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ABSTRACT

Decision Transformer (DT), free from optimal value functions fitting and policy
gradient computation, attempts to solve offline reinforcement learning (RL) via
supervised sequence modeling. During inference, sequence modeling requires an
initial target returns assigned with expert knowledge, which blocks comprehensive
evaluation on more diverse datasets. As a result, existing sequence modeling only
focuses on limited evaluation on Gym datasets and some understanding is severely
biased. In this paper, we aim to revisit the design choices, including architecture
and context length, in sequence modeling on more diverse datasets. We utilize the
max-return sequence modeling that replaces the manual target returns with max-
imized returns predicted by itself. We systematically investigate the impact of 1)
architectural choices and 2) context lengths in max-return sequence modeling on
nine datasets with varying data distributions. Abundant experiments and thorough
analyses reveal that design choices are highly influenced by the dataset character-
istics, which further underscores the significance of more diverse evaluation.

1 INTRODUCTION

Classical online reinforcement learning (RL) algorithms such as Q-learning (Watkins & Dayan,
1992) or policy gradient (Sutton et al., 1999) are derived from the Markov Decision Process (MDP)
(Sutton et al., 1998) formulation. Sequence modeling (Chen et al., 2021), developed in data-driven
offline scenario (Levine et al., 2020; Fu et al., 2020), maximizes the likelihood of actions based on
the whole historical trajectories that including state, action and returns. In this way, offline RL is
addressed from one paradigm similar to the supervised learning. A particularly enticing prospect is
that the successes of supervised sequence modeling in other domains may be replicable within the
offline realm, potentially catapulting the rapid advancement and progress of reinforcement learning.

However, the existing evaluation of sequence modeling is insufficient and consequently the cor-
responding understanding is biased and limited, which has hindered the further development of
sequence modeling. The insufficient evaluation stems from the choice of the initial returns target
during the sequence modeling inference (Zheng et al., 2022; Chen et al., 2021; Lee et al., 2022).
The initial returns target serves as a inference hyperparameter that should be meticulous determined
using expert knowledge or extensive experiments. Decision transformer (DT) (Chen et al., 2021)
proposes the initial returns targets on D4RL-Gym datasets using domain knowledge and online de-
cision transformer (ODT) (Zheng et al., 2022) further optimizes hyperparameters via exhaustive
experimental comparison. in contrast, the initial returns targets on other representative datasets
(Antmaze, Maze2d, Kitchen and Adroit) are under explored. As a result, subsequent re-
search on sequence modeling has been almost exclusively confined to the Gym, neglecting other
datasets (Zhuang et al., 2024). Even the paper that examines the advantages and disadvantages of
DT in comparison to CQL (Kumar et al., 2020) and BC (Pomerleau, 1988) exhibit a similar bias
(Bhargava et al., 2023). This status results in an insufficient investigation of the impact of dataset
characteristics on sequence modeling, and explorations about historical sequence length and se-
quence model architecture are consistently biased.

In this paper, we aim to systematically investigate the impact of 1) dataset characteristics 2) archi-
tectural choices and 3) the length of historical sequences on the performance of sequence modeling.
To overcome the limitation of the human designed initial returns targets, we adopt the max-return
sequence modeling introduced by Reinforced Transformer (Reinformer) (Zhuang et al., 2024). The
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fundamental premise of max-return sequence modeling is to bring the concept of return maximiza-
tion back to the supervised paradigm of sequence modeling. In terms of implementation, max-return
sequence modeling predicts a maximized return at each timestep to guide the generation of actions,
free from specifying an initial returns target. We have conducted exhaustive experiments and ana-
lytical studies, leading to the following conclusions and findings:

• Overall, the dataset characteristics of the have greater an impact on sequence modeling than the
model architecture and context length. Discussing the impact of other factors without considering
dataset characteristics is quite one-sided. In trajectory stitching problems, sequence modeling is
inherently at a disadvantage compared to RL algorithms (Brandfonbrener et al., 2022). Sequence
modeling is more adept at long-term tasks and tasks that include part of expert data.

• In terms of architecture, the Reinformer tends to consider global information, while Reinconver
(Reinforced Convformer) and Reimba (Reinforced Mamba) focus more on local information.

• The impact of context length on performance is relatively minor. A shorter context length is more
advantageous for trajectory stitching. Moreover, it is surprising to find that models trained on
long sequences perform exceptionally well during inference with short sequences, significantly
enhancing their trajectory stitching capabilities.

2 PRELIMINARY

2.1 OFFLINE REINFORCEMENT LEARNING

Offline RL (Levine et al., 2020) forbids the interaction with the environment and only a fixed offline
dataset full of trajectories D = {(s0, a0, r0, s1, a1, r1, · · · , st, at, rt · · · )} is provided . Here st is
the current state at timestep t, at is the action and rt=̇r (st, at) is the reward of current state and
action. The objective of offline RL is to learn a policy π (at|st) that maximizes the expected returns
Eπ

[∑T
t=0 r (st, at)

]
. Compared to the traditional online RL (Sutton et al., 1998), this setting is

more challenging since the agent is unable to explore the environment and collect extra feedback.

