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Abstract

Recent transformer-based approaches have demon-
strated excellent performance in 3D human pose estima-
tion. However, they have a holistic view and by encoding
global relationships between all the joints, they do not cap-
ture the local dependencies precisely. In this paper, we
present a novel Attention-GCNFormer (AGFormer) block
that divides the number of channels by using two parallel
transformer and GCNFormer streams. Our proposed GCN-
Former module exploits the local relationship between ad-
jacent joints, outputting a new representation that is com-
plementary to the transformer output. By fusing these two
representation in an adaptive way, AGFormer exhibits the
ability to better learn the underlying 3D structure. By
stacking multiple AGFormer blocks, we propose Motion-
AGFormer in four different variants, which can be chosen
based on the speed-accuracy trade-off. We evaluate our
model on two popular benchmark datasets: Human3.6M
and MPI-INF-3DHP. MotionAGFormer-B achieves state-
of-the-art results, with P1 errors of 38.4 mm and 16.2 mm,
respectively. Remarkably, it uses a quarter of the parame-
ters and is three times more computationally efficient than
the previous leading model on Human3.6M dataset. Code
and models are available at https://github.com/
TaatiTeam/MotionAGFormer.

1. Introduction

Human pose estimation in 3D space is an active area of
research with significant implications for numerous appli-
cations, from augmented [22] and virtual reality [27] to
autonomous vehicles [2, 9, 44], human-computer interac-
tion [28] and beyond. With this vast range of applications,
the demand for more accurate and computationally effi-
cient pose estimation models continues to grow. In most
real-world scenarios, pose sequences are captured in 2D,
primarily due to the prevalent use of standard RGB cam-

Figure 1. Comparisons of recent pose uplifting methods on Hu-
man3.6M [15] (lower is better). MACs/frame denotes multiply-
accumulate operations per each output frame. The proposed Mo-
tionAGFormer presents different variants and attains superior re-
sults, while maintaining computational efficiency.

eras. Consequently, one of the pivotal challenges in the
field has been to effectively lift these 2D sequences into a
3D space. Accurate 3D human pose estimation enables the
extraction of rich spatio-temporal information about human
movements, and a deeper understanding of activities and
interactions. Recent 3D lifting models leverage the inher-
ent spatial and temporal coherence of human movements to
enhance the precision of 3D pose predictions [41, 52, 55].
Nonetheless, despite the considerable advancements, there
are several significant challenges that require attention.

The Transformer architecture [42], originally designed
for NLP tasks, has been adapted to various computer vision
problems, including pose estimation. Its ability to capture
long-range dependencies and its innate self-attention mech-
anism make it a promising candidate for this domain. How-
ever, a sole reliance on global attention mechanisms, as em-
ployed by standard Transformers, may not be optimal for
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pose estimation tasks. Human motion is inherently struc-
tured with local spatial and temporal dependencies.

One primary concern is the modeling of skeleton rela-
tions over time. Existing methods predominantly rely ei-
ther on transformer architectures [41,49,55] or graph-based
models [8, 45, 46]. While transformers excel at capturing
long-term dependencies, graph models excel at local depen-
dencies. So, there is an opportunity for a unified architec-
ture that integrates the global perspective of transformers
with the local precision of graph models.

Additionally, the race for achieving SOTA accuracy has
often led to the development of increasingly complex mod-
els with a large number of parameters. Such models, de-
spite their good accuracy, often become impractical for
real-world applications where computational efficiency and
swift response times are pivotal. Moreover, a predominant
approach in recent models has been the prediction of a sin-
gle 3D pose only for the central frame from a sequence of
frames. This method, while seemingly efficient, leads to
computational redundancy as it requires the reprocessing of
several overlapping sequences. As a result, we instead em-
ploy a streamlined inference strategy that optimally exploits
sequential data. This approach minimizes redundancy by
predicting the complete 3D sequence of the input at a single
forward pass.

