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Abstract

Recent vision-language models (VLMs), de-
spite their broad capabilities, continue to un-
derperform on knowledge-intensive tasks. Re-
trieval augmentation offers a promising so-
lution by incorporating external multimodal
knowledge. However, the retrieved content of-
ten contains a mix of relevant and irrelevant
information, and existing methods primarily
focus on improving retrieval quality to mit-
igate this issue. In this work, we propose
RORA-VLM, a robust retrieval augmentation
framework designed to address the comple-
mentary challenge of utilizing noisy retrieved
knowledge effectively. The core insight be-
hind RORA-VLM is that the multimodal na-
ture of VLMs enables a novel solution: visual
information can act as a signal for assessing
the relevance of retrieved results. To this end,
RORA-VLM introduces a learned cross-modal
verification mechanism that enables VLMs to
compare visual similarities between the query
and retrieved images, and attend selectively to
visually relevant retrievals while filtering out
irrelevant content. Extensive experiments on
OVEN, InfoSeek, and Enc-VQA benchmarks
demonstrate that RORA-VLM achieves sig-
nificant performance improvements of up to
14.76% in accuracy compared to baseline mod-
els with minimal training data, consistently out-
performing state-of-the-art retrieval-augmented
VLMs while exhibiting strong generalization
to unseen domains.

1 Introduction

Vision-language models (VLMs) (Li et al., 2023;
Alayrac et al., 2022; Liu et al., 2023b; Dai et al.,
2023) have achieved remarkable progress across
various visual perception and generation tasks (An-
tol et al., 2015; Marino et al., 2019; Dai et al.,
2024). However, despite these advancements, re-
cent studies (Chen et al., 2023d; Hu et al., 2023;
Mensink et al., 2023) reveal that VLLMs still face
significant challenges in knowledge-intensive tasks,

Background
Knowledge

Question: Who designed the
tallest building in the picture?

Entity: Freedom Tower

Retrieved Content:
Freedom Tower is the
main building of the
rebuilt World Trade
Center complex in Lower
Manhattan, designed by
David Childs of SOM.

Answer: David Child

Figure 1: An example question for information-seeking
visual question answering.

such as visual entity grounding (Hu et al., 2023)
and information-seeking visual question answer-
ing (Chen et al., 2023d), where VLMs need to ef-
fectively link visual objects and scenes to their cor-
responding entities and relevant background knowl-
edge. For instance, as illustrated in Figure 1, given
the question “Who designed the tallest building in
the picture?” alongside an image of several build-
ings, VLMs need to accurately identify the building
based on its visual attributes and retrieve the associ-
ated background knowledge. The vast and dynamic
nature of visual knowledge in the open world, how-
ever, makes it impractical for VLMs to store all
possible associations between visual appearances
and their corresponding entities and background
knowledge in their parameters.

Retrieval-augmented generation (RAG) offers
a promising solution by integrating knowledge
retrieved from external sources with VLMs,
demonstrating success in improving text-based
knowledge-intensive tasks for LLMs (Guu et al.,
2020; Lewis et al., 2020; Yoran et al., 2023). How-
ever, incorporating retrieval augmentation intro-
duces a fundamental challenge: assessing the rele-
vance of retrieved information. While prior studies
on robust RAG (Yoran et al., 2023) have explored
techniques to make language models resilient to
noisy retrievals in text-only tasks, these approaches



overlook a unique advantage in the multimodal set-
ting: the ability to leverage information from differ-
ent modalities as evidence for retrieved knowledge
relevance evaluation. In multimodal contexts, when
a retrieved passage accompanies a corresponding
image, the model can compare visual similarities
between the query image and retrieved images to
determine which retrieved knowledge is most likely
relevant to the query, offering an explicit verifica-
tion mechanism for filtering and prioritizing the
retrieved information.

In this paper, we introduce RORA-VLM, a
robust retrieval-augmented framework that lever-
ages visual information as evidence for evaluat-
ing the quality of retrieved knowledge. Unlike
previous approaches that focus primarily on im-
proving retrieval quality, our work addresses the
complementary challenge of how to effectively uti-
lize retrieved knowledge. Our framework imple-
ments this vision-guided relevance assessment with
two primary components, as shown in Figure 2.
First, we develop a Multimodal-Reciprocal Re-
trieval that integrates cross-modal retrieval with
visual token refinement to acquire external high-
quality multimodal knowledge. Second, we for-
mulate a Cross-Modal Verification Mechanism
that enables VLMs to perform effective verifica-
tion between modalities. This mechanism is real-
ized through a two-phase training: a knowledge-
intensive pre-training followed by an adversarial
noise injection fine-tuning, enabling VLMs to effec-
tively distinguish relevant knowledge from noise.

We conduct extensive experiments to eval-
uate the effectiveness and robustness of our
proposed framework on three widely adopted
knowledge-seeking benchmarks: OVEN (Hu et al.,
2023), InfoSeek (Chen et al., 2023d), and Enc-
VQA (Mensink et al., 2023). Our results demon-
strate that, with only a minimal number of training
instances (e.g., 10,000), the framework achieves
significant improvements over baseline models,
yielding up to 14.36% accuracy improvement,
and consistently outperforms the current SOTA
retrieval-augmented generation methods. Addition-
ally, our analysis explicitly reveals that RORA-
VLM effectively learns to discriminate between
relevant and irrelevant retrieved information by
comparing visual similarities, demonstrates sig-
nificant robustness to retrieval noise, and shows
strong zero-shot transfer capabilities to knowledge-
intensive tasks from unseen domains.

2 Related Work

Vision-Language Models Recent advancements
in vision-language models (VLMs), such as BLIP-
2 (Li et al., 2023), Flamingo (Alayrac et al., 2022),
LLaVA (Liu et al., 2023b), and InstructBLIP (Dai
et al., 2023), have demonstrated remarkable per-
formance on various visual perception tasks, such
as image captioning (Lin et al., 2014; Schuhmann
et al., 2022; Chen et al., 2023a), visual question
answering (Antol et al., 2015; Marino et al., 2019;
Schwenk et al., 2022), object detection (Lin et al.,
2014; Everingham et al.), visual grounding (Hu
et al., 2023; Kazemzadeh et al., 2014), and visual
relationship detection (Lu et al., 2016), etc. These
models typically employ an architecture consist-
ing of a pre-trained visual encoder (Radford et al.,
2021; Dosovitskiy et al., 2021; Chen et al., 2024),
a pre-trained large language model (Touvron et al.,
2023; Almazrouei et al., 2023), and a projection
function that maps visual features to the text em-
bedding space (Liu et al., 2023b). However, this
method often falls short in aligning visual features
with the extensive knowledge embedded in lan-
guage models. Alternative architectures, such as
the Q-former used in BLIP-2 (Li et al., 2023) and
the perceiver resampler in Flamingo (Alayrac et al.,
2022), have been proposed to enhance the percep-
tion of visual content.

