A Simple and Effective Model for Multi-Hop Question Generation

Anonymous ACL submission

Abstract

Previous research on automated question gen-
eration has almost exclusively focused on gen-
erating factoid questions whose answers can
be extracted from a single document. How-
ever, there is an increasing interest in develop-
ing systems that are capable of more complex
multi-hop question generation (QG), where an-
swering the question requires reasoning over
multiple documents. In this work, we pro-
pose a simple and effective approach based on
the transformer model for multi-hop QG. Our
approach consists of specialized input repre-
sentations, a supporting sentence classification
objective, and training data weighting. Prior
work on multi-hop QG considers the simpli-
fied setting of shorter documents and also ad-
vocates the use of entity-based graph struc-
tures as essential ingredients in model design.
On the contrary, we showcase that our model
can scale to the challenging setting of longer
documents as input, does not rely on graph
structures, and substantially outperforms the
state-of-the-art approaches as measured by au-
tomated metrics and human evaluation.

1 Introduction

Motivated by the process of human inquiry and
learning, the field of question generation (QG) re-
quires a model to generate natural language ques-
tions in context. QG has wide applicability in auto-
mated dialog systems (Mostafazadeh et al., 2016;
Fitzpatrick et al., 2017), language assessment (Set-
tles et al., 2020), data augmentation (Tang et al.,
2017), and the development of annotated data sets
for question answering (QA) research.

Most prior research on QG has focused on gen-
erating relatively simple factoid-based questions,
where answering the question simply requires ex-
tracting a span of text from a single reference doc-
ument (Zhao et al., 2018; Kumar et al., 2019; Chen
et al., 2020). However, motivated by the desire
to build NLP systems that are capable of more

Document 1: Byron Edmund Walker
[1] Sir Byron Edmund Walker, CVO (14 October 1848

— 27 March 1924) was a Canadian banker. [2] He
was the president of the Canadian Bank of Commerce
from 1907 to 1924, and a generous patron of the
arts, helping to found and nurture many of Canada’s
cultural and educational institutions, including the
University of Toronto, National Gallery of Canada, ...

Document 2: University of Toronto

[1] The University of Toronto (U of T, UToronto, or

Toronto) is a public research university in Toronto,
.. [2] It was founded by royal charter in 1827 as

... [3] Originally controlled by the Church of England,

the university assumed the present name .. ..

Answer: The University of Toronto

Supporting Facts
Document 1: {1, 2}, Document 2: {1, 3}

Question
Which Byron Edmund Walker founded institution was
originally controlled by the Church of England?

Figure 1: An example illustrating the multi-hop QG
task. The inputs are the two documents, answer, and
supporting facts. The task is to generate a question such
that it is answerable only after reading both the docu-
ments. Entities and predicates relevant to the task are
underlined while supporting facts are shown in color.

sophisticated forms of reasoning and understand-
ing (Kaushik and Lipton, 2018; Sinha et al., 2019),
there is an increasing interest in developing systems
for multi-hop question answering and generation
(Zhang et al., 2018; Welbl et al., 2018; Yang et al.,
2018; Dhingra et al., 2020), where answering the
questions requires reasoning over the content in
multiple documents (see Figure 1 for an example).

Unlike standard QG, generating multi-hop ques-
tions requires the model to understand the rela-
tionship between disjoint pieces of information in
multiple context documents. Compared to stan-
dard QG, multi-hop questions tend to be substan-
tially longer, contain a higher density of named
entities, and—perhaps most importantly—high-
quality multi-hop questions involve complex chains
of predicates connecting the mentioned entities (see
Appendix A for supporting statistics.)



To address these challenges, existing research
on multi-hop QG primarily relies on graph-to-
sequence (G2S) methods (Pan et al., 2020; Yu et al.,
2020; Su et al., 2020). These approaches construct
graph inputs by augmenting the original text with
structural information (e.g., entity mentions and
dependency parses) and then apply graph neural
networks (GNNs) (Hamilton, 2020) whose embed-
dings are then fed to an autoregressive sequence
decoder. However, the necessity of these complex
G2S approaches—which require designing hand-
crafted graph extractors—is not entirely clear, espe-
cially when standard transformer-based sequence-
to-sequence models (Vaswani et al., 2017) can in-
duce a strong relational inductive bias among its in-
puts (Battaglia et al., 2018). Due to this, one might
imagine that the transformer model alone would
suffice for the relational reasoning requirements
of multi-hop QG, i.e. to reason about relationships
between entities in the text.

This work: We show that a simple training ap-
proach based on the transformer model is sufficient
to outperform previous methods, which rely on
graph-based augmentations, on the multi-hop QG
task. Our training method consists of specialized
input representations to impart useful inductive bi-
ases for answer conditioning, a supporting sentence
classification objective to identify salient sentences
in a document, and a training data weighting ap-
proach to pay higher importance to relevant training
examples. These techniques help our model obtain
new state-of-the-art results outperforming the pre-
vious records by more than 4 BLEU points on the
widely used HotpotQA dataset (Yang et al., 2018).
Our model is also robust to the challenging setting
of long document inputs, on which it obtains a gain
of 7.5 BLEU points. In addition, we also propose
a graph-augmented transformer encoder (GATE)—
which integrates explicit graph structure informa-
tion into the transformer. However, we show that
the gains induced by the graph augmentations are
relatively small compared to other enhancements
in our training pipeline.

2 Methods

We first formalize the multi-hop QG task and de-
scribe how we adapt the standard transformer archi-
tecture to multi-hop QG (§ 2.2). Then, we present
two techniques that are critical to achieving strong
performance: an auxiliary supporting sentence clas-
sification objective (§ 2.3) and a training data re-

weighting approach (§ 2.4). Lastly, we outline an
approach for augmenting the transformer model
with graph-structured data (§ 2.5).

