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Abstract

We present Unsupervised hard Negative Aug-001
mentation (UNA), a method that generates syn-002
thetic negative instances based on the term003
frequency-inverse document frequency (TF-004
IDF) retrieval model. UNA uses TF-IDF scores005
to ascertain the perceived importance of terms006
in a sentence and then produces negative sam-007
ples by replacing terms with respect to that. Our008
experiments demonstrate that models trained009
with UNA improve the overall performance in010
semantic textual similarity tasks. Additional011
performance gains are obtained when combin-012
ing UNA with the paraphrasing augmentation.013
Further results show that our method is compat-014
ible with different backbone models. Ablation015
studies also support the choice of having a TF-016
IDF-driven control on negative augmentation.017

018

1 Introduction019

Self-supervised contrastive learning (SSCL) has020

emerged as a potent method for a variety of lin-021

guistic tasks such as sentiment analysis, textual en-022

tailment, and similarity retrieval (Gao et al., 2021;023

Yan et al., 2021; Giorgi et al., 2021; Wu et al.,024

2020; Fang and Xie, 2020). Data augmentation025

in SSCL is oftentimes used to generate positive026

instances, based on an anchor instance, with rep-027

resentations that are trained to be more similar to028

each other or to the anchor itself (He et al., 2020;029

Grill et al., 2020). While various data augmenta-030

tions are effective in supervised NLP tasks (Wei031

and Zou, 2019; Karimi et al., 2021), they appear032

to lose efficacy when applied within the context of033

contrastive learning. For example, a dropout mask034

outperformed established augmentations such as035

cropping, word deletion, and synonym replace-036

ment (Gao et al., 2021). This could indicate that the037

properties of the chosen text augmentations are at038

odds with the SSCL objective, which seeks model039

invariance to these changes, while it should not.040

Encoder Positive instance

Negative Augmentation.           Negative instance

Two dogs are running.

A man is surfing on the sea.

Negative augmentation on anchor instance

Two cats are singing.

A bacon is lying on the sand.

Figure 1: Illustration of UNA. Negative augmentation,
driven by TF-IDF, is applied to anchor instances to
generate sentences with potential semantic differences.

By contrast, negative data augmentation has gar- 041

nered much less attention. Sinha et al. (2021) in- 042

troduced negative data augmentation for computer 043

vision tasks. In addition, Tang et al. (2022) exam- 044

ined as many as 16 augmentation strategies for 045

NLP tasks with SSCL, discovering that synthetic 046

sentences augmented with certain methods (e.g. fre- 047

quently introducing grammatical errors) perform 048

better when treated as negative samples. Interest- 049

ingly, their main performance gain originated from 050

applying augmented instances as positive samples 051

whilst including negatively augmented instances 052

tended to degrade the overall performance, espe- 053

cially in Semantic Textual Similarity (STS) tasks. 054

In this paper, we argue that the potential con- 055

tribution of synthetic negatives in SSCL has been 056

undervalued. We therefore propose Unsupervised 057

hard Negative Augmentation (UNA), an augmen- 058

tation strategy for generating negative samples in 059

SSCL. Figure 1 depicts how UNA is applied during 060

the model pre-training stage (details in section 3). 061

UNA’s core premise is the deployment of a TF- 062

IDF-driven methodology to generate negative pairs. 063

This improves model performance in downstream 064

STS tasks, with additional gains when applied in 065

conjunction with paraphrasing. 066
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2 Preliminaries067