Knowledge-Intensive Tasks and Retrieval-
Augmented Generation Augmenting models
with external knowledge sources has proven ef-
fective in enhancing performance on knowledge-
intensive tasks. In the text-only domain, models
like REALM (Guu et al., 2020), RAG (Lewis et al.,
2020), and RobustRAG (Yoran et al., 2023) have
demonstrated the benefits of retrieval-based aug-
mentation by providing additional context for gen-
erating accurate responses. Applying this approach
to the vision-language domain presents unique chal-
lenges due to modality discrepancies and differing
model architectures (Wei et al., 2023). Recent stud-
ies (Gui et al., 2021; Lin et al., 2023, 2024) have
explored multimodal retrieval to enhance LLMs by
retrieving textual knowledge from visual queries,
but primarily focus on improving retrieval qual-
ity rather than effectively utilizing retrieved in-
formation. Given that state-of-the-art retrievers
achieve only modest performance (e.g., lower than
0.2 for recall@1 on InfoSeek (Chen et al., 2023d)),
managing and denoising retrieval noise becomes
crucial for VLMs. Knowledge-intensive bench-
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Figure 2: Overview architecture of RORA-VLM. Our approach teaches VLMs to use visual information as evidence
for evaluating the quality of retrieved knowledge through cross-modal verification. By comparing visual similarities
between the query image and retrieved images, the model learns to selectively attend to information from relevant

retrievals while ignoring irrelevant ones.

marks such as OVEN (Hu et al., 2023) and InfoS-
eek (Chen et al., 2023d) have been developed to
evaluate VLMs on tasks like visual entity ground-
ing and information-seeking visual question an-
swering, which require models to recognize visual
entities and connect them with background knowl-
edge. Studies have shown that extensive fine-tuning
on knowledge-intensive task instances does not sub-
stantially improve VLMs’ performance (Chen et al.,
2023d; Hu et al., 2023; Mensink et al., 2023), in-
dicating that current architectures struggle with
dynamic visual-semantic associations.

3 RORA-VLM

In this work, we focus on improving VLMs
on knowledge-intensive VQA tasks via retrieval-
augmented generation. Given a text query ¢ to-
gether with an image v, a VLM is expected to gen-
erate a response y by leveraging the multimodal
knowledge snippets R retrieved from an external
database as context. The objective of the retrieval-
augmented generation can be formulated as:

y = argmax P(ylt, v, R) (M
Yy

Our proposed framework, RORA-VLM, en-
ables VLMs to robustly leverage retrieved knowl-
edge through vision-guided relevance assessment.
The core insight is training VLMs to use visual in-
formation as evidence for evaluating the quality of
retrieved knowledge, allowing them to determine
which retrievals are most relevant to the query and
filter out noise. This capability is achieved through

two components: (1) Multimodal-Reciprocal Re-
trieval, which acquires high-quality multimodal
knowledge with visual cues guided textual retrieval
and entity-based visual token refinement, and (2)
Cross-Modal Verification Mechanism, which en-
ables VLMs to perform verification across different
modalities to distinguish relevant knowledge from
irrelevant information. The overall architecture of
RORA-VLM is shown in Figure 2.

3.1 Multimodal-Reciprocal Retrieval

Traditional retrieval methods face unique chal-
lenges with vision-language tasks due to inher-
ent modality discrepancies. In multimodal set-
tings, textual queries often contain generic terms
or anaphoric references (e.g., “the tallest building”)
that lack specificity without visual context, while
visual information alone may not sufficiently clar-
ify the query’s intent. We overcome these chal-
lenges by developing a multimodal-reciprocal re-
trieval method that leverages visual cues to guide
textual retrieval, followed by a visual feature refine-
ment based on retrieved textual entity information.

Image-Anchored Entity Retrieval Given the
textual query ¢ and query image v, we first use
the query image v as an anchor to retrieve top-k
most similar images from an image database built
upon WIT (Srinivasan et al., 2021). This image-
level retrieval identifies potential entities that vi-
sually match the query image, providing crucial
visual evidence for subsequent cross-modal verifi-
cation. For efficient retrieval, we encode all im-
ages in the WIT dataset with a CLIP (Radford



et al., 2021) image encoder and construct a dense
vector-search database'. Given a query image,
the image retriever ¢' computes cosine similari-
ties between the query image feature and retrieval
database keys to fetch the top-k most similar im-
ages V = {0y, s, ...,0;} along with their asso-
ciated entity names and background information
E = {&,é,...,6,}. More details of the CLIP-
based image retriever are provided in Appendix B.

Query-Expanded Text Retrieval With the entity
names and descriptions obtained from the image-
anchored entity retrieval, we further use them to
expand the original text query. This expansion
disambiguates anaphoric references in the orig-
inal query by providing specific entity informa-
tion. Given the original text query ¢ and a retrieved
entity name and description e;, the text retriever
¢ ? searches for top-/ textual knowledge snippets
that are most relevant to the expanded query C; =
{cirscio, .o et = #'(t,€;). We then concate-
nate each retrieved image v; with its correspond-
ing textual knowledge snippets C; to form multi-
modal knowledge snippets 2 = {ry,7a,..., 7%} =

{[617 élv él]) [627 é27 02]7 SERE) [6ka ékv Ck]}

Visual Token Refinement Retrieved images of-
ten contain noise, such as objects or visual scenes
that are irrelevant to the concerned entities, which
can distract the model during subsequent cross-
modal verification. To enhance the quality of vi-
sual representations by focusing only on the most
query-relevant features, we implement a refinement
strategy that filters out irrelevant visual information.
Specifically, for the query image, we first select the
top-m visual tokens most similar to the text query

embedding:
Si } ) ) (2)
i=1

where s; = v; - t represents the similarity between
visual token v; and text query embedding t, and
n represents the total number of visual tokens ex-
tracted from each image by the vision encoder. Sub-
sequently, for each retrieved image, we select the
top-m visual tokens most similar to the refined

V = Top-m ({VZ

'"We construct the vector-search database based on a hier-
archical navigable small-world (HNSW) graph (Malkov and
Yashunin, 2018).