2.2 SEQUENCE MODELING

Sequence modeling (Chen et al., 2021) breaks the traditional Markov property and the prediction of
the current action at is based on the entire historical trajectories τt−K :

τt−K = (Rt−K+1, st−K+1, at−K+1, · · · , Rt+1, st+1, at+1) , (1)

where Rt=̇
∑T

t′=t rt is called returns-to-go (or simply returns) that represents the sum of future
rewards from current timestep t. τt−K contains the previous K timesteps trajectory and K is called
context length. Sequence modeling directly maximizes the likelihood of actions conditioned on not
only the current state st and returns-to-go Rt, but also the historical trajectories τt−K :

LDT = −Et

[
log π (at|τt−K , st, Rt)

]
. (2)

This training loss (2) indicates offline RL is solved from the perspective of supervised learning,
rather than traditional RL paradigm. Besides, the implementation of π is based on sequence models
such as transformer (Vaswani et al., 2017). For the Inference, the initial target returns R̂0 should be
determined first. Given R̂0 and the initial environment state s0, the next action will be generated by
the model π

(
a1|R̂0, s0

)
. Once the action a1 is executed by the environment, the next state s1 and

reward r1 are returned. Then the next returns-to-go should minus the returned reward R̂1 = R̂0−r1.
This process is repeated until the episode terminates.

3 BACKGROUND AND EXPERIMENTAL SETUP

In this section, we first provide an overview of the current insufficient evaluation of sequence mod-
eling and analyze the reason behind it. We then introduce the max-return sequence modeling and
discuss why the concept of max-return has the potential to ameliorate this situation. Finally, we
detail our specific experimental setup.
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3.1 INSUFFICIENT EVALUATION

We summarize the datasets that have been evaluated by representative sequence modeling algorithms
in the Table 1. Obviously, all the methods consider the D4RL-Gym datasets, while other datasets
with various characteristics are ignored1. For example, Antmaze-medium datasets require the
algorithm to wisely stitch the sub-optimal trajectories into successful ones to achieve the final goal.
This phenomenon is called trajectory stitching ability and usually, RL is believed to possess this
ability inherently while sequence modeling not. Algorithms aimed for trajectory stitching should be
evaluated on these datasets, yet these datasets are overlooked (Wu et al., 2023).

Table 1: Insufficient Evaluation of Sequence Modeling.
Gym Antmaze-u Antmaze-m Maze2d Kitchen Adroit

DT (Chen et al., 2021) ✓ ⃝ ⃝ ⃝ ⃝ ⃝
ODT (Zheng et al., 2022) ✓ ✓ ⃝ ⃝ ⃝ ⃝
EDT (Wu et al., 2023) ✓ ⃝ ⃝ ⃝ ⃝ ⃝
DC (Kim et al., 2023) ✓ ✓ ⃝ ⃝ ⃝ ⃝
DS4 (David et al., 2022) ✓ ✓ ⃝ ⃝ ⃝ ⃝
DM (Lv et al., 2024) ✓ ✓ ⃝ ⃝ ⃝ ⃝
DMamba (Ota, 2024) ✓ ⃝ ⃝ ⃝ ⃝ ⃝
DM-H (Huang et al., 2024) ✓ ⃝ ⃝ ⃝ ⃝ ⃝
MambaDM (Cao et al., 2024) ✓ ⃝ ⃝ ⃝ ⃝ ⃝
Reinformer (Zhuang et al., 2024) ✓ ✓ ✓ ✓ ✓ ⃝

The underlying reason behind insufficient evaluation is the relative difficulty in selecting the hyper-
parameter initial target returns R̂0 during inference. An inappropriate choice of R̂0 may hinder the
model from realizing its full potential. The selection of this hyperparameter on the Gym datasets is
first introduced by DT (Chen et al., 2021) and later optimized by ODT (Zheng et al., 2022) through
extensive experiments. But the choice of R̂0 for other datasets receives little attention. Reinformer
(Zhuang et al., 2024) proposes to replace this expert-designed returns target with predicted maxi-
mized return, overcoming the challenge of R̂0 selection.

3.2 MAX-RETURN SEQUENCE MODELING

Since supervised sequence modeling does not explicitly consider return maximization, the core ob-
jective of RL, the concept of max-return sequence modeling is introduced. The key lies in utilizing
the maximized return to guide the generation of next actions during inference.

Concretely, Reinforced Transformer (Reinformer) adopt the following historical trajectories τt−K :
τt−K = (st−K+1, Rt−K+1, at−K+1, · · · , st+1, Rt+1, at+1) , (3)

where the state st is placed before the returns-to-go R̂t, different from the original formulation 3.
The most significant advantage is that the reward can be predicted through the state without the need
for prior specification. During the training phase, in addition to the loss function that maximizes the
action probability, Reinformer also introduces a return loss based on the expectile regression:

LReinformer = Et

[
− log π (at|τt−K , st, Rt) + |α− 1 (∆Rt < 0)|∆R2

t

]
, (4)

where ∆Rt = Rt−π
(
R̂t|τt−K , st

)
is the difference between the oracle return Rt and its prediction

R̂t. Here α ∈ (0, 1) is the hyperparameter of expectile regression. When α = 0.5, expectile
regression degenerates into standard MSE loss. But when α > 0.5, this asymmetric loss will give
more weights to the Rt larger than R̂t. Furthermore, it can be proved that this additional return loss
function can make the model predict the maximum returns-to-go when α → 1, which is similar
to the maximizing returns objective in RL. For the inference, the maximized initial target returns
π
(
R̂0|s0

)
is predicted given the initial environment state s0 rather than manually designated. Since

the R̂0 is maximized, the next action π
(
a1|R̂0, s0

)
will approach to the optimal one. Then the next

state s1 is returned and this process is repeated until the episode terminates.
1Strictly, Q-value Regularized Transformer (QT) (Hu et al., 2024) does not belong to sequence modeling

since it requires Q value as part of gradient

3
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a) Max-return Sequence Modeling b) Architectures: Transformer, Convformer and Mamba 

9 Datasets × 3 Architectures × 4 Context Length in Max-return Sequence Modeling

Implementations of

Sequence Model

c) Datasets: HC-me, HP-mr, WK-m, AT-mp, AT-md, KC-p, MZ-l, P-h, P-c d) Context Length

Figure 1: The figure shows the overview of this paper. a) Max-return Sequence Modeling: During
inference, the first step involves predicting the maximized return using expectile regression, aiming
to select trajectories in the dataset with the maximum return to go in the current state sequence.
In the second step, the predicted returns is reintroduced back into the same transformer. The key
difference here compared to the first step is that an additional token is included in the transformer’s
input. It is at this stage that we obtain the desired action. Totally, b) 3 architectures, c) 9 datasets
and d) 4 context lengths are considered in our experiments.