In this paper, we introduce the MotionAGFormer, a
novel transformer-graph hybrid architecture tailored for 3D
human pose estimation. At its core, the MotionAGFormer
harnesses the power of transformers to capture global in-
formation while simultaneously employing Graph Convolu-
tional Networks (GCNs) to integrate local spatial and tem-
poral relationships. We use an adaptive fusion to aggregate
features from the transformer and graph streams. By doing
so, we ensure a balanced and comprehensive representation
of human motion, leading to enhanced accuracy in the 3D
pose estimation (See Figure 1).

In summary, the main contributions of our paper are:

• Novel Design: We propose the MotionAGFormer
model, in which we introduce a new GCNFormer mod-
ule that excels in representing local dependencies in-
herent in human pose sequences.

• Efficiency and Flexibility: i) Our MotionAGFormer
stands out due to its lightweight nature and faster
speed with fewer parameters compared to previous
SOTA methods, without compromising on accuracy.
ii) Recognizing diverse needs, we offer different vari-
ants of MotionAGFormer, granting users the flexibility
to make a balanced choice between accuracy and speed
based on their specific requirements.

• SOTA Performance: MotionAGFormer achieves
SOTA on two challenging datasets, Human3.6M and
MPI-INF-3DHP.

2. Related works
3D human pose estimation. Current approaches to

tackle this problem can be understood from two perspec-
tives. From one perspective, models can be categorized
based on the input video, which can be either multi-view
or monocular. Models that rely on multi-view inputs [7,
16, 35, 36, 50] necessitate the simultaneous use of multiple
cameras from different angles, which can be less feasible
in real-world scenarios. From another perspective, consid-
ering their methodology, these models can be categorized
as either direct 3D estimation approaches or 2D-3D lifting
approaches. Direct 3D estimation methods [32, 33, 40, 54]
infer the joints in 3D coordinate from the video frames with-
out any intermediate step. Inspired by the rapid develop-
ment and availability of accurate 2D pose estimation mod-
els, more recently, 2D-3D lifting methods first use an off-
the-shelf 2D pose detectors [4, 29, 39] then lift 2D coordi-
nates to 3D space [41, 49, 52, 53, 55]. In this work, we are
using 2D-3D lifting methods by having monocular video as
the input.

Transformer-based methods. Transformers [42] have
shown promising result in different visual tasks [10, 38,
47, 56]. In the field of 3D human pose estimation, Pose-
Former [53] was the first purely transformer-based model.
PoseFormerV2 [52] improved its computational efficacy
by employing a frequency-domain representation that also
made it robust against sudden movements in noisy data.
MHFormer [21] addressed the problem of self-occlusion
and depth ambiguity by proposing a module that learns
multiple plausible pose hypotheses. P-STMO [37] pro-
posed masked pose modeling and reduced the final er-
ror by self-supervised pretraining the model. Enfalt et
al. [11] decreased the computational complexity by lever-
aging masked token modeling. StridedFormer [20] replaced
fully-connected layers in the feed-forward network of the
transformer encoder with strided convolutions to progres-
sively shrink the sequence length and efficiently lift the cen-
tral frame. Unlike the abovementioned models that esti-
mate the 3D pose for only the center frame of a sequence,
MixSTE [49] provided 3D estimates for every frame in
the input sequence. STCFormer [41] decreased computa-
tional complexity by separating the correlation learning into
spatial and temporal components. HSTFormer [34] pro-
posed hierarchical transformer encoders for better captur-
ing spatial-temporal correlations. In addition to joint-joint
attention which is commonly used, HDFormer [3] included
bone-joint and hyperbone-joint interactions. Some works
exploited the output motion representation for various tasks.
MotionBERT [55] fine-tuned the model learned for the task
of 3D human pose estimation for tasks such as action recog-
nition and 3D human mesh recovery, while UPS [12] trained
a unified model for action recognition, 3D pose estimation,
and early action prediction at the same time.
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Graph Convolutional Network. GCN-based meth-
ods have achieved remarkable success within the domain
of skeleton-based action recognition [5, 19, 23]. Despite
their computational efficiency in 3D human pose estima-
tion [6,8,43,51], they usually cannot show competitive error
compared to transformer-based counterparts. This is pri-
marily due to their focus on local joints alone. Recently,
GLA-GCN [46] introduced an adaptive GCN approach to
leverage global representation. By employing a strided de-
sign to reduce its temporal scope, they achieve competi-
tive 3D human pose estimation against various transformer-
based models, all while maintaining a lighter memory load.
However, the effectiveness of the proposed module in ex-
tracting global representation is not on par with that of an
attention module.