*The textual retrieval component is implemented using
Google Search functionality accessed through the Serper API
service: https://serper.dev/.

query image tokens:

Vi = Top—m {‘7]

isj)} . (3)

=1 j=1

~

where s; = ) 1", (v; - v;) with v; € V. This re-
finement process ensures that the model focuses on
the most query-relevant visual features when per-
forming cross-modal verification, enabling more
accurate assessment of retrieval relevance. More
details of the visual token refinement are provided
in Appendix C.

3.2 Cross-Modal Verification Mechanism

The second key component of our framework is a
Cross-Modal Verification Mechanism that evalu-
ates the relevance of retrieved knowledge. We en-
able VLMs to implicitly leverage this mechanism
through a two-phase training: (1) a knowledge-
intensive pre-training to align visual features with
LLMs’ internal knowledge, followed by (2) an ad-
versarial noise injection fine-tuning that enables
discrimination between relevant and irrelevant in-
formation through contrastive learning signals.

Knowledge-Intensive Pre-training The ability
to compare visual entities across images requires
a strong foundation in visual-knowledge align-
ment. To establish this foundation, we conduct
pre-training on WikiWeb2M (Burns et al., 2023),
a knowledge-intensive multimodal dataset. We cu-
rate 1 million entity-rich image-text instances, each
consisting of an image depicting an entity, its cap-
tion, and associated textual knowledge. This pre-
training phase aligns visual appearances with en-
tity knowledge stored in the LLLM, enhancing the
model’s ability to recognize the same entity across
different visual representations and contexts.

Adversarial Noise Injection Fine-tuning An ef-
fective training for cross-modal verification mecha-
nism learning requires exposing the model to both
relevant and irrelevant retrievals. Since ground-
truth relevance labels are not accessible for our
training data, we employ an adversarial noise in-
jection fine-tuning strategy to create a controlled
learning environment with clear contrastive signals.

For each training instance (¢,v), we retrieve
the top-(k-1) multimodal knowledge snippets R =
r1,T2,...,Tp—1. We then deliberately introduce an
irrelevant knowledge snippet 7 = [¢', €, C'] ran-
domly sampled from the retrieval database. This
creates a contrastive learning signal that facilitates
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the model’s ability to distinguish between relevant
and irrelevant information. The input is formed
by concatenating these snippets with the original
query: [rq 7o ¢ ... 27 ¢ :v]. We fine-tune
VLMs on such noise-injected training instances
by minimizing the cross-entropy loss of predicting
the target answer despite the presence of irrelevant
information.

4 Experiment Setup

Evaluation Benchmarks To evaluate the effec-
tiveness and robustness of RORA-VLM, we con-
duct experiments on three benchmark datasets, in-
cluding OVEN (Hu et al., 2023) for visual en-
tity grounding, and InfoSeek (Chen et al., 2023d)
and Encyclopedic-VQA (Mensink et al., 2023) for
information-seeking visual question answering. As
the test sets of OVEN and InfoSeek are not avail-
able at the time of submission, we report our results
on their validation sets.

Evaluation Metrics We adopt evaluation metrics
in line with previous studies (Hu et al., 2023; Chen
et al., 2023d; Mensink et al., 2023). For visual
entity recognition tasks, we use the standard accu-
racy metric to assess the model’s capability to cor-
rectly identify entities in images. For knowledge-
seeking visual question answering (VQA) tasks,
we apply different metrics tailored to specific ques-
tion types. For questions expecting string-based
responses such as entity names, we report accuracy
using the VQA accuracy metric (Antol et al., 2015).
For questions requiring numeric answers, we use
relaxed accuracy (Methani et al., 2020), which ac-
counts for deviations from exact numerical values.

Baselines We compare our framework with
several state-of-the-art vision-language models,
including LLaVA-v1.5/v1.6 (Liu et al., 2023a,
2024), PaLI-17B/X (Chen et al., 2023c,b), BLIP-
2/InstructBLIP (Li et al., 2023; Dai et al., 2023),
CLIP2CLIP (Hu et al., 2023), and Qwen-2.5-
VL 3B. We also include retrieval-augmented ap-
proaches such as PreFLMR (Lin et al., 2024),
RA-CM3 (Yasunaga et al., 2023), and Wiki-
LLaVA (Caffagni et al., 2024), which leverage ex-
ternal knowledge to enhance generation. To en-
sure a fair comparison, all baseline models are
fine-tuned on the OVEN (Hu et al., 2023), InfoS-
eek (Chen et al., 2023d), and Enc-VQA (Mensink
et al., 2023) datasets respectively, and then evalu-
ated on the corresponding tasks.

OVEN InfoSeek
Model Entity Query | Entity Query Enc-VQA
Non Retrieval-Augmented Model
CLIP2CLIP 10.10 2.10 - -
PaLl 12.40 2240 | 16.00 20.70
PaLI-X - - 20.80  23.50
BLIP-2 1330  14.50
InstructBLIP - - 1320 14.30 -
LLaVA-v1.6 3.72 2455 | 14.16 1598 13.54
LLaVA-v1.5 3.63 20.04 10.34 1298 12.21
Qwen-2.5-VL 1630 4426 19.66  22.50 13.53
Retrieval-Augmented Model

RA-CM3 17.09 21.64
PreFLMR - 1937 2221 -
Wiki-LLaVA* 14.43 20.4 21.44  23.68 18.61
RORA-VLM

- LLaVA-1.5 15.08 24.06 2510 27.34 20.29

-Qwen-2.5-VL | 27.51 51.20 2396 26.27 20.42

Table 1: Evaluation results in accuracy (%). The best
performance is highlighted in bold. The Entity groups
expect an entity name as the target answer, while Query
groups target a general object name or concept as the
answer. * denotes our implementation of Wiki-LLaVA
as its original source code is not publicly available.

Model Tuning We demonstrate the general ap-
plicability of our approach across different archi-
tectures by implementing it on multiple backbone
models, including LLaVA-v1.5 7B (Liu et al,,
2023a) and Qwen-2.5-VL 3B (Bai et al., 2023). For
comparative analysis, we apply the complete frame-
work to LLaVA-v1.5, while implementing RORA -
VLM on Qwen-2.5-VL 3B without the knowledge-
intensive pre-training phase to isolate direct per-
formance improvements. Our experimental vali-
dation uses 10,000 randomly sampled instances
from each benchmark dataset (OVEN, InfoSeek,
Encyclopedic-VQA) for efficient fine-tuning.

