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Abstract

Previous research on automated question gen-001
eration has almost exclusively focused on gen-002
erating factoid questions whose answers can003
be extracted from a single document. How-004
ever, there is an increasing interest in develop-005
ing systems that are capable of more complex006
multi-hop question generation (QG), where an-007
swering the question requires reasoning over008
multiple documents. In this work, we pro-009
pose a simple and effective approach based on010
the transformer model for multi-hop QG. Our011
approach consists of specialized input repre-012
sentations, a supporting sentence classification013
objective, and training data weighting. Prior014
work on multi-hop QG considers the simpli-015
fied setting of shorter documents and also ad-016
vocates the use of entity-based graph struc-017
tures as essential ingredients in model design.018
On the contrary, we showcase that our model019
can scale to the challenging setting of longer020
documents as input, does not rely on graph021
structures, and substantially outperforms the022
state-of-the-art approaches as measured by au-023
tomated metrics and human evaluation.024

1 Introduction025

Motivated by the process of human inquiry and026

learning, the field of question generation (QG) re-027

quires a model to generate natural language ques-028

tions in context. QG has wide applicability in auto-029

mated dialog systems (Mostafazadeh et al., 2016;030

Fitzpatrick et al., 2017), language assessment (Set-031

tles et al., 2020), data augmentation (Tang et al.,032

2017), and the development of annotated data sets033

for question answering (QA) research.034

Most prior research on QG has focused on gen-035

erating relatively simple factoid-based questions,036

where answering the question simply requires ex-037

tracting a span of text from a single reference doc-038

ument (Zhao et al., 2018; Kumar et al., 2019; Chen039

et al., 2020). However, motivated by the desire040

to build NLP systems that are capable of more041

Document 1: Byron Edmund Walker
[1] Sir Byron Edmund Walker, CVO (14 October 1848
– 27 March 1924) was a Canadian banker. [2] He
was the president of the Canadian Bank of Commerce
from 1907 to 1924, and a generous patron of the
arts, helping to found and nurture many of Canada’s
cultural and educational institutions, including the
University of Toronto, National Gallery of Canada, . . .
Document 2: University of Toronto
[1] The University of Toronto (U of T, UToronto, or
Toronto) is a public research university in Toronto,
. . . [2] It was founded by royal charter in 1827 as
. . . [3] Originally controlled by the Church of England,
the university assumed the present name . . . .

Answer: The University of Toronto

Supporting Facts
Document 1: {1, 2}, Document 2: {1, 3}

Question
Which Byron Edmund Walker founded institution was
originally controlled by the Church of England?

Figure 1: An example illustrating the multi-hop QG
task. The inputs are the two documents, answer, and
supporting facts. The task is to generate a question such
that it is answerable only after reading both the docu-
ments. Entities and predicates relevant to the task are
underlined while supporting facts are shown in color.

sophisticated forms of reasoning and understand- 042

ing (Kaushik and Lipton, 2018; Sinha et al., 2019), 043

there is an increasing interest in developing systems 044

for multi-hop question answering and generation 045

(Zhang et al., 2018; Welbl et al., 2018; Yang et al., 046

2018; Dhingra et al., 2020), where answering the 047

questions requires reasoning over the content in 048

multiple documents (see Figure 1 for an example). 049

Unlike standard QG, generating multi-hop ques- 050

tions requires the model to understand the rela- 051

tionship between disjoint pieces of information in 052

multiple context documents. Compared to stan- 053

dard QG, multi-hop questions tend to be substan- 054

tially longer, contain a higher density of named 055

entities, and—perhaps most importantly—high- 056

quality multi-hop questions involve complex chains 057

of predicates connecting the mentioned entities (see 058

Appendix A for supporting statistics.) 059
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To address these challenges, existing research060

