
Towards the Resistance of Neural Network
Fingerprinting to Fine-tuning

Ling Tang
Shanghai Jiao Tong University

tling@sjtu.edu.cn

Yuefeng Chen
Alibaba Group

yuefeng.chenyf@alibaba-inc.com

Hui Xue
Alibaba Group

hui.xueh@alibaba-inc.com

Quanshi Zhang∗
Shanghai Jiao Tong University

zqs1022@sjtu.edu.cn

Abstract

This paper proves a new fingerprinting method to embed the ownership information
into a deep neural network (DNN) with theoretically guaranteed robustness to fine-
tuning. Specifically, we prove that when the input feature of a convolutional layer
only contains low-frequency components, specific frequency components of the
convolutional filter will not be changed by gradient descent during the fine-tuning
process, where we propose a revised Fourier transform to extract frequency compo-
nents from the convolutional filter. Additionally, we also prove that these frequency
components are equivariant to weight scaling and weight permutations. In this
way, we design a fingerprint module to embed the fingerprint information into
specific frequency components of convolutional filters. Preliminary experiments
demonstrate the effectiveness of our method. The source code has been released at
https://github.com/tling2000/watermark.

1 Introduction

Fingerprinting techniques have long been used to protect the copyright of digital content, including
images, videos, and audio [Nematollahi et al., 2017]. Recently, these techniques have been extended
to protect the intellectual property of neural networks. Fingerprinting a neural network is usually
conducted to implicitly embed the ownership information into the neural network. In this way, if a
neural network is stolen or further optimized, the ownership information embedded in the network
can be used to verify its true origin. Previous studies usually embedded the ownership information in
different ways. For example, Zeng et al. [2024] directly embedded the fingerprint into the network
parameters. Kim et al. [2023] used the classification results on a particular type of adversarial
examples as the backdoor fingerprint. Kirchenbauer et al. [2023] added a soft fingerprint to the
generation result.

However, one of the core challenges of neural network fingerprinting is the theoretically guaranteed
resistance to fine-tuning. When network parameters are changed during the fine-tuning process,
the fingerprint implicitly embedded in the parameters may be overwritten. Although many studies
[Uchida et al., 2017, Adi et al., 2018, Liu et al., 2021, Bansal et al., 2022, Kim et al., 2023, Yang
and Wu, 2024, Zeng et al., 2023, Zhang et al., 2024] have realized this problem and have tested the
resistance of their fingerprints to fine-tuning, or boosted the resistance in an engineering manner,

∗Quanshi Zhang is the corresponding author <zqs1022@sjtu.edu.cn>. He is with the School of Computer
Science, at the Shanghai Jiao Tong University, China.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/tling2000/watermark

Before
fine-tuning

After
fine-tuning

()

() =

=
…− =

Fingerprints: specific frequency components are
robust to fine-tuning

Extracting frequency components
from the convolutional filter

Convolution operation
on an input tensor Changes of the frequency

components after fine-tuning:

Figure 1: Overview of our theory. We prove that the specific frequency components3 F (uv)
W , which

are obtained by conducting a revised discrete Fourier transform T (·) on the convolutional filter W,
keep stable in the training process. Thus, these specific frequency components F (uv)

W are used as
robust fingerprints to fine-tuning.

there is no theoretically designed metric that is intrinsically resistant to fine-tuning in mathematics, to
the best of our knowledge.

To this end, the core challenge towards the resistance to fine-tuning is to explore an invariant term in
the neural network to fine-tuning, e.g., certain network parameters or some properties of network
parameters that are least affected during the fine-tuning process. Although Zeng et al. [2023] and
Zhang et al. [2024] have explored invariant terms w.r.t. weight scaling and weight permutations for
fingerprinting, the theoretically guaranteed invariant term to fine-tuning remains unsolved.

Therefore, in this study, we aim to discover and prove such an invariant term to fine-tuning. Specif-
ically, as Figure 2 shows, Tang et al. [2023] have found that the forward propagation through a
convolutional layer W⊗X+b ·1M×N can be reformulated as a specific vector multiplication between
frequency components F (uv)

W · F (uv)
X + δuvMNb in the frequency domain, where F (uv)

X denotes the
frequency component of the input feature X at frequency (u, v), which is extracted by conducting a
discrete Fourier transform, F (uv)

W denotes the frequency component2 of the convolutional filter W,
and b is the bias term.

Based on this, we prove that if the input feature X only contains the low-frequency components, then
specific frequency components of a convolutional filter F (uv)

W are stable w.r.t. network fine-tuning.
Additionally, we also prove that these specific frequency components2 exhibit equivariance to weight
scaling and weight permutations.