5 Result & Discussion
5.1 Main Results

Table 1 presents the main results for visual entity
grounding on the OVEN dataset and information-
seeking visual question answering on the InfoSeek
and Encyclopedic-VQA datasets. Despite being
fine-tuned on only 10,000 instances per dataset,
both RoRA variants show remarkable gains. When
applied to LLaVA-v1.5, our approach yields sub-
stantial improvements over the base model (e.g.,
from 10.34% to 25.10% on InfoSeek-Entity). Simi-
larly, when applied to Qwen-2.5-VL, our approach
boosts performance across all benchmarks (e.g.,
from 16.30% to 27.51% on OVEN-Entity). In
addition, our approach consistently outperforms
previous retrieval-augmented methods, such as RA-
CM3, PreFLMR, and Wiki-LLaVA, demonstrating



Model Inputs

. -
Question: How wide is the ! W
vehicle in the image (in =
millimetre)?

Target: [1728.0, 2112.0]
Prediction: 1897
Image:

of the car, ranges from ...

Retrieval Passages

Dimensions for the Chevrolet Camaro 2020 SCTS !
& include 1344 mm height, 1897 mm Width. The [ls
height, measured from the ground to the top

rolet Pressroom CAMARO LS & LT - 2023 ;
| Type: 2.0L I-4 DOHC VVT DI Turbocharged ;
Bore & Stroke (in. / mm):. 3.39 x

vrolet Camaro Coupé ; Length/width/height
(mm). 4836.8 / 1917 / 1360 ; Wheelbase
(mm). 2852 ; Seats front and rear. 2 +

Attention to Input Tokens

Attention from "18"

.
o

e}

o
™

4
o

o
»

I
N

8| | 17 FIW

ITerY - AN | NI

250 500 750 1000 1250
Input Token Position

Attention Score to Previous Token

o
o

Question: Which
geographic area is this
animal found?
Target: Brazil
Prediction: Brazil
Image:

National ...

~ Perisoreus Canadensis.

0.0

is a World Heritage property of 169,695.88 Sc‘i'g
hectares located in the State of Paranj, in “ :
southern Brazil, adjacent to the Iguazi

History - Réserve Africaine de Sigean
<Snippet> Thanks to its geographical location
close to the Mediterranean coast

Viréo aux yeux rouges Vireo olivaceus. Red-
A eyed vireo. Vireonidae. Mésangeai du Canada

Attention from "Brazil"

B

-
o

=
©

4
=)

o
IS

|} "Brazil"

o
N

"vireon'

Attention Score to Previous Token

e
o

) 200 400 600 800 1000
—0.0. Input Token Position

Figure 3: Visualization of attention scores assigned to VLM input tokens during next-token generation. Tokens are
highlighted in green, with darker shades indicating higher attention scores.

the advantage of cross-modal verification mecha-
nism in handling retrieval noise.

5.2 Effect of Cross-Modal Verification
Mechanism

We conducted two ablation studies to validate the
effectiveness of our cross-modal verification ap-
proach. First, we implemented a “textual-only
RAG?” configuration by removing retrieved images
while keeping all other aspects identical, thus elim-
inating the model’s ability to perform visual com-
parison between query and retrieved content. As
shown in Table 2, this modification resulted in a
substantial performance decrease of 7.81-8.06 per-
centage points across benchmarks, confirming that
visual modality provides crucial evidence for de-
termining relevance that cannot be obtained from
text alone. Second, we examined a variant where
we maintained the multimodal retrievals but re-
moved the adversarial noise injection during train-
ing. This configuration exhibited an even more sig-
nificant performance decline of 8.51-9.92 percent-
age points compared to our full approach, as pre-
sented in Tabel 2, demonstrating that training using
only positive samples of correctly retrieved multi-
modal information is insufficient—the model must
be explicitly trained to perform cross-modal verifi-
cation through contrastive learning with adversarial
examples. In addition, we investigate the effect
of knowledge-intensive pretraining, demonstrating
the importance of alignment between the visual
appearances and entity knowledge for knowledge-

intensive tasks. More details of the ablation studies
of the knowledge-intensive pre-training are pro-
vided in Appendix E.1.

Model ‘ Entity Query

LLaVA-1.5 10.34 1298

RoRA LLaVA-1.5 25.10 27.34
Visual Token Refinement Ablations

- w/o visual token refinement (pooling) 2394  24.85

- w/o visual token refinement (all tokens) | 24.62  26.14
Cross-Modal Verification Ablations

- w/o retrieved images (textual-only RAG) | 17.29  19.28

- w/o noise-injection 16.59 1742

Table 2: Ablation studies of each component in RORA-
VLM. Performance is reported in accuracy (%) on In-
foSeek.

To further demonstrate that the model has
learned this cross-modal verification capability, we
visualize the attention scores assigned to tokens of
the retrieved knowledge during the answer gener-
ation in Figure 3. The visualization reveals that
RORA-VLM effectively learns to focus on tex-
tual knowledge corresponding to images contain-
ing entities that match those in the query image.
For instance, in the second row of Figure 3, the
model predominantly attends to the first two knowl-
edge snippets while disregarding the third, which
pertains to a completely different animal. This
attention pattern directly evidences that the RORA-
VLM has learned to leverage visual similarity as
a signal for relevance assessment, enabling effec-
tive noise filtering in the retrieval augmentation
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Question: What is the
closest parent taxonomy
of this bird?

Answer: Sphenisciformes
Entity: penguin

Question: What product
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Answer: milk

Entity: cow

Retrived Img 1 RetrivedImg 2 RetrivedImg 3

Figure 4: Qualitative results for query-oriented Visual Token Refinement .

generation.

5.3 Validation of Multimodal-Reciprocal
Retrieval

We conducted comprehensive analyses of our
Multimodal-Reciprocal Retrieval to evaluate its ef-
fectiveness. Table 3 reports the retrieval precision
at each stage of our proposed retrieval process. In
the image-anchored entity retrieval, we consider
retrieval successful if the target entity shown in the
query image matches any of the retrieved m images.
Similarly, in the query-expanded text retrieval, we
consider retrieval successful if the golden answer is
included in any of the retrieved textual knowledge
snippets.

Retrieval Stage OVEN InfoSeck
8 Entity Query Entity Query
Image-Anchored Entity Retrieval | 35.16  34.45 38.53  37.67
Query-Expanded Text Retrieval - - 27.01  26.97

Table 3: Retrieval precision (%) for the Image-Anchored
Entity Retrieval and Query-Expanded Text Retrieval.