on multi-hop QG primarily relies on graph-to-061

sequence (G2S) methods (Pan et al., 2020; Yu et al.,062

2020; Su et al., 2020). These approaches construct063

graph inputs by augmenting the original text with064

structural information (e.g., entity mentions and065

dependency parses) and then apply graph neural066

networks (GNNs) (Hamilton, 2020) whose embed-067

dings are then fed to an autoregressive sequence068

decoder. However, the necessity of these complex069

G2S approaches—which require designing hand-070

crafted graph extractors—is not entirely clear, espe-071

cially when standard transformer-based sequence-072

to-sequence models (Vaswani et al., 2017) can in-073

duce a strong relational inductive bias among its in-074

puts (Battaglia et al., 2018). Due to this, one might075

imagine that the transformer model alone would076

suffice for the relational reasoning requirements077

of multi-hop QG, i.e. to reason about relationships078

between entities in the text.079

This work: We show that a simple training ap-080

proach based on the transformer model is sufficient081

to outperform previous methods, which rely on082

graph-based augmentations, on the multi-hop QG083

task. Our training method consists of specialized084

input representations to impart useful inductive bi-085

ases for answer conditioning, a supporting sentence086

classification objective to identify salient sentences087

in a document, and a training data weighting ap-088

proach to pay higher importance to relevant training089

examples. These techniques help our model obtain090

new state-of-the-art results outperforming the pre-091

vious records by more than 4 BLEU points on the092

widely used HotpotQA dataset (Yang et al., 2018).093

Our model is also robust to the challenging setting094

of long document inputs, on which it obtains a gain095

of 7.5 BLEU points. In addition, we also propose096

a graph-augmented transformer encoder (GATE)—097

which integrates explicit graph structure informa-098

tion into the transformer. However, we show that099

the gains induced by the graph augmentations are100

relatively small compared to other enhancements101

in our training pipeline.102

2 Methods103

We first formalize the multi-hop QG task and de-104

scribe how we adapt the standard transformer archi-105

tecture to multi-hop QG (§ 2.2). Then, we present106

two techniques that are critical to achieving strong107

performance: an auxiliary supporting sentence clas-108

sification objective (§ 2.3) and a training data re-109

weighting approach (§ 2.4). Lastly, we outline an 110

approach for augmenting the transformer model 111

with graph-structured data (§ 2.5). 112

Background The input to the multi-hop QG task 113

is a set of context documents {c1, . . . , ck} and an 114

answer a. These documents can be long contain- 115

ing multiple sentences, cj = [s1, . . . , sn], where 116

each si is a sequence of words. Sentences across 117

different documents contain common named enti- 118

ties, which are also known as bridge entities. The 119

answer a spans one or multiple tokens in one docu- 120

ment. The desired goal of a multi-hop QG model 121

is to generate a question (q) conditioned on the 122

context and the answer, such that answering the 123

question requires reasoning about the content uti- 124

lizing multiple context documents. 125

2.1 Proposed Model 126

We formulate multi-hop QG as a sequence-to- 127

sequence (S2S) learning task, where our network 128

is a transformer-based model (Vaswani et al., 129

2017). The input to the transformer are all the 130

context documents {c1, . . . , ck} and the provided 131

answer (a). In the transformer model, both the 132

encoder and decoder consist of self-attention and 133

feed-forward sublayers,1 which are trained us- 134

ing teaching-forcing and a negative log-likelihood 135

loss (Williams and Zipser, 1989). We found that 136

achieving strong performance with a transformer 137

requires careful design decisions in terms of how 138

the input is represented, which we present next. 139

2.2 Input Representations 140

Sentence markers As the sentences present in 141

the document context are expected to play a crucial 142

role in training, we add additional annotations to 143

the input in order to learn sentence embeddings. 144

Learning these sentence embeddings adds a form 145

of implicit regularization, and we also leverage 146

these embeddings in our auxiliary objective (§2.3). 147

In particular, we add a sentence id token before 148

the first token of each sentence. In practice, as the 149

number of sentences varies between examples, to 150

make the model more robust to this difference, we 151

tie the sentence id token embedding weights for all 152

the sentences and refer to it as the <SENT> token. 153

Answer span representation To provide answer 154

tokens as input to the encoder, the prevalent tech- 155

nique in QG approaches is to append the answer 156

1Due to space limitations, we include a description of the
self-attention and feed-forward sublayers in Appendix B.
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Transformer Encoder Transformer Decoder

<SENT> Sir Byron Edmund Walker, ... <SENT> The Univer ##sity of Toronto (U of T, ...

Document 1 Document 2

EUniver

E7

E1

<BRIDGE>

Token 
Embeddings

Position 
Embeddings

Answer Type 
Embeddings

Question type

EToronto

E10

E1

EWalker

E4

E0

E<BRIDGE>

E14

E0

... ...

E<SENT>

E5

E0

Supporting Sentence Classification Model

<SENT> embedding <SENT> embedding

Which Byron Edmund Walker founded ..
Question

EByron

E1

EWalker

E3
...

Figure 2: Schematic diagram illustrating our proposed model for multi-hop QG. <SENT> token is prepended
before every sentence. The tokens highlighted in green denotes the answer tokens.

tokens after the context (Dong et al., 2019). How-157

ever, we found this approach to substantially under-158

perform in multi-hop QG. A possible reason is that159

concatenation of the answer tokens imparts poor160

inductive biases to the decoder. To overcome this161

limitation, we define indicator answer type id to-162

kens in which the value of type ids is 1 for the163

answer span tokens (within the context) and 0 for164

the remaining tokens. We introduce a new embed-165

ding layer for answer type ids called answer type166

embeddings. For a token, its input representation167

to the transformer encoder is the sum of token, po-168

sition, and answer type embeddings.169

A schematic diagram of the proposed model is170

shown in Figure 2.171

2.3 Training Objective172

To train our S2S transformer model, we combine173

two loss functions. The first loss function is the174

standard S2S log-likelihood loss, while the second175

loss function trains the model to detect salient sen-176

tences within the document context.177

2.3.1 Negative log-likelihood objective178

The primary training signal for our S2S approach179

comes from a standard negative log-likelihood loss180

LNLL = − 1

K

K∑
k=1

log p (qk | c, q1:k−1; θ),181

where the parametric distribution p(q | c; θ) models182

the conditional probability of question (q) given the183

context (c) and K is the number of question tokens.184

As is common practice in the literature, we use185

teacher-forcing while training with this loss.186

2.3.2 Auxiliary Supporting Sentence 187

Classification Objective 188

To compliment our standard likelihood objective, 189

we also design an auxiliary objective, which trains 190

the model to detect the occurrence of supporting 191

facts in the multi-document context. 192

Supporting facts in multi-hop QA As multi- 193

hop questions require reasoning over some salient 194

sentences across long documents, a unique chal- 195

lenge of multi-hop QA is the presence of a large 196

number of irrelevant sentences in context. Thus, 197

as a common practice, researchers annotate which 198

sentences are necessary to answer each question, 199

called supporting facts (Yang et al., 2018). Prior 200

work on multi-hop QG leveraged these annotations 201

by simply discarding all irrelevant sentences and 202

training only on sentences with supporting facts 203

(Pan et al., 2020). Instead, we propose a supporting 204

sentence classification objective, which allows us 205

to leverage these annotations during training while 206

still receiving full document contexts at inference. 207

Supporting sentence classification (SSC) Our 208

classifier training setup utilizes sentences contained 209

in the supporting facts as positive examples while 210

we consider all the remaining sentences in the con- 211

text to be negative examples. We use only the 212

sentence id embedding (hi) for training i.e., the 213

embedding corresponding to the <SENT> token; 214

see §2.2. The training loss is defined in terms of 215

the binary cross-entropy loss formulation as 216

LSSC =
−1
T

(
P∑

i=1

logD (hi;φ) +

N∑
j=1

log (1−D (hj ;φ))

)
, 217

where D(φ) is a binary classifier consisting of a 218

two-layer MLP with ReLU activation and a final 219
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sigmoid layer, P and N are the number of posi-220