3.3 EXPERIMENTAL SETTING

Now, we are ready to systematically investigate the impact of 1) dataset characteristics 2) archi-
tectural choices and 3) context length on the performance of max-return sequence modeling. The
Overview of the experimental setting is summarized in Figure 1.

Dataset Characteristics We selected nine representative datasets from the widely-used offline
benchmark D4RL to evaluate the sequence modeling, which are detailed as follows:
• Halfcheetah-medium-expert, Hopper-medium-replay and Walker2d-medium:

The abbreviations are respectively HC-me, HP-mr and WK-m. For Gym tasks, we select only
one dataset from each environment, which encompasses three distinct data distributions. The
“medium-replay” dataset consists of samples in the replay buffer observed during online training
until the policy reaches the “medium” level, approximately 1/3 the performance of the “expert”.

• Antmaze-medium-play and Antmaze-medium-diverse: The abbreviations are respec-
tively AT-mp and AT-md. Antmaze datasets have a sparse reward to show if the ant reach the
goal in the maze. The medium dataset requires the algorithm to navigate to the target point by
stitching the suboptimal trajectories into the successful trajectories. These datasets require the
trajectory stitching ability, which is particularly challenging for sequence modeling.

• Kitchen-partial: The abbreviation is KC-p. The desired goals are to complete 4 subtasks:
open the microwave, move the kettle, flip the light switch, and slide open the cabinet door. The
”partial” dataset includes subtrajectories where the 4 target subtasks are completed in sequence.

• maze2d-large: The abbreviation is MZ-l. The dataset is collected by a PD controller that
memorizes the reached waypoints during data collection, so the Markov property does not hold.

• Pen-human and Pen-cloned: The abbreviations are respectively P-h and P-c. This envi-
ronment controls a 24-DoF simulated Shadow Hand robot to twirl a pen. Human dataset contains
25 trajectories of expert demonstration. Cloned dataset uses a 50-50 split between demonstra-
tion data and trajectories sampled from a behavior cloned policy trained on the demonstrations.

4
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In summary, these 9 datasets each have their own distinctive features. In addition to the three com-
monly used Gym datasets, our selection also encompasses Antmaze datasets that emphasize trajec-
tory stitching, Kitchen dataset that includes partial expert demonstration segments, maze dataset
highlighting non-Markovian properties, and Pen dataset that incorporates expert demonstrations.

Architectural Choices To accommodate the max-return sequence modeling, we employ the fol-
lowing inputs and outputs:

Input: ⟨ τt−K , st, gt⟩
π−→ Output: ⟨ ĝt, ât ⟩ . (5)

The implementation of policy π is based on the sequence model and the predictions ĝt, ât are
achieved through an autoregressive approach. Moving forward, we primarily consider three ar-
chitectural variants: the Transformer (Vaswani et al., 2017), One-dimensional convolutional layers
(Conv) (Yu et al., 2022), and the linear Recurrent Neural Network Mamba (Gu & Dao, 2023).

• Reinformer is based on the Transformer architecture, built upon the self-attention mechanism,
equipped with multiple attention heads and stacked encoder-decoder structures, can adeptly cap-
tures long-range dependencies. The Decoder module within the Transformer has found wide
application in NLP and Offline Reinforcement Learning tasks, as demonstrated by models like
Decision Transformer. The equation presented exemplifies the attention mechanism used in the
Transformer framework:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (6)

• Reinconver is based on 1D CNN. In the field of sequence modeling, 1D convolutions play a role
in extracting local patterns and features from sequences, aiding in learning positional invariance.
It is worth mentioning that, positional information is inherently included during the convolution
process due to the local receptive field property, so we did not add positional embedding to Rein-
conver.

• Reimba is based on the linear RNN Mamba. Inspired by continuous-time systems, Mamba models
sequences or one-dimensional functions through a recurrent mapping process. Like S4, Mamba
uses a hidden state representation, where the hidden state evolves through time as the system
processes inputs. These equations describe the time evolution of the hidden state, with:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (7)

where A ∈ RN×N is the evolution matrix, B ∈ RN×1 andC ∈ R1×N are projection matrices that
govern how inputs and hidden states are transformed into outputs. In the discrete case, Mamba
uses techniques similar to S4, where continuous parameters A and B are discretized, enabling the
model to handle sequences. This leads to a discrete-time variant of the ODEs:

ht = Āht−1 + B̄xt, yt = Cht, (8)

where Ā = exp(∆)Aand B̄ = (∆A)−1(exp(∆A) − I)(∆B), with ∆ representing a timescale
parameter. Mamba introduces a selective scan mechanism, allowing it to dynamically evolve
hidden states based on input data, which ensures Mamba efficiently captures long-range depen-
dencies while maintaining computational efficiency for long sequences. Mamba is currently a
hot contender in the fields of CV and NLP. At the same time, since Mamba is essentially a type
of RNN-like structure capable of extracting positional information, we did not include positional
embedding to Reimba.