To quantify the benefits of our multi-stage ap-
proach, we performed an ablation study comparing
it with a single-stage retrieval method, and present
results in Table 4. In the single-stage configuration,
we directly utilized CLIP embeddings of the query
image to retrieve similar entity images and their cor-
responding background knowledge, bypassing the
query-expanded text retrieval phase. In addition,
we further compare our multi-stage retrieval with
previous work, RA-CM3, which employed a single-
stage retrieval that utilizes both text and image
CLIP embeddings. The experiment results demon-
strate that our multimodal-reciprocal retrieval ap-
proach consistently outperformed all single-stage
retrieval approaches, confirming that the integra-
tion of textual queries with visually-derived entities
substantially improves retrieval precision. More

qualitative examples of the multimodal-reciprocal
retrieval could be found in Appendix D.

Model | Entity Query
LLaVA-vl.5 10.34  12.98
RA-CM3 (single-stage) 17.09  21.64
RoRA-VLM (single-stage) | 21.9 23.87
RoRA-VLM (2-stage) 25.10 2734

Table 4: Ablation studies for 2-stage retrieval. Perfor-
mance is reported in accuracy (%) on InfoSeek.

Complementing the multi-step retrieval, our Vi-
sual Token Refinement provides further perfor-
mance improvements by focusing the model’s at-
tention on the most query-relevant visual features.
In Figure 4, we show the qualitative results of the
visual token refinement . From the query image,
we select m=144 visual tokens that are most related
to the text query (i.e., the Question), while each
visual token corresponds to an image patch (high-
lighted in yellow). As we can see, this method ef-
fectively identifies and selects patches correspond-
ing to the key visual entity, even with the presence
of anaphoric references in the query. Similarly, for
each retrieved image, we also select m=144 visual
tokens that are most related to the query image.
These qualitative results underscore the effective-
ness of our visual token refinement in filtering out
irrelevant visual information, enabling the retrieval
augmentation of VLMs more robust. We validate
the benefits gained from the visual token refinement
through two controlled experiments and listed the
experiment results in Table 2. First, replacing our
refinement strategy with average pooling to ob-
tain the same number of tokens (144) resulted in
a performance decrease of 1.16-2.49 percentage
points across benchmarks. This indicates that se-
lecting query-relevant visual features based on se-
mantic similarity is more effective than uniform



dimensionality reduction. Second, we evaluated
a variant that uses all 576 visual tokens for each
image without refinement. Despite having access
to more visual information, this approach still un-
derperformed our method by 0.48-1.20 percentage
points while incurring higher computational costs.
These results demonstrate that our refinement strat-
egy successfully identifies the most query-relevant
visual features, enhancing cross-modal verifica-
tion accuracy while maintaining computational ef-
ficiency. More details of the pooling process for
this ablation study are provided in Appendix C.

5.4 Robustness to Retrieval Noise

To directly evaluate the robustness of our approach
to retrieval noise, we conduct controlled experi-
ments with varying levels of noise injection dur-
ing inference. Table 5 presents the results on the
InfoSeek dataset. We first establish a baseline us-
ing only the top-1 retrieved entity image and its
corresponding knowledge snippet for generation
augmentation. We then create noisy retrieval set-
tings by adding two randomly sampled irrelevant
entity images and their knowledge snippets. This
random sampling process is repeated twice, result-
ing in two distinct sets of irrelevant entity images
and knowledge snippets for the same input instance.
The results show that the model’s performance re-
mains remarkably stable despite the introduction of
noise, with only minor degradation (less than 1%)
when irrelevant retrievals are added. We also report
the performance using the top-3 retrievals without
explicit noise injection. The higher performance
in this setting suggests that using more retrievals
provides additional relevant information that the
model can effectively leverage, while still filtering
out any naturally occurring noise. This demon-
strates the model’s ability to effectively filter out
irrelevant information, confirming the robustness
of our approach to retrieval noise.

Model | Entity Query
Top-1 Retrieval 2049  22.19
Top-1 Retrieval + 2 Noises (1) | 19.61  21.97
Top-1 Retrieval + 2 Noises (2) | 19.63  22.02
Top-3 Retrieval 25.10  27.34

Table 5: Performance in accuracy (%) for RORA-VLM
with varying levels of retrieval noise on InfoSeek.

5.5 Domain Transfer Capability

To examine the generalizability of our approach,
we conduct domain transfer experiments using the

Encyclopedic-VQA dataset. The iNaturalist subset
of this dataset consists of questions concerning 11
categories (e.g., Plant, Insect, Lake, etc.) of entities.
To create a domain transfer setting, we select “In-
sect” as the target domain and modify the training
set by filtering out instances from this category. We
fine-tune both the baseline model and our RORA-
VLM on the original training set of the iNaturalist
subset as well as the modified training set for do-
main transfer, and evaluate on the complete test
set of the iNaturalist subset. Table 6 shows the
results, where “SFT” refers to models fine-tuned
on the full training set, while “Domain Transfer”
refers to models fine-tuned on the modified train-
ing set (excluding “Insect” category). The results
show that, even without being fine-tuned on the
“Insect” category, RORA-VLM still outperforms
the baseline model that is trained on the complete
training set. This demonstrates the generalizability
of the cross-modal verification mechanism learned
by RORA-VLM, allowing it to effectively filter
out irrelevant information even for domains not
seen during training. This highlights the potential
of our approach for real-world applications where
domain adaptation is often required.

Model ‘ SFT Domain Transfer
LLaVA-v1.5 18.23 17.18
RORA-VLM(ours) | 24.36 20.26

Table 6: Performance in accuracy (%) for domain trans-
fer on Encyclopedic-VQA.

6 Conclusion

In this work, we introduce RORA-VLM, a robust
retrieval-augmented framework that teaches vision-
language models to leverage visual information
as evidence for evaluating the quality of retrieved
knowledge. Unlike previous works that focus on
improving retrieval quality, our work addresses the
complementary challenge of how to effectively uti-
lize retrieved knowledge. Our experimental results
demonstrate that RORA-VLM achieves strong
performance on three widely adopted benchmark
datasets. Through detailed ablation studies and vi-
sualizations, we demonstrate that VLMs can learn
to perform cross-modal verification, mainly attend-
ing to information from retrievals containing vi-
sually similar entities to those in the query image.
Furthermore, the framework shows strong gener-
alization capabilities, including domain transfer to
unseen categories, highlighting the broad applica-
bility.



