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Abstract001

Recent vision-language models (VLMs), de-002
spite their broad capabilities, continue to un-003
derperform on knowledge-intensive tasks. Re-004
trieval augmentation offers a promising so-005
lution by incorporating external multimodal006
knowledge. However, the retrieved content of-007
ten contains a mix of relevant and irrelevant008
information, and existing methods primarily009
focus on improving retrieval quality to mit-010
igate this issue. In this work, we propose011
RORA-VLM, a robust retrieval augmentation012
framework designed to address the comple-013
mentary challenge of utilizing noisy retrieved014
knowledge effectively. The core insight be-015
hind RORA-VLM is that the multimodal na-016
ture of VLMs enables a novel solution: visual017
information can act as a signal for assessing018
the relevance of retrieved results. To this end,019
RORA-VLM introduces a learned cross-modal020
verification mechanism that enables VLMs to021
compare visual similarities between the query022
and retrieved images, and attend selectively to023
visually relevant retrievals while filtering out024
irrelevant content. Extensive experiments on025
OVEN, InfoSeek, and Enc-VQA benchmarks026
demonstrate that RORA-VLM achieves sig-027
nificant performance improvements of up to028
14.76% in accuracy compared to baseline mod-029
els with minimal training data, consistently out-030
performing state-of-the-art retrieval-augmented031
VLMs while exhibiting strong generalization032
to unseen domains.033

1 Introduction034

Vision-language models (VLMs) (Li et al., 2023;035

Alayrac et al., 2022; Liu et al., 2023b; Dai et al.,036

2023) have achieved remarkable progress across037

various visual perception and generation tasks (An-038

tol et al., 2015; Marino et al., 2019; Dai et al.,039

2024). However, despite these advancements, re-040

cent studies (Chen et al., 2023d; Hu et al., 2023;041

Mensink et al., 2023) reveal that VLMs still face042

significant challenges in knowledge-intensive tasks,043

Question: Who designed the 
tallest building in the picture?

Background 
Knowledge 

Entity: Freedom Tower


Retrieved Content: 
Freedom Tower is the 
main building of the 
rebuilt World Trade 
Center complex in Lower 
Manhattan, designed by 
David Childs of SOM.  

Answer: David Child

Figure 1: An example question for information-seeking
visual question answering.

such as visual entity grounding (Hu et al., 2023) 044

and information-seeking visual question answer- 045

ing (Chen et al., 2023d), where VLMs need to ef- 046

fectively link visual objects and scenes to their cor- 047

responding entities and relevant background knowl- 048

edge. For instance, as illustrated in Figure 1, given 049

the question “Who designed the tallest building in 050

the picture?” alongside an image of several build- 051

ings, VLMs need to accurately identify the building 052

based on its visual attributes and retrieve the associ- 053

ated background knowledge. The vast and dynamic 054

nature of visual knowledge in the open world, how- 055

ever, makes it impractical for VLMs to store all 056

possible associations between visual appearances 057

and their corresponding entities and background 058

knowledge in their parameters. 059

Retrieval-augmented generation (RAG) offers 060

a promising solution by integrating knowledge 061

retrieved from external sources with VLMs, 062

demonstrating success in improving text-based 063

knowledge-intensive tasks for LLMs (Guu et al., 064

2020; Lewis et al., 2020; Yoran et al., 2023). How- 065

ever, incorporating retrieval augmentation intro- 066

duces a fundamental challenge: assessing the rele- 067

vance of retrieved information. While prior studies 068

on robust RAG (Yoran et al., 2023) have explored 069

techniques to make language models resilient to 070

noisy retrievals in text-only tasks, these approaches 071
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overlook a unique advantage in the multimodal set-072