Background The input to the multi-hop QG task
is a set of context documents {ci, ..., c;} and an
answer a. These documents can be long contain-
ing multiple sentences, ¢; = [s1,..., sy, Where
each s; is a sequence of words. Sentences across
different documents contain common named enti-
ties, which are also known as bridge entities. The
answer a spans one or multiple tokens in one docu-
ment. The desired goal of a multi-hop QG model
is to generate a question (g) conditioned on the
context and the answer, such that answering the
question requires reasoning about the content uti-
lizing multiple context documents.

2.1 Proposed Model

We formulate multi-hop QG as a sequence-to-
sequence (S2S) learning task, where our network
is a transformer-based model (Vaswani et al.,
2017). The input to the transformer are all the
context documents {cy, ..., ¢} and the provided
answer (a). In the transformer model, both the
encoder and decoder consist of self-attention and
feed-forward sublayers,! which are trained us-
ing teaching-forcing and a negative log-likelihood
loss (Williams and Zipser, 1989). We found that
achieving strong performance with a transformer
requires careful design decisions in terms of how
the input is represented, which we present next.

2.2 Input Representations

Sentence markers As the sentences present in
the document context are expected to play a crucial
role in training, we add additional annotations to
the input in order to learn sentence embeddings.
Learning these sentence embeddings adds a form
of implicit regularization, and we also leverage
these embeddings in our auxiliary objective (§2.3).
In particular, we add a sentence id token before
the first token of each sentence. In practice, as the
number of sentences varies between examples, to
make the model more robust to this difference, we
tie the sentence id token embedding weights for all
the sentences and refer to it as the <SENT> token.

Answer span representation To provide answer
tokens as input to the encoder, the prevalent tech-
nique in QG approaches is to append the answer

"Due to space limitations, we include a description of the
self-attention and feed-forward sublayers in Appendix B.
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Figure 2: Schematic diagram illustrating our proposed model for multi-hop QG. <SENT> token is prepended
before every sentence. The tokens highlighted in green denotes the answer tokens.

tokens after the context (Dong et al., 2019). How-
ever, we found this approach to substantially under-
perform in multi-hop QG. A possible reason is that
concatenation of the answer tokens imparts poor
inductive biases to the decoder. To overcome this
limitation, we define indicator answer type id to-
kens in which the value of type ids is 1 for the
answer span tokens (within the context) and 0 for
the remaining tokens. We introduce a new embed-
ding layer for answer type ids called answer type
embeddings. For a token, its input representation
to the transformer encoder is the sum of token, po-
sition, and answer type embeddings.

A schematic diagram of the proposed model is
shown in Figure 2.

2.3 Training Objective

To train our S2S transformer model, we combine
two loss functions. The first loss function is the
standard S2S log-likelihood loss, while the second
loss function trains the model to detect salient sen-
tences within the document context.

2.3.1 Negative log-likelihood objective

The primary training signal for our S2S approach
comes from a standard negative log-likelihood loss

K

1
LN = % ;bgp(% | ¢, q1:6—-1:6),

where the parametric distribution p(q | ¢; #) models
the conditional probability of question (q) given the
context (c) and K is the number of question tokens.
As is common practice in the literature, we use
teacher-forcing while training with this loss.

2.3.2 Auxiliary Supporting Sentence
Classification Objective

To compliment our standard likelihood objective,
we also design an auxiliary objective, which trains
the model to detect the occurrence of supporting
facts in the multi-document context.

Supporting facts in multi-hop QA  As multi-
hop questions require reasoning over some salient
sentences across long documents, a unique chal-
lenge of multi-hop QA is the presence of a large
number of irrelevant sentences in context. Thus,
as a common practice, researchers annotate which
sentences are necessary to answer each question,
called supporting facts (Yang et al., 2018). Prior
work on multi-hop QG leveraged these annotations
by simply discarding all irrelevant sentences and
training only on sentences with supporting facts
(Pan et al., 2020). Instead, we propose a supporting
sentence classification objective, which allows us
to leverage these annotations during training while
still receiving full document contexts at inference.

Supporting sentence classification (SSC) Our
classifier training setup utilizes sentences contained
in the supporting facts as positive examples while
we consider all the remaining sentences in the con-
text to be negative examples. We use only the
sentence id embedding (h;) for training i.e., the
embedding corresponding to the <SENT> token;
see §2.2. The training loss is defined in terms of
the binary cross-entropy loss formulation as

P N
Lssc = _?1 <Z log D (hi; ¢) + Zlog (1 =D (hy; ¢))>
i=1 j=1

where D(¢) is a binary classifier consisting of a
two-layer MLP with ReLU activation and a final



sigmoid layer, P and N are the number of posi-
tive and negative training sentences in the context
documents respectively, and 7' = P + N. During
evaluation, we predict the supporting facts using
the binary classifier. This objective is added as an
additional term to the main likelihood loss, leading
to the following composite objective:

L =MCnir + (1 — X\)Lssc,
where A is a hyperparameter.

2.4 Training Data Weighting

Another key component of our training pipeline is
a data weighting approach. This aspect specifically
addresses challenges arising from the question-
length distribution in the widely used HotpotQA
benchmark (Yang et al., 2018), which is also used
in this work. Nonetheless, despite the fact that this
approach is motivated directly by the statistics of
HotpotQA, we expect the general principle to be
applicable to future multi-hop datasets as well.