Context Length Traditional offline RL algorithms, derived from Markov Decision Processes
(MDPs), predict actions solely based on the current state st. In contrast, sequence modeling also
takes into account historical trajectories of length K, thereby breaking the Markov property. Thus,
the context length is a factor worthy of exploration in sequence modeling.

We consider 4 context length K = 2, 5, 10, 20, with the maximum value of 20 being the default
context length for DT, and the minimum of 2 corresponding to the shortest sequence length. The
intermediate values are determined by exponential interpolation. Typically, the context length during
inference should be consistent with the training training. However, there are exceptions, such as
ODT (Zheng et al., 2022), which manually adjusts the sequence length during inference, and EDT
(Wu et al., 2023), which dynamically adjusts K based on whether the current trajectory is optimal.

5
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4 RELATED WORK

Offline Reinforcement Learning (Levine et al., 2020) breaks free from the traditional paradigm of
online interaction (Sutton et al., 1998) and learns policy from fixed offline dataset collected by
arbitrary or even unknown process (Lange et al., 2012; Fu et al., 2020). Most offline RL algorithms
are developed based on classical online algorithms, such as CQL (Kumar et al., 2020) based on
SAC (Haarnoja et al., 2018), TD3+BC (Fujimoto & Gu, 2021) based on TD3 (Fujimoto et al.,
2018) and BPPO (Zhuang et al., 2023) based on PPO (Schulman et al., 2017). In contrast, Decision
Transformer (DT) (Chen et al., 2021) directly maximizes the action likelihood, solving offline RL
from supervised sequence modeling paradigm. Following upside-down RL (Srivastava et al., 2019;
Schmidhuber, 2019), DT considers returns when predicting the action. Some works equip DT with
classical RL components including dynamics programming (Yamagata et al., 2023), critic guidance
(Wang et al., 2024; Hu et al., 2024), return maximization (Zhuang et al., 2024), online finetuning
(Zheng et al., 2022) and trajectory stitching (Wu et al., 2023). On the other hand, DT is investigated
from supervised learning perspective such as unsupervised pretraining (Xie et al., 2023; Carroll
et al., 2022) and scaling ability (Lee et al., 2022; Shridhar et al., 2023). As for model architecture,
LSTM (Siebenborn et al., 2022), one-dimension convolution network (Kim et al., 2023; Yan et al.,
2024) and linear RNN (David et al., 2022; Cao et al., 2024; Ota, 2024; Lv et al., 2024; Huang et al.,
2024) are adopted to replace the transformer (Vaswani et al., 2017) in DT. However, the evaluation
of these sequence models is based on limited datasets, including only the Gym and antmaze-umaze
datasets (Fu et al., 2020), which biases the drawn conclusions. Reinformer (Zhuang et al., 2024)
proposes using maximized returns during inference to replace the manually designed initial target
returns in DT, significantly expanding the range of evaluated datasets. This paper aims to leverage
the max-return sequence modeling proposed by the Reinformer (Zhuang et al., 2024) to conduct a
systematic evaluation of sequence models and reveal the future direction.

5 RESULTS AND DISCUSSION

In this section, we present the performance of max-return sequence modeling across 9 datasets,
3 architectures, and 4 different context lengths, followed by an in-depth analysis. Specifically, we
focus on three key questions: 1) What types of data distributions are suitable for sequence modeling?
2) What characteristics do different architectures exhibit? 3) How does the training and inference
length of historical trajectories affect performance?

5.1 MAIN RESULTS

Table 2: The normalized score of max-return sequence modeling on 9 datasets (HC-me, HP-mr,
WK-m,AT-mp, AT-md, KC-p, MZ-l, P-h, P-c) with 3 different architectures and 4 context-
lengths (K). We report the mean of normalized score for five seeds. For each seed, the normalized
score is calculated by the mean of 10 evaluation trajectories for Gym and Adroit while 100 for
Antmaze, Maze2d and Kitchen. We also compare our result with IQL, highlighting scores be-
low IQL in gray. The best result is red and the bold result means the best result among one sequence
model with different K. The last row represents how many results outperforms IQL.

model K HC-me HP-mr WK-m AT-mp AT-md KC-p MZ-l P-h P-c

Reinformer 2 91.23 70.92 79.84 5.80 2.00 68.05 NaN 62.77 64.49
Reinformer 5 90.99 68.80 79.91 4.20 3.40 73.00 64.95 75.15 86.55
Reinformer 10 91.87 53.02 79.82 3.80 5.60 74.05 62.00 68.25 75.17
Reinformer 20 92.81 40.84 72.25 1.60 4.20 66.20 64.99 71.94 74.79

Reinconver 2 91.83 84.24 72.28 6.20 5.40 65.20 32.69 73.64 68.52
Reinconver 5 92.26 84.44 74.09 7.80 4.20 34.55 22.45 82.23 71.68
Reinconver 10 92.90 54.02 75.88 4.40 5.20 65.85 34.74 76.27 62.58
Reinconver 20 92.78 49.22 75.38 2.00 2.60 65.25 32.39 75.29 83.38

Reimba 2 91.79 81.95 77.81 5.20 2.60 40.75 59.00 84.89 59.60
Reimba 5 92.91 74.24 80.03 12.40 5.00 45.10 41.04 82.91 71.28
Reimba 10 93.05 55.99 75.59 13.80 5.00 29.70 43.59 97.31 71.02
Reimba 20 92.42 49.47 73.35 15.60 9.00 29.05 43.14 91.61 70.57

IQL 1 86.70 94.70 78.30 78.50 83.50 46.30 61.70 71.50 37.30
(12/12) (0/12) (4/12) (0/12) (0/12) (6/12) (3/12) (10/12) (12/12)
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Table 2 presents the performance of max-return sequence modeling with different parameters on
diverse data distribution. We also compare the performance of sequence modeling algorithms with
the classic offline reinforcement learning algorithm, IQL, highlighting scores below IQL in gray.
Although IQL no longer represents the current state-of-the-art (SOTA) offline algorithm, it still
significantly outperforms sequence modeling on some datasets.