ting: the ability to leverage information from differ-073

ent modalities as evidence for retrieved knowledge074

relevance evaluation. In multimodal contexts, when075

a retrieved passage accompanies a corresponding076

image, the model can compare visual similarities077

between the query image and retrieved images to078

determine which retrieved knowledge is most likely079

relevant to the query, offering an explicit verifica-080

tion mechanism for filtering and prioritizing the081

retrieved information.082

In this paper, we introduce RORA-VLM, a083

robust retrieval-augmented framework that lever-084

ages visual information as evidence for evaluat-085

ing the quality of retrieved knowledge. Unlike086

previous approaches that focus primarily on im-087

proving retrieval quality, our work addresses the088

complementary challenge of how to effectively uti-089

lize retrieved knowledge. Our framework imple-090

ments this vision-guided relevance assessment with091

two primary components, as shown in Figure 2.092

First, we develop a Multimodal-Reciprocal Re-093

trieval that integrates cross-modal retrieval with094

visual token refinement to acquire external high-095

quality multimodal knowledge. Second, we for-096

mulate a Cross-Modal Verification Mechanism097

that enables VLMs to perform effective verifica-098

tion between modalities. This mechanism is real-099

ized through a two-phase training: a knowledge-100

intensive pre-training followed by an adversarial101

noise injection fine-tuning, enabling VLMs to effec-102

tively distinguish relevant knowledge from noise.103

We conduct extensive experiments to eval-104

uate the effectiveness and robustness of our105

proposed framework on three widely adopted106

knowledge-seeking benchmarks: OVEN (Hu et al.,107

2023), InfoSeek (Chen et al., 2023d), and Enc-108

VQA (Mensink et al., 2023). Our results demon-109

strate that, with only a minimal number of training110

instances (e.g., 10,000), the framework achieves111

significant improvements over baseline models,112

yielding up to 14.36% accuracy improvement,113

and consistently outperforms the current SOTA114

retrieval-augmented generation methods. Addition-115

ally, our analysis explicitly reveals that RORA-116

VLM effectively learns to discriminate between117

relevant and irrelevant retrieved information by118

comparing visual similarities, demonstrates sig-119

nificant robustness to retrieval noise, and shows120

strong zero-shot transfer capabilities to knowledge-121

intensive tasks from unseen domains.122

2 Related Work 123

Vision-Language Models Recent advancements 124

in vision-language models (VLMs), such as BLIP- 125

2 (Li et al., 2023), Flamingo (Alayrac et al., 2022), 126

LLaVA (Liu et al., 2023b), and InstructBLIP (Dai 127

et al., 2023), have demonstrated remarkable per- 128

formance on various visual perception tasks, such 129

as image captioning (Lin et al., 2014; Schuhmann 130

et al., 2022; Chen et al., 2023a), visual question 131

answering (Antol et al., 2015; Marino et al., 2019; 132

Schwenk et al., 2022), object detection (Lin et al., 133

2014; Everingham et al.), visual grounding (Hu 134

et al., 2023; Kazemzadeh et al., 2014), and visual 135

relationship detection (Lu et al., 2016), etc. These 136

models typically employ an architecture consist- 137

ing of a pre-trained visual encoder (Radford et al., 138

2021; Dosovitskiy et al., 2021; Chen et al., 2024), 139

a pre-trained large language model (Touvron et al., 140

2023; Almazrouei et al., 2023), and a projection 141

function that maps visual features to the text em- 142

bedding space (Liu et al., 2023b). However, this 143

method often falls short in aligning visual features 144

with the extensive knowledge embedded in lan- 145

guage models. Alternative architectures, such as 146

the Q-former used in BLIP-2 (Li et al., 2023) and 147

the perceiver resampler in Flamingo (Alayrac et al., 148

2022), have been proposed to enhance the percep- 149

tion of visual content. 150

Knowledge-Intensive Tasks and Retrieval- 151

Augmented Generation Augmenting models 152

with external knowledge sources has proven ef- 153

fective in enhancing performance on knowledge- 154

intensive tasks. In the text-only domain, models 155

like REALM (Guu et al., 2020), RAG (Lewis et al., 156

2020), and RobustRAG (Yoran et al., 2023) have 157

demonstrated the benefits of retrieval-based aug- 158

mentation by providing additional context for gen- 159

erating accurate responses. Applying this approach 160

to the vision-language domain presents unique chal- 161

lenges due to modality discrepancies and differing 162

model architectures (Wei et al., 2023). Recent stud- 163

ies (Gui et al., 2021; Lin et al., 2023, 2024) have 164

explored multimodal retrieval to enhance LLMs by 165

retrieving textual knowledge from visual queries, 166

but primarily focus on improving retrieval qual- 167

ity rather than effectively utilizing retrieved in- 168

formation. Given that state-of-the-art retrievers 169

achieve only modest performance (e.g., lower than 170

0.2 for recall@1 on InfoSeek (Chen et al., 2023d)), 171

managing and denoising retrieval noise becomes 172

crucial for VLMs. Knowledge-intensive bench- 173
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Cross-Modal Verification Mechanism

VLM	Inputs:

Question:
In	which	year	was	this	building
built?

The	fort	was	originally
built	after	the	...

	Jan	van	Riebeeck's
arrival	on	6	April	...

Built	by	the	Dutch	East
India	Company	...

Multimodal-Reciprocal
Retrieval

Retrieved	multimodal	knowledge:

Question:	In	which	year	
				was	this	building	built?

Built	by	the	Dutch	East	India
Company	between	1666	and
1679,	the	Castle	is	the	oldest
existing	building	in	South	Africa.
The	fort	was	originally	built	after	the
Crimean	War	to	defend	the	port	of
Newcastle	against	the	threat	of	Russian
invasion.	The	tunnels	were	built	in
1881-1882	and	the	buildings	built	in	1886.
Jan	van	Riebeeck's	arrival	on	6	April	1652	established	the
VOC	Cape	Colony.	Cape	Town	outgrew	its	original	purpose
as	the	first	European	outpost	at	the	Castle	of	Good	Hope,
becoming	the	economic	and	cultural	hub	of	the	Cape	Colony.

Att
Score

1.0

0.0

Answer: This	building	was	built	between	1666	-	1679.

Retreived	knowledge:
Castle	of	Good	Hope:
Built	by	the	Dutch	...
Cape	Town:	
Jan	van	Riebeeck's	...
Fort	Scratchley:
The	fort	was	...

Visual Token Refinement

Figure 2: Overview architecture of RORA-VLM. Our approach teaches VLMs to use visual information as evidence
for evaluating the quality of retrieved knowledge through cross-modal verification. By comparing visual similarities
between the query image and retrieved images, the model learns to selectively attend to information from relevant
retrievals while ignoring irrelevant ones.

marks such as OVEN (Hu et al., 2023) and InfoS-174

eek (Chen et al., 2023d) have been developed to175

evaluate VLMs on tasks like visual entity ground-176

ing and information-seeking visual question an-177

swering, which require models to recognize visual178

entities and connect them with background knowl-179

edge. Studies have shown that extensive fine-tuning180

on knowledge-intensive task instances does not sub-181

stantially improve VLMs’ performance (Chen et al.,182

2023d; Hu et al., 2023; Mensink et al., 2023), in-183

dicating that current architectures struggle with184

dynamic visual-semantic associations.185

3 RORA-VLM186

In this work, we focus on improving VLMs187

on knowledge-intensive VQA tasks via retrieval-188

augmented generation. Given a text query t to-189

gether with an image v, a VLM is expected to gen-190

erate a response y by leveraging the multimodal191

knowledge snippets R retrieved from an external192

database as context. The objective of the retrieval-193

augmented generation can be formulated as:194

y = argmax
y

P (y∣t, v, R) (1)195

Our proposed framework, RORA-VLM, en-196

ables VLMs to robustly leverage retrieved knowl-197

edge through vision-guided relevance assessment.198

The core insight is training VLMs to use visual in-199

formation as evidence for evaluating the quality of200

retrieved knowledge, allowing them to determine201

which retrievals are most relevant to the query and202

filter out noise. This capability is achieved through203

two components: (1) Multimodal-Reciprocal Re- 204

trieval, which acquires high-quality multimodal 205

knowledge with visual cues guided textual retrieval 206

and entity-based visual token refinement, and (2) 207

Cross-Modal Verification Mechanism, which en- 208

ables VLMs to perform verification across different 209

modalities to distinguish relevant knowledge from 210

irrelevant information. The overall architecture of 211

RORA-VLM is shown in Figure 2. 212

3.1 Multimodal-Reciprocal Retrieval 213

Traditional retrieval methods face unique chal- 214

lenges with vision-language tasks due to inher- 215

ent modality discrepancies. In multimodal set- 216

tings, textual queries often contain generic terms 217

or anaphoric references (e.g., “the tallest building”) 218

that lack specificity without visual context, while 219

visual information alone may not sufficiently clar- 220

ify the query’s intent. We overcome these chal- 221

lenges by developing a multimodal-reciprocal re- 222

trieval method that leverages visual cues to guide 223

textual retrieval, followed by a visual feature refine- 224

ment based on retrieved textual entity information. 225

Image-Anchored Entity Retrieval Given the 226

textual query t and query image v, we first use 227

the query image v as an anchor to retrieve top-k 228

most similar images from an image database built 229

upon WIT (Srinivasan et al., 2021). This image- 230

level retrieval identifies potential entities that vi- 231

sually match the query image, providing crucial 232

visual evidence for subsequent cross-modal verifi- 233

cation. For efficient retrieval, we encode all im- 234

ages in the WIT dataset with a CLIP (Radford 235
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et al., 2021) image encoder and construct a dense236