Motivation HotpotQA’s training set contains
three categories of questions: train-easy, train-
medium, and train-hard. Train-easy questions are
essentially single-hop requiring one context doc-
ument to answer them while train-medium and
train-hard questions are multi-hop requiring mul-
tiple context documents. However, both the dev
and test sets in HotpotQA consist of hard multi-
hop questions. While the additional train-easy
and train-medium examples have proved useful
as training signals in the question-answering set-
ting (Yang et al., 2018), our QG experiments reveal
that naively training the model using all the ques-
tions leads to a big drop in BLEU scores (Papineni
et al., 2002). The reason for the low scores is that
the generated questions are almost 80% longer than
the reference questions, and thus are less precise.

Data weighting to prevent distributional mis-
match We hypothesize that the model generates
long questions because of the negative exposure
bias that it receives from the train-easy questions.
We analyze the question-length distribution in the
training set in Figure 3 and observe that a sig-
nificant number of train-easy questions are much
longer than train-medium and train-hard—while
most of the train-medium and train-hard questions
are 30 words long, train-easy questions can be as
long as 70 words. Therefore, we strive to match
the training-evaluation question-length distribution
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Figure 3: Question length distribution according to its
difficulty level in the HotpotQA training set. Plot re-
veals that train-easy questions are much longer than
train-medium and train-hard questions.

by down-weighting the importance of examples
whose question length is more than 30 words dur-
ing the training process. More formally, let there be
m examples in a batch, let |¢| denote the question
length, then the log-likelihood loss is calculated as

Lar oy (1= (gl < LG+ el(as] > LY,
=1

where € is a small constant (¢ = 0.05) and ¢ is
a length threshold (t = 30). As our analysis in-
dicates, most of the down-weighted examples are
train-easy questions. A special case is when we set
e = 0, i.e. data filtering, where we ignore all the
train-easy questions from the training process.

2.5 Graph Augmentations to Transformer
Encoder (GATE)

The context contains useful structural information
such as named entities and relations among them.
Recent approaches represent this information with
multi-attribute graphs and apply GNNs to learn
useful representations from them (Pan et al., 2020).
Following these trends, to ascertain the usefulness
of graphs, we extract graph structure from the input
context. We consider three types of nodes—named-
entity mentions, coreferent-entities, and sentence-
ids—and construct a multi-relational graph with
three relation types over these nodes (Figure 4).
Based on prior work (Sachan et al., 2021), we in-
troduce augmentations to the transformer encoder
enabling it to leverage graph inputs and refer to
this as the GATE model. Specifically, we intro-
duce two additional sublayers: (1) graph-attention,
which is similar to self-attention but attends to con-
necting nodes (Velickovic et al., 2018) (2) fused-
attention sublayer, where we combine the outputs
of self-attention and graph-attention by passing
them through a one-layer MLP. For more details,
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Figure 4: Entity-centric graph corresponding to the ex-
ample in Figure 1. The sentence nodes are drawn in
circles and the entities in rectangles. Entity edges are
drawn in bold, coreference edges are dotted and sen-
tence edges are dashed.

we refer the reader to Appendix C, where we eluci-
date the architecture of the GATE model.

3 Experimental Setup

3.1 Dataset Preprocessing and Evaluation

We use the HotpotQA dataset for experiments as it
is the only multi-hop QA dataset that contains ques-
tions in textual form.? HotpotQA is a large-scale
crowd-sourced dataset constructed from Wikipedia
articles and contains over 100K questions. We use
its distractor setting that contains 2 gold and 8 dis-
tractor paragraphs for a question. Following prior
work on multi-hop QG, we limit the context size to
the 2 gold paragraphs, as the distractor paragraphs
are irrelevant to the generation task (Pan et al.,
2020). The questions can be either of type bridge-
or comparison-based. The answer span is not ex-
plicitly specified in the context documents rather
the answer tokens are provided. Hence, we use ap-
proximate text-similarity algorithms to search for
the best matching answer span in the context. For
some of the comparison questions whose answer is
either yes or no, we append it to the context.

To train and evaluate the models, we use the
standard training and dev sets.> We pre-process
the dataset by excluding examples with spurious
annotations. As the official dev set is used as a
test set, we reserve 500 examples from the training
set to be used as a dev set. Overall, our training
set consists of 84,000 examples, and the test set
consists of 7,399 examples. We follow the evalua-
tion protocol of Pan et al. (2020) and report scores
on standard automated evaluation metrics common
in QG: BLEU-4 (Papineni et al., 2002), ROUGE-
L (Lin, 2004), and METEOR (Banerjee and Lavie,

2We also explored WikiHop (Welbl et al., 2018) and Wiki-
Data (Dhingra et al., 2020), but they contain questions in triple
format and thus are outside the scope of this work.

3 As the test set is hidden for HotpotQA.

Model BLEU-4 ROUGE-L METEOR

Encoder Input: Supporting Facts Sentences

NQG++! 11.50 32.01 16.96
ASs2st 11.29 32.88 16.78
MP-GSAf 13.48 34.51 18.39
SRL-Graph' 15.03 36.24 19.73
DP-Graph' 15.53 36.94 20.15
TEniL 19.33 39.00 22.21

Encoder Input: Full Document Context

TENiL 17.13 38.13 21.34
TENLL+ssC 19.60 39.23 22.50
Table 1: Results of multi-hop QG on HotpotQA.

NQG++ is from Zhou et al. (2018), ASs2s is from Kim
et al. (2019), MP-GSA is from Zhao et al. (2018), SRL-
Graph and DP-Graph are from Pan et al. (2020). T de-
notes that the results are taken from Pan et al. (2020).
Best results in each section are highlighted in bold.

2005). We also performed human evaluation stud-
ies to assess our model performance.