tive and negative training sentences in the context221

documents respectively, and T = P +N . During222

evaluation, we predict the supporting facts using223

the binary classifier. This objective is added as an224

additional term to the main likelihood loss, leading225

to the following composite objective:226

L = λLNLL + (1− λ)LSSC,227

where λ is a hyperparameter.228

2.4 Training Data Weighting229

Another key component of our training pipeline is230

a data weighting approach. This aspect specifically231

addresses challenges arising from the question-232

length distribution in the widely used HotpotQA233

benchmark (Yang et al., 2018), which is also used234

in this work. Nonetheless, despite the fact that this235

approach is motivated directly by the statistics of236

HotpotQA, we expect the general principle to be237

applicable to future multi-hop datasets as well.238

Motivation HotpotQA’s training set contains239

three categories of questions: train-easy, train-240

medium, and train-hard. Train-easy questions are241

essentially single-hop requiring one context doc-242

ument to answer them while train-medium and243

train-hard questions are multi-hop requiring mul-244

tiple context documents. However, both the dev245

and test sets in HotpotQA consist of hard multi-246

hop questions. While the additional train-easy247

and train-medium examples have proved useful248

as training signals in the question-answering set-249

ting (Yang et al., 2018), our QG experiments reveal250

that naively training the model using all the ques-251

tions leads to a big drop in BLEU scores (Papineni252

et al., 2002). The reason for the low scores is that253

the generated questions are almost 80% longer than254

the reference questions, and thus are less precise.255

Data weighting to prevent distributional mis-256

match We hypothesize that the model generates257

long questions because of the negative exposure258

bias that it receives from the train-easy questions.259

We analyze the question-length distribution in the260

training set in Figure 3 and observe that a sig-261

nificant number of train-easy questions are much262

longer than train-medium and train-hard—while263

most of the train-medium and train-hard questions264

are 30 words long, train-easy questions can be as265

long as 70 words. Therefore, we strive to match266

the training-evaluation question-length distribution267
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Figure 3: Question length distribution according to its
difficulty level in the HotpotQA training set. Plot re-
veals that train-easy questions are much longer than
train-medium and train-hard questions.

by down-weighting the importance of examples 268

whose question length is more than 30 words dur- 269

ing the training process. More formally, let there be 270

m examples in a batch, let |q| denote the question 271

length, then the log-likelihood loss is calculated as 272

LNLL ∝
m∑
i=1

(1− ε)1(|qi| ≤ t)L(i)
NLL + ε1(|qi| > t)L(i)

NLL, 273

where ε is a small constant (ε = 0.05) and t is 274

a length threshold (t = 30). As our analysis in- 275

dicates, most of the down-weighted examples are 276

train-easy questions. A special case is when we set 277

ε = 0, i.e. data filtering, where we ignore all the 278

train-easy questions from the training process. 279

2.5 Graph Augmentations to Transformer 280

Encoder (GATE) 281

The context contains useful structural information 282

such as named entities and relations among them. 283

Recent approaches represent this information with 284

multi-attribute graphs and apply GNNs to learn 285

useful representations from them (Pan et al., 2020). 286

Following these trends, to ascertain the usefulness 287

of graphs, we extract graph structure from the input 288

context. We consider three types of nodes—named- 289

entity mentions, coreferent-entities, and sentence- 290

ids—and construct a multi-relational graph with 291

three relation types over these nodes (Figure 4). 292

Based on prior work (Sachan et al., 2021), we in- 293

troduce augmentations to the transformer encoder 294

enabling it to leverage graph inputs and refer to 295

this as the GATE model. Specifically, we intro- 296

duce two additional sublayers: (1) graph-attention, 297

which is similar to self-attention but attends to con- 298

necting nodes (Veličković et al., 2018) (2) fused- 299

attention sublayer, where we combine the outputs 300

of self-attention and graph-attention by passing 301

them through a one-layer MLP. For more details, 302
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1

2

He institutions University of 
Toronto

The University 
of Toronto

Sir Bryon 
Edmund 
Walker

1

Church of 
England3

the 
university2

Figure 4: Entity-centric graph corresponding to the ex-
ample in Figure 1. The sentence nodes are drawn in
circles and the entities in rectangles. Entity edges are
drawn in bold, coreference edges are dotted and sen-
tence edges are dashed.

we refer the reader to Appendix C, where we eluci-303

date the architecture of the GATE model.304

3 Experimental Setup305

3.1 Dataset Preprocessing and Evaluation306

We use the HotpotQA dataset for experiments as it307

is the only multi-hop QA dataset that contains ques-308

tions in textual form.2 HotpotQA is a large-scale309

crowd-sourced dataset constructed from Wikipedia310

articles and contains over 100K questions. We use311

its distractor setting that contains 2 gold and 8 dis-312

tractor paragraphs for a question. Following prior313

work on multi-hop QG, we limit the context size to314

the 2 gold paragraphs, as the distractor paragraphs315

are irrelevant to the generation task (Pan et al.,316

2020). The questions can be either of type bridge-317

or comparison-based. The answer span is not ex-318

plicitly specified in the context documents rather319

the answer tokens are provided. Hence, we use ap-320

proximate text-similarity algorithms to search for321

the best matching answer span in the context. For322

some of the comparison questions whose answer is323

either yes or no, we append it to the context.324

To train and evaluate the models, we use the325

standard training and dev sets.3 We pre-process326

the dataset by excluding examples with spurious327

annotations. As the official dev set is used as a328

test set, we reserve 500 examples from the training329

set to be used as a dev set. Overall, our training330

set consists of 84,000 examples, and the test set331

consists of 7,399 examples. We follow the evalua-332

tion protocol of Pan et al. (2020) and report scores333

on standard automated evaluation metrics common334

in QG: BLEU-4 (Papineni et al., 2002), ROUGE-335

L (Lin, 2004), and METEOR (Banerjee and Lavie,336

2We also explored WikiHop (Welbl et al., 2018) and Wiki-
Data (Dhingra et al., 2020), but they contain questions in triple
format and thus are outside the scope of this work.

3As the test set is hidden for HotpotQA.

Model BLEU-4 ROUGE-L METEOR

Encoder Input: Supporting Facts Sentences

NQG++† 11.50 32.01 16.96
ASs2s† 11.29 32.88 16.78
MP-GSA† 13.48 34.51 18.39
SRL-Graph† 15.03 36.24 19.73
DP-Graph† 15.53 36.94 20.15
TENLL 19.33 39.00 22.21

Encoder Input: Full Document Context

TENLL 17.13 38.13 21.34
TENLL+SSC 19.60 39.23 22.50

Table 1: Results of multi-hop QG on HotpotQA.
NQG++ is from Zhou et al. (2018), ASs2s is from Kim
et al. (2019), MP-GSA is from Zhao et al. (2018), SRL-
Graph and DP-Graph are from Pan et al. (2020). † de-
notes that the results are taken from Pan et al. (2020).
Best results in each section are highlighted in bold.