vector-search database1. Given a query image,237

the image retriever ϕv computes cosine similari-238

ties between the query image feature and retrieval239

database keys to fetch the top-k most similar im-240

ages Ṽ = {ṽ1, ṽ2, . . . , ṽk} along with their asso-241

ciated entity names and background information242

Ẽ = {ẽ1, ẽ2, . . . , ẽk}. More details of the CLIP-243

based image retriever are provided in Appendix B.244

Query-Expanded Text Retrieval With the entity245

names and descriptions obtained from the image-246

anchored entity retrieval, we further use them to247

expand the original text query. This expansion248

disambiguates anaphoric references in the orig-249

inal query by providing specific entity informa-250

tion. Given the original text query t and a retrieved251

entity name and description ei, the text retriever252

ϕ
t 2 searches for top-l textual knowledge snippets253

that are most relevant to the expanded query C̃i =254

{ ˜ci,1, ˜ci,2, . . . , c̃i,l} = ϕ
t(t, ẽi). We then concate-255

nate each retrieved image ṽi with its correspond-256

ing textual knowledge snippets Ci to form multi-257

modal knowledge snippets R = {r1, r2, . . . , rk} =258

{[ṽ1, ẽ1, C̃1], [ṽ2, ẽ2, C̃2], . . . , [ṽk, ẽk, C̃k]}.259

Visual Token Refinement Retrieved images of-260

ten contain noise, such as objects or visual scenes261

that are irrelevant to the concerned entities, which262

can distract the model during subsequent cross-263

modal verification. To enhance the quality of vi-264

sual representations by focusing only on the most265

query-relevant features, we implement a refinement266

strategy that filters out irrelevant visual information.267

Specifically, for the query image, we first select the268

top-m visual tokens most similar to the text query269

embedding:270

V̂ = Top-m ({vi

»»»»»»»»
si}

n

i=1

) , (2)271

where si = vi ⋅ t represents the similarity between272

visual token vi and text query embedding t, and273

n represents the total number of visual tokens ex-274

tracted from each image by the vision encoder. Sub-275

sequently, for each retrieved image, we select the276

top-m visual tokens most similar to the refined277

1We construct the vector-search database based on a hier-
archical navigable small-world (HNSW) graph (Malkov and
Yashunin, 2018).

2The textual retrieval component is implemented using
Google Search functionality accessed through the Serper API
service: https://serper.dev/.

query image tokens: 278

V̂i = Top-m
⎛
⎜
⎝
{ṽj

»»»»»»»»

m

∑
i=1

sj)}
n

j=1

⎞
⎟
⎠
. (3) 279

where sj = ∑m
i=1(vi ⋅ ṽj) with vi ∈ V̂. This re- 280

finement process ensures that the model focuses on 281

the most query-relevant visual features when per- 282

forming cross-modal verification, enabling more 283

accurate assessment of retrieval relevance. More 284

details of the visual token refinement are provided 285

in Appendix C. 286

3.2 Cross-Modal Verification Mechanism 287

The second key component of our framework is a 288

Cross-Modal Verification Mechanism that evalu- 289

ates the relevance of retrieved knowledge. We en- 290

able VLMs to implicitly leverage this mechanism 291

through a two-phase training: (1) a knowledge- 292

intensive pre-training to align visual features with 293

LLMs’ internal knowledge, followed by (2) an ad- 294

versarial noise injection fine-tuning that enables 295

discrimination between relevant and irrelevant in- 296

formation through contrastive learning signals. 297

Knowledge-Intensive Pre-training The ability 298

to compare visual entities across images requires 299

a strong foundation in visual-knowledge align- 300

ment. To establish this foundation, we conduct 301

pre-training on WikiWeb2M (Burns et al., 2023), 302

a knowledge-intensive multimodal dataset. We cu- 303

rate 1 million entity-rich image-text instances, each 304

consisting of an image depicting an entity, its cap- 305

tion, and associated textual knowledge. This pre- 306

training phase aligns visual appearances with en- 307

tity knowledge stored in the LLM, enhancing the 308

model’s ability to recognize the same entity across 309

different visual representations and contexts. 310

Adversarial Noise Injection Fine-tuning An ef- 311

fective training for cross-modal verification mecha- 312

nism learning requires exposing the model to both 313

relevant and irrelevant retrievals. Since ground- 314

truth relevance labels are not accessible for our 315

training data, we employ an adversarial noise in- 316

jection fine-tuning strategy to create a controlled 317

learning environment with clear contrastive signals. 318

For each training instance (t, v), we retrieve 319

the top-(k-1) multimodal knowledge snippets R = 320

r1, r2, . . . , rk−1. We then deliberately introduce an 321

irrelevant knowledge snippet r′ = [ṽ′, ẽ′, C̃ ′] ran- 322

domly sampled from the retrieval database. This 323

creates a contrastive learning signal that facilitates 324
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the model’s ability to distinguish between relevant325

and irrelevant information. The input is formed326

by concatenating these snippets with the original327

query: [r1 ∶ r2 ∶ . . . ∶ r′ ∶ t ∶ v]. We fine-tune328

VLMs on such noise-injected training instances329

by minimizing the cross-entropy loss of predicting330

the target answer despite the presence of irrelevant331

information.332

4 Experiment Setup333

Evaluation Benchmarks To evaluate the effec-334

tiveness and robustness of RORA-VLM, we con-335

duct experiments on three benchmark datasets, in-336

cluding OVEN (Hu et al., 2023) for visual en-337

tity grounding, and InfoSeek (Chen et al., 2023d)338

and Encyclopedic-VQA (Mensink et al., 2023) for339

information-seeking visual question answering. As340

the test sets of OVEN and InfoSeek are not avail-341

able at the time of submission, we report our results342

on their validation sets.343

Evaluation Metrics We adopt evaluation metrics344

in line with previous studies (Hu et al., 2023; Chen345

et al., 2023d; Mensink et al., 2023). For visual346

entity recognition tasks, we use the standard accu-347

racy metric to assess the model’s capability to cor-348

rectly identify entities in images. For knowledge-349

seeking visual question answering (VQA) tasks,350

we apply different metrics tailored to specific ques-351

tion types. For questions expecting string-based352

responses such as entity names, we report accuracy353

using the VQA accuracy metric (Antol et al., 2015).354

For questions requiring numeric answers, we use355

relaxed accuracy (Methani et al., 2020), which ac-356

counts for deviations from exact numerical values.357

Baselines We compare our framework with358

several state-of-the-art vision-language models,359

including LLaVA-v1.5/v1.6 (Liu et al., 2023a,360

2024), PaLI-17B/X (Chen et al., 2023c,b), BLIP-361

2/InstructBLIP (Li et al., 2023; Dai et al., 2023),362

CLIP2CLIP (Hu et al., 2023), and Qwen-2.5-363

VL 3B. We also include retrieval-augmented ap-364

proaches such as PreFLMR (Lin et al., 2024),365

RA-CM3 (Yasunaga et al., 2023), and Wiki-366

LLaVA (Caffagni et al., 2024), which leverage ex-367

ternal knowledge to enhance generation. To en-368

sure a fair comparison, all baseline models are369

fine-tuned on the OVEN (Hu et al., 2023), InfoS-370

eek (Chen et al., 2023d), and Enc-VQA (Mensink371

et al., 2023) datasets respectively, and then evalu-372

ated on the corresponding tasks.373

Model OVEN InfoSeek Enc-VQAEntity Query Entity Query

Non Retrieval-Augmented Model

CLIP2CLIP 10.10 2.10 - - -
PaLI 12.40 22.40 16.00 20.70 -
PaLI-X - - 20.80 23.50 -
BLIP-2 - - 13.30 14.50 -
InstructBLIP - - 13.20 14.30 -
LLaVA-v1.6 3.72 24.55 14.16 15.98 13.54
LLaVA-v1.5 3.63 20.04 10.34 12.98 12.21
Qwen-2.5-VL 16.30 44.26 19.66 22.50 13.53