First of all, with datasets that contains high-quality data (such as HC-me, WK-m) or even expert
demonstration (such as P-h, P-c), max-return sequence modeling often excels IQL. Although
max-return sequence modeling introduces the concept of return maximization, it also resembles
to supervised learning that prefers high-quality data. Second, when faced with low-quality datasets
(such as HP-mr,AT-mp, AT-md), RL maintains an overwhelming advantage. In the subsequent
analysis and discussions on architecture and context length, we also focus on these three datasets.

5.2 ARCHITECTURE

In this section, we explore the impact of model architecture on the performance of sequence mod-
eling. Prior research has indicated that the sequence modeling with Convformer (Kim et al., 2023)
and Mamba architecture (Ota, 2024; Cao et al., 2024; Lv et al., 2024; Huang et al., 2024) outper-
form classical transformer. However, these conclusions were drawn without considering the data
distribution and its characteristics. Therefore, we will re-examine these findings across 9 datasets.

5.2.1 ATTENTION ON HISTORICAL TOKENS
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Figure 2: This heatmap illustrates the impact
of token zero masking on the final output.

We analyze which part of the historical trajectory
different model constructions specifically focus on.
We selected the model trained with K = 10 on the
Antmaze environment. Let t represent the time step
of the current token, and t − 9 represents the token
furthest from the current time step. By masking a to-
ken at a certain position with 0, we calculate the dif-
ference between the masked output and the original
output. This difference can, to some extent, reflect
the importance of the masked token to the current
output value. Then, based on this difference, we can

determine whether the model pays more attention to global or local information. We have plotted
the heatmaps of the differences in state, return, and action for the three models in the right figure.

The heatmap reveals that Reinconver and Reimba exhibit a significant increase in values at the
current timestep, indicating a greater focus on local information. In contrast, the Reinformer does
not show a marked rise in differences, suggesting that the impact of masking any token at the current
timestep is relatively uniform. Thus, the Reinformer pays more attention to global information.

5.2.2 ARCHITECTURE COMPARISON

Reinconver

Reimba

Reimba

Reinformer

Reinformer

Reinconver

Figure 3: The improvement probability of
the architectures across all the 9 datasets.

In Figure 3, we illustrate the probability of the archi-
tecture on the left outperforming the right one. The
closer the box is to the right side, the better the per-
formance of the model on the left, and vice versa.
A position in the center indicates that the two ar-
chitectures have comparable performance. Consid-
ering the nine datasets collectively, no single model
demonstrates an absolute advantage. In other words,
the superiority of a model cannot be discussed independently of the characteristics of the dataset.

On the maze-large dataset, the Reinformer demonstrates a significant advantage. This is because
the maze-large dataset inherently exhibits non-Markovian properties, where decisions based on the
current state are correlated with historical waypoints. The Reinformer’s focus on global historical
trajectory information is particularly adept at considering and utilizing waypoint-related informa-
tion effectively. In contrast, on the Antmaze-medium-play dataset, which emphasizes trajectory
stitching, models like Reincover and Reimba that focus on local information perform better. This is
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attributed to the fact that extensive historical sequence information leads to more conservative model
outputs, reducing the likelihood of generating new decisions that deviate from historical trajectories.

Reinconver

Reimba

Reimba

Reinformer

Reinformer

Reinconver

(a) Maze2d-large

Reinformer

Reinformer

Reinconver

Reinconver

Reimba

Reimba

(b) Antmaze-medium-play

Figure 4: The probability of the model on the left superior to the model on the right across (a)
Maze2d-large and (b) Antmaze-medium-play.

5.2.3 INFLUENCE OF POSITIONAL EMBEDDING

As previously mentioned, we do not use positional embedding in Reinconver and Reimba. We
believe the positional embedding is harmful to trajectory stitching. Positional embedding are directly
added to embedded state, returns and action tokens. As a result, the same input sequences become
different at different timesteps, which is harmful to stitching under similar state sequences. This is
supported by “w/o” results in Table 3 especially on short Context Length.

Table 3: The normalized scores of Reinconver and Reimba without and with positional embedding.
Default Reimba and Reinconver did not include positional embedding.

HP-mr AT-mp

model K w/o w/ ∆ w/o w/ ∆

Reinconver 2 84.24 67.55 -19.81% 6.20 2.67 -56.94%
Reinconver 5 84.44 72.74 -13.86% 7.80 7.00 -10.26%
Reinconver 10 54.02 75.52 +39.80% 4.40 2.33 -47.05%
Reinconver 20 49.22 68.87 +39.92% 2.00 1.00 -50.00%
Reimba 2 81.95 76.87 -6.20% 5.20 8.33 +60.19%
Reimba 5 74.24 77.23 +4.03% 12.40 11.00 -11.29%
Reimba 10 55.99 60.94 +8.84% 13.80 10.00 -27.54%
Reimba 20 49.47 70.03 +41.56% 15.60 11.00 -29.49%

Positional embedding facilitates effective information extraction from long sequences. On Hp-mr
dataset, the advantage of long sequences with positional embedding in information extraction out-
weighs their disadvantage in trajectory stitching, causing performance improvement with large K.
But on AT-mp that heavily emphasizes stitching, the advantage in information extraction does not
surpass the disadvantage in trajectory stitching, even in the scenario of large K.