3.2 Training Protocols

We follow the same training process for all the ex-
periments. We encode the context and question
with 32K subwords units by applying the sentence-
piece toolkit (Kudo and Richardson, 2018). For a
fair comparison with previous work, we experiment
with smaller models. We use a 2-layer transformer
with 8 attention heads, 512-D model size, and 2048-
D hidden layer. Token embedding weights are
shared between the encoder, decoder, and gener-
ation layer. For variance control, we average our
results over 5 independent runs. For reproducibility,
we describe model training details in Appendix D.

4 Results and Analysis

We report the performance of our proposed trans-
former encoder (TE) model in Table 1, comparing
with a number of recent QG models.

Performance with supporting facts as input
We first consider a simplified version of the task
when only the supporting facts are used during
training and testing (top section in Table 1). In
other words, in this setting, we remove all sen-
tences of the context documents that have not been
annotated as supporting facts. This is an overly sim-
plified setting since supporting fact annotations are
not always available at test time. However, this is
the setting used in previous work on multi-hop QG
(Pan et al., 2020), which we directly compare to. In
this setting, we see that our TE model scores 19.3
BLEU, an absolute gain of around 4 points over the
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Figure 5: Length distribution of the full document con-
text and supporting facts sentences in HotpotQA. The
plot reveals that the full document context is almost
three times longer than supporting facts.

Setting BLEU-4
TENLL+ssC 19.60
—w/o SSC 17.13
— w/o Training data weighting 14.50
— w/o Training data weighting & SSC 11.90
— w/o Answer type embeddings 7.81

Table 2: Ablation studies when the encoders’ input is
the full document context. SSC: Supporting sentence
classification objective.

previous best result. Note that as the SSC training
is not applicable here, we just use teacher-forcing.

Performance with full context as input In a
more realistic setting, when the supporting facts
are not available at test time, the model needs to
processes the full context. As the average docu-
ment context is three times the size of the support-
ing facts in HotpotQA (Figure 5), this setting is
much more challenging, which is also evident from
the results (bottom section in Table 1). We notice
that if using only the teacher-forcing objective, the
performance drops by 2 points. However, when
trained with the composite objective, our model ob-
tains a BLEU score of 19.6, which is in fact slightly
higher than what it could achieve in the simplified
setting. We hypothesize that the additional training
signal from the longer contexts combined with the
SSC objective actually benefits the models.

4.1 Ablation Studies

We perform ablations to understand what compo-
nents are essential for strong performance when
the input is the full document context (Table 2).

SSC training We see that SSC training improves
the BLEU score by 2.5 points and it also helps the
model attain around 75 F1 and 35 Exact Match
scores in predicting the supporting facts sentences.
This highlights that—besides being helpful in QG—
SSC training additionally imparts useful signals to
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Figure 6: Effect of data filtering (¢ = 0) on QG.

the encoder such that its supporting facts predic-
tions are interpretable.

Training data weighting We showcase that
weighting of questions less than 30 words is a criti-
cal step in our training pipeline. On the other hand,
without data weighting (¢ = 0.5), the accuracy
drops by 5 points to 14.5 BLEU. In addition, if
we just use teacher-forcing objective without data
weighting, the performance further drops to 11.9
BLEU, signifying that data weighting and SSC
training are independently useful and essential. To
highlight the effect of data weighting on the genera-
tion quality, we plot the generated question length’s
deviation from the ground truth in Figure 6. We
observe that when a model is trained without data
weighting, a substantial number of generated ques-
tions are at least 15 words longer than the ground
truth, thus leading to lower quality output, while
this effect is not as pronounced otherwise.

Answer span representation We demonstrate
that effective encoding of the answer span is of
utmost importance in multi-hop QG as the decoder
needs to condition generation on both the context
and the answer. As mentioned previously, the com-
mon approach in standard QG is to append the
answer tokens after the context. We see that this ap-
proach results in a drop of 12 points to 7.8 BLEU,
which is quite low. Our proposed approach of en-
coding the answer span in the context with answer
type embeddings is a much stronger methodology.

4.2 Discussion

Overall, the above results demonstrate that all
of our proposed enhancements to the transformer
model and training pipeline—input representations,
SSC objective, and effective data weighting during
training—helps in obtaining state-of-the-art results.
Compared to the previous work of (Pan et al., 2020)
who leverage semantic and dependency graphs on
the unrealistic setting of shorter supporting facts,
our model works well with full document contexts



Model BLEU-4 ROUGE-L METEOR

Encoder Input: Full Document Context

TENLL+sSC 19.60 39.23 22.50
GATENLL+ssC 20.02 39.49 22.40
Ensemble 21.34 40.36 23.24

Table 3: Performance comparison of the TE and GATE
models and their ensemble.

that are almost three times as long, is simpler, and
more accurate. We believe that scaling up the train-
ing to larger and deeper models would help further
improve the generation accuracy. Our strong re-
sults without the dependence on structured graphs
also point to the hypothesis that the transformer ar-
chitecture can facilitate relational reasoning among
its input, which we empirically analyze next.

4.3 Importance of explicit graph-structures

From the results in Table 3, we find that our graph-
augmented model (GATE) leads to a very small per-
formance gain, achieving a BLEU of 20.02, which
is quite close to the TE model. This suggests that
incorporating graph-structures may not be an es-
sential component in the model design, as opposed
to the prevailing formalism in the literature.