2.1 Contrastive learning068

Contrastive learning is a training method that uses069

a Siamese neural network structure to learn trans-070

ferable representations (Das et al., 2016; He et al.,071

2020; Chen et al., 2020). The key idea is to bring072

similar data samples closer to each other while073

pushing dissimilar ones apart. Given a batch of B074

training sentences, let xi, xj , and xk be the anchor,075

positive, and negative sentences, respectively. Posi-076

tive instances are defined as different views of the077

anchor (usually generated from different augmen-078

tations), while negative instances are other data079

points in the training batch. We denote their corre-080

sponding embeddings with hi, hj , and hk, respec-081

tively. The InfoNCE loss is used for self-supervised082

instance discrimination:083

L = E

[
− log

efsim(hi,hj)/τ∑B
k=1 1[k ̸=i,j]efsim(hi,hk)/τ

]
,

(1)084

where τ is a temperature hyperparameter, and the085

fsim function is a similarity metric (e.g. cosine086

similarity). The objective of the loss function is087

to maximise the similarity between positive pairs088

while minimising it between negative pairs. This en-089

courages the neural network to capture discrimina-090

tive and potentially informative features for down-091

stream tasks.092

2.2 Hard negative sampling093

Hard negative samples, which are negative samples094

that are challenging for the model to differentiate095

from the anchor instance, have proven to be effec-096

tive in contrastive learning (Kalantidis et al., 2020).097

Instead of random sampling, there has been a fo-098

cus on obtaining hard negatives using samples that099

are close to the anchor instance in the embedding100

space (Robinson et al., 2021). This may encour-101

age some separation (disambiguation) between in-102

stances that may be close in the embedding space103

but have contrastive semantic interpretations. In104

addition, synthetic instances, obtained via trans-105

formations such as MixUp (Zhang et al., 2018) or106

Cutmix (Yun et al., 2019), have been used (Sinha107

et al., 2021; Shu et al., 2022). This has showcased108

the utility of transformation-based generative sam-109

ples that are not present in an observed dataset.110

3 Unsupervised hard Negative 111

Augmentation (UNA) 112

Terms with a higher degree of substance (i.e. 113

words that are less common) are on average more 114

important in determining the meaning of a sen- 115

tence (Ramos et al., 2003), thus swapping such 116

words may generate semantically distant negatives 117

for the model to train upon (see Table B2). Moti- 118

vated by Xie et al. (2020), who used TF-IDF (Luhn, 119

1958; Sparck Jones, 1972) to generate positive in- 120

stances by swapping the words in the sentence that 121

are less important, we now reverse this paradigm. 122

Our proposed method (UNA) introduces a TF-IDF- 123

driven generation of hard negative pairs, whereby 124

words with more substance have a greater probabil- 125

ity of being swapped, and more common words do 126

not. UNA consists of 3 steps that we describe next 127

(see also Appendix, Algorithm 1). 128

Step 1 — Derive a TF-IDF representation. A 129

TF-IDF score for a term t in a document d from a 130

corpus D with N documents is given by: 131

tf-idf(t, d,D) = tf(t, d)× idf(t,D) , (2) 132

where tf(t, d) = log(1 + nt/n) and idf(t,D) = 133

− log(Nt/N). nt and n respectively denote the 134

count of term t and the total count of terms in docu- 135

ment d. Nt denotes the number of documents from 136

D that contain term t. The TF-IDF representation 137

is held in a matrix Z ∈ RN×m, where m is the 138

number of terms in the vocabulary. 139

Step 2 — Determine which terms will be re- 140

placed at the sentence level. For a sentence in 141

the corpus represented by the TF-IDF vector z ∈ Z, 142

let pi denote the probability of replacing term i. pi 143

is determined as follows: 144

pi = min (β (zi −min (z)) /C, 1) , (3) 145

C =
1

nz

nz∑
i=1

(zi −min (z)) , (4) 146

where zi is the i-th element of z, nz is the number 147

of terms that are present in the sentence, and β 148

is a hyperparameter that tunes the augmentation 149

magnitude. In our experiments, we set β = 0.5 150

(see Table C5), and thus pi ∈ [0, 1] with a mean 151

of 0.5 (See Equation 5). Note that we always set 152

pi = 1 for the term with the greatest TF-IDF score 153

in a sentence. The intuition behind this is to have 154

at least one term replaced in every sentence, which 155

guarantees that all augmented negative samples are 156

different from their paired original sentences. 157
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Step 3 — Sample replacement terms based on158