5.3 CONTEXT LENGTH

In this subsection, we investigate the impact of the historical sequence length, also known as context
length, on performance. Sequence modeling and Markov Decision Processes (MDPs) have distinct
perspectives on the historical trajectory when predicting actions, making context length a crucial
factor in sequence modeling.

5.3.1 CONTEXT LENGTH COMPARISON

In Table 4, we employ the least squares method to calculate the fitted line of performance with
respect to K. And the slope of the fitted line is extracted to describe the relationship between
the performance and context length K across various datasets. Overall, performance fluctuates

Table 4: The slope of the fitted line from the least squares method to calculate the fitted line of
performance with respect to K. This can determine the impact of K on the Normalized Score.

HC-me HP-mr WK-m AT-mp AT-md KC-p MZ-l P-h P-c

Reinformer +0.56 −10.60 −2.39 −1.30 +0.88 −0.45 +0.02 +2.06 +1.95
Reinconver +0.35 −13.55 +1.11 −1.60 −0.74 +3.15 +1.14 −0.10 +3.55
Reimba +0.20 −11.57 −1.08 +3.26 +1.92 −5.05 −4.50 +3.46 +3.27
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minimally with changes in K, except on HP-mr dataset. The performance of sequence modeling
notably declines with an increase in context length K.

ቐ
0
0
0

Reinformer

Reinconver

Reimba

Reinformer

Reinconver

Reimba
ቐ
0
0
0
Reinformer
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Figure 5: The data distribution (blue
shade) and normalized evaluation score
on Hopper-medium-replay.

We plot the performance curves and the return distribu-
tion on HP-mr in Figure. The quality of HP-mr is widely
distributed, ranging from random to expert, with a peak
less than 20 normalized score. The distribution of HP-mr
is akin to an online replay buffer, which places higher de-
mands on learning from suboptimal trajectories. Corre-
spondingly, a smaller context length aligns more closely
with the Markov Decision Process (MDP) framework,
and thus performs better.

Upon considering all datasets, it becomes evident that no
context length is universally applicable across 9 datasets
(Figure 6a). For high-quality datasets, such as HC-me,
a longer context length facilitates better training conver-

gence and ultimately leads to improved score in Figure 6c. For tasks that require trajectory stitching,
shorter trajectories are preferred 6b. Taking into account longer historical trajectories increases the
influence of past actions on subsequent behaviors, which may hinder the adoption of trajectories
that deviate from historical ones. This is detrimental to the stitching process. In other words, longer
historical trajectories can also be seen as the conservatism.
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(c) HC-me

Figure 6: (a) represents the probability of the left K superior to the right one across all datasets. (b)
represents the probability on AT-mp (c) represents evaluation scores with different K on HC-me.

5.3.2 LONG TRAINING CONTEXT LENGTH WHILE SHORT INFERENCE CONTEXT LENGTH

Reinformer

𝐾 = 20|𝟒. 𝟐
𝐾 = 10|𝟓. 𝟔
𝐾 = 𝟎5|𝟑. 𝟒
𝐾 = 𝟎2|𝟐. 𝟎

Reinconver

𝐾 = 20|𝟐. 𝟔
𝐾 = 10|𝟓. 𝟐
𝐾 = 𝟎5|𝟒. 𝟐
𝐾 = 𝟎2|𝟓. 𝟒

Reimba

𝐾 = 20|𝟗. 𝟎
𝐾 = 10|𝟓. 𝟎
𝐾 = 𝟎5|𝟓. 𝟎
𝐾 = 𝟎2|𝟐. 𝟔

Reinformer

𝐾 = 20|𝟏. 𝟔
𝐾 = 10|𝟑. 𝟖
𝐾 = 𝟎5|𝟒. 𝟐
𝐾 = 𝟎2|𝟓. 𝟖

Reinconver

𝐾 = 20|𝟐. 𝟎
𝐾 = 10|𝟒. 𝟒
𝐾 = 𝟎5|𝟕. 𝟖
𝐾 = 𝟎2|𝟔. 𝟐

Reimba

𝐾 = 20|𝟏𝟓. 𝟔
𝐾 = 10|𝟏𝟑. 𝟖
𝐾 = 5|𝟏𝟐. 𝟒
𝐾 = 2| 𝟓. 𝟐

(a) Antmaze-medium-play
Reinformer

𝐾 = 20|𝟒. 𝟐
𝐾 = 10|𝟓. 𝟔
𝐾 = 𝟎5|𝟑. 𝟒
𝐾 = 𝟎2|𝟐. 𝟎

Reinconver

𝐾 = 20|𝟐. 𝟔
𝐾 = 10|𝟓. 𝟐
𝐾 = 𝟎5|𝟒. 𝟐
𝐾 = 𝟎2|𝟓. 𝟒

Reimba

𝐾 = 20|𝟗. 𝟎
𝐾 = 10|𝟓. 𝟎
𝐾 = 𝟎5|𝟓. 𝟎
𝐾 = 𝟎2|𝟐. 𝟔

(b) Antmaze-medium-diverse

Figure 7: This figure displays the performance of masking the first (20 − K1) tokens in a se-
quence model with K = 20. We show the averages and corresponding standard deviations of three
seeds evaluated in the environment 100 times (represented by the solid yellow line and its shaded
area). Additionally, we compare this with models trained and evaluated normally with a length
of 20, 10, 5, 2 (blue bar values). The horizontal axis increases from left to right as the number of
masked tokens increases and the remaining context length K1 decreases.
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All previous models have considered the historical trajectory length to be the same during inference
as in the training phase. ODT (Zheng et al., 2022) discovers that, in some cases, a shorter sequence
length during inference can help improve performance. EDT (Wu et al., 2023) also proposes the
concept of dynamically adjusting the sequence length during inference based on the quality of the
historical trajectory. Therefore, we explore the performance of masking some historical tokens with
the model trained by context length K = 20.