Retrieval-Augmented Model

RA-CM3 - - 17.09 21.64 -
PreFLMR - - 19.37 22.21 -
Wiki-LLaVA* 14.43 20.4 21.44 23.68 18.61
RORA-VLM
- LLaVA-1.5 15.08 24.06 25.10 27.34 20.29
- Qwen-2.5-VL 27.51 51.20 23.96 26.27 20.42

Table 1: Evaluation results in accuracy (%). The best
performance is highlighted in bold. The Entity groups
expect an entity name as the target answer, while Query
groups target a general object name or concept as the
answer. * denotes our implementation of Wiki-LLaVA
as its original source code is not publicly available.

Model Tuning We demonstrate the general ap- 374

plicability of our approach across different archi- 375

tectures by implementing it on multiple backbone 376

models, including LLaVA-v1.5 7B (Liu et al., 377

2023a) and Qwen-2.5-VL 3B (Bai et al., 2023). For 378

comparative analysis, we apply the complete frame- 379

work to LLaVA-v1.5, while implementing RORA- 380

VLM on Qwen-2.5-VL 3B without the knowledge- 381

intensive pre-training phase to isolate direct per- 382

formance improvements. Our experimental vali- 383

dation uses 10,000 randomly sampled instances 384

from each benchmark dataset (OVEN, InfoSeek, 385

Encyclopedic-VQA) for efficient fine-tuning. 386

5 Result & Discussion 387

5.1 Main Results 388

Table 1 presents the main results for visual entity 389

grounding on the OVEN dataset and information- 390

seeking visual question answering on the InfoSeek 391

and Encyclopedic-VQA datasets. Despite being 392

fine-tuned on only 10,000 instances per dataset, 393

both RoRA variants show remarkable gains. When 394

applied to LLaVA-v1.5, our approach yields sub- 395

stantial improvements over the base model (e.g., 396

from 10.34% to 25.10% on InfoSeek-Entity). Simi- 397

larly, when applied to Qwen-2.5-VL, our approach 398

boosts performance across all benchmarks (e.g., 399

from 16.30% to 27.51% on OVEN-Entity). In 400

addition, our approach consistently outperforms 401

previous retrieval-augmented methods, such as RA- 402

CM3, PreFLMR, and Wiki-LLaVA, demonstrating 403
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Figure 3: Visualization of attention scores assigned to VLM input tokens during next-token generation. Tokens are
highlighted in green, with darker shades indicating higher attention scores.

the advantage of cross-modal verification mecha-404

nism in handling retrieval noise.405

5.2 Effect of Cross-Modal Verification406

Mechanism407

We conducted two ablation studies to validate the408

effectiveness of our cross-modal verification ap-409

proach. First, we implemented a “textual-only410

RAG” configuration by removing retrieved images411

while keeping all other aspects identical, thus elim-412

inating the model’s ability to perform visual com-413

parison between query and retrieved content. As414

shown in Table 2, this modification resulted in a415

substantial performance decrease of 7.81-8.06 per-416

centage points across benchmarks, confirming that417

visual modality provides crucial evidence for de-418

termining relevance that cannot be obtained from419

text alone. Second, we examined a variant where420

we maintained the multimodal retrievals but re-421

moved the adversarial noise injection during train-422

ing. This configuration exhibited an even more sig-423

nificant performance decline of 8.51-9.92 percent-424

age points compared to our full approach, as pre-425

sented in Tabel 2, demonstrating that training using426

only positive samples of correctly retrieved multi-427

modal information is insufficient—the model must428

be explicitly trained to perform cross-modal verifi-429

cation through contrastive learning with adversarial430

examples. In addition, we investigate the effect431

of knowledge-intensive pretraining, demonstrating432

the importance of alignment between the visual433

appearances and entity knowledge for knowledge-434

intensive tasks. More details of the ablation studies 435

of the knowledge-intensive pre-training are pro- 436

vided in Appendix E.1. 437

Model Entity Query

LLaVA-1.5 10.34 12.98
RoRA LLaVA-1.5 25.10 27.34

Visual Token Refinement Ablations

- w/o visual token refinement (pooling) 23.94 24.85
- w/o visual token refinement (all tokens) 24.62 26.14

Cross-Modal Verification Ablations

- w/o retrieved images (textual-only RAG) 17.29 19.28
- w/o noise-injection 16.59 17.42

Table 2: Ablation studies of each component in RORA-
VLM. Performance is reported in accuracy (%) on In-
foSeek.

To further demonstrate that the model has 438

learned this cross-modal verification capability, we 439

visualize the attention scores assigned to tokens of 440

the retrieved knowledge during the answer gener- 441

ation in Figure 3. The visualization reveals that 442

RORA-VLM effectively learns to focus on tex- 443

tual knowledge corresponding to images contain- 444

ing entities that match those in the query image. 445

For instance, in the second row of Figure 3, the 446

model predominantly attends to the first two knowl- 447

edge snippets while disregarding the third, which 448

pertains to a completely different animal. This 449

attention pattern directly evidences that the RORA- 450

VLM has learned to leverage visual similarity as 451

a signal for relevance assessment, enabling effec- 452

tive noise filtering in the retrieval augmentation 453
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Figure 4: Qualitative results for query-oriented Visual Token Refinement .

generation.454

5.3 Validation of Multimodal-Reciprocal455

Retrieval456

We conducted comprehensive analyses of our457

Multimodal-Reciprocal Retrieval to evaluate its ef-458

fectiveness. Table 3 reports the retrieval precision459

at each stage of our proposed retrieval process. In460

the image-anchored entity retrieval, we consider461

retrieval successful if the target entity shown in the462

query image matches any of the retrieved m images.463

Similarly, in the query-expanded text retrieval, we464

consider retrieval successful if the golden answer is465

included in any of the retrieved textual knowledge466

snippets.467

Retrieval Stage OVEN InfoSeek
Entity Query Entity Query

Image-Anchored Entity Retrieval 35.16 34.45 38.53 37.67
Query-Expanded Text Retrieval - - 27.01 26.97

Table 3: Retrieval precision (%) for the Image-Anchored
Entity Retrieval and Query-Expanded Text Retrieval.