the level of information. We aim to choose re-159

placement terms that have a similar level of im-160

portance to the terms that are replacing (based on161

Step 2) with respect to their TF-IDF representa-162

tion in our corpus. To perform this, we rely on the163

maximum TF-IDF score of terms in the corpus.164

For a term j, this is denoted by sj , which is the165

maximum value of the j-th column of Z. To re-166

place term i we then sample from a set of terms167

located in the maximum TF-IDF score vicinity of168

term i. We determine a radius of r terms (below169

and above the reference maximum TF-IDF score of170

term i) and sample a replacement term with respect171

to their maximum TF-IDF scores. By encouraging172

replacements of terms with alternatives that have173

a comparable level of importance in a sentence,174

we generate new sentences that are more likely175

to retain the original structure but convey some-176

thing semantically distant. Hence, these augmented177

sentences, guided by the TF-IDF representation Z,178

could be considered as hard negative samples.179

4 Experiments and results180

Augmentation implementation. UNA is applied181

during the self-supervised pre-training stage.1 For182

B sentences in a training batch, we generate B neg-183

ative sentences with UNA, doubling the batch size.184

In our experiment setup, this process is carried out185

once every 5 training batches. The TF-IDF repre-186

sentation has a vocabulary size of 451,691 terms,187

which is obtained from the training dataset (see Ap-188

pendix A). The only text preprocessing operations189

performed are basic tokenisation and lowercasing.190

In addition, we incorporate UNA along with191

paraphrasing, where positive instances are gener-192

ated by utilising a paraphrasing model, namely PE-193

GASUS (Zhang et al., 2020) (see Appendix C).194

Paraphrasing rephrases the anchor sentence while195

maintaining its original meaning. All sentences in196

the training corpus are paraphrased to be consid-197

ered as the corresponding positive instances to the198

original sentences. As a result, this process doubles199

the amount of sentences for TF-IDF, increasing the200

vocabulary size to 474,653 terms.201

Baseline model. We first reproduce SimCSE fol-202

lowing the self-supervised pre-training and eval-203

uation setup in Gao et al. (2021). We note that204

there is a difference in performance in the re-205

1The source code will be made available upon acceptance.

produced result compared to the original one 206

(while maintaining the same seed), specifically 207

from 0.825 (reported) to 0.816 (reproduced) with 208

BERT and from 0.8376 (reported) to 0.8471 (re- 209

produced) with RoBERTa on the STS-B develop- 210

ment dataset (Cer et al., 2017). For a more con- 211

sistent evaluation, we present all augmentation re- 212

sults in comparison to the reproduced version of 213

the unsupervised SimCSE-BERTbase and SimCSE- 214

RoBERTabase model. We also run experiments with 215

different seeds to establish a more robust difference 216

in performance (see Table D7). 217

Self-supervised pre-training. For the self- 218

supervised pre-training stage, we train on the 219

same dataset as in the paper that introduced 220

SimCSE (Gao et al., 2021). We use BERT and 221

RoBERTa as our base models and start training 222

with pre-trained checkpoints. To be specific, the 223

uncased BERT model2 and the cased pre-trained 224

RoBERTa model3. The training batch size is set 225

to 64 and the temperature, τ , is equal to 0.05. 226

Dropout is applied to all models, value set to 0.1. 227

The model is trained on the dataset for 1 epoch 228

using the AdamW optimiser (Loshchilov and Hut- 229

ter, 2019). The initial learning rate of BERTbase 230

models is 3×10−5 and decays to 0 with a step-wise 231

linear decay scheduler (applied after each batch). 232

The learning rate for RoBERTabase models is set 233

constantly to 5×10−6 (this improves performance 234

compared to the one reported by Gao et al. (2021)). 235

The radius r (for replacement term sampling based 236

on the maximum TF-IDF score) is set to 4,000 (Ta- 237

ble C6 justifies this choice), which is around 1% 238

of the vocabulary size. During the self-supervised 239

pre-training stage, we evaluate the model on the 240

STS-B development dataset every 100 batches. The 241

checkpoint with the best validation result is used 242

for downstream task evaluation. 243

Downstream task evaluation. The evaluation 244

is based on 7 STS tasks, each containing pairs of 245

sentences with corresponding labelled similarity 246

scores. Details of the datasets can be found in Ap- 247

pendix A. The results are based on the unified set- 248

ting provided by Gao et al. (2021). First, we freeze 249

the pre-trained network to extract sentence embed- 250

dings from the evaluation datasets. These embed- 251

dings are obtained from the first layer of the last 252

2Pre-trained BERT model, https://huggingface.co/
bert-base-uncased

3Pre-trained RoBERTa model, https://huggingface.
co/roberta-base
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Augmentation SentEval - STS tasks