During the inference phase, we consider historical trajectories of length K1 < 20, padding the empty
tokens to with zeros to accommodate the model’s input requirements. This can also be interpreted

Original Input 

(𝐾 = 20)

𝑥

𝐴𝑡𝑡 𝑉

Masked Input

(𝐾 = 18 ×⊘+2)

𝑥

෪𝐴𝑡𝑡 ෨𝑉

𝑥 ෪𝐴𝑡𝑡 𝑉 𝑥 𝐴𝑡𝑡 ෨𝑉

a) Original Attention 

and Original Value

b) Masked Attention      

and Masked Value

c) Masked Attention 

and Original Value

d) Original Attention 

and Masked Value

Figure 8: Different Attention matrices
and different V inputs are used in the
first layer of the transformer to obtain
the final action.

as masking a trajectory segment of length 20 − K1 with
zeros. In Figure 7, as the horizontal axis increases, the in-
put trajectory length K1 becomes shorter, with the length
masked by zeros increasing correspondingly. Concur-
rently, the model’s performance significantly improves,
surpassing all the performance with different K.

To investigate the reason of significant performance im-
provement after mask, we conduct the experiments in Fig-
ure 8 using the Reinformer with K = 20. x+ Att · V is
generated from normal input while x̃+Ãtt · Ṽ is obtained
by masking the first 18 tokens. Then their attention matri-
ces and value vectors are exchanged to obtain x̃+ Ãtt ·V
and x̃+Att·Ṽ . According to Table 5, replacing Ṽ with V
is even worse than normal setting while attention matrices
exchange not affect the final performance. This results
suggest the Attention matrix Ãtt obtained after masking
did not significantly enhance performance, while Ṽ ob-
tained after masking is the key factor.

Table 5: Result of the experiment showed in figure 8. We report the mean and std of normalized
score for three seeds. For each seed, the stats is calculated by 100 evaluation trajectories.

input x+Att · V x̃+ Ãtt · Ṽ x̃+ Ãtt · V x̃+Att · Ṽ
Normalized Score 1.60±0.55 36.00±11.79 0.00±0.00 33.00±13.89

6 CONCLUSION, DISCUSSION AND FUTURE WORK

In this paper, we systematically revisit the impact of 3 architectural choices and 4 context lengths on
9 diverse datasets in max-return sequence modeling. Through extensive experiments, we find:

• Architectures: On more diverse datasets, the Transformer architecture still remains a competitive
model. Reinformer exhibits better stability in the presence of input perturbations, focusing more
on global sequence information. In contrast, Reinconver and Reimba more focus on local infor-
mation. The inclusion of positional embedding may not be advantageous for trajectory stitching
but aids in information extraction in long sequences.

• Context lengths: In scenarios with high data quality, sequence modeling often outperforms clas-
sical offline RL derived from MDPs. However, on datasets that heavily emphasize stitching,
classical offline RL surpasses sequence modeling. With exceptionally high data quality, longer
sequence models converge faster. Our astonishing discovery is that masking out a portion of
historical trajectory information during inference may enhance trajectory stitching.

In summary, we recommend using sequence modeling when data quality is high, resorting to classi-
cal Offline RL or a combination of sequence modeling and classical Offline RL when stitching data
is crucial. In the future, we will explore how to better integrate classical RL with sequence modeling
to harness both of their strengths.
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A HYPERPARAMETERS AND SUPPLEMENTED EXPERIMENTS

Hyperparameters used during model training are as follows:

env name model K tau train step learning rate normalized score

HC-me Reinformer 2 0.99 10w 0.0001 91.23
Reinformer 5 0.99 10w 0.0001 90.99
Reinformer 10 0.99 10w 0.0001 91.87
Reinformer 20 0.99 10w 0.0001 92.81
Reinconver 2 0.99 10w 0.0001 91.83
Reinconver 5 0.99 10w 0.0001 92.26
Reinconver 10 0.99 10w 0.0001 92.9
Reinconver 20 0.99 10w 0.0001 92.78
Reimba 2 0.99 10w 0.0001 91.79
Reimba 5 0.99 10w 0.0001 92.91
Reimba 10 0.99 8w 0.0001 93.05
Reimba 20 0.99 4w 0.0001 92.42

HP-mr Reinformer 2 0.999 9w 0.0004 70.92
Reinformer 5 0.999 9w 0.0004 68.80
Reinformer 10 0.999 9w 0.0004 53.02
Reinformer 20 0.999 9w 0.0004 40.84
Reinconver 2 0.999 8w 0.0004 84.24
Reinconver 5 0.999 8w 0.0004 84.44
Reinconver 10 0.999 8w 0.0004 54.02
Reinconver 20 0.999 8w 0.0004 49.22
Reimba 2 0.999 5w 0.0004 81.95
Reimba 5 0.999 10w 0.0004 74.24
Reimba 10 0.999 10w 0.0004 55.99
Reimba 20 0.999 10w 0.0004 49.47