Therefore, as Figure 1 shows, we propose to use such frequency components3 F (uv)
W as the robust

fingerprint. Besides, the overwriting attack is another important issue for fingerprinting. To defend
the fingerprint from the overwriting attack, we introduce an additional loss to train the model, which
ensures that the overwriting of the fingerprint will significantly hurt the model’s performance.

The contribution of this study can be summarized as follows. (1) We discover and theoretically prove
that specific frequency components of a convolutional filter remain invariant during training and are
equivariant to weight scaling and weight permutations. (2) Based on the theory, we propose to encode
the fingerprint information into these frequency components, so as to ensure that the fingerprint is
robust to fine-tuning, weight scaling, and weight permutations. (3) Preliminary experiments have
demonstrated the effectiveness of the proposed method.

2 Related Work

The robustness of fingerprints has always been a key issue in the field of neural network fingerprinting.
In this paper, we limit our discussion to the fingerprint embedded in network parameters for the

2 The frequency component F (uv)
W of the convolutional filter is defined in Equation (4), which is extracted

by applying a revised discrete Fourier transform on the convolutional filter W. According to Theorem 3.1, the
frequency component F (uv)

W at frequency (u, v) represents the influence of the convolutional filter W on the
corresponding frequency component F (uv)

X extracted from the input feature X.
3 For clarity, we move low frequencies to the center of the spectrum map, and move high frequencies to the

corners of the spectrum map.

2

Table 1: Methods for model source tracing. “✓” indicates robustness, “✗” indicates lack of robustness,
“–” means that the attack is no applicable, and “NTD” means that there is no target design to defend
against the attack.

Method Robustness against attacks
Fine-tuning Permutation Scaling Overwriting Pruning Distillation

[Adi et al., 2018] NTD ✓ ✓ – No test NTD
[Jia et al., 2021] NTD ✓ ✓ – Tested ✓

[Bansal et al., 2022] Enhanced via noise training ✓ ✓ – No test ✓

[Kim et al., 2023] Enhanced via trigger confidence boosting ✓ ✓ – Tested ✓

[Gubri et al., 2024] NTD ✓ ✓ – No test NTD
[Szyller et al., 2021] – – – – – ✓

[Charette et al., 2022] – – – – – ✓

[Fan et al., 2019] Enhanced via fingerprint amplification – – ✓ Tested ✗

[Zhang et al., 2020] Enhanced via fingerprint amplification – – ✓ Tested ✗

[Uchida et al., 2017] Empirical, NTD ✗ ✗ ✗ Tested ✗

[Yang and Wu, 2024] Empirical, NTD ✓ ✓ – No test ✗

[Zeng et al., 2024] Empirical, NTD ✓ ✓ ✗ No test ✗

[Zhang et al., 2024] Empirical, NTD ✓ ✓ – Tested ✗

Ours Theoretically guaranteed ✓ ✓ ✓ No test ✗

protection of the DNN’s ownership information. Especially, we discuss previous methods under
attacks of fine-tuning, weight scaling, weight permutations, pruning, and distillation.

Weight scaling and weight permutations are typical attacking methods which change the fingerprint
by rearranging the network’s parameters. Therefore, Zeng et al. [2023] embedded the fingerprint
information into the multiplication of specific weight matrices, which were invariant to weight scaling
and weight permutations. Zhang et al. [2024] measured the CKA similarity Kornblith et al. [2019]
between the features of different layers in a DNN as the robust fingerprint towards weight scaling and
weight permutations.

Compared to the robustness to weight scaling and weight permutations, the robustness to fine-
tuning presents a more significant challenge. Up to now, there is no theoretically guaranteed robust
fingerprint to fine-tuning, to the best of our knowledge. Thus, many fingerprint techniques were
implemented in an engineering manner to defend the fine-tuning against attack. Liu et al. [2021]
selected network parameters, which did not change a lot during fine-tuning, to encode the fingerprint
information. Kim et al. [2023] used the classification results on a trigger set as the fingerprint and
improved robustness by increasing the classification confidence. Zeng et al. [2023] found that the
direction of the vector formed by all parameters was relatively stable during fine-tuning, so as to use
it as the fingerprint.

However, Chen et al. [2019], Aiken et al. [2021], Shafieinejad et al. [2021] and Xu et al. [2024]
showed that, despite various engineering defense methods, most fingerprints could still be effectively
removed from the neural network under certain fine-tuning settings.

Therefore, a theoretically certified robust fingerprint is of considerable value in both theory and
practice. To this end, Bansal et al. [2022] and Ren et al. [2023] proposed to use the classification
results on a trigger set as the fingerprint and proved that the classification accuracy was lower bounded
when the attacker did not change the network’s parameters by more than a distance in terms of lp-norm
(p > 1). These methods proved a safe range of parameter changes during fine-tuning, but they did not
propose an intrinsically robust fingerprint.