paraphrasing UNA STS12 STS13 STS14 STS15 STS16 STS Bench. SICK Rel. Avg.
B

E
R

T
.6904 .7952 .7303 .8019 .7815 .7616 .7116 .7532
.6802 .8226 .7306 .8200 .7908 .7760 .7093 .7614

.7003 .7978 .7531 .8253 .7908 .7856 .7165 .7671

.6939 .8158 .7616 .8304 .7910 .8030 .7412 .7767

R
oB

E
R

Ta

.6907 .8175 .7336 .8193 .7974 .7996 .6961 .7649

.7075 .8155 .7343 .8261 .8053 .8021 .6808 .7674

.6962 .8162 .7442 .8321 .8000 .8128 .7362 .7768

.7095 .8188 .7493 .8334 .8092 .8189 .7352 .7820

Table 1: Performance on the SemEval STS tasks (Spearman correlation) when UNA and/or paraphrasing are added
with BERT and RoBERTa as the backbone model. Please note that STS Bench. and SICK Rel. abbreviate STS
Benchmark and SICK Relatedness, respectively.

hidden state. Next, we compute cosine similarity253

scores between the embeddings of sentence pairs254

in the evaluation datasets. Spearman’s rank correla-255

tion is used to measure the relationship between the256

predicted similarity scores and the ground truth.257

Results. We compare adding UNA to two base-258

lines, SimCSE with BERTbase and RoBERTabase.259

As shown in Table 1, the application of UNA260

improves the average correlation of the unsuper-261

vised SimCSE-BERTbase from .7532 to .7614, and262

from .7649 to .7674 on the unsupervised SimCSE-263

RoBERTabase. Further, when both paraphrasing264

and UNA are deployed, correlation increases to265

.7767 with BERT backbone (an outcome which is266

robust across different seeds; see Table D7) and fur-267

ther to .7820 with RoBERTa backbone. This is also268

an improvement over the sole deployment of para-269

phrasing (ρ = .7671 with BERT and ρ = .7768270

with RoBERTa). The performance on different271

backbone models points to the same result pattern,272

demonstrating the effectiveness of UNA with a dif-273

ferent backbone language model, and, to some ex-274

tent, supporting further generalisation claims. We275

argue that while paraphrasing and UNA both add276

synthetic data points to the training data, they intro-277

duce complimentary invariances to the model. Para-278

phrasing contributes to recognising sentences with279

similar semantics, while UNA provides challenging280

negative signals for separating sentences, and both281

work in tandem. Interestingly, we reach SOTA per-282

formance on the SICK Relatedness task (unsuper-283

vised, comparison with other models in Table D8),284

showcasing that the combination of paraphrasing285

with UNA can be a straightforward method to im-286

prove performance on downstream tasks.287

Step 2
Random

Step 3
Random STS-B dev. STS Avg.

.7798 .7258

.8086 .7384

.8235 .7614

Table 2: Ablation study on negative sampling. The first
column indicates whether sentence terms are randomly
selected to be replaced and the second column whether
the replacement term selection is random. The last row
is UNA. Performance on the STS-B development set and
the average correlation on the 7 STS tasks are shown.