Hybrid methods. These methods use different modules
to capture distinct aspects of the input sequence and are
not extensively explored yet. Recently, DC-GCT [17] and
GFormer [13] proposed leveraging GCN modules in addi-
tion to transformers. However, since DC-GCT originally
desgined for a single frame input and GFormer showed
sub-optimal performance by sequentially aggregating the
modules, they fall short in delivering competitive outcomes
when contrasted with transformer-based methods.

3. Method

3.1. Preliminary

We begin this section by reviewing the concept of
MetaFormer [48], which forms the core of our encoders.
A MetaFormer can be described as a generalization of the
Transformer architecture [42], wherein the attention mod-
ule is substituted with any mixer capable of transform-
ing information among tokens. Specifically, for an input
X ∈ RN×C , with N denoting the token numbers and C
representing the embedding dimension, the token mixer can
be formally expressed as

Y = TokenMixer(Norm(X)) +X, (1)

where Norm(·) denotes a normalization method such as
batch or layer normalization [1,14], and TokenMixer(·) de-
notes a module that combines information among tokens.
Our approach uses two parallel token mixers: Multi-head
Self-Attention (MHSA) and Graph Convolutional Networks
(GCNs) [18], each contributing uniquely to the information
transformation process.

3.2. Overall architecture

Our objective is to lift a 2D (pixel coordinate) skele-
ton sequence to accurate 3D pose sequences. To this end,
we propose the MotionAGFormer architecture, which uses
both attention (Transformer) and graph convolutional (GC-

NFormer) to lift motion sequences. An overview of this
architecture is shown in Figure 2a.

The model takes a 2D input sequence with confidence
score X ∈ RT×J×3, where T and J refer to the number of
frames and joint numbers, respectively. It then proceeds to
map each joint in each time frame to a d-dimensional fea-
ture, F(0) ∈ RT×J×d, using a linear projection layer. Then
a spatial position embedding Ps

pos ∈ R1×J×d is added to
the tokens. It is important to highlight here that our model
does not disregard the temporal token order as that informa-
tion is preserved in the GCNFormer stream (further discus-
sion in ablation studies 4.5).

Subsequent to position embedding, we use N blocks
of AGFormer (Section 3.3) to compute F(i) ∈ RT×J×d

(i = 1, ..., N ) to effectively capture the underlying 3D
structure of the skeleton sequence. Finally, we map F(N)

to a higher dimension by applying a linear layer and tanh
activation to compute motion semantic M ∈ RT×J×d′

and
use a regression head to estimate 3D pose P̂ ∈ RT×J×3.
The lifting loss contains position (L3D) and velocity (L∆P)
terms defined as

L3D = ΣT
t=1Σ

J
j=1∥P̂t,j −Pt,j∥,

L∆P = ΣT
t=2Σ

J
j=1∥∆P̂t,j −∆Pt,j∥,

(2)

where ∆P̂t = P̂t − P̂t−1, ∆Pt = Pt − Pt−1. The total
lifting loss is then defined as

L = L3D + λ∆PL∆P, (3)

where the constant coefficient λ∆P is used to balance posi-
tion accuracy and motion smoothness.

3.3. AGFormer Block

The AGFormer block uses a dual-stream architec-
ture. Each stream consists of two components: a Spa-
tial MetaFormer (Figure 2b) followed by a Temporal
MetaFormer (Figure 2c). The Spatial MetaFormer pro-
cesses individual body joints as distinct tokens, effectively
capturing intra-frame relationships within a single frame.
The Temporal MetaFormer, on the other hand, treats each
frame as a single token, thus capturing inter-frame rela-
tionships over time. The key distinction between the two
streams lies in their token mixer type. While one stream
employs Transformers, the other stream uses GCNFormers.