Limitations

While our RoRA-VLM framework demonstrates
significant improvements on knowledge-intensive
visual question answering tasks, several limitations
present opportunities for future research.

Language Coverage Our current evaluation is
restricted to English-language datasets and bench-
marks. Although our approach relies primarily
on vector representations rather than natural lan-
guage processing for retrieval operations, which
suggests inherent compatibility with multilingual
scenarios, we have not empirically validated this
capability across diverse linguistic contexts. Fu-
ture work should extend our evaluation framework
to include multilingual knowledge-intensive VQA
benchmarks to demonstrate the cross-linguistic gen-
eralizability of our vision-guided relevance assess-
ment mechanism.

Scale of Knowledge-Intensive Pretraining
Due to computational resource constraints, our
knowledge-intensive pretraining phase is based
on a subset of the WikiWeb2M dataset containing
only 1 million entity-rich instances, rather than
leveraging the complete Wikipedia database.
While this limited-scale pretraining successfully
establishes foundational visual-knowledge align-
ment capabilities, we anticipate that training on a
more comprehensive and larger-scale knowledge
repository could yield enhanced performance.

Task Scope and Modality Extensions Our
experimental evaluation focuses exclusively on
image-text visual question answering tasks, which
represent only a subset of the broader vision-
language domain. The underlying principles of
our framework, particularly the cross-modal ver-
ification mechanism and modality-reciprocal re-
trieval approach, should theoretically extend to
other vision-language applications. Future research
directions include adapting our methodology to
more vision language tasks, e.g., video understand-
ing and three-dimensional point cloud understand-
ing.
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A Details of the CLIP model encoding

In this section, we provide a detailed description of
how we encode an image into a sequence of visual
embeddings using CLIP.

Image Encoding with CLIP: In the CLIP model,
the visual encoder is based on the Vision Trans-
former (ViT) architecture. Given an image, the
visual encoder processes it as a whole and encodes
it into a feature representation of shape [576, 1024].
This representation can be interpreted as 576 vec-
tors, each with a dimensionality of 1024. The 576
vectors correspond to patches of the input image,
where the image is internally divided into a grid of
patches during the encoding process. This division
is not explicit; rather, it is an inherent part of the
ViT architecture, which computes patch-level em-
beddings directly through a convolutional embed-
ding layer applied to the full image. The resulting
intermediate patch embeddings collectively form
the image’s representation in the model’s latent
space.

Dimensionality of Visual Embeddings: After
passing through the vision transformer (ViT) layers,
each patch is represented as a feature vector with
a dimensionality of 1024. To further process these
features, we utilized the final visual projection layer
of the original CLIP model. This projection layer,
which is also used for the pooled [CLS] token in
the original implementation, is applied to all 576
patch-based feature vectors in our approach. The
projection reduces the dimensionality of each fea-
ture vector from 1024 to 768. To clarify further, the
visual projection layer is part of CLIP’s original im-
plementation. While it is typically applied only to
the pooled [CLS] token to produce the image-level
feature representation, in our work, we extend its
application to all 576 patch-level feature vectors.
As a result, the output is a feature representation
of shape [576, 768], where 576 corresponds to the
number of patches and 768 is the dimensionality of
the projected patch embeddings.

After computing the patch embeddings, for each
text query, we derive a 768-dimensional vector
from the [CLS] token of the CLIP text encoder.
We then compute the similarities between the text
embedding and the image patch embeddings to
select the top-m relevant patches, which are subse-
quently projected into the LLM’s latent space using
the LLaVA projector.
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B Image-Anchored Entity Retrieval

In this section, we provide a detailed explanation of
the Image-Anchored Entity Retrieval component of
our Multimodal-Reciprocal Retrieval method. This
component uses the input query image as an anchor
to retrieve visually similar images along with their
associated entity information.

Database Construction The image database
is built upon Wikipedia Image Text (WIT)
dataset (Srinivasan et al., 2021), which contains
37.6 million entity-rich image-text pairs. Each text
entry provides the name and background informa-
tion of the entity depicted in the corresponding im-
age, sourced from Wikipedia. To enable efficient
retrieval, we encode each image in WIT into a vec-
tor using the CLIP (Radford et al., 2021) image en-
coder and construct a dense vector-search database
based on a hierarchical navigable small-world
(HNSW) graph (Malkov and Yashunin, 2018).

In this database, the encoded image features
z; = CLIP(v;) € R?, where d is the dimension of
the CLIP embedding, serve as search indexes Z =
{21, 29, ...,zN}. The corresponding entity names
and background information for these images are
stored as search values E = {&,éy,...,¢n},
where €; denotes the entity name and background
information for candidate image v; and N is the
total number of entries in the database.

Retrieval Process Given a query image v, the
image retriever ¢' leverages a non-parametric func-
tion to measure the cosine similarity between the
CLIP embedding of the query image and all search
indexes. The score of each candidate image v; with
search index z; can be expressed as:

exp (Sim(v, z;))

P(’{}Zl’l),Z) = N ) (4)
Z]—:l exp (Sim(w, zj))
where the similarity function is defined as:
T
_ CLIP(v)  z;
S i) = 5
) = o) ]

This function computes the cosine similarity be-
tween the CLIP embedding of the query image v
and the pre-computed CLIP embedding z; of each
candidate image in the database. Based on this
similarity function, the image retriever ¢' fetches
the top-k images that are most similar to the query
image along with their associated entity names and



background information:

(1717 él)? (627 é?)? R (6]97 ék) = (Z)V(Ua Z, E)7
(0)
This results in a set of top-k most similar images
V = {y,09,..., 0} along with their associated
entity names and background information E =
{€1,€9,...,€x}.

C Visual Token Refinement

In this section, we provide a detailed explanation
of the Visual Token Refinement component of
our Visual Token Refinement method. This com-
ponent aims to filter out query-irrelevant visual
information within both the query image and the
retrieved images. This filtering process ensures
that the model focuses on the most query-relevant
visual features when performing cross-modal ver-
ification, enabling more accurate assessment of
retrieval relevance.

Input Query Encoding Given a text query ¢
alongside a query image v, we first encode the
text query using the CLIP text encoder, produc-
ing a text embedding t € Rd, where d is the em-
bedding dimension. Similarly, the query image v
is encoded into a sequence of visual embeddings
V ={vi,vy,..,v,} € R™? where v; € R? de-
notes a visual token embedding corresponding to an
image patch, and n is the number of visual tokens
extracted from the image by the vision encoder.