Ablation. The effectiveness of UNA relies on 288

two vital steps: selecting terms with high TF-IDF 289

scores and replacing them with terms that have sim- 290

ilar maximum TF-IDF scores in the corpus. Ran- 291

domly swapping the terms in a sentence does not 292

contribute to generating informative negative sam- 293

ples. To demonstrate this, we conducted an abla- 294

tion study with BERTbase model, validating perfor- 295

mance on the STS-B development set as well as 296

the average 7 STS tasks. Results are enumerated 297

in Table 2. This highlights that guiding the term 298

selection and replacement process with TF-IDF 299

provides significantly better outcomes than doing 300

either or both steps randomly. 301

5 Conclusion 302

In this paper, we propose a novel and efficient neg- 303

ative augmentation strategy, UNA, guided by the 304

TF-IDF retrieval model. Results show that UNA 305

is compatible with different backbone models and 306

could bring great performance improvements to 307

downstream STS tasks, especially when combined 308

with paraphrasing. 309
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6 Limitations310

Our experiments focused on English language311

datasets. Therefore, the findings may not provide312

constructive directions for other languages with dif-313

ferent characteristics compared to English. In addi-314

tion, the application of TF-IDF on single sentences315

(as opposed to lengthier text constructs) might pro-316

vide quite dataset-specific results which may or317

may not work in favour of the proposed augmenta-318

tion method (UNA). This is something that follow-319

up work should investigate.320
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Appendix562

A Dataset details563

Self-supervised pre-training dataset. All mod-564

els are pre-trained on the English Wikipedia corpus565

(1 million sentences) provided by Gao et al. (2021).566

We note that while we use this training dataset for567

a consistent comparison with the previous work, it568

is not entirely suitable for obtaining a TF-IDF rep-569

resentation due to its very short document length,570

and quite restrictive topic coverage.571

STS tasks. The evaluation is based on 7 STS572

tasks, namely STS 2012-2016 (Agirre et al., 2012,573

2013, 2014, 2015, 2016), STS Benchmark (Cer574

et al., 2017), and SICK Relatedness (Marelli et al.,575

2014), each containing pairs of sentences with their576

corresponding labelled similarity score ranging577

from 0 to 5. The size of each evaluation (test) set is578

enumerated in Table A1.579

B Methodology details580

We further demonstrate how β controls the aug-581

mentation magnitude in UNA. According to Equa-582

tion 3 and 4, if we set ai = zi − min (z), then583

Task Test samples

STS12 3,108
STS13 1,500
STS14 3,750
STS15 3,000

Task Test samples

STS16 1,186
STS Bench. 1,379
SICK Rel. 4,927

Table A1: Size of STS test datasets.

Sentence

Another factor was caffeine.
another instrumental was x-45c.

Greetings from the real universe.
acylations from the real government-owned.

We should play with legos at camp.
we kulish play with minimum at yakiudon.

Table B2: UNA-generated sentences. The original sen-
tences are in green while the sentences augmented with
UNA are in black. Words that have been replaced by
another word are bolded.

pi = min (βai/C, 1). We temporarily ignore the 584

maximum boundary of 1 to simplify the analysis. 585

The mean of p, denoted as p̄, can be depicted as: 586

p̄ =
1

nz

nz∑
i=1

(
βai

1
nz

∑nz
i=1 ai

)
. (5) 587

Given that 1
nz

∑nz
i=1 ai is a constant value for every 588

sentence, we have p̄ = β. When factoring in the 589

upper boundary, this relationship is modified to 590

p̄ ≤ β, which suggests that the mean probability of 591

replacing term i in the sentence closely aligns with 592

the augmentation magnitude β. 593

Examples of sentences generated with UNA are 594

tabulated in Table B2 using the vocabulary of the 595

training dataset described in section A. 596

C Augmentation details 597

C.1 Paraphrasing 598

In our experiments, paraphrasing is applied as an 599

augmentation strategy to create positive samples 600

of the anchor instances. To paraphrase each sen- 601

tence in the training dataset, we use a paraphrasing 602

model from the Huggingface hub,4 which is fine- 603

tuned based on the PEGASUS model (Zhang et al., 604

2020). During pre-training, we consider the origi- 605

nal sentences and their corresponding paraphrased 606

4Fine-tuned PEGASUS model for paraphrasing, https:
//huggingface.co/tuner007/pegasus_paraphrase
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Augmentations SentEval - STS tasks