Transformer stream. This stream employs a Spa-
tial Multi-Head Self-Attention (S-MHSA) to capture spa-
tial relationships, followed by a Temporal Multi-Head Self-
Attention (T-MHSA) to capture temporal relationships. The
S-MHSA is defined as

S-MHSA(Qs,Ks,Vs) = Concat(headi, ...,headh)Ws
(O),

headi = softmax(
Qs

(i)(Ks
(i))T√

dk
)Vs

(i),
(4)
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Figure 2. (a) MotionAGFormer is a novel architecture featuring N dual-stream spatio-temporal blocks, wherein one stream employs
Transformers and the other leverages GCNFormers. (b) Spatial MetaFormer. Each input token represents an individual joint of the
human body. (c) Temporal MetaFormer. Input tokens are frames of pose sequence.

where Ws
(O) is a projection parameter matrix, h is the

number of parallel attention heads, and dk is the feature di-
mension of Ks. For computing the query matrix Qs, the
key matrix Ks, and the value matrix Vs, we have

Qs
i = FsWs

(Q,i),Ks
i = FsWs

(K,i),Vs
i = FsWs

(V,i), (5)

where Fs ∈ RBT×J×d is spatial feature and Ws
(Q,i),

Ws
(K,i), Ws

(V,i) are projection matrices and B is the
batch size. The S-MHSA result is subsequently fed
into a multilayer perceptron (MLP), followed by a resid-
ual connection and LayerNorm. This completes the first
MetaFormer, i.e. the Spatial Transformer.

Next, we reshape Fs into FT ∈ RBJ×T×d to prepare
per-joint temporal feature as the input of T-MHSA. Here
we have

T-MHSA(QT,KT,VT) = Concat(headi, ...,headh)WT
(O),

headi = softmax(
QT

(i)(KT
(i))T√

dk
)VT

(i),
(6)

where QT, KT, and VT are calculated similar to Eqn. (5).
GCNFormer stream. Unlike the Transformer stream,

which aggregates global information, the GCNFormer
stream focuses on local spatial and temporal relationships
present within the skeleton sequence. While the local infor-
mation is also available to the Transformers, the inclusion
of this parallel stream allows the model to more effectively
balance the integration of local and global information (see
ablation analysis 4.5). The customized GCN module [25]
used in our GCNFormer is defined as:

GCN(F(i)) = σ(F(i) +Norm(D̃− 1
2 ÃD̃− 1

2F(i)W1 + F(i)W2)). (7)

Where Ã = A + IN represents the adjacency matrix with
self-connections added, IN stands for the identity matrix,
D̃ii = ΣjÃjj is defined as the sum of elements along the
diagonal of Ã, and W1, W2 denote trainable weight matri-
ces specific to each layer. The activation function σ(·), such
as ReLU, is applied, along with Batch Normalization [14].
The GCN’s output is then passed through an MLP, followed
by residual connection and LayerNorm.

The difference between the Spatial GCNFormer and the
Temporal GCNFormer lies in their adjacency matrices and
input features. The input features resemble that of the
Transformer stream. In the Spatial GCNFormer, the adja-
cency matrix represents the human topology (Figure 3a).
For Temporal GCNFormer, on the other hand, we calculate
the similarity between a single joint at different time frames
using Sim(FT

ti ,FT
tj ) = (FT

ti)TFT
tj and choose the

K nearest neighbors as the connected nodes in the graph
(Figure 3b). Hence, the graph topology in Temporal GCN-
Former is determined by the learned node features.