2005). We also performed human evaluation stud- 337

ies to assess our model performance. 338

3.2 Training Protocols 339

We follow the same training process for all the ex- 340

periments. We encode the context and question 341

with 32K subwords units by applying the sentence- 342

piece toolkit (Kudo and Richardson, 2018). For a 343

fair comparison with previous work, we experiment 344

with smaller models. We use a 2-layer transformer 345

with 8 attention heads, 512-D model size, and 2048- 346

D hidden layer. Token embedding weights are 347

shared between the encoder, decoder, and gener- 348

ation layer. For variance control, we average our 349

results over 5 independent runs. For reproducibility, 350

we describe model training details in Appendix D. 351

4 Results and Analysis 352

We report the performance of our proposed trans- 353

former encoder (TE) model in Table 1, comparing 354

with a number of recent QG models. 355

Performance with supporting facts as input 356

We first consider a simplified version of the task 357

when only the supporting facts are used during 358

training and testing (top section in Table 1). In 359

other words, in this setting, we remove all sen- 360

tences of the context documents that have not been 361

annotated as supporting facts. This is an overly sim- 362

plified setting since supporting fact annotations are 363

not always available at test time. However, this is 364

the setting used in previous work on multi-hop QG 365

(Pan et al., 2020), which we directly compare to. In 366

this setting, we see that our TE model scores 19.3 367

BLEU, an absolute gain of around 4 points over the 368
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Figure 5: Length distribution of the full document con-
text and supporting facts sentences in HotpotQA. The
plot reveals that the full document context is almost
three times longer than supporting facts.

Setting BLEU-4

TENLL+SSC 19.60
– w/o SSC 17.13
– w/o Training data weighting 14.50
– w/o Training data weighting & SSC 11.90
– w/o Answer type embeddings 7.81

Table 2: Ablation studies when the encoders’ input is
the full document context. SSC: Supporting sentence
classification objective.

previous best result. Note that as the SSC training369

is not applicable here, we just use teacher-forcing.370

Performance with full context as input In a371

more realistic setting, when the supporting facts372

are not available at test time, the model needs to373

processes the full context. As the average docu-374

ment context is three times the size of the support-375

ing facts in HotpotQA (Figure 5), this setting is376

much more challenging, which is also evident from377

the results (bottom section in Table 1). We notice378

that if using only the teacher-forcing objective, the379

performance drops by 2 points. However, when380

trained with the composite objective, our model ob-381

tains a BLEU score of 19.6, which is in fact slightly382

higher than what it could achieve in the simplified383

setting. We hypothesize that the additional training384

signal from the longer contexts combined with the385

SSC objective actually benefits the models.386

4.1 Ablation Studies387

We perform ablations to understand what compo-388

nents are essential for strong performance when389

the input is the full document context (Table 2).390

SSC training We see that SSC training improves391

the BLEU score by 2.5 points and it also helps the392

model attain around 75 F1 and 35 Exact Match393

scores in predicting the supporting facts sentences.394

This highlights that—besides being helpful in QG—395

SSC training additionally imparts useful signals to396
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Figure 6: Effect of data filtering (ε = 0) on QG.

the encoder such that its supporting facts predic- 397

tions are interpretable. 398

Training data weighting We showcase that 399

weighting of questions less than 30 words is a criti- 400

cal step in our training pipeline. On the other hand, 401

without data weighting (ε = 0.5), the accuracy 402

drops by 5 points to 14.5 BLEU. In addition, if 403

we just use teacher-forcing objective without data 404

weighting, the performance further drops to 11.9 405

BLEU, signifying that data weighting and SSC 406

training are independently useful and essential. To 407

highlight the effect of data weighting on the genera- 408

tion quality, we plot the generated question length’s 409

deviation from the ground truth in Figure 6. We 410

observe that when a model is trained without data 411

weighting, a substantial number of generated ques- 412

tions are at least 15 words longer than the ground 413

truth, thus leading to lower quality output, while 414

this effect is not as pronounced otherwise. 415

Answer span representation We demonstrate 416

that effective encoding of the answer span is of 417

utmost importance in multi-hop QG as the decoder 418

needs to condition generation on both the context 419

and the answer. As mentioned previously, the com- 420

mon approach in standard QG is to append the 421

answer tokens after the context. We see that this ap- 422

proach results in a drop of 12 points to 7.8 BLEU, 423

which is quite low. Our proposed approach of en- 424

coding the answer span in the context with answer 425

type embeddings is a much stronger methodology. 426

4.2 Discussion 427

Overall, the above results demonstrate that all 428

of our proposed enhancements to the transformer 429

model and training pipeline—input representations, 430

SSC objective, and effective data weighting during 431

training—helps in obtaining state-of-the-art results. 432

Compared to the previous work of (Pan et al., 2020) 433

who leverage semantic and dependency graphs on 434

the unrealistic setting of shorter supporting facts, 435

our model works well with full document contexts 436
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Model BLEU-4 ROUGE-L METEOR

Encoder Input: Full Document Context

TENLL+SSC 19.60 39.23 22.50
GATENLL+SSC 20.02 39.49 22.40
Ensemble 21.34 40.36 23.24

Table 3: Performance comparison of the TE and GATE
models and their ensemble.

that are almost three times as long, is simpler, and437

more accurate. We believe that scaling up the train-438

ing to larger and deeper models would help further439

improve the generation accuracy. Our strong re-440

sults without the dependence on structured graphs441

also point to the hypothesis that the transformer ar-442

chitecture can facilitate relational reasoning among443

its input, which we empirically analyze next.444

4.3 Importance of explicit graph-structures445

From the results in Table 3, we find that our graph-446

augmented model (GATE) leads to a very small per-447

formance gain, achieving a BLEU of 20.02, which448

is quite close to the TE model. This suggests that449

incorporating graph-structures may not be an es-450

sential component in the model design, as opposed451

to the prevailing formalism in the literature.452

Model ensemble We notice that the GATE453

model seems to provide complementary strengths454

compared to the TE model, which is evident when455

we ensemble them during decoding. At every step,456

the likelihood is computed using the linearly inter-457

polated likelihood scores of both the models,458

p (qk | c, q1:k−1) = α · pTE (qk | c, q1:k−1)459

+ (1− α) · pGATE (qk | c, q1:k−1) ,460

where α ∈ [0, 1] is a hyperparameter. We find461

that α = 0.5 works the best. From Table 3, we462

see that the ensemble of both models results in463

an improvement of 1.7 points over the TE model.464

This suggests that—while the gains from graph-465

augmentations are relatively small—there is com-466

plementary information in the graph structures.467

Question-level scores comparison In order to468

further understand how the GATE model is differ-469

ent in performance from the TE model, we perform470

an analysis of the generated questions on the test471

set. We analyze the distribution of the difference472

in their question-level GLEU scores (Wu et al.,473

2016)4 and observe that on 397 (5.4%) test exam-474

4GLEU is a sentence-level metric that is calculated as the
minimum of the precision or recall between the reference and
the hypothesis.