Model ensemble We notice that the GATE
model seems to provide complementary strengths
compared to the TE model, which is evident when
we ensemble them during decoding. At every step,
the likelihood is computed using the linearly inter-
polated likelihood scores of both the models,

p(gk | ¢, qik—1) = - pre (K | € q1:k—1)
+ (1 — ) - peare (¢ | ¢, q1:6—-1)

where « € [0,1] is a hyperparameter. We find
that @ = 0.5 works the best. From Table 3, we
see that the ensemble of both models results in
an improvement of 1.7 points over the TE model.
This suggests that—while the gains from graph-
augmentations are relatively small—there is com-
plementary information in the graph structures.

Question-level scores comparison In order to
further understand how the GATE model is differ-
ent in performance from the TE model, we perform
an analysis of the generated questions on the test
set. We analyze the distribution of the difference
in their question-level GLEU scores (Wu et al.,
2016)* and observe that on 397 (5.4%) test exam-

*GLEU is a sentence-level metric that is calculated as the

minimum of the precision or recall between the reference and
the hypothesis.

Model G SC A QcC
DP-Graph' 342 326 326 2.06
EnsembleTE+G ATE 4.56 4.66 4.08 3.26
Ground truth 466 478 436 3.24

Table 4: Human evaluation results on 300 example
generations from the HotpotQA test set. The table
shows the average rating from our annotators on a
scale from 1-5, where 1 indicates the lowest score and
5 the highest score on four criteria: Grammaticality
(G), Semantic Correctness (SC), Answerability (A),
and Question Complexity (QC). Please refer to Ap-
pendix E for more details on these criteria. fTDP-Graph
is from Pan et al. (2020). We use the generations from
their best released checkpoint to do human evaluation.

ples, the GATE model achieves a GLEU score of
20 points or more than that of the TE, while on 377
(5.1%) examples the TE model achieves at least
20 points higher. Therefore, this complementary
performance is the reason for the gain that we see
in Table 3 when the two models are ensembled.

4.4 Human Evaluation

We present the results of human evaluation in Ta-
ble 4, where predictions from the models are as-
signed a rating out of 1-5 for four criteria to assess
different aspects of multi-hop QG which are: to
which degree the questions are (a) grammatically,
and (b) semantically correct, (c) conditioned on the
provided answer, and (d) complex, i.e. if they re-
quire reasoning over multiple supporting sentences
or not. We compare the predictions from our best
performing model with the previous state-of-the-
art model from literature (Pan et al., 2020) and
also provide human evaluation scores for ground
truth data. We observe that despite being trained
on much longer context documents, the generation
quality of our ensemble model is vastly superior on
all the four criteria compared to the previous best
model and in fact comes very close to the ground
truth ratings. It is also worth mentioning that the
questions from our model are more complex and
better conditioned on the answer text.

We also provide evaluation scores using pre-
trained language models in Appendix F.

4.5 Qualitative Analysis of Data Weighting

In Table 5, we present example generations from
the TENLL+ssc model when it is trained with and
without data weighting. We observe that when
trained with data weighting, the model is able to
generate a question that closely matches the ground
truth. On the other hand, the model trained with-



Model

Document Contexts and Generated Questions

Document con-
text

Answer

Ground truth
TENLL+ssC
TENLL+ssc  W/O
data weighting

Document 1: Pinhead Gunpowder is an American punk rock band that formed in East Bay, California, in
1990. The band currently consists of Aaron Cometbus (drums, lyrics), Bill Schneider (bass), Billie Joe
Armstrong (guitar, vocals) and Jason White (guitar, vocals). The band’s name comes ... Document 2: Billie
Joe Armstrong (born February 17, 1972) is an American musician, singer, songwriter and actor who is best
known as the lead vocalist, primary songwriter, and guitarist of the punk rock band Green Day, which he
co-founded with Mike Dirnt. He is also a guitarist and vocalist for the punk rock band Pinhead ...

band

What kind of group does Pinhead Gunpowder and Billie Joe Armstrong have in common?

What kind of group does Pinhead Gunpowder and Billie Joe Armstrong have in common?

Pinhead Gunpowder is an American punk rock band that formed in East Bay, California, in 1990, the band
currently consists of Aaron Cometbus (drums, lyrics), an American musician, singer, songwriter and actor
who is best known as the lead vocalist, primary songwriter, and guitarist of the punk rock Green Day, which
he co-founded with

Document con-
text

Answer

Ground truth
TENLL+ssC
TENLL+ssc  W/O
data weighting

Document 1: Seesaw is a musical with a book by Michael Bennett, music by Cy Coleman, and lyrics by
Dorothy Fields. Document 2: Michael Bennett (April 8, 1943 — July 2, 1987) was an American musical
theatre director, writer, choreographer, and dancer. He won seven Tony Awards for his choreography and
direction of Broadway shows and was nominated for an additional eleven.

April 8, 1943

When was the writer of Seesaw born?

When was the writer of Seesaw born?

When was the American musical theatre director, writer, choreographer, and dancer born who’s choreography
and direction of Seesaw?

Table 5: Example illustrating the effect of data weighting on multi-hop QG. Without data weighting the generated

question is long and does not resemble a valid multi-hop question.

out it has considerably longer generations, often
covering many pieces of information from input
documents. It is also evident that sometimes these
long generations are based on one document, and
therefore are not true multi-hop questions.

5 Related Work

Most work on QG has focused on generating
one-hop questions using neural S2S models (Du
et al., 2017), pre-trained transformers (Dong et al.,
2019), reinforcement learning-based query refor-
mulation (Buck et al., 2018), and G2S model (Chen
et al., 2020). Previously, (Pan et al., 2020; Yu et al.,
2020) also propose approaches for multi-hop QG.
They incorporate an entity-graph to capture infor-
mation about entities and their contextual relations
within as well as across documents.