Adaptive Fusion. Similar to MotionBERT [55], we use
adaptive fusion to aggregate extracted features of the Trans-
former and GCNFormer streams. This is defined as:

F(i) = αTF
(i) ◦ FTF

(i−1) + αGF
(i) ◦ FGF

(i−1), (8)

where F(i) represents the feature embedding extracted at
depth i, the element-wise multiplication denoted by ◦, and
FTF

(i−1), FGF
(i−1) refer to the extracted Transformer

stream and GCNFormer stream features at depth i − 1, re-
spectively. The adaptive fusion weights αTF and αGF are
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Figure 3. GCNFormer module topology. (a) The Spatial GCN-
Former employs the human skeleton as its underlying topology.
(b) The Temporal GCNFormer uses K-nearest neighbor (K-NN)
to determine connected edges by considering the highest similarity
of each joint (e.g., left wrist and right ankle in the figure) across
the entire time frame. After K-NN, each row is connected to K
columns.

defined as

αTF
(i), αGF

(i) = softmax(W · Concat(FTF
(i−1),FGF

(i−1))), (9)

where W is a learnable linear transformation.

4. Experiments

We evaluate the performance of our proposed Motion-
AGFormer on two large-scale 3D human pose estimation
datasets, i.e., Human3.6M [15] and MPI-INF-3DHP [26].

4.1. Datasets and Evaluation Metrics

Human3.6M is a widely used indoor dataset for 3D hu-
man pose estimation. It contains 3.6 million video frames
of 11 subjects performing 15 different daily activities. To
ensure fair evaluation, we follow the standard approach and
train the model using data from subjects 1, 5, 6, 7, and 8,
and then test it on data from subjects 9 and 11. Following
previous works [41, 52], we use two protocols for evalu-
ation. The first protocol (referred to as P1) uses Mean Per
Joint Position Error (MPJPE) in millimeters between the es-
timated pose and the actual pose, after aligning their root
joints (sacrum). The second protocol (referred to as P2)
measures Procrustes-MPJPE, where the actual pose and the
estimated pose are aligned through a rigid transformation.

MPI-INF-3DHP is another large-scale dataset gathered
in three different settings: green screen, non-green screen,
and outdoor environments. Following previous works [41,
52], MPJPE, Percentage of Correct Keypoint (PC) within
150 mm range, and Area Under the Curve (AUC) are re-
ported as evaluation metrics.

4.2. Implementation Details

Model Variants. We build four different configurations
of our model, as summarized in Table 1. Our base model,
known as MotionAGFormer-B, strikes a balance between
accurate estimation and computational cost. The remain-
ing variants are named according to their parameter size and
computational demands and selection of each variant can be
based on an application’s requirements, such as choosing
between real-time processing or more precise estimations.
The motion semantic dimension is d′ = 512, the expan-
sion layer of each MLP is α = 4, the number of attention
heads is h = 8, and the number of temporal neighbours in
GCNformer stream is k = 2, for all experiments.

Table 1. Details of MotionAGFormer model variants. N : Number
of layers. d: Hidden size. T : Number of input frames.

Method N d T Params MACs

MotionAGFormer-XS 12 64 27 2.2 M 1.0 G
MotionAGFormer-S 26 64 81 4.8 M 6.6 G
MotionAGFormer-B 16 128 243 11.7 M 48.3 G
MotionAGFormer-L 26 128 243 19.0 M 78.3 G

Experimental settings. Our model is implemented us-
ing PyTorch [31] and executed on a setup with two NVIDIA
A40 GPUs. We apply horizontal flipping augmentation for
both training and testing following [52, 55]. For model
training, we set each mini-batch as 16 sequences. The net-
work parameters are optimized using AdamW [24] opti-
mizer over 90 epochs with a weight decay of 0.01. The ini-
tial learning rate is set to 5e-4 with an exponential learning
rate decay schedule and the decay factor is 0.99. We use the
Stacked Hourglass [30] 2D pose detection results and 2D
ground truths on Human3.6M, following [55]. For MPI-
INF-3DHP, ground truth 2D detection is used following a
similar approach used in comparison baselines [41, 52].