Model G SC A QC

DP-Graph† 3.42 3.26 3.26 2.06
EnsembleTE+GATE 4.56 4.66 4.08 3.26
Ground truth 4.66 4.78 4.36 3.24

Table 4: Human evaluation results on 300 example
generations from the HotpotQA test set. The table
shows the average rating from our annotators on a
scale from 1-5, where 1 indicates the lowest score and
5 the highest score on four criteria: Grammaticality
(G), Semantic Correctness (SC), Answerability (A),
and Question Complexity (QC). Please refer to Ap-
pendix E for more details on these criteria. †DP-Graph
is from Pan et al. (2020). We use the generations from
their best released checkpoint to do human evaluation.

ples, the GATE model achieves a GLEU score of 475

20 points or more than that of the TE, while on 377 476

(5.1%) examples the TE model achieves at least 477

20 points higher. Therefore, this complementary 478

performance is the reason for the gain that we see 479

in Table 3 when the two models are ensembled. 480

4.4 Human Evaluation 481

We present the results of human evaluation in Ta- 482

ble 4, where predictions from the models are as- 483

signed a rating out of 1-5 for four criteria to assess 484

different aspects of multi-hop QG which are: to 485

which degree the questions are (a) grammatically, 486

and (b) semantically correct, (c) conditioned on the 487

provided answer, and (d) complex, i.e. if they re- 488

quire reasoning over multiple supporting sentences 489

or not. We compare the predictions from our best 490

performing model with the previous state-of-the- 491

art model from literature (Pan et al., 2020) and 492

also provide human evaluation scores for ground 493

truth data. We observe that despite being trained 494

on much longer context documents, the generation 495

quality of our ensemble model is vastly superior on 496

all the four criteria compared to the previous best 497

model and in fact comes very close to the ground 498

truth ratings. It is also worth mentioning that the 499

questions from our model are more complex and 500

better conditioned on the answer text. 501

We also provide evaluation scores using pre- 502

trained language models in Appendix F. 503

4.5 Qualitative Analysis of Data Weighting 504

In Table 5, we present example generations from 505

the TENLL+SSC model when it is trained with and 506

without data weighting. We observe that when 507

trained with data weighting, the model is able to 508

generate a question that closely matches the ground 509

truth. On the other hand, the model trained with- 510

7



Model Document Contexts and Generated Questions

Document con-
text

Document 1: Pinhead Gunpowder is an American punk rock band that formed in East Bay, California, in
1990. The band currently consists of Aaron Cometbus (drums, lyrics), Bill Schneider (bass), Billie Joe
Armstrong (guitar, vocals) and Jason White (guitar, vocals). The band’s name comes . . . Document 2: Billie
Joe Armstrong (born February 17, 1972) is an American musician, singer, songwriter and actor who is best
known as the lead vocalist, primary songwriter, and guitarist of the punk rock band Green Day, which he
co-founded with Mike Dirnt. He is also a guitarist and vocalist for the punk rock band Pinhead . . .

Answer band
Ground truth What kind of group does Pinhead Gunpowder and Billie Joe Armstrong have in common?
TENLL+SSC What kind of group does Pinhead Gunpowder and Billie Joe Armstrong have in common?
TENLL+SSC w/o
data weighting

Pinhead Gunpowder is an American punk rock band that formed in East Bay, California, in 1990, the band
currently consists of Aaron Cometbus (drums, lyrics), an American musician, singer, songwriter and actor
who is best known as the lead vocalist, primary songwriter, and guitarist of the punk rock Green Day, which
he co-founded with

Document con-
text

Document 1: Seesaw is a musical with a book by Michael Bennett, music by Cy Coleman, and lyrics by
Dorothy Fields. Document 2: Michael Bennett (April 8, 1943 – July 2, 1987) was an American musical
theatre director, writer, choreographer, and dancer. He won seven Tony Awards for his choreography and
direction of Broadway shows and was nominated for an additional eleven.

Answer April 8, 1943
Ground truth When was the writer of Seesaw born?
TENLL+SSC When was the writer of Seesaw born?
TENLL+SSC w/o
data weighting

When was the American musical theatre director, writer, choreographer, and dancer born who’s choreography
and direction of Seesaw?

Table 5: Example illustrating the effect of data weighting on multi-hop QG. Without data weighting the generated
question is long and does not resemble a valid multi-hop question.