STS12 STS13 STS14 STS15 STS16 STS Bench. SICK Rel. Avg.
SimCSE-BERTbase

∗ (reproduced) .6904 .7952 .7303 .8019 .7815 .7616 .7116 .7532

EDA♠ synonym replacement .6118 .7106 .6590 .7179 .7424 .6623 .6218 .6751
EDA♠ random insert .6594 .7402 .7039 .7698 .7543 .7287 .7200 .7252
EDA♠ random swap .6850 .7808 .7212 .7830 .7767 .7643 .6984 .7442
EDA♠ random delete .6719 .7842 .7147 .7868 .7872 .7641 .6916 .7429
back-translation Helsinki

♡ .6876 .7510 .7072 .7933 .7802 .7618 .7034 .7406
paraphrasing PEGASUS

♣ .7003 .7978 .7531 .8253 .7908 .7856 .7165 .7671

MODALS♢ interpolation .7055 .8137 .7472 .8104 .7852 .7725 .7064 .7630
MODALS♢ extrapolation .6817 .7913 .7471 .8136 .7905 .7824 .7124 .7599
MODALS♢ linear sampling .6923 .8114 .7381 .8090 .7837 .7745 .6981 .7582
MODALS♢ Gaussian noise .6913 .8143 .7422 .8095 .7788 .7760 .7180 .7614
EfficientCL♦ PCA jittering .6848 .7893 .7426 .8141 .7755 .7854 .7200 .7588

Table C3: Performance on STS tasks for different augmentations with BERT as the backbone model. ∗ is the
reproduced result of unsupervised SimCSE (Gao et al., 2021). The augmentations presented at the top part of
the table are applied directly to sentences while the ones at the bottom part are added in the embedding space.
♠ denotes the results after adding the augmentation strategies proposed by Wei and Zou (2019). ♡ denotes the
results after training with positive sentences generated via back-translation (Sennrich et al., 2016); we first translate
the original text to French and then back to English. ♣ denotes the result produced by training with positive pairs
generated by using a paraphrasing model based on PEGASUS (Zhang et al., 2020). ♢ denotes the results after
applying augmentation strategies proposed by Cheung and Yeung (2021). ♦ denotes the result produced by adding
perturbation on the embedding layer with PCA jittering proposed by Ye et al. (2021).

ones as positive pairs. Regarding the choice of para-607

phrasing model, we also assessed T5 by Raffel et al.608

(2020),5 but it only reached a correlation of .7985609

on the STS-B development dataset (compared to610

.8234 for PEGASUS).611

C.2 Other augmentations612

We conducted experiments to assess the perfor-613

mance of various augmentation strategies (ex-614

plained below) along with contrastive learning. The615

results are enumerated in Table C3. The strategies616

listed in the top part of the table are input-level617

augmentations, i.e. they change the input sentence618

by applying transformations such as deleting or619

inserting words. The methods at the bottom are620

embedding-level augmentations. Paraphrasing pro-621

vides the best results on average.622

EDA. Easy Data Augmentation (EDA) (Wei and623

Zou, 2019) introduced 4 data augmentation strate-624

gies: synonym replacement using WordNet (Miller,625

1995), random word insertion, random word posi-626

tion swapping, and random word deletion.627

Back-translation. Similar to paraphrasing, back-628

translation is a method that rephrases the sentence629

using pre-trained language models. It involves630

5Fine-tuned T5 model for paraphrasing, https://
huggingface.co/Vamsi/T5_Paraphrase_Paws