4.3. Performance comparison on Human3.6M

We compare our MotionAGFormer with other models
on Human3.6M. For a fair comparison, only results of
models without extra pre-training on additional data is in-
cluded. The results, outlined in Table 2, demonstrate that
MotionAGFormer-L attains a P1 error of 38.4 mm for esti-
mated 2D pose and 17.3 mm for ground truth 2D pose. Re-
markably, this is achieved with approximately half the com-
putational requirements and parameters compared to the
previous SOTA (MotionBERT [55]), while being 0.8 mm
and 0.5 mm more accurate, respectively. When compar-
ing the Base and Large variants, MotionAGFormer-L shares
the same P1 error as MotionAGFormer-B in the pres-
ence of noisy data, while exhibiting a 2.1 mm reduction
in error when using ground truth 2D data. Furthermore,
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Figure 4. Qualitative comparisons of MotionAGFormer with STCformer [41], PoseFormerV2 [52], and MotionBERT [55]. The transparent
gray skeleton is the ground-truth 3D pose. Blue represents the torso and left part, and Red indicates the right part of the estimated body.

Table 2. Quantitative comparisons on Human3.6M. T : Number of input frames. CE: Estimating center frame only. P1: MPJPE error
(mm). P2: P-MPJPE error (mm). P1†: P1 error on 2D ground truth. (*) denotes using HRNet [39] for 2D pose estimation. The best and
second-best scores are in bold and underlined, respectively. For per action result, refer to the supplementary material.

Method T CE Param MACs MACs/frame P1↓ /P2↓ P1†↓
*MHFormer [21] CVPR’22 351 ✓ 30.9 M 7.0 G 7,096 M 43.0/34.4 30.5
MixSTE [49] CVPR’22 243 × 33.6 M 139.0 G 572 M 40.9/32.6 21.6
P-STMO [37] ECCV’22 243 ✓ 6.2 M 0.7 G 740 M 42.8/34.4 29.3
Stridedformer [20] TMM’22 351 ✓ 4.0 M 0.8 G 801 M 43.7/35.2 28.5
Einfalt et al. [11] WACV’23 351 ✓ 10.4 M 0.5 G 498 M 44.2/35.7 -
STCFormer [41] CVPR’23 243 × 4.7 M 19.6 G 80 M 41.0/32.0 21.3
STCFormer-L [41] CVPR’23 243 × 18.9 M 78.2 G 321 M 40.5/31.8 -
PoseFormerV2 [52] CVPR’23 243 ✓ 14.3 M 0.5 G 528 M 45.2/35.6 -
UPS [12] CVPR’23 243 ✓ - - - 40.8/32.5 -
GLA-GCN [46] ICCV’23 243 ✓ 1.3 M 1.5 G 1,556 M 44.4/34.8 21.0
MotionBERT [55] ICCV’23 243 × 42.5 M 174.7 G 719 M 39.2/32.9 17.8
HDFormer [3] IJCAI’23 96 × 3.7 M 0.6 G 6 M 42.6/33.1 21.6
HSTFormer [34] arXiv’23 81 × 22.7 M 1.0 G 13 M 42.7/33.7 27.8
DC-GCT [17] arXiv’23 81 ✓ 3.1 M 41 M 41 M 44.7/- -
MotionAGFormer-XS 27 × 2.2 M 1.0 G 37 M 45.1/36.9 28.1
MotionAGFormer-S 81 × 4.8 M 6.6 G 81 M 42.5/35.3 26.5
MotionAGFormer-B 243 × 11.7 M 48.3 G 198 M 38.4/32.6 19.4
MotionAGFormer-L 243 × 19.0 M 78.3 G 322 M 38.4/32.5 17.3

MotionAGFormer-S takes in only a third of the frames com-
pared to the baselines, yet it manages to attain a supe-
rior P1 error compared to a majority of them. Similarly,
MotionAGFormer-XS delivers comparable performance to
PoseTransformerV2, even though it receives only a ninth of
the input information (27 vs. 243 frames) and operates with
approximately seven times fewer parameters.