out it has considerably longer generations, often511

covering many pieces of information from input512

documents. It is also evident that sometimes these513

long generations are based on one document, and514

therefore are not true multi-hop questions.515

5 Related Work516

Most work on QG has focused on generating517

one-hop questions using neural S2S models (Du518

et al., 2017), pre-trained transformers (Dong et al.,519

2019), reinforcement learning-based query refor-520

mulation (Buck et al., 2018), and G2S model (Chen521

et al., 2020). Previously, (Pan et al., 2020; Yu et al.,522

2020) also propose approaches for multi-hop QG.523

They incorporate an entity-graph to capture infor-524

mation about entities and their contextual relations525

within as well as across documents.526

In parallel, there have been advances in multi-527

hop question answering models (Tu et al., 2019;528

Chen et al., 2019; Tu et al., 2020; Groeneveld et al.,529

2020). In this task, GNN models applied over530

the extracted graph structures have led to improve-531

ments (De Cao et al., 2019; Fang et al., 2019; Zhao532

et al., 2020). Our work examines the complemen-533

tary task of multi-hop QG and provides evidence534

that transformer models could, in fact, achieve com-535

petitive results in this task, compared to these GNN-536

based models that use explicit graph structures.537

Also related to our work is the recent line of538

work on graph-to-text transduction (Xu et al., 2018; 539

Koncel-Kedziorski et al., 2019; Zhu et al., 2019; 540

Cai and Lam, 2020; Chen et al., 2020). However, 541

these works seek to generate text from a structured 542

input, rather than the setting we examine, which 543

involves taking long context text as the input. 544

6 Conclusion and Future Work 545

We propose a simple and effective transformer- 546

based model for multi-hop QG. We introduce archi- 547

tectural enhancements such as answer type embed- 548

dings, a supporting sentence classification objec- 549

tive to identify the salient facts, and a training data 550

weighting approach. Experiments on HotpotQA 551

showcase that our model outperforms the current 552

best model by 4 BLEU points, which is further val- 553

idated by human evaluation. Our analysis reveals 554

that graph-based modeling may not be the most 555

critical component in improving performance. 556

We present several research directions for fu- 557

ture work on this topic. One direction is to lever- 558

age recent pre-trained generative language models 559

such as GPT-3 (Brown et al., 2020) or T5 (Raffel 560

et al., 2020) and finetune them using our proposed 561

techniques. Another direction is to pre-train multi- 562

hop QA systems by generating synthetic multi-hop 563

questions using the ideas in this work. 564
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Broader Impact and Ethics Statement565

In terms of the ethical context of our work, it is im-566

portant to consider the real-world use cases, impli-567

cations, and potential stakeholders (e.g., potential568

individuals who may interact with systems built on569

the methods we propose). The primary real-world570

application of our methods is in dialogue or virtual571

assistant applications, where our techniques could572

be used to improve the question-asking ability of573

such systems. However, we note that we do not574

intend our trained systems to be employed off-the-575

shelf in such applications, given that our models576

were trained on the HotPotQA dataset with the goal577

of matching that data distribution. Real-world ap-578

plications built on our work should be re-trained579

using a training dataset that is relevant to the task580

at hand.581

Moreover, while our system is not tuned for any582

specific real-world application, our methods could583

be used in sensitive contexts such as legal or health-584

care settings, and it is essential that any such ap-585

plications undertake extensive quality-assurance586

and robustness testing, as our system is not de-587

signed to meet stringent robustness requirements588

(e.g., for not stating false facts or meeting legal589

requirements). More generally, in any language590

generation setting, there is the possibility of (poten-591

tially harmful) social biases that can be introduced592

in training data. Again, as we did not specifically593

control or regularize our model to remove the pos-594

sibility of such biases, we would urge downstream595

users to undertake the necessary quality-assurance596

testing to evaluate the extent to which such biases597

might be present and impacting their trained sys-598

tem and to make modifications to their training data599

and procedures accordingly.600
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QG task Words Entities Predicates

Standard (SQuAD) 10.22 1.12 1.75
Multi-Hop (HotpotQA) 15.58 2.34 2.07

Table 6: Comparison of questions’ properties in stan-
dard and multi-hop QG datasets. We show the average
number of words, entities, and predicates per question.

A Standard vs Multi-Hop QG893

In this section, we present our results to illustrate894

the relative complexity of standard and multi-hop895

QG tasks. For this analysis, we compare three prop-896

erties of expected output i.e. questions: total words,897

named entities, and predicates, as we believe these898

represent the sufficient statistics of the question. As899

a benchmark dataset of standard QG, we use the de-900

velopment set from SQuAD (Rajpurkar et al., 2018)901

and for multi-hop QG, we use the development set902

from HotpotQA. We extract named entities using903

spaCy5 and predicates using Open IE (Stanovsky904

et al., 2018).905

From the results in Table 6, we see that multi-hop906

questions are almost 1.5 times longer than standard907

ones and also contain twice the number of enti-908

ties. These results suggest that in multi-hop QG the909

decoder needs to generate longer sequences con-910

taining more entity-specific information making it911

considerably more challenging than standard QG.912

We also observe that multi-hop questions contain913

roughly 2 predicates in 15 words while standard914

questions contain 1.75 predicates in 10 words—915

highlighting that there are fewer predicates per916

word in multi-hop questions compared with stan-917

dard ones. This highlights that information is more918

densely packed within the multi-hop question as919

they are not expected to contain latent (or bridge)920

entity information.921

B Transformer Model922

In this section, we will describe the self-attention923

and feed-forward sublayers of the widely-used924

Transformer model (Vaswani et al., 2017).925

Self-attention sublayer The self-attention sub-926

layer performs dot-product self-attention. Let the927

input to the sublayer be token embeddings x =928

(x1, . . . , xT) and the output be z = (z1, . . . , zT),929

where xi, zi ∈ Rd. First, the input is linearly930

transformed to obtain key (ki = xiWK), value931

(vi = xiWV), and query (qi = xiWQ) vectors.932

5https://spacy.io

Next, interaction scores (sij) between query and 933

key vectors are computed by performing a dot- 934

product operation 935

sij =
1√
d
qik

T
j . 936

Then, attention coefficients (αij) are computed by 937

applying softmax function over these interaction 938

scores 939

αij =
exp sij∑T
l=1 exp sil

. 940

Finally, self-attention embeddings (zi) are com- 941

puted by the weighted combination of attention 942

coefficients with value vectors followed by a linear 943

transformation 944

zi = (
T∑

j=1

αijvj)WF. 945

Feed-forward sublayer To enable the model to 946

have higher representational capacity, we further 947

apply position-wise non-linear transformations to 948

the token embeddings. In the feed-forward sub- 949

layer, we pass as input the embeddings of all the 950

tokens to a two-layer MLP with ReLU activation. 951

hi = max(0, ziWL1 + b1)WL2 + b2, 952

where WL1 ∈ Rd×d′ , WL2 ∈ Rd′×d. These em- 953

beddings (hi) are given as input to the next layer. 954

In the above descriptions, all the weight matri- 955

ces (denoted by W∗) and biases (denoted by b∗) 956

are trainable parameters. To ease optimization dur- 957

ing the training process, we apply layer normal- 958

ization (Ba et al., 2016) to the input and residual 959

connections (He et al., 2016) to the output of each 960

sublayer. 961

C Graph-Augmented Transformer 962

Encoder (GATE) 963

We will now discuss how we augment the trans- 964

former by including explicit graph-structure ex- 965

tracted from the input context. In addition to the 966

document-level structure such as paragraphs and 967

sentences, the context also contains structural infor- 968

mation contained in entities and relations among 969

them. A popular approach in the multi-hop setting 970

is to use graph neural networks (GNNs) to encode 971

this structural information (Pan et al., 2020). In this 972

work, we leverage the graph-structure information 973

by introducing augmentations to the transformer 974
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architecture—as in our preliminary experiments975