To quantify the benefits of our multi-stage ap-468

proach, we performed an ablation study comparing469

it with a single-stage retrieval method, and present470

results in Table 4. In the single-stage configuration,471

we directly utilized CLIP embeddings of the query472

image to retrieve similar entity images and their cor-473

responding background knowledge, bypassing the474

query-expanded text retrieval phase. In addition,475

we further compare our multi-stage retrieval with476

previous work, RA-CM3, which employed a single-477

stage retrieval that utilizes both text and image478

CLIP embeddings. The experiment results demon-479

strate that our multimodal-reciprocal retrieval ap-480

proach consistently outperformed all single-stage481

retrieval approaches, confirming that the integra-482

tion of textual queries with visually-derived entities483

substantially improves retrieval precision. More484

qualitative examples of the multimodal-reciprocal 485

retrieval could be found in Appendix D.

Model Entity Query

LLaVA-v1.5 10.34 12.98
RA-CM3 (single-stage) 17.09 21.64
RoRA-VLM (single-stage) 21.9 23.87
RoRA-VLM (2-stage) 25.10 27.34

Table 4: Ablation studies for 2-stage retrieval. Perfor-
mance is reported in accuracy (%) on InfoSeek.

486
Complementing the multi-step retrieval, our Vi- 487

sual Token Refinement provides further perfor- 488

mance improvements by focusing the model’s at- 489

tention on the most query-relevant visual features. 490

In Figure 4, we show the qualitative results of the 491

visual token refinement . From the query image, 492

we select m=144 visual tokens that are most related 493

to the text query (i.e., the Question), while each 494

visual token corresponds to an image patch (high- 495

lighted in yellow). As we can see, this method ef- 496

fectively identifies and selects patches correspond- 497

ing to the key visual entity, even with the presence 498

of anaphoric references in the query. Similarly, for 499

each retrieved image, we also select m=144 visual 500

tokens that are most related to the query image. 501

These qualitative results underscore the effective- 502

ness of our visual token refinement in filtering out 503

irrelevant visual information, enabling the retrieval 504

augmentation of VLMs more robust. We validate 505

the benefits gained from the visual token refinement 506

through two controlled experiments and listed the 507

experiment results in Table 2. First, replacing our 508

refinement strategy with average pooling to ob- 509

tain the same number of tokens (144) resulted in 510

a performance decrease of 1.16-2.49 percentage 511

points across benchmarks. This indicates that se- 512

lecting query-relevant visual features based on se- 513

mantic similarity is more effective than uniform 514

7



dimensionality reduction. Second, we evaluated515

a variant that uses all 576 visual tokens for each516

image without refinement. Despite having access517

to more visual information, this approach still un-518

derperformed our method by 0.48-1.20 percentage519

points while incurring higher computational costs.520

These results demonstrate that our refinement strat-521

egy successfully identifies the most query-relevant522

visual features, enhancing cross-modal verifica-523

tion accuracy while maintaining computational ef-524

ficiency. More details of the pooling process for525

this ablation study are provided in Appendix C.526

5.4 Robustness to Retrieval Noise527

To directly evaluate the robustness of our approach528

to retrieval noise, we conduct controlled experi-529

ments with varying levels of noise injection dur-530

ing inference. Table 5 presents the results on the531

InfoSeek dataset. We first establish a baseline us-532

ing only the top-1 retrieved entity image and its533

corresponding knowledge snippet for generation534

augmentation. We then create noisy retrieval set-535

tings by adding two randomly sampled irrelevant536

entity images and their knowledge snippets. This537

random sampling process is repeated twice, result-538

ing in two distinct sets of irrelevant entity images539

and knowledge snippets for the same input instance.540

The results show that the model’s performance re-541

mains remarkably stable despite the introduction of542

noise, with only minor degradation (less than 1%)543

when irrelevant retrievals are added. We also report544

the performance using the top-3 retrievals without545

explicit noise injection. The higher performance546

in this setting suggests that using more retrievals547

provides additional relevant information that the548

model can effectively leverage, while still filtering549

out any naturally occurring noise. This demon-550

strates the model’s ability to effectively filter out551

irrelevant information, confirming the robustness552

of our approach to retrieval noise.

Model Entity Query

Top-1 Retrieval 20.49 22.19
Top-1 Retrieval + 2 Noises (1) 19.61 21.97
Top-1 Retrieval + 2 Noises (2) 19.63 22.02
Top-3 Retrieval 25.10 27.34

Table 5: Performance in accuracy (%) for RORA-VLM
with varying levels of retrieval noise on InfoSeek.553

5.5 Domain Transfer Capability554

To examine the generalizability of our approach,555

we conduct domain transfer experiments using the556

Encyclopedic-VQA dataset. The iNaturalist subset 557

of this dataset consists of questions concerning 11 558

categories (e.g., Plant, Insect, Lake, etc.) of entities. 559

To create a domain transfer setting, we select “In- 560

sect” as the target domain and modify the training 561

set by filtering out instances from this category. We 562

fine-tune both the baseline model and our RORA- 563

VLM on the original training set of the iNaturalist 564

subset as well as the modified training set for do- 565

main transfer, and evaluate on the complete test 566

set of the iNaturalist subset. Table 6 shows the 567

results, where “SFT” refers to models fine-tuned 568

on the full training set, while “Domain Transfer” 569

refers to models fine-tuned on the modified train- 570

ing set (excluding “Insect” category). The results 571

show that, even without being fine-tuned on the 572

“Insect” category, RORA-VLM still outperforms 573

the baseline model that is trained on the complete 574

training set. This demonstrates the generalizability 575

of the cross-modal verification mechanism learned 576

by RORA-VLM, allowing it to effectively filter 577

out irrelevant information even for domains not 578

seen during training. This highlights the potential 579

of our approach for real-world applications where 580

domain adaptation is often required. 581

Model SFT Domain Transfer

LLaVA-v1.5 18.23 17.18
RORA-VLM(ours) 24.36 20.26

Table 6: Performance in accuracy (%) for domain trans-
fer on Encyclopedic-VQA.