4.4. Performance comparison on MPI-INF-3DHP

In evaluating our method on the MPI-INF-3DHP dataset,
we modified our base and large variants to use 81 frames
due to shorter video sequences. Across all variants, our
method consistently outperforms others in terms MPJPE.
Notably, our large variant achieves remarkable results with
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an 85.3% AUC and a 16.2 mm P1 error. This outperforms
the best models by a significant margin of 1.4% in AUC
and 6.9 mm in P1 error. However, it achieves 98.2% PCK,
which is 0.5% lower than the PCK performance of the com-
pared models (Table 3).

Table 3. Quantitative comparisons on MPI-INF-3DHP. T : Num-
ber of input frames. The best and second-best scores are in bold
and underlined, respectively.

Method T PCK↑ AUC↑ MPJPE↓
MHFormer [21] 9 93.8 63.3 58.0
MixSTE [49] 27 94.4 66.5 54.9
P-STMO [37] 81 97.9 75.8 32.2
Einfalt et al. [11] 81 95.4 67.6 46.9
STCFormer [41] 81 98.7 83.9 23.1
PoseFormerV2 [52] 81 97.9 78.8 27.8
GLA-GCN [46] 81 98.5 79.1 27.7
HSTFormer [34] 81 97.3 71.5 41.4
HDFormer [3] 96 98.7 72.9 37.2
MotionAGFormer-XS 27 98.2 83.5 19.2
MotionAGFormer-S 81 98.3 84.5 17.1
MotionAGFormer-B 81 98.3 84.2 18.2
MotionAGFormer-L 81 98.2 85.3 16.2

4.5. Ablation Studies

A series of ablation studies were conducted on the Hu-
man3.6M dataset to explore different design choices for the
AGFormer block.

The initial ablation study investigates the influence of fa-
voring the number of AGFormer blocks and the width of
our model on the P1 error. As shown in Table 4, the trend
generally leans towards favoring a model that is deeper but
narrower. Interestingly, a model with 16 AGFormer blocks
and a width of 128 exhibits similar performance to a model
featuring 12 AGFormer blocks with a width of 256, while
the first configuration uses approximately three times less
memory and computational resources.

The second part of the ablation study explores alterna-
tive modules for the graph stream within the AGFormer
block. The results are presented in Table 5. Shifting
from GCNFormer to GCN blocks degrades the P1 error by
0.7 mm. Similarly, substituting the Temporal GCNFormer
with TCN degrades the P1 error by 0.2 mm when using
GCN and 0.9 mm when using GCNFormer. Lastly, replac-
ing the GCN with a CTR-GCN [5] increases the P1 error
by 2.5 mm. We hypothesize that is because of the continu-
ous refinement of topology for each channel in CTR-GCN
during training. As a result, every joint not only obtains
information from its immediate neighbors but also from all
other joints. This prevents the generation of complementary
information for the transformer stream.

To explore the impact of positional embedding on the

the final performance, we conducted a series of experiments
outlined in Table 6. Surprisingly, including temporal posi-
tional embedding in addition to spatial positional embed-
ding leads to a 0.6 mm increase in P1 error. As mentioned
in Section 3.2, this result stems from the non-permutation
equivariant nature of the GCNFormer stream. Unlike trans-
formers, our network inherently maintains the temporal se-
quence of frames. However, as shown in Figure 5, adding
temporal positional embedding leads to a better accelera-
tion error (0.88 mm) compared to using spatial positional
embedding (0.94 mm).

Finally, to verify the efficiency of the proposed AG-
Former block, Table 7 shows alternative blocks. When us-
ing GCNFormer, a P1 error of 57.5 mm is observed, indicat-
ing its limited capability to accurately capture the underly-
ing 3D sequence structure. Nevertheless, a hybrid approach
involving both GCNFormer and Transformer yields a note-
worthy improvement, reducing the P1 error by 5.2 mm com-
pared to using Transformer alone. Furthermore, the sequen-
tial fusion of these two modules is not as effective as their
parallel integration.

Table 4. The P1 error comparison by varying number of AG-
Former blocks and number of channels. d: Number of channels
in each AGFormer block. d′: Number of channels before regres-
sion head. T is kept 243 in all experiments.