we found it to outperform other graph-to-sequence976

alternatives. We refer to this approach as the graph-977

augmented transformer encoder (GATE).978

C.1 Graph Representation of Documents979

To extract graph structure from the input context,980

we consider three types of nodes—named-entity981

mentions, coreferent-entities, and sentence-ids—982

and we extract a multi-relational graph with three983

types of relations over these nodes (Figure 4). First,984

we extract named entities present in the context985

and introduce edges between them.6 Next, we ex-986

tract coreferent words in a document and connect987

them with edges.7 Finally, we introduce edges be-988

tween all sentence nodes in the context. As entities989

comprise the nodes of this graph, we refer to it as990

“context-entity graph”.991

C.2 GATE Sublayers992

We leverage the context-entity graph by defining993

two new types of transformer sublayers: a graph-994

attention sublayer and a fused-attention sublayer.995

These two sublayers are intended to be used in se-996

quence with each other and in conjunction with the997

usual self-attention and fully-connected sublayers998

of a transformer.999

Graph-attention sublayer The graph-attention1000

sublayer performs relational dot-product graph-1001

attention. The input to this sublayer are node1002

embeddings8 from the context-entity graph v =1003

(v1, . . . , vN). Here, we aggregate information from1004

the connected nodes instead of all the tokens. First,1005

interaction scores (s̃ij) are computed for all the1006

edges by performing dot-product on the adjacent1007

projected nodes embeddings1008

s̃ij = (viW̃Q)(ṽjW̃K + γij)
>.1009

In this step, we additionally account for the relation1010

between the two nodes by learning embeddings1011

(γ ∈ Rd) for each relation type (Shaw et al., 2018),1012

where γij denotes the relation type between nodes1013

i and j. Next, we compute attention score (α̃ij) for1014

each node by applying softmax over the interaction1015

6We use the English NER model provided by the spaCy
toolkit, which was trained on OntoNotes-5.0 and covers 18
classes.

7We use the coreference resolution model trained on
OntoNotes-5.0 hosted in spaCy Universe.

8Node embeddings are obtained from the entity’s token
embeddings.

scores from all its connecting edges 1016

α̃ij =
exp(s̃ij)∑

k∈Ni
exp (s̃ik)

, 1017

where Ni refers to the set of nodes connected to 1018

the ith node. Graph-attention embeddings (z̃i) are 1019

computed by the aggregation of attention scores 1020

followed by a linear transformation 1021

z̃i =

∑
j∈Ni

α̃ij(ṽjW̃V + γij)

 W̃F. 1022

Fused-attention sublayer After running both 1023

the graph-attention sublayer described above as 1024

well as the standard self-attention sublayer, context 1025

tokens which belong to the vertex set of context- 1026

entity graph have two embeddings: zi from self- 1027

attention and z̃i from graph-attention. To effec- 1028

tively integrate information from sequence- and 1029

graph-views, we concatenate these two embeddings 1030

and apply a parametric function f , an MLP with 1031

ReLU non-linearity (Glorot et al., 2011), which we 1032

term as the fused-attention sublayer 1033

zi = f( [zi, z̃i]WM + b), 1034

where zi ∈ Rd. 1035

D Training Details 1036

We mostly follow the model training details as out- 1037

lined in (Sachan and Neubig, 2018), which we also 1038

describe here for convenience. The word embed- 1039

ding layer is initialized according to the Gaussian 1040

distributionN (0, d−1/2), while other model param- 1041

eters are initialized using LeCun uniform initializa- 1042

tion (LeCun et al., 1998). For optimization, we 1043

use Adam (Kingma and Ba, 2015) with β1 = 0.9, 1044

β2 = 0.997, ε = 1e−9. The learning rate is sched- 1045

uled as: 2d−0.5min
(
step−0.5, step · 16000−1.5

)
. 1046

During training, the mini-batch contains 12, 000 1047

source and target tokens. For regularization, we 1048

use label smoothing (with ε = 0.1) (Pereyra et al., 1049

2017) and apply dropout (with p = 0.1) (Srivas- 1050

tava et al., 2014) to the word embeddings, attention 1051

coefficients, ReLU activation, and to the output of 1052

each sublayer before the residual connection. For 1053

decoding, we use beam search with width 5 and 1054

length normalization following (Wu et al., 2016) 1055

with α = 1. We also use λ = 0.5 when performing 1056

joint NLL and SSC training. 1057
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E Human Evaluation Details1058

We also assess the generation quality of our multi-1059

hop QG model with human evaluation. To put the1060

human evaluation scores in perspective, we also1061

do human evaluation of the recent best performing1062

model DP-Graph proposed in (Pan et al., 2020))1063

and ground truth data. For human evaluation, from1064

each system, we randomly selected 100 predicted1065

samples on the HotpotQA test set. We recruited1066

eight human annotators to assign ratings for a sub-1067

set of examples from each system such that each1068

example gets two sets of ratings. Annotators were1069

asked to assign ratings from 1-5 (inclusive) accord-1070

ing to the following four criteria.1071

Grammaticality Does the question have proper1072

English syntax? In other words, is it a well-formed1073

English question? Note that a question can be gram-1074

matically correct but nonsensical (e.g., “Where did1075

the spoon take off?”). Scale: 1: complete nonsense,1076

5: perfect grammar.1077

Semantic Correctness Does the question make1078

sense semantically? In other words, is the question1079

meaningful and interpretable? Note that a question1080

can be semantically meaningful but have grammar1081

or syntax errors (e.g., “Where has the girl going?”).1082

Scale: 1: complete nonsense, 5: perfectly under-1083

standable.1084

Answerability Is the question answerable based1085

on the given context: Scale: 1: not at all, 5: the1086

answer is unambiguous.1087

Question Complexity Does the question require1088

reasoning about multiple sentences and entities in1089

the context in order to find the answer? Scale: 1:1090

trivial to answer, 5: requires non-trivial reasoning1091

across multiple sentences.1092

We report the average of ratings for each system1093

and each criterion in Table 4.1094

F BERTScore Evaluation1095

We evaluate the performance using automated met-1096

rics computed from BERT language model (Devlin1097

et al., 2018), whose use is increasingly becoming1098

more common as its results have shown to be cor-1099

related with human judgments. Specifically, we1100

use BERTSCORE tool (Zhang et al., 2020),9 to1101

evaluate the generation quality. From the results in1102

Table 7, we see that our model improves over the1103

previous best model by 2 F1 points.1104

9https://github.com/Tiiiger/bert_score

Model P R F1

DP-Graph† 87.66 87.70 87.65
TENLL w/o data weighting 87.09 88.91 87.96
EnsembleTE+GATE 89.66 89.47 89.55

Table 7: Results of multi-hop QG on HotpotQA com-
puted using BERTSCORE tool (Zhang et al., 2020). †

indicates that DP-Graph is from (Pan et al., 2020).