translating the sentence to another language and 631

back. In our experiments, we use the pre-trained 632

translation model between English and French 633

by Tiedemann and Thottingal (2020). 634

MODALS. Cheung and Yeung (2021) proposed 635

the following augmentation strategies at the em- 636

bedding level: hard example interpolation (interpo- 637

late a sample with its closest hard example), hard 638

example extrapolation (use the centre of a set of 639

samples), linear sampling (perturb an embedding 640

along the direction of two random samples), and 641

randomly add Gaussian noise to the embeddings. 642

PCA jittering. Ye et al. (2021) introduced this 643

augmentation strategy that operates at the embed- 644

ding level. It adds noise generated based on the 645

application of PCA. 646

C.3 Results and analysis 647

Table C3 shows how established augmentation 648

methods perform within a contrastive learning 649

setup. We hypothesise that paraphrasing outper- 650

forms all other methods (on average) because it 651

introduces more diverse but reliable positive pairs 652

that assist in capturing useful representations. A 653

drawback of employing pre-trained models for sen- 654

tence rephrasing lies in the strong dependence on 655

the specific pre-trained weights used. This seems 656
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Algorithm 1 UNA for self-supervised pre-training
1 Input: A set of N documents, D
2 Derive the TF-IDF representation of D and store it in matrix Z ▷ as described in section 3
3 Store the max TF-IDF score (relevance) of each term in vector s
4 for every α batches do ▷ self-supervised pre-training
5 for document j = 1 to B do ▷ each batch has B documents
6 The TF-IDF vector of document j is given by z ⊆ row of Z ▷ ignore terms not present in document j
7 for i = 1 to nz do ▷ nz is the number of terms in document j
8 pi = min (β (zi −min (z)) /C, 1), where C = (1/nz)

∑nz
i=1 (zi −min (z)) for word replacement

9 Determine the adjacent set of terms (Ai) to i within radius r based on the scores in s
10 With probability pi replace term i with a term from Ai; sample the replacement term w.r.t. the scores in s
11 end for
12 Generate document j′ from j after the TF-IDF-driven stochastic term replacement
13 Add document j′ to the set of UNA’s hard negative samples for this batch, Hb

14 end for
15 end for
16 Output: Hb every α batches

α UNA Paraphrasing & UNA

9 .8213 .8289
7 .8180 .8295
5 .8235 .8345
3 .7973 .8254
1 .7929 .8230

0 .8161 .8235

Table C4: Performance on the STS-B development
dataset (Spearman correlation) for different negative
sample injection frequencies (every α training batches)
during the training process. α = 0 denotes the absence
of any form of augmentation.

to be significantly affecting some of the methods,657

such as back-translation. The embedding-level aug-658

mentations might facilitate a better generalisation659

(as they are not dependent on specific terms), but660

given that UNA operates on terms (as opposed to661

embeddings) using them in tandem with UNA did662

not outperform the paraphrasing and UNA combi-663

nation (performance not shown).664

C.4 Implementation details of UNA665

We implement UNA on our reproduced version of666

SimCSE (Gao et al., 2021) with PyTorch (Paszke667

et al., 2019). All experiments are conducted on668

4 NVIDIA GeForce RTX 2080 Ti GPUs. UNA669

is applied during the self-supervised pre-training670

stage to create negative samples that contain simi-671

lar words or sentence constructions to the anchor672

sentence. For clarity, we have also included UNA’s673

algorithmic routine in Algorithm 1 (this is also de-674

scribed in section 3).675

We apply UNA once every α training batches.676

The downstream performance is influenced by the677

frequency (α) of adding generated negative sam-678

ples. If UNA is applied too frequently, the model679

β UNA Paraphrasing & UNA

0.8 .8061 .8328
0.7 .8122 .8354
0.6 .8176 .8355
0.5 .8235 .8345
0.4 .7968 .8320
0.3 .7798 .8313

Table C5: Performance on the STS-B development
dataset (Spearman correlation) for different magnitudes
of UNA controlled by hyperparameter β.

r terms UNA Paraphrasing & UNA

6,000 .8101 .8319
5,000 .8158 .8363
4,000 .8235 .8345
3,000 .8167 .8332
2,000 .8264 .8322
1,000 .8073 .8331

Table C6: Performance on the STS-B development
dataset (Spearman correlation) for different replacement
term radius (r) settings. The best results are bolded and
the second-to-best results are underlined.

may struggle to capture discriminative patterns be- 680

tween random negative samples. To find the op- 681

timal frequency, we conduct a grid search with 682

α = {1, 3, 5, 7, 9} and evaluate performance on 683

the STS-B development dataset (Table C4). The 684

best performance is obtained by setting α = 5, and 685

hence, this is what we use in our experiments. 686

To determine the augmentation magnitude β, we 687

validate values {0.3, 0.4, 0.5, 0.6, 0.7, 0.8} on the 688

STS-B development set (Table C5). We set β = 0.5 689

as this setting yields the greatest average correla- 690

tion score (across UNA and paraphrasing & UNA). 691

Another hyperparameter in UNA is the radius 692

r for determining the set of terms in Step 3. Per- 693
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Seed SimCSE Paraphrasing & UNA