Layers d d′ Param MACs P1
5 512 512 58 M 252.8 G 39.2
4 256 512 11.7 M 54.G G 40.2
6 256 512 17.5 M 81.64 G 39.6
8 256 512 23.3 M 108.6 G 39.5

10 256 512 29.1 M 135.7 G 38.6
12 256 512 34.9 M 162.7 G 38.4
14 256 512 40.7 M 189.7 G 38.6
16 128 512 11.7 M 64.7 G 38.4
16 128 256 11.7 M 64.5 G 38.7
16 128 1024 11.7 M 64.9 G 39.2
26 64 512 4.8 M 39.5 G 39.5

Table 5. The P1 error comparison when using alternative modules
in graph stream of AGFormer block.

GCN TCN GCNFormer CTR-GCNFormer P1
✓ - - - 39.1
✓ ✓ - - 39.3
- ✓ ✓ - 39.7
- - - ✓ 40.9
- - ✓ - 38.4

4.6. Qualitative Analysis

Validation of MotionAGFormer-B is conducted using the
adjacency matrix of temporal GCNFormer and visualiza-
tion of 3D human pose estimation. The instances for vali-
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Figure 5. Acceleration error when using different type of posi-
tional embedding. Using temporal positional embedding leads to
0.88 mm error and a faster convergence compared to spatial posi-
tional embedding, without embedding, and both embeddings that
reach 0.94 mm, 0.90 mm, and 0.97 mm respectively.

dation are randomly chosen from the evaluation set of Hu-
man3.6M.

Qualitative Comparisons. Figure 4 compares
MotionAGFormer-B with recent approaches including
STCFormer [41], PoseFormerV2 [52], and Motion-
BERT [55]. By design, confidence scores of the 2D detector
are only included into MotionBERT and MotionAGFormer-
B. Overall, MotionAGFormer-B shows better reconstruc-
tion results across all three samples than PoseFormerV2 and
STCFormer, while maintaining competitive performance
with MotionBERT. Specifically, in Figure 4a, MotionAG-
Former exhibits improved alignment with the ground truth
in comparison to alternative approaches. In Figure 4b, it
displays a slightly superior alignment, whereas in Figure 4c,
its alignment is marginally less optimal than that of Motion-
BERT.

Temporal adjacency visualization. The adjacency ma-
trix of temporal GCNFormer is visualized in Figure 6. In
the initial layers, individual joints exhibit distinct adjacency
matrices, which should vary across different sequences due
to the changing joint positions over time. Nevertheless, as
we progress through the model’s depth, it appears to learn a
representation where each joint is most akin to its own state
in neighboring frames. Consequently, this leads to connec-
tions being formed with adjacent frames.

5. Conclusion

We introduced MotionAGFormer, a novel approach that
leverages GCNFormer to capture intricate local joint rela-
tionships, and combines it with Transformer that effectively

Left  Ankle

Left Elbow

Left Knee

Layer 1 Layer 8 Layer 16

Figure 6. Temporal adjacency matrix of a random sequence on
three different joints, from the Human3.6M dataset, at the first
layer (left), middle layer (center), and last layer (right). K in K-
NN is set to 2.

Table 6. The P1 error comparison when using different positional
embedding.

Temporal Embedding Spatial Embedding P1
- - 39.3
- ✓ 38.4
✓ - 38.9
✓ ✓ 40.5

Table 7. Comparison of different MetaFormer integra-
tion. All the models are trained on Human3.6M with our
MotionAGFormer-B settings.

Method P1
GCNFormer only 57.5
Transformer only 43.6
GCNFormer → Transformer (Sequential) 39.1
Transformer → GCNFormer (Sequential) 38.9
Transformer - GCNFormer (Parallel) 38.4

captures global joint interdependencies. This fusion en-
hances the model’s ability to comprehend the inherent 3D
structure within input 2D sequences. Additionally, Motion-
AGFormer offers various adaptable variants, allowing the
selection of an optimal balance between speed and accu-
racy. Empirical evaluations show that our method surpasses
alternative methods on Human3.6M and MPI-INF-3DHP.
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