6 Conclusion 582

In this work, we introduce RORA-VLM, a robust 583

retrieval-augmented framework that teaches vision- 584

language models to leverage visual information 585

as evidence for evaluating the quality of retrieved 586

knowledge. Unlike previous works that focus on 587

improving retrieval quality, our work addresses the 588

complementary challenge of how to effectively uti- 589

lize retrieved knowledge. Our experimental results 590

demonstrate that RORA-VLM achieves strong 591

performance on three widely adopted benchmark 592

datasets. Through detailed ablation studies and vi- 593

sualizations, we demonstrate that VLMs can learn 594

to perform cross-modal verification, mainly attend- 595

ing to information from retrievals containing vi- 596

sually similar entities to those in the query image. 597

Furthermore, the framework shows strong gener- 598

alization capabilities, including domain transfer to 599

unseen categories, highlighting the broad applica- 600

bility. 601
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Limitations602

While our RoRA-VLM framework demonstrates603

significant improvements on knowledge-intensive604

visual question answering tasks, several limitations605

present opportunities for future research.606

Language Coverage Our current evaluation is607

restricted to English-language datasets and bench-608

marks. Although our approach relies primarily609

on vector representations rather than natural lan-610

guage processing for retrieval operations, which611

suggests inherent compatibility with multilingual612

scenarios, we have not empirically validated this613

capability across diverse linguistic contexts. Fu-614

ture work should extend our evaluation framework615

to include multilingual knowledge-intensive VQA616

benchmarks to demonstrate the cross-linguistic gen-617

eralizability of our vision-guided relevance assess-618

ment mechanism.619

Scale of Knowledge-Intensive Pretraining620

Due to computational resource constraints, our621

knowledge-intensive pretraining phase is based622

on a subset of the WikiWeb2M dataset containing623

only 1 million entity-rich instances, rather than624

leveraging the complete Wikipedia database.625

While this limited-scale pretraining successfully626

establishes foundational visual-knowledge align-627

ment capabilities, we anticipate that training on a628

more comprehensive and larger-scale knowledge629

repository could yield enhanced performance.630

Task Scope and Modality Extensions Our631

experimental evaluation focuses exclusively on632

image-text visual question answering tasks, which633

represent only a subset of the broader vision-634

language domain. The underlying principles of635

our framework, particularly the cross-modal ver-636

ification mechanism and modality-reciprocal re-637

trieval approach, should theoretically extend to638

other vision-language applications. Future research639

directions include adapting our methodology to640

more vision language tasks, e.g., video understand-641

ing and three-dimensional point cloud understand-642

ing.643
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A Details of the CLIP model encoding898

In this section, we provide a detailed description of899

how we encode an image into a sequence of visual900

embeddings using CLIP.901

Image Encoding with CLIP: In the CLIP model,902

the visual encoder is based on the Vision Trans-903

former (ViT) architecture. Given an image, the904

visual encoder processes it as a whole and encodes905

it into a feature representation of shape [576, 1024].906

This representation can be interpreted as 576 vec-907

tors, each with a dimensionality of 1024. The 576908

vectors correspond to patches of the input image,909

where the image is internally divided into a grid of910

patches during the encoding process. This division911

is not explicit; rather, it is an inherent part of the912

ViT architecture, which computes patch-level em-913

beddings directly through a convolutional embed-914

ding layer applied to the full image. The resulting915

intermediate patch embeddings collectively form916

the image’s representation in the model’s latent917

space.918

Dimensionality of Visual Embeddings: After919

passing through the vision transformer (ViT) layers,920

each patch is represented as a feature vector with921

a dimensionality of 1024. To further process these922

features, we utilized the final visual projection layer923

of the original CLIP model. This projection layer,924

which is also used for the pooled [CLS] token in925

the original implementation, is applied to all 576926

patch-based feature vectors in our approach. The927

projection reduces the dimensionality of each fea-928

ture vector from 1024 to 768. To clarify further, the929

visual projection layer is part of CLIP’s original im-930

plementation. While it is typically applied only to931

the pooled [CLS] token to produce the image-level932

feature representation, in our work, we extend its933

application to all 576 patch-level feature vectors.934

As a result, the output is a feature representation935

of shape [576, 768], where 576 corresponds to the936

number of patches and 768 is the dimensionality of937

the projected patch embeddings.938

After computing the patch embeddings, for each939

text query, we derive a 768-dimensional vector940

from the [CLS] token of the CLIP text encoder.941

We then compute the similarities between the text942

embedding and the image patch embeddings to943

select the top-m relevant patches, which are subse-944

quently projected into the LLM’s latent space using945

the LLaVA projector.946

B Image-Anchored Entity Retrieval 947

In this section, we provide a detailed explanation of 948

the Image-Anchored Entity Retrieval component of 949

our Multimodal-Reciprocal Retrieval method. This 950

component uses the input query image as an anchor 951

to retrieve visually similar images along with their 952

associated entity information. 953

Database Construction The image database 954

is built upon Wikipedia Image Text (WIT) 955

dataset (Srinivasan et al., 2021), which contains 956

37.6 million entity-rich image-text pairs. Each text 957

entry provides the name and background informa- 958

tion of the entity depicted in the corresponding im- 959

age, sourced from Wikipedia. To enable efficient 960

retrieval, we encode each image in WIT into a vec- 961

tor using the CLIP (Radford et al., 2021) image en- 962

coder and construct a dense vector-search database 963

based on a hierarchical navigable small-world 964

(HNSW) graph (Malkov and Yashunin, 2018). 965

In this database, the encoded image features 966

zi = CLIP(ṽi) ∈ Rd, where d is the dimension of 967

the CLIP embedding, serve as search indexes Z = 968

{z1, z2, . . . , zN}. The corresponding entity names 969

and background information for these images are 970

stored as search values Ẽ = {ẽ1, ẽ2, . . . , ẽN}, 971

where ẽi denotes the entity name and background 972

information for candidate image ṽi and N is the 973

total number of entries in the database. 974

Retrieval Process Given a query image v, the 975

image retriever ϕv leverages a non-parametric func- 976

tion to measure the cosine similarity between the 977

CLIP embedding of the query image and all search 978

indexes. The score of each candidate image ṽi with 979

search index zi can be expressed as: 980

P (ṽi∣v,Z) =
exp (Sim(v, zi))

∑N
j=1 exp (Sim(v, zj))

, (4) 981

where the similarity function is defined as: 982

Sim(v, zi) =
CLIP(v)⊤zi
∣CLIP(v)∣∣zi∣

(5) 983

This function computes the cosine similarity be- 984

tween the CLIP embedding of the query image v 985

and the pre-computed CLIP embedding zi of each 986

candidate image in the database. Based on this 987

similarity function, the image retriever ϕv fetches 988

the top-k images that are most similar to the query 989

image along with their associated entity names and 990
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background information:991