In parallel, there have been advances in multi-
hop question answering models (Tu et al., 2019;
Chen et al., 2019; Tu et al., 2020; Groeneveld et al.,
2020). In this task, GNN models applied over
the extracted graph structures have led to improve-
ments (De Cao et al., 2019; Fang et al., 2019; Zhao
et al., 2020). Our work examines the complemen-
tary task of multi-hop QG and provides evidence
that transformer models could, in fact, achieve com-
petitive results in this task, compared to these GNN-
based models that use explicit graph structures.

Also related to our work is the recent line of

work on graph-to-text transduction (Xu et al., 2018;
Koncel-Kedziorski et al., 2019; Zhu et al., 2019;
Cai and Lam, 2020; Chen et al., 2020). However,
these works seek to generate text from a structured
input, rather than the setting we examine, which
involves taking long context text as the input.

6 Conclusion and Future Work

We propose a simple and effective transformer-
based model for multi-hop QG. We introduce archi-
tectural enhancements such as answer type embed-
dings, a supporting sentence classification objec-
tive to identify the salient facts, and a training data
weighting approach. Experiments on HotpotQA
showcase that our model outperforms the current
best model by 4 BLEU points, which is further val-
idated by human evaluation. Our analysis reveals
that graph-based modeling may not be the most
critical component in improving performance.

We present several research directions for fu-
ture work on this topic. One direction is to lever-
age recent pre-trained generative language models
such as GPT-3 (Brown et al., 2020) or T5 (Raffel
et al., 2020) and finetune them using our proposed
techniques. Another direction is to pre-train multi-
hop QA systems by generating synthetic multi-hop
questions using the ideas in this work.



Broader Impact and Ethics Statement

In terms of the ethical context of our work, it is im-
portant to consider the real-world use cases, impli-
cations, and potential stakeholders (e.g., potential
individuals who may interact with systems built on
the methods we propose). The primary real-world
application of our methods is in dialogue or virtual
assistant applications, where our techniques could
be used to improve the question-asking ability of
such systems. However, we note that we do not
intend our trained systems to be employed off-the-
shelf in such applications, given that our models
were trained on the HotPotQA dataset with the goal
of matching that data distribution. Real-world ap-
plications built on our work should be re-trained
using a training dataset that is relevant to the task
at hand.

Moreover, while our system is not tuned for any
specific real-world application, our methods could
be used in sensitive contexts such as legal or health-
care settings, and it is essential that any such ap-
plications undertake extensive quality-assurance
and robustness testing, as our system is not de-
signed to meet stringent robustness requirements
(e.g., for not stating false facts or meeting legal
requirements). More generally, in any language
generation setting, there is the possibility of (poten-
tially harmful) social biases that can be introduced
in training data. Again, as we did not specifically
control or regularize our model to remove the pos-
sibility of such biases, we would urge downstream
users to undertake the necessary quality-assurance
testing to evaluate the extent to which such biases
might be present and impacting their trained sys-
tem and to make modifications to their training data
and procedures accordingly.
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QG task Words Entities Predicates
Standard (SQuAD) 10.22 1.12 1.75
Multi-Hop (HotpotQA) 15.58 2.34 2.07

Table 6: Comparison of questions’ properties in stan-
dard and multi-hop QG datasets. We show the average
number of words, entities, and predicates per question.

A Standard vs Multi-Hop QG

In this section, we present our results to illustrate
the relative complexity of standard and multi-hop
QG tasks. For this analysis, we compare three prop-
erties of expected output i.e. questions: total words,
named entities, and predicates, as we believe these
represent the sufficient statistics of the question. As
a benchmark dataset of standard QG, we use the de-
velopment set from SQuAD (Rajpurkar et al., 2018)
and for multi-hop QG, we use the development set
from HotpotQA. We extract named entities using
spaCy° and predicates using Open IE (Stanovsky
et al., 2018).

From the results in Table 6, we see that multi-hop
questions are almost 1.5 times longer than standard
ones and also contain twice the number of enti-
ties. These results suggest that in multi-hop QG the
decoder needs to generate longer sequences con-
taining more entity-specific information making it
considerably more challenging than standard QG.
We also observe that multi-hop questions contain
roughly 2 predicates in 15 words while standard
questions contain 1.75 predicates in 10 words—
highlighting that there are fewer predicates per
word in multi-hop questions compared with stan-
dard ones. This highlights that information is more
densely packed within the multi-hop question as
they are not expected to contain latent (or bridge)
entity information.

B Transformer Model

In this section, we will describe the self-attention
and feed-forward sublayers of the widely-used
Transformer model (Vaswani et al., 2017).

Self-attention sublayer The self-attention sub-
layer performs dot-product self-attention. Let the
input to the sublayer be token embeddings x =
(z1,...,z7) and the output be z = (z1,..., 27),
where z;,2; € R<. First, the input is linearly
transformed to obtain key (k; = z;Wk), value
(vi = z;Wy), and query (¢; = z;Wp) vectors.

Shttps://spacy.io
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Next, interaction scores (s;;) between query and
key vectors are computed by performing a dot-
product operation

1

Vd

Then, attention coefficients (c;;) are computed by
applying softmax function over these interaction
scores

T
Sij qikj .

€XDP Sij

aij = —_— .

ZlT:I €XP Sj1
Finally, self-attention embeddings (z;) are com-
puted by the weighted combination of attention
coefficients with value vectors followed by a linear

transformation
T
Zy = ( E Oéij’Uj)WF.
Jj=1

Feed-forward sublayer To enable the model to
have higher representational capacity, we further
apply position-wise non-linear transformations to
the token embeddings. In the feed-forward sub-
layer, we pass as input the embeddings of all the
tokens to a two-layer MLP with ReLU activation.

h; = max(0, z;Wp, + b1)Wp, + b,

where W, € RIxd' Wi, € RZ %4 These em-
beddings (h;) are given as input to the next layer.