Query Image Token Selection For each visual
token embedding v; in the query image, we calcu-
late its similarity to the text embedding by comput-
ing the dot product: s; = v; - t. This similarity
score measures how well each visual token aligns
with the text query. We then select the top-m visual
tokens with the highest similarity scores, forming

the refined visual token sequence V € R™ for
the query image:
R n
V = Top-m ({VZ sl} ) , @)
i=1

where s; = v; - t represents the similarity between
visual token v; and text query embedding t.

Retrieved Image Token Selection Similarly,
we encode each retrieved image v; € V into
a sequence of visual token embeddings vV, =
(Vi1 Vig, s Vint € R™?_ For each visual to-
ken embedding v; ; € R in the retrieved image,
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we compute its similarity to the refined query im-
age tokens by calculating the sum of its dot product
with all of the selected visual tokens from the query
image:

m
sj = Z(Vz’ Vi) (®)
i=1
where v; € V. We then select the top-m most rele-
vant visual tokens of the retrieved image, forming
the refined visual token sequence V; € R™

or
each retrieved image:
n
s )} ) N )]
j=1

Details of the pooling process In our implemen-
tation, each image is processed into a feature matrix
with shape [576, 768] by the CLIP visual encoder
and the LLaVA projector. Our Visual Token Re-
finement method selects the top 144 visual tokens
that are most relevant to the query, constructing a
feature matrix of shape [144, 768]. This selection
process enables the VLM to focus more effectively
on query-relevant image content while mitigating
the influence of irrelevant noise, such as image
backgrounds or query-irrelevant entities present in
the image. For comparison purposes in ablation
studies, we implemented an average-pooling-based
baseline that processes the same [576, 768] visual
patch vectors into [144, 768] vectors. Specifically,
we reshape the 576 patch vectors into a 24 x 24 grid
corresponding to the spatial arrangement of patches
in the original image, then apply a 2D average pool-
ing operation with a kernel size of 2 x 2 and a stride
of 2. This pooling reduces the spatial resolution
from 24 x 24 to 12 x 12, yielding 144 patch vec-
tors while maintaining the 768-dimensional feature
vector for each patch. By reducing the number
of feature vectors from 576 to 144, this process
ensures compatibility with the limited sequence
length of the LLM and aligns the number of input
tokens for both methods, allowing for direct and
fair comparison in the ablation studies.

NgE

Vi = Top—m {\727]
1=1

C.1 Robustness of RoORA-VLM Under
Varying Levels of Retrieval Noise

To further analyze the ability of our RoORA-VLM
to handle noisy retrieval and validate its robustness,
we conducted additional ablation studies involv-
ing controlled retrieval noise scenarios. The key
challenge in ideally proving the effectiveness of
our model in ignoring retrieval noise is the lack of



(@) (b)

Query  What is this building in the ~ What is the creature in
Text: picture? the picture?

Query ‘

Image:

(©)
What is the plant in the
picture?

(d)
In which country is this
building located?

Retrieved
Images:
e il
Entity Name: Castle of Good Hope Puffball Asplenium Fraumiinster
Retrieved The Castle of Good Puffballs are a type of Asplenium is a The Fraumiinster
Knowledge: Hope is a bastion fort  fungus featuring a ball- genus of about 700 is a church in
built in the 17th  shaped fruit body that species of ferns, Ziirich which was
century in Cape Town, bursts on impact, often treated as the built on  the
South Africa. releasinga ... only genus in ... remains of a ...
LLaVA-v1.5: Fort San Francisco Amanita caesarea Confertiflorum Austria
RoRA-VLM: Castle of Good Hope Puftball Asplenium Zurich

Figure 5: Qualitative results of the Multimodal-Reciprocal Retrieval.

gold-standard labels for the retrieval process in the
evaluation datasets. Specifically, we do not have
precise relevancy labels between input queries and
all candidate samples for retrieval, making it in-
feasible to construct an experiment with exactly
one relevant sample and two randomly sampled
irrelevant samples. Therefore, we designed an al-
ternative experiment with varying levels of retrieval
noise. During the inference stage, instead of using
the top-3 retrieved entity images and their corre-
sponding knowledge snippets, we tested a setting
where we used the top-1 retrieved entity image and
its knowledge snippet along with two randomly
sampled irrelevant entity images and their knowl-
edge snippets. This random sampling process was
repeated twice, resulting in two distinct sets of ir-
relevant entity images and knowledge snippets for
the same input instance. Additionally, we tested
another setting using only the top-1 retrieved entity
image and its corresponding knowledge snippet for
generation augmentation. Using these four config-
urations of retrieved entity images and knowledge
snippets, we evaluated retrieval augmentation on
the InfoSeek dataset. The results are summarized
in the Table 5.

D Evaluation of the
Multimodal-Reciprocal Retrieval

Figure 5 presents several examples for qualitative
analysis. Our retrieval method effectively identifies
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images that contain entities matching those in the
query images. Although the perspectives of the
entities in the retrieved images differ from those
in the query images, the retrieved images provide
sufficient visual attributes for entity identification
(e.g., the gap in the wall in Figure 5(a) and the
shape of the leaves in Figure 5(c)).

Model ‘ Entity Query

LLaVA-1.5 10.34 1298

RoRA LLaVA-1.5 25.10 27.34
- w/o WikiWeb2M | 20.68 23.41
- w/ ShareGPT4V | 21.28 22.84

Table 7: Ablation studies of different pre-training con-
figurations. Performance is reported in accuracy (%) on
InfoSeek.

E Ablation Studies

E.1 Effect of Knowledge-Intensive
Pre-training

To assess the impact of knowledge-intensive pre-
training on cross-modal verification capabilities,
we conducted two experiments with different pre-
training configurations and reported the results
in Table 7. Directly fine-tuning without the
knowledge-intensive pre-training on WikiWeb2M
downgrades the RORA LLaVA-1.5 model perfor-
mance from 25.10% to 20.68% on InfoSeek-Entity



Table 8: Performance comparison in accuracy (%) for
VLMs with different numbers of retrieval knowledge
snippets on the InfoSeek.

Model Entity Query
LLaVA-vl.5
- 4 snippets 20.68  23.41
- 8 snippets 20.84 23.34
RORA-VLM(ours)
- 4 snippets 2456  26.33
- 8 snippets 25.10 27.34

and from 27.34% to 23.41% on InfoSeek-Query.
We also compared pre-training on WikiWeb2M
with pre-training on ShareGPT4YV, a generic image-
caption dataset where captions primarily describe
image content without detailed entity informa-
tion. The results show that RORA-VLM pre-
trained on WikiWeb2M outperforms the same
model pre-trained on ShareGPT4V by 3.28% on
InfoSeek-Entity and 4.5% on InfoSeek-Query. This
highlights the importance of alignment between
the visual appearances and entity knowledge for
knowledge-intensive tasks.