42 .7532 .7767
0 .7526 .7691
1 .7452 .7680

11 .7457 .7655
15 .7488 .7668
48 .7478 .7646

111 .7651 .7726
421 .7395 .7692
456 .7562 .7739

3407 .7623 .7707

Mean (std.) .7516 (.0079) .7698 (.0038)

Table D7: Comparison on using different random seeds
between SimCSE and SimCSE with the paraphrasing
and UNA augmentations across the 7 STS tasks (average
Spearman correlation) with BERTbase model.

formance on the STS-B development set for differ-694

ent values of r is shown in Table C6. The model695

reaches its peak performance for r = 5,000 and696

2,000 terms with and without paraphrasing, respec-697

tively. One potential explanation for this variation698

could be that the expanded paraphrasing vocabu-699

lary has an effect on the radius. We have decided700

to set r = 4,000 (with and without paraphrasing)701

which yields the second-best performance for both702

augmentation approaches.703

D Complementary results704

D.1 Random seeds705

To examine the robustness of UNA to random706

seeds, we conducted experiments by pre-training707

with 10 random seeds on both SimCSE and UNA708

with paraphrasing. As shown in Table D7, our ap-709

proach is slightly more robust and yields consis-710

tently superior performance.711

D.2 Additional comparisons712

We present a further comparison with additional713

pre-trained self-supervised contrastive learning714

models as tabulated in Table D8. Our method715

reached competitive results compared to SOTA716

methods with both backbone models, especially717

with RoBERTa.718
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Augmentations SentEval - STS tasks

STS12 STS13 STS14 STS15 STS16 STS Bench. SICK Rel. Avg.

BERTbase (first-last avg.) .3970 .5938 .4967 .6603 .6619 .5387 .6206 .5670
BERTbase-whitening .5783 .6690 .6090 .7508 .7131 .6824 .6373 .6628
SCD-BERTbase (Klein and Nabi, 2022) .6694 .7803 .6989 .7873 .7623 .7630 .7318 .7419
Mirror-BERTbase (Liu et al., 2021) .691 .811 .730 .819 .757 .780 .691 .754
DCLR-BERTbase (Zhou et al., 2022) .7081 .8373 .7511 .8256 .7844 .7831 .7159 .7722
AugCSE-BERTbase (Tang et al., 2022) .7140 .8393 .7559 .8359 .7961 .7961 .7219 .7798
DiffCSE-BERTbase (Chuang et al., 2022) .7228 .8443 .7647 .8390 .8054 .8059 .7123 .7849
Ours-BERTbase .6939 .8158 .7616 .8304 .7910 .8030 .7412 .7767

RoBERTabase (first-last avg.) .4088 .5874 .4907 .6563 .6148 .5855 .6163 .5657
RoBERTabase-whitening .4699 .6324 .5723 .7136 .6899 .6136 .6291 .6173
SCD-RoBERTabase (Klein and Nabi, 2022) .6353 .7779 .6979 .8021 .7729 .7655 .7210 .7389
Mirror-RoBERTabase (Liu et al., 2021) .666 .827 .740 .824 .797 .796 .697 .764
DCLR-RoBERTabase (Zhou et al., 2022) .7001 .8308 .7509 .8366 .8106 .8186 .7033 .7787
AugCSE-RoBERTabase (Tang et al., 2022) .6930 .8217 .7349 .8182 .8140 .8086 .6877 .7683
DiffCSE-RoBERTabase (Chuang et al., 2022) .7005 .8343 .7549 .8281 .8212 .8238 .7119 .7821
Ours-RoBERTabase .7095 .8188 .7493 .8334 .8092 .8189 .7352 .7820

Table D8: Comparison with other pre-trained models on the SemEval STS tasks (Spearman correlation) with BERT
and RoBERTa as the backbone model. Ours is presented with both UNA and paraphrasing added. The best results
are bolded and the second-to-best results are underlined.
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