(ṽ1, ẽ1), (ṽ2, ẽ2), . . . , (ṽk, ẽk) = ϕ
v(v,Z, Ẽ),

(6)992

This results in a set of top-k most similar images993

Ṽ = {ṽ1, ṽ2, . . . , ṽk} along with their associated994

entity names and background information Ẽ =995

{ẽ1, ẽ2, . . . , ẽk}.996

C Visual Token Refinement997

In this section, we provide a detailed explanation998

of the Visual Token Refinement component of999

our Visual Token Refinement method. This com-1000

ponent aims to filter out query-irrelevant visual1001

information within both the query image and the1002

retrieved images. This filtering process ensures1003

that the model focuses on the most query-relevant1004

visual features when performing cross-modal ver-1005

ification, enabling more accurate assessment of1006

retrieval relevance.1007

Input Query Encoding Given a text query t1008

alongside a query image v, we first encode the1009

text query using the CLIP text encoder, produc-1010

ing a text embedding t ∈ Rd, where d is the em-1011

bedding dimension. Similarly, the query image v1012

is encoded into a sequence of visual embeddings1013

V = {v1,v2, ...,vn} ∈ Rn×d, where vi ∈ Rd de-1014

notes a visual token embedding corresponding to an1015

image patch, and n is the number of visual tokens1016

extracted from the image by the vision encoder.1017

Query Image Token Selection For each visual1018

token embedding vi in the query image, we calcu-1019

late its similarity to the text embedding by comput-1020

ing the dot product: si = vi ⋅ t. This similarity1021

score measures how well each visual token aligns1022

with the text query. We then select the top-m visual1023

tokens with the highest similarity scores, forming1024

the refined visual token sequence V̂ ∈ Rm×d for1025

the query image:1026

V̂ = Top-m ({vi

»»»»»»»»
si}

n

i=1

) , (7)1027

where si = vi ⋅ t represents the similarity between1028

visual token vi and text query embedding t.1029

Retrieved Image Token Selection Similarly,1030

we encode each retrieved image ṽi ∈ Ṽ into1031

a sequence of visual token embeddings Ṽi =1032

{ṽi,1, ṽi,2, ..., ṽi,n} ∈ Rn×d. For each visual to-1033

ken embedding ṽi,j ∈ Rd in the retrieved image,1034

we compute its similarity to the refined query im- 1035

age tokens by calculating the sum of its dot product 1036

with all of the selected visual tokens from the query 1037

image: 1038

sj =
m

∑
i=1

(vi ⋅ ṽi,j) (8) 1039

where vi ∈ V̂. We then select the top-m most rele- 1040

vant visual tokens of the retrieved image, forming 1041

the refined visual token sequence V̂i ∈ Rm×d for 1042

each retrieved image: 1043

V̂i = Top-m
⎛
⎜
⎝
{ṽi,j

»»»»»»»»

m

∑
i=1

sj)}
n

j=1

⎞
⎟
⎠
. (9) 1044

Details of the pooling process In our implemen- 1045

tation, each image is processed into a feature matrix 1046

with shape [576, 768] by the CLIP visual encoder 1047

and the LLaVA projector. Our Visual Token Re- 1048

finement method selects the top 144 visual tokens 1049

that are most relevant to the query, constructing a 1050

feature matrix of shape [144, 768]. This selection 1051

process enables the VLM to focus more effectively 1052

on query-relevant image content while mitigating 1053

the influence of irrelevant noise, such as image 1054

backgrounds or query-irrelevant entities present in 1055

the image. For comparison purposes in ablation 1056

studies, we implemented an average-pooling-based 1057

baseline that processes the same [576, 768] visual 1058

patch vectors into [144, 768] vectors. Specifically, 1059

we reshape the 576 patch vectors into a 24 × 24 grid 1060

corresponding to the spatial arrangement of patches 1061

in the original image, then apply a 2D average pool- 1062

ing operation with a kernel size of 2 × 2 and a stride 1063

of 2. This pooling reduces the spatial resolution 1064

from 24 × 24 to 12 × 12, yielding 144 patch vec- 1065

tors while maintaining the 768-dimensional feature 1066

vector for each patch. By reducing the number 1067

of feature vectors from 576 to 144, this process 1068

ensures compatibility with the limited sequence 1069

length of the LLM and aligns the number of input 1070

tokens for both methods, allowing for direct and 1071

fair comparison in the ablation studies. 1072

C.1 Robustness of RoRA-VLM Under 1073

Varying Levels of Retrieval Noise 1074

To further analyze the ability of our RoRA-VLM 1075

to handle noisy retrieval and validate its robustness, 1076

we conducted additional ablation studies involv- 1077

ing controlled retrieval noise scenarios. The key 1078

challenge in ideally proving the effectiveness of 1079

our model in ignoring retrieval noise is the lack of 1080
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Figure 5: Qualitative results of the Multimodal-Reciprocal Retrieval.

gold-standard labels for the retrieval process in the1081

evaluation datasets. Specifically, we do not have1082

precise relevancy labels between input queries and1083

all candidate samples for retrieval, making it in-1084

feasible to construct an experiment with exactly1085

one relevant sample and two randomly sampled1086

irrelevant samples. Therefore, we designed an al-1087

ternative experiment with varying levels of retrieval1088

noise. During the inference stage, instead of using1089

the top-3 retrieved entity images and their corre-1090

sponding knowledge snippets, we tested a setting1091

where we used the top-1 retrieved entity image and1092

its knowledge snippet along with two randomly1093

sampled irrelevant entity images and their knowl-1094

edge snippets. This random sampling process was1095

repeated twice, resulting in two distinct sets of ir-1096

relevant entity images and knowledge snippets for1097

the same input instance. Additionally, we tested1098

another setting using only the top-1 retrieved entity1099

image and its corresponding knowledge snippet for1100

generation augmentation. Using these four config-1101

urations of retrieved entity images and knowledge1102

snippets, we evaluated retrieval augmentation on1103

the InfoSeek dataset. The results are summarized1104

in the Table 5.1105

D Evaluation of the1106

Multimodal-Reciprocal Retrieval1107

Figure 5 presents several examples for qualitative1108

analysis. Our retrieval method effectively identifies1109

images that contain entities matching those in the 1110

query images. Although the perspectives of the 1111

entities in the retrieved images differ from those 1112

in the query images, the retrieved images provide 1113

sufficient visual attributes for entity identification 1114

(e.g., the gap in the wall in Figure 5(a) and the 1115

shape of the leaves in Figure 5(c)). 1116

Model Entity Query

LLaVA-1.5 10.34 12.98
RoRA LLaVA-1.5 25.10 27.34

- w/o WikiWeb2M 20.68 23.41
- w/ ShareGPT4V 21.28 22.84

Table 7: Ablation studies of different pre-training con-
figurations. Performance is reported in accuracy (%) on
InfoSeek.

E Ablation Studies 1117

E.1 Effect of Knowledge-Intensive 1118

Pre-training 1119

To assess the impact of knowledge-intensive pre- 1120

training on cross-modal verification capabilities, 1121

we conducted two experiments with different pre- 1122

training configurations and reported the results 1123

in Table 7. Directly fine-tuning without the 1124

knowledge-intensive pre-training on WikiWeb2M 1125

downgrades the RoRA LLaVA-1.5 model perfor- 1126

mance from 25.10% to 20.68% on InfoSeek-Entity 1127
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Table 8: Performance comparison in accuracy (%) for
VLMs with different numbers of retrieval knowledge
snippets on the InfoSeek.