E.2 Effect of the Number of Retrieved
Knowledge Snippets

We investigate the impact of the number of textual
knowledge snippets [ returned for each image dur-
ing the query-expanded text retrieval, and show the
results on the InfoSeek dataset in Table 8. LLaVA-
v1.5 with 4 or 8 snippets denotes the LLaVA-v1.5
fine-tuned with retrieval augmentation but without
visual token refinement and knowledge-intensive
pertaining. As shown in the table, expanding the
retrieval from top-4 to top-8 snippets results in
marginal improvements, demonstrating the less sen-
sitivity of our multimodal-reciprocal retrieval on
the number of retrieved knowledge snippets.

E.3 Effect of Truncation

We implement a truncation strategy for each re-
trieved knowledge snippet during tokenization to
construct the multimodal interleaved input, prevent-
ing longer preceding retrieved knowledge snippets
from dominating the limited input sequence space,
thereby ensuring that subsequent retrieved informa-
tion is preserved. However, this raises an important
question: how much valuable information is lost
due to this truncation?
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Figure 6: Position distribution of the target entity name
within retrieved knowledge snippets.

To assess the potential loss of critical informa-
tion, we examine instances where the retrieved
knowledge snippets explicitly mention the target
entity name. We count the number of tokens that
appear before this mention and visualize the po-
sitional distribution of key information (i.e., the
target entity name) within the retrieved snippets,
as shown in Figure 6. As depicted, in most cases,
the entity name appears within the first 200 tokens
of the retrieved passages, whereas our truncation
is applied at the 400-token mark for each passage.
This buffer ensures a high retention rate of valu-
able information, minimizing the risk of discarding
critical content due to truncation.

F Experiment Setup Details

F.1 Datasets

OVEN (Hu et al., 2023) OVEN is an entity
recognition dataset constructed by repurposing 14
existing datasets, comprising over 5 million in-
stances. All labels in OVEN are mapped onto a
unified label space of Wikipedia entities. Each in-
stance consists of an entity image paired with its
corresponding entity name. The tasks in OVEN re-
quire vision-language models (VLMs) to recognize
visual entities from a pool of six million possible
Wikipedia entities.

InfoSeek (Chen et al., 2023d) InfoSeek is
a large-scale visual question answering (VQA)
dataset focused on knowledge-seeking queries. It
consists of over 1.35 million image-text pairs, each
posing various questions about objects, scenes, and
actions that require external knowledge—such as
factual information—rather than solely relying on
the visual content.



Encyclopedic-VQA (Mensink et al., 2023)
Encyclopedic-VQA is a knowledge-intensive VQA
dataset containing over 221,000 image-text in-
stances that require deep reasoning and access to
external knowledge. It is well-suited for evaluating
a model’s ability to answer questions that extend
beyond the image content.

F.2 Baselines

Baselines We compare our framework with
several state-of-the-art vision-language models.
LLaVA-vl.5 (Liu et al., 2023a) integrates pre-
trained visual and language models for strong
performance in multimodal tasks, while LLaVA-
v1.6 (Liu et al., 2024) introduces improved fine-
tuning techniques. PaLLI-17B (Chen et al., 2023c)
utilizes a 17-billion-parameter architecture, ex-
celling in image captioning and visual question
answering, with PalLI-X (Chen et al., 2023b)
improving performance on vision-language tasks
by scaling up the model size and incorporat-
ing a high-capacity visual encoder. BLIP-2 (Li
et al., 2023) introduces efficient visual ground-
ing through a Q-former, and InstructBLIP (Dai
et al., 2023) enhances it for instruction-following
tasks. CLIP2CLIP (Hu et al., 2023) leverages a
CLIP-based model for improved image caption-
ing. Recent work Wiki-LLaVA (Caffagni et al.,
2024) is designed for entity-centric question an-
swering, aligning visual data with external knowl-
edge from Wikipedia. PreFLMR (Lin et al., 2024)
introduces a robust multimodal retriever pre-trained
on a vision-language corpus comprising over ten
million samples, enabling high-quality retrieval to
augment the generation processes. RA-CM3 (Ya-
sunaga et al., 2023) employs a cross-modality re-
trieval mechanism to access and leverage multi-
modal information to enhance the performance
of multimodal generation. To ensure a fair com-
parison, all the baseline models are fine-tuned
on the OVEN (Hu et al., 2023), InfoSeek (Chen
et al., 2023d), and Enc-VQA (Mensink et al., 2023)
datasets respectively, and then evaluated on the
corresponding tasks.

F.3 Implementation Details

We adopt LLaVA-v1.5-7B (Liu et al., 2023a) as
the backbone model for our RORA-VLM. In our
experiments, limited by the input sequence length,
we set the retrieval parameters as follows: k = 3
and ! = 3 for multimodal-reciprocal retrieval, and
m = 144 for our visual token refinement method.
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Multimodal-Reciprocal Retrieval

Data Source
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Input Image Input Query

In which year was
this building built?
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Entity from Stage-1: Knowledge from Stage-2:

— Castle of - Built by the Dutch East
s Good Hope Sl India Company ...
s Jan van Riebeeck's
2 Cape Tt L
q “apeionn el arrival on 6 April ...
Fort {:E The fort was originally
Scratchley « built after the ...

Retriever output:

Built by the Dutch

Jan van Riebeeck's
East India Company arrival on 6 April

The fort was
originally built after
the ...

L J

Figure 7: Overview of the Multimodal-Reciprocal Re-
trieval

All models are trained using 8 NVIDIA H100
GPUs. Both pre-training and fine-tuning processes
follow the hyperparameters specified in the original
LLaVA (Liu et al., 2023a) setup, ensuring consis-
tency with previous work.

F.4 Schematic Diagram of the
Multimodal-Reciprocal Retrieval

We include Figure 7 to provide a more intuitive ex-
planation of our proposed Image-Anchored Entity
Retrieval and Query-Expanded Text Retrieval.

F.5 Schematic Diagram of the Visual Token
Refinement

We include Figure 8 to provide a more intuitive
explanation of the visual token refinement .



Query-oriented Visual Token Refinement " Refined Visual
Input Query Retrieved Entity Images Tokens

In which year was
this building built?

Figure 8: Overview of the Visual Token Refinement
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