G Reproducibility Checklist 1105

G.1 For all reported experimental results 1106

• A clear description of the mathematical set- 1107

ting, algorithm, and/or model: This is pro- 1108

vided in the main paper in §2. 1109

• A link to a downloadable source code, with 1110

specification of all dependencies, including 1111

external libraries (recommended for camera 1112

ready, though welcome for initial submission): 1113

We will open-source the code at a later date. 1114

• A description of computing infrastructure 1115

used: We run experiments on a machine with 1116

these specifications: number of CPUs: 6, CPU 1117

RAM: 50GB, GPU model: RTX8000, GPU 1118

architecture and memory: turing/48GB, Arch: 1119

x86_64, and Disk size: 3.6TB. 1120

• The average runtime for each model or algo- 1121

rithm, or estimated energy cost: The average 1122

runtime of our TE model was within 10 hours 1123

while that of the GATE model was around 15 1124

hours. 1125

• The number of parameters in each model: Our 1126

model parameters are in the range of 30M- 1127

40M. 1128

• Corresponding validation performance for 1129

each reported test result: Validation set per- 1130

formance is currently not reported in the main 1131

paper, as the validation set is non-standard. 1132

The HotpotQA dataset does not provide its 1133

full test set data, so the convention is to use 1134

the validation set as the test set. Therefore, for 1135

validation, we select 500 examples from the 1136

training set. We include some of these details 1137

in the main paper as well in §3.1. 1138

• A clear definition of the specific evaluation 1139

measure or statistics used to report results: 1140

We report results using standard evaluation 1141
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metrics that are widely used for evaluation1142

in generation tasks: BLEU, ROUGE-L, and1143

METEOR. We provide the URLs of their1144

code implementations:1145

BLEU: https://github.com/tensorflow/1146

tensor2tensor/blob/master/1147

tensor2tensor/bin/t2t_bleu.py1148

ROUGE-L: https://github.com/1149

google-research/google-research/1150

tree/master/rouge1151

METEOR: https://www.cs.cmu.edu/1152

~alavie/METEOR/README.html1153

G.2 For all results involving multiple1154

experiments, such as hyperparameter1155

search1156

• The exact number of training and evaluation1157

runs For each experiments, we train the mod-1158

els until convergence, which generally around1159

30 epochs in our case. We evaluate the perfor-1160

mance of the model after each epoch and save1161

the best checkpoint according to BLEU score1162

performance on the validation set.1163

• Hyperparameter configurations for best-1164

performing models: We use most of the code1165

and hyperparameter settings from the trans-1166

former model as described in (Sachan and1167

Neubig, 2018). The optimizer and training hy-1168

perparameters are also listed in Appendix D.1169

We also provide model hyperparameters in1170

§3.2.1171

• The bounds for each hyperparameter: As de-1172

scribed in Appendix D, our model and train-1173

ing setting uses standard hyperparameters1174

such as different dropouts ∈ [0, 1), weight-1175

ing or smoothing parameters, λ, α, ε ∈ [0, 1],1176

and optimizer settings such as learning rate1177

∈ [1e−3, 1e−5]. The model hyperparameter1178

includes model dimensions d ∈ {512, 768},1179

number of layers ∈ {1, 2, 3, 4}.1180

• The method of choosing hyperparameter val-1181

ues (e.g., uniform sampling, manual tuning,1182

etc.) and the criterion used to select among1183

them (e.g., accuracy): We performed manual1184

hyperparameter tuning. We tuned the source1185

and target sides words within a minibatch1186

as transformer models are sensitive to these.1187

We also performed tuning of the number of1188

warmup steps for the Adam optimizer. We1189

selected the best hyperparameter using the 1190

BLEU score on the validation set. 1191

• Summary statistics of the results (e.g. mean, 1192

variance, error bars, etc.): The reported re- 1193

sults on the performance of our GATE and TE 1194

models are the mean of 5 experimental runs. 1195

Currently, we don’t provide the variance or 1196

error bars for these these runs. 1197

G.3 For all datasets used 1198

• Details of train/validation/test splits: We use 1199

the standard training split provided by Hot- 1200

potQA dataset creators. As the official test set 1201

is blind, we use the validation set as the test 1202

set. For validation, we constructed a valida- 1203

tion set from 500 examples from the training 1204

set. 1205

• Relevant statistics such as number of exam- 1206

ples and label distributions: We provide 1207

dataset statistics details in §3.1. As our task 1208

is a generation task, label distribution is not 1209

applicable. 1210

• An explanation of any data that were excluded, 1211

and all pre-processing steps: We include pre- 1212

processing details in the main paper in §3.1. 1213

We also include the data pre-processing code 1214

with the submission for reproducibility. 1215

• For natural language data, the name of the 1216

language(s): Our datasets are in English lan- 1217

guage. 1218

• A link to a downloadable version of the 1219

dataset or simulation environment: HotpotQA 1220

dataset is open-source and is available at: 1221

https://hotpotqa.github.io/. We have 1222

included the pre-processing code with the sub- 1223

mission. 1224

• For new data collected, a complete descrip- 1225

tion of the data collection process, such as 1226

instructions to annotators and methods for 1227

quality control: This is not applicable to this 1228

work. 1229

16

https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/bin/t2t_bleu.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/bin/t2t_bleu.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/bin/t2t_bleu.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/bin/t2t_bleu.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/bin/t2t_bleu.py
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://www.cs.cmu.edu/~alavie/METEOR/README.html
https://www.cs.cmu.edu/~alavie/METEOR/README.html
https://www.cs.cmu.edu/~alavie/METEOR/README.html
https://hotpotqa.github.io/