WK-m Reinformer 2 0.99 2w 0.0001 79.84
Reinformer 5 0.99 1.5w 0.0001 79.91
Reinformer 10 0.99 1.5w 0.0001 79.82
Reinformer 20 0.99 2w 0.0001 72.25
Reinconver 2 0.99 7w 0.0001 72.28
Reinconver 5 0.99 7w 0.0001 74.09
Reinconver 10 0.99 7w 0.0001 75.88
Reinconver 20 0.99 7w 0.0001 75.38
Reimba 2 0.999 1w 0.0001 77.81
Reimba 5 0.999 1.5w 0.0001 80.03
Reimba 10 0.999 1w 0.0001 75.59
Reimba 20 0.999 1w 0.0001 73.35
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env name model K tau train step learning rate normalized score

KC-p Reinformer 2 0.9 20w 0.0001 68.05
Reinformer 5 0.9 20w 0.0001 73
Reinformer 10 0.9 20w 0.0001 74.05
Reinformer 20 0.9 10w 0.0001 66.2
Reinconver 2 0.99 20w 0.0001 65.2
Reinconver 5 0.99 20w 0.0001 34.55
Reinconver 10 0.99 20w 0.0001 65.85
Reinconver 20 0.99 20w 0.0001 65.25
Reimba 2 0.99 6w 0.0001 40.75
Reimba 5 0.99 5w 0.0001 45.1
Reimba 10 0.99 4w 0.0001 29.7
Reimba 20 0.99 2w 0.0001 29.05

MZ-l Reinformer 2 0.999 nan 0.0004 nan
Reinformer 5 0.999 10w 0.0004 64.95
Reinformer 10 0.999 10w 0.0004 62
Reinformer 20 0.999 10w 0.0004 64.99
Reinconver 2 0.999 10w 0.0004 32.69
Reinconver 5 0.999 10w 0.0004 22.45
Reinconver 10 0.999 10w 0.0004 34.74
Reinconver 20 0.999 10w 0.0004 32.39
Reimba 2 0.999 10w 0.0004 59.00
Reimba 5 0.999 5w 0.0004 41.04
Reimba 10 0.999 5w 0.0004 43.59
Reimba 20 0.999 5w 0.0004 43.14

P-h Reinformer 2 0.9 4w 0.0001 62.77
Reinformer 5 0.9 4w 0.0001 75.15
Reinformer 10 0.9 10w 0.0001 68.25
Reinformer 20 0.9 10w 0.0001 71.94
Reinconver 2 0.99 4w 0.0001 73.64
Reinconver 5 0.99 4w 0.0001 82.23
Reinconver 10 0.99 5w 0.0001 76.27
Reinconver 20 0.99 5w 0.0001 75.29
Reimba 2 0.99 4w 0.0001 84.89
Reimba 5 0.99 4w 0.0001 82.91
Reimba 10 0.99 4w 0.0001 97.31
Reimba 20 0.99 4w 0.0001 91.61

P-c Reinformer 2 0.9 5w 0.0001 64.49
Reinformer 5 0.9 5w 0.0001 86.55
Reinformer 10 0.9 5w 0.0001 75.17
Reinformer 20 0.9 5w 0.0001 74.79
Reinconver 2 0.99 5w 0.0001 68.52
Reinconver 5 0.99 5w 0.0001 71.68
Reinconver 10 0.99 5w 0.0001 62.58
Reinconver 20 0.99 5w 0.0001 83.38
Reimba 2 0.99 5w 0.0001 59.60
Reimba 5 0.99 5w 0.0001 71.28
Reimba 10 0.99 5w 0.0001 71.02
Reimba 20 0.99 5w 0.0001 70.57
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env name model K tau learning rate normalized score

AT-mp Reinformer 2 0.999 0.0008 5.8
Reinformer 5 0.999 0.0008 4.2
Reinformer 10 0.999 0.0008 3.8
Reinformer 20 0.999 0.0008 1.6
Reinconver 2 0.999 0.0008 6.2
Reinconver 5 0.999 0.0008 7.8
Reinconver 10 0.999 0.0008 4.4
Reinconver 20 0.999 0.0008 2
Reimba 2 0.999 0.0008 5.2
Reimba 5 0.999 0.0008 12.4
Reimba 10 0.999 0.0008 13.8
Reimba 20 0.999 0.0008 15.6

AT-md Reinformer 2 0.999 0.0008 2
Reinformer 5 0.999 0.0008 3.4
Reinformer 10 0.999 0.0008 5.6
Reinformer 20 0.999 0.0008 4.2
Reinconver 2 0.999 0.0008 5.4
Reinconver 5 0.999 0.0008 4.2
Reinconver 10 0.999 0.0008 5.2
Reinconver 20 0.999 0.0008 2.6
Reimba 2 0.999 0.0008 2.6
Reimba 5 0.999 0.0008 5
Reimba 10 0.999 0.0008 5
Reimba 20 0.999 0.0008 9

Table 6: The normalized scores of Reinconver and Reimba with and without positional embeddings.
Original Reimba and Reinconver did not include positional embedding. The ∆ represents the change
in score when positional embedding is added.

WK-m HC-me

model K no pos pos ∆ no pos pos ∆

Reinconver 5 74.09 75.48 +1.88% 92.26 91.80 -0.50%
Reimba 5 80.03 74.73 -6.62% 92.91 91.57 -1.44%

Table 7: window size for Reinconver

K 2 5 10 20

window size 4 6 10 20

(a) HP-mr

Figure 9: This figure displays the performance of masking the first (20−K1) tokens in a sequence
model with K = 20. We show the averages and corresponding standard deviations of three seeds
evaluated in the HP-mr environment 10 times (represented by the solid yellow line and its shaded
area). Additionally, we compare this with models trained and evaluated normally with a length
of 20, 10, 5, 2 (blue bar values). The horizontal axis increases from left to right as the number of
masked tokens increases and the remaining context length K1 decreases.
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