In contrast, we have proved a theoretically guaranteed robust fingerprint to fine-tuning, i.e., proving
that the convolutional filter’s specific frequency components2 keep stable during fine-tuning. We
summarize representative methods for model source tracing in Table 1.

3 Method

3.1 Preliminaries: reformulating the convolution in the frequency domain

In this subsection, we reformulate the forward propagation through a convolutional filter in the
frequency domain, i.e., Tang et al. [2023] have proven Theorem 3.1, showing that the convolution

3

(b)

(a)

⨂=

=

+

+$

DFTDFT

Figure 2: The convolution operation in the spatial domain
(a) can be reformulated as the vector multiplication in
the frequency domain (b)3.

operation can be reformulated as the vec-
tor multiplication in the frequency domain
as shown in Figure 2. Specifically, let
us focus on a convolutional filter with C
channels and a kernel size of K ×K. The
convolutional filter is parameterized by
weights W ∈ RC×K×K and the bias term
b ∈ R. Accordingly, we apply this filter to
an input feature X ∈ RC×M×N , and obtain
an output feature map Y ∈ RM′×N′

.
Y = W ⊗X+ b · 1M′×N′ , (1)

where ⊗ denotes the convolution oper-
ation. 1M′×N′ is an M ′ × N ′ matrix, in
which elements are all ones.

Background 1: notation for frequency components of the input feature and the output feature.
Before reformulating the convolution operation, we first introduce the notation for frequency com-
ponents. Given the input feature X ∈ RC×M×N and the output feature Y ∈ RM×N , we conduct the
two-dimensional DFT on each c-th channel X(c) ∈ RM×N of X and the output matrix Y to obtain the
frequency element G(c)

uv ∈ C and Huv ∈ C at frequency (u, v) as follows. C denotes the set of complex
numbers.

G(c)
uv =

M−1∑
m=0

N−1∑
n=0

X(c)
mne

−i(um
M

+ vn
N

)2π, Huv =

M−1∑
m=0

N−1∑
n=0

Ymne
−i(um

M
+ vn

N
)2π, (2)

where X
(c)
mn, Ymn ∈ R denote the elements of X(c) and Y at position (m,n), respectively.

For clarity, we can organize all frequency elements belonging to the same c-th channel to construct
a frequency spectrum matrix G(c) ∈ CM×N . Alternatively, we can also re-organize these frequency
elements at the same frequency (u, v) to form a frequency component vector F (uv)

X ∈ CC .

∀u, v, F (uv)
X =

[
G(1)

uv , G
(2)
uv , . . . , G

(C)
uv

]⊤
∈ CC , ∀c, G(c) =

G(c)
00 · · ·
...

. . .

 ∈ CM×N . (3)

Similarly, F (uv)
Y = Huv ∈ C represents the frequency component of the output feature Y at the

frequency (u, v).

Background 2: notation for frequency components of the convolutional filter. By following
[Tang et al., 2023], the frequency component2 F (uv)

W of the convolutional filter W ∈ RC×K×K at
frequency (u, v) is defined as follows, which is computed by conducting the revised discrete Fourier
transform Tuv(·) of frequency (u, v) on W.

∀u, v, F (uv)
W = Tuv(W) = [Q(1)

uv , Q
(2)
uv , . . . , Q

(C)
uv]⊤ ∈ Cc, (4)

where Q
(c)
uv =

∑K−1
t=0

∑K−1
s=0 W

(c)
ts ei(

ut
M

+ vs
N

)2π, W (c)
ts denotes the element at position (t, s) of the c-th

channel W (c) ∈ RK×K of W.

For all frequency components F (uv)
X ∈ CC , F (uv)

Y ∈ C and F (uv)
W ∈ CC , frequency (u, v) close to

(0, 0), (0, N − 1), (M − 1, 0), or (M − 1, N − 1) represents the low frequency, while frequency (u, v)
close to (M/2, N/2) is considered as the high frequency.

For notational convenience, we can use tensors FX ∈ CC×M×N and FW = T (W) ∈ CC×M×N to
denote the tensors of all frequency components of X and W.

FX =

F (00)
X · · ·
...

. . .

 ∈ CC×M×N , FW = T (W) =

F (00)
W · · ·
...

. . .

 ∈ CC×M×N . (5)

Reformulating the convolution operation in the frequency domain. Based on the above
notation, Tang et al. [2023] have proven that the forward propagation of the convolution operation in
Equation (1) can be reformulated as a vector multiplication in the frequency domain as follows.
Theorem 3.1.

Y =W ⊗X+ b · 1M×N ⇐⇒ F (uv)
Y = F (uv)

W · F (uv)
X + δuvMNb,

(