In the above descriptions, all the weight matri-
ces (denoted by W,) and biases (denoted by b,)
are trainable parameters. To ease optimization dur-
ing the training process, we apply layer normal-
ization (Ba et al., 2016) to the input and residual
connections (He et al., 2016) to the output of each
sublayer.

C Graph-Augmented Transformer
Encoder (GATE)

We will now discuss how we augment the trans-
former by including explicit graph-structure ex-
tracted from the input context. In addition to the
document-level structure such as paragraphs and
sentences, the context also contains structural infor-
mation contained in entities and relations among
them. A popular approach in the multi-hop setting
is to use graph neural networks (GNNs) to encode
this structural information (Pan et al., 2020). In this
work, we leverage the graph-structure information
by introducing augmentations to the transformer


https://spacy.io

architecture—as in our preliminary experiments
we found it to outperform other graph-to-sequence
alternatives. We refer to this approach as the graph-
augmented transformer encoder (GATE).

C.1 Graph Representation of Documents

To extract graph structure from the input context,
we consider three types of nodes—named-entity
mentions, coreferent-entities, and sentence-ids—
and we extract a multi-relational graph with three
types of relations over these nodes (Figure 4). First,
we extract named entities present in the context
and introduce edges between them.® Next, we ex-
tract coreferent words in a document and connect
them with edges.” Finally, we introduce edges be-
tween all sentence nodes in the context. As entities
comprise the nodes of this graph, we refer to it as
“context-entity graph”.

C.2 GATE Sublayers

We leverage the context-entity graph by defining
two new types of transformer sublayers: a graph-
attention sublayer and a fused-attention sublayer.
These two sublayers are intended to be used in se-
quence with each other and in conjunction with the
usual self-attention and fully-connected sublayers
of a transformer.

Graph-attention sublayer The graph-attention
sublayer performs relational dot-product graph-
attention. The input to this sublayer are node
embeddings® from the context-entity graph v
(v1,...,vy). Here, we aggregate information from
the connected nodes instead of all the tokens. First,
interaction scores (S;;) are computed for all the
edges by performing dot-product on the adjacent
projected nodes embeddings

5ij = (VW) (5, Wi + i) "

In this step, we additionally account for the relation
between the two nodes by learning embeddings
(v € R?) for each relation type (Shaw et al., 2018),
where ~y;; denotes the relation type between nodes
¢ and j. Next, we compute attention score (cv;;) for
each node by applying softmax over the interaction

®We use the English NER model provided by the spaCy
toolkit, which was trained on OntoNotes-5.0 and covers 18
classes.

"We use the coreference resolution model trained on
OntoNotes-5.0 hosted in spaCy Universe.

8Node embeddings are obtained from the entity’s token
embeddings.
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scores from all its connecting edges

where N; refers to the set of nodes connected to
the i node. Graph-attention embeddings (3;) are
computed by the aggregation of attention scores
followed by a linear transformation

Zi =

Z & (5, Wy + ;) | We.
JEN;

Fused-attention sublayer After running both
the graph-attention sublayer described above as
well as the standard self-attention sublayer, context
tokens which belong to the vertex set of context-
entity graph have two embeddings: z; from self-
attention and z; from graph-attention. To effec-
tively integrate information from sequence- and
graph-views, we concatenate these two embeddings
and apply a parametric function f, an MLP with
ReLU non-linearity (Glorot et al., 2011), which we
term as the fused-attention sublayer

zi = f( [z, Z]Wu +b),
where z; € R%.

D Training Details

We mostly follow the model training details as out-
lined in (Sachan and Neubig, 2018), which we also
describe here for convenience. The word embed-
ding layer is initialized according to the Gaussian
distribution (0, d~'/2), while other model param-
eters are initialized using LeCun uniform initializa-
tion (LeCun et al., 1998). For optimization, we
use Adam (Kingma and Ba, 2015) with 8; = 0.9,
Bo =0.997, ¢ = 1le~?. The learning rate is sched-
uled as: 2d~%’min (step™%5, step - 16000~ 15) .
During training, the mini-batch contains 12,000
source and target tokens. For regularization, we
use label smoothing (with € = 0.1) (Pereyra et al.,
2017) and apply dropout (with p = 0.1) (Srivas-
tava et al., 2014) to the word embeddings, attention
coefficients, ReL U activation, and to the output of
each sublayer before the residual connection. For
decoding, we use beam search with width 5 and
length normalization following (Wu et al., 2016)
with a = 1. We also use A = 0.5 when performing
joint NLL and SSC training.



E Human Evaluation Details

We also assess the generation quality of our multi-
hop QG model with human evaluation. To put the
human evaluation scores in perspective, we also
do human evaluation of the recent best performing
model DP-Graph proposed in (Pan et al., 2020))
and ground truth data. For human evaluation, from
each system, we randomly selected 100 predicted
samples on the HotpotQA test set. We recruited
eight human annotators to assign ratings for a sub-
set of examples from each system such that each
example gets two sets of ratings. Annotators were
asked to assign ratings from 1-5 (inclusive) accord-
ing to the following four criteria.

Grammaticality Does the question have proper
English syntax? In other words, is it a well-formed
English question? Note that a question can be gram-
matically correct but nonsensical (e.g., “Where did
the spoon take off?””). Scale: 1: complete nonsense,
5: perfect grammar.

Semantic Correctness Does the question make
sense semantically? In other words, is the question
meaningful and interpretable? Note that a question
can be semantically meaningful but have grammar
or syntax errors (e.g., “Where has the girl going?”).
Scale: 1: complete nonsense, 5: perfectly under-
standable.