Model Entity Query

LLaVA-v1.5
- 4 snippets 20.68 23.41
- 8 snippets 20.84 23.34

RORA-VLM(ours)
- 4 snippets 24.56 26.33
- 8 snippets 25.10 27.34

and from 27.34% to 23.41% on InfoSeek-Query.1128

We also compared pre-training on WikiWeb2M1129

with pre-training on ShareGPT4V, a generic image-1130

caption dataset where captions primarily describe1131

image content without detailed entity informa-1132

tion. The results show that RORA-VLM pre-1133

trained on WikiWeb2M outperforms the same1134

model pre-trained on ShareGPT4V by 3.28% on1135

InfoSeek-Entity and 4.5% on InfoSeek-Query. This1136

highlights the importance of alignment between1137

the visual appearances and entity knowledge for1138

knowledge-intensive tasks.1139

E.2 Effect of the Number of Retrieved1140

Knowledge Snippets1141

We investigate the impact of the number of textual1142

knowledge snippets l returned for each image dur-1143

ing the query-expanded text retrieval, and show the1144

results on the InfoSeek dataset in Table 8. LLaVA-1145

v1.5 with 4 or 8 snippets denotes the LLaVA-v1.51146

fine-tuned with retrieval augmentation but without1147

visual token refinement and knowledge-intensive1148

pertaining. As shown in the table, expanding the1149

retrieval from top-4 to top-8 snippets results in1150

marginal improvements, demonstrating the less sen-1151

sitivity of our multimodal-reciprocal retrieval on1152

the number of retrieved knowledge snippets.1153

E.3 Effect of Truncation1154

We implement a truncation strategy for each re-1155

trieved knowledge snippet during tokenization to1156

construct the multimodal interleaved input, prevent-1157

ing longer preceding retrieved knowledge snippets1158

from dominating the limited input sequence space,1159

thereby ensuring that subsequent retrieved informa-1160

tion is preserved. However, this raises an important1161

question: how much valuable information is lost1162

due to this truncation?1163

Figure 6: Position distribution of the target entity name
within retrieved knowledge snippets.

To assess the potential loss of critical informa- 1164

tion, we examine instances where the retrieved 1165

knowledge snippets explicitly mention the target 1166

entity name. We count the number of tokens that 1167

appear before this mention and visualize the po- 1168

sitional distribution of key information (i.e., the 1169

target entity name) within the retrieved snippets, 1170

as shown in Figure 6. As depicted, in most cases, 1171

the entity name appears within the first 200 tokens 1172

of the retrieved passages, whereas our truncation 1173

is applied at the 400-token mark for each passage. 1174

This buffer ensures a high retention rate of valu- 1175

able information, minimizing the risk of discarding 1176

critical content due to truncation. 1177

F Experiment Setup Details 1178

F.1 Datasets 1179

OVEN (Hu et al., 2023) OVEN is an entity 1180

recognition dataset constructed by repurposing 14 1181

existing datasets, comprising over 5 million in- 1182

stances. All labels in OVEN are mapped onto a 1183

unified label space of Wikipedia entities. Each in- 1184

stance consists of an entity image paired with its 1185

corresponding entity name. The tasks in OVEN re- 1186

quire vision-language models (VLMs) to recognize 1187

visual entities from a pool of six million possible 1188

Wikipedia entities. 1189

InfoSeek (Chen et al., 2023d) InfoSeek is 1190

a large-scale visual question answering (VQA) 1191

dataset focused on knowledge-seeking queries. It 1192

consists of over 1.35 million image-text pairs, each 1193

posing various questions about objects, scenes, and 1194

actions that require external knowledge—such as 1195

factual information—rather than solely relying on 1196

the visual content. 1197
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Encyclopedic-VQA (Mensink et al., 2023)1198

Encyclopedic-VQA is a knowledge-intensive VQA1199

dataset containing over 221,000 image-text in-1200

stances that require deep reasoning and access to1201

external knowledge. It is well-suited for evaluating1202

a model’s ability to answer questions that extend1203

beyond the image content.1204

F.2 Baselines1205

Baselines We compare our framework with1206

several state-of-the-art vision-language models.1207

LLaVA-v1.5 (Liu et al., 2023a) integrates pre-1208

trained visual and language models for strong1209

performance in multimodal tasks, while LLaVA-1210

v1.6 (Liu et al., 2024) introduces improved fine-1211

tuning techniques. PaLI-17B (Chen et al., 2023c)1212

utilizes a 17-billion-parameter architecture, ex-1213

celling in image captioning and visual question1214

answering, with PaLI-X (Chen et al., 2023b)1215

improving performance on vision-language tasks1216

by scaling up the model size and incorporat-1217

ing a high-capacity visual encoder. BLIP-2 (Li1218

et al., 2023) introduces efficient visual ground-1219

ing through a Q-former, and InstructBLIP (Dai1220

et al., 2023) enhances it for instruction-following1221

tasks. CLIP2CLIP (Hu et al., 2023) leverages a1222

CLIP-based model for improved image caption-1223

ing. Recent work Wiki-LLaVA (Caffagni et al.,1224

2024) is designed for entity-centric question an-1225

swering, aligning visual data with external knowl-1226

edge from Wikipedia. PreFLMR (Lin et al., 2024)1227

introduces a robust multimodal retriever pre-trained1228

on a vision-language corpus comprising over ten1229

million samples, enabling high-quality retrieval to1230

augment the generation processes. RA-CM3 (Ya-1231

sunaga et al., 2023) employs a cross-modality re-1232

trieval mechanism to access and leverage multi-1233

modal information to enhance the performance1234

of multimodal generation. To ensure a fair com-1235

parison, all the baseline models are fine-tuned1236

on the OVEN (Hu et al., 2023), InfoSeek (Chen1237

et al., 2023d), and Enc-VQA (Mensink et al., 2023)1238

datasets respectively, and then evaluated on the1239

corresponding tasks.1240

F.3 Implementation Details1241

We adopt LLaVA-v1.5-7B (Liu et al., 2023a) as1242

the backbone model for our RORA-VLM. In our1243

experiments, limited by the input sequence length,1244

we set the retrieval parameters as follows: k = 31245

and l = 3 for multimodal-reciprocal retrieval, and1246

m = 144 for our visual token refinement method.1247

Multimodal-Reciprocal Retrieval

Knowledge	from	Stage-2:Entity	from	Stage-1:

The	fort	was	originally
built	after	the	...

	Jan	van	Riebeeck's
arrival	on	6	April	...

Built	by	the	Dutch	East
India	Company	...

Castle	of	
Good	Hope

Cape	Town

Fort
Scratchley

Input	Image Input	Query

In	which	year	was
this	building	built?

Data	Source

Retriever	output:

Built	by	the	Dutch
East	India	Company
...

	Jan	van	Riebeeck's
arrival	on	6	April
...

The	fort	was
originally	built	after
the	...

Figure 7: Overview of the Multimodal-Reciprocal Re-
trieval

All models are trained using 8 NVIDIA H100 1248

GPUs. Both pre-training and fine-tuning processes 1249

follow the hyperparameters specified in the original 1250

LLaVA (Liu et al., 2023a) setup, ensuring consis- 1251

tency with previous work. 1252

F.4 Schematic Diagram of the 1253

Multimodal-Reciprocal Retrieval 1254

We include Figure 7 to provide a more intuitive ex- 1255

planation of our proposed Image-Anchored Entity 1256

Retrieval and Query-Expanded Text Retrieval. 1257

F.5 Schematic Diagram of the Visual Token 1258

Refinement 1259

We include Figure 8 to provide a more intuitive 1260

explanation of the visual token refinement . 1261
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In	which	year	was
this	building	built?

Input	Query

In	which	year	was
this	building	built?

Input	Image

Retrieved	Entity	Images
Refined	Visual

Tokens
Query-oriented Visual Token Refinement

Figure 8: Overview of the Visual Token Refinement
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