention mechanism was incorporated by modeling a student’s
long-term profile to capture irregular interactions. Extensive ex-
periments validate the significant advantages of our HD-KT from
multiple aspects. On the one hand, HD-KT markedly boosts both
the robustness and accuracy of prevailing KT models. On the other
hand, the HD-KT can facilitate exercise quality analysis and learn-
ing behavior-based student clustering.
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