Answerability Is the question answerable based
on the given context: Scale: 1: not at all, 5: the
answer is unambiguous.

Question Complexity Does the question require
reasoning about multiple sentences and entities in
the context in order to find the answer? Scale: 1:
trivial to answer, 5: requires non-trivial reasoning
across multiple sentences.

We report the average of ratings for each system
and each criterion in Table 4.

F BERTScore Evaluation

We evaluate the performance using automated met-
rics computed from BERT language model (Devlin
et al., 2018), whose use is increasingly becoming
more common as its results have shown to be cor-
related with human judgments. Specifically, we
use BERTSCORE tool (Zhang et al., 2020),” to
evaluate the generation quality. From the results in
Table 7, we see that our model improves over the
previous best model by 2 F; points.

*https://github.com/Tiiiger/bert_score
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Model P R Fy
DP-Graph' 87.66 87.70 87.65
TENLL W/o data weighting 87.09 8891 87.96

EnsembleTE+GATE 89.66 89.47 89.55

Table 7: Results of multi-hop QG on HotpotQA com-
puted using BERTSCORE tool (Zhang et al., 2020). f
indicates that DP-Graph is from (Pan et al., 2020).

G Reproducibility Checklist

G.1 For all reported experimental results

* A clear description of the mathematical set-
ting, algorithm, and/or model. This is pro-
vided in the main paper in §2.

e A link to a downloadable source code, with
specification of all dependencies, including
external libraries (recommended for camera
ready, though welcome for initial submission):
We will open-source the code at a later date.

* A description of computing infrastructure
used: We run experiments on a machine with
these specifications: number of CPUs: 6, CPU
RAM: 50GB, GPU model: RTX8000, GPU
architecture and memory: turing/48GB, Arch:
x86_64, and Disk size: 3.6TB.

The average runtime for each model or algo-
rithm, or estimated energy cost: The average
runtime of our TE model was within 10 hours
while that of the GATE model was around 15
hours.

The number of parameters in each model: Our
model parameters are in the range of 30M-
40M.

Corresponding validation performance for
each reported test result: Validation set per-
formance is currently not reported in the main
paper, as the validation set is non-standard.
The HotpotQA dataset does not provide its
full test set data, so the convention is to use
the validation set as the test set. Therefore, for
validation, we select 500 examples from the
training set. We include some of these details
in the main paper as well in §3.1.

* A clear definition of the specific evaluation
measure or statistics used to report results:
We report results using standard evaluation


https://github.com/Tiiiger/bert_score

G.2

metrics that are widely used for evaluation
in generation tasks: BLEU, ROUGE-L, and
METEOR. We provide the URLs of their
code implementations:

BLEU: nhttps://github.com/tensorflow/
tensor2tensor/blob/master/
tensor2tensor/bin/t2t_bleu.py
ROUGE-L: https://github.com/
google-research/google-research/
tree/master/rouge

METEOR: https://www.cs.cmu.edu/
~alavie/METEOR/README. html

For all results involving multiple
experiments, such as hyperparameter
search

The exact number of training and evaluation
runs For each experiments, we train the mod-
els until convergence, which generally around
30 epochs in our case. We evaluate the perfor-
mance of the model after each epoch and save
the best checkpoint according to BLEU score
performance on the validation set.

Hyperparameter configurations for best-
performing models: We use most of the code
and hyperparameter settings from the trans-
former model as described in (Sachan and
Neubig, 2018). The optimizer and training hy-
perparameters are also listed in Appendix D.
We also provide model hyperparameters in
§3.2.

The bounds for each hyperparameter: As de-
scribed in Appendix D, our model and train-
ing setting uses standard hyperparameters
such as different dropouts € [0, 1), weight-
ing or smoothing parameters, A, o, € € [0, 1],
and optimizer settings such as learning rate
€ [le — 3, 1le — 5]. The model hyperparameter
includes model dimensions d € {512, 768},
number of layers € {1,2,3,4}.

The method of choosing hyperparameter val-
ues (e.g., uniform sampling, manual tuning,
etc.) and the criterion used to select among
them (e.g., accuracy). We performed manual
hyperparameter tuning. We tuned the source
and target sides words within a minibatch
as transformer models are sensitive to these.
We also performed tuning of the number of
warmup steps for the Adam optimizer. We
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G.3

selected the best hyperparameter using the
BLEU score on the validation set.

Summary statistics of the results (e.g. mean,
variance, error bars, etc.). The reported re-
sults on the performance of our GATE and TE
models are the mean of 5 experimental runs.
Currently, we don’t provide the variance or
error bars for these these runs.

For all datasets used

Details of train/validation/test splits: We use
the standard training split provided by Hot-
potQA dataset creators. As the official test set
is blind, we use the validation set as the test
set. For validation, we constructed a valida-
tion set from 500 examples from the training
set.

Relevant statistics such as number of exam-
ples and label distributions: We provide
dataset statistics details in §3.1. As our task
is a generation task, label distribution is not
applicable.

An explanation of any data that were excluded,
and all pre-processing steps: We include pre-
processing details in the main paper in §3.1.
We also include the data pre-processing code
with the submission for reproducibility.

For natural language data, the name of the
language(s): Our datasets are in English lan-

guage.

A link to a downloadable version of the
dataset or simulation environment. HotpotQA
dataset is open-source and is available at:
https://hotpotga.github.io/. We have
included the pre-processing code with the sub-
mission.

For new data collected, a complete descrip-
tion of the data collection process, such as
instructions to annotators and methods for
quality control: This is not applicable to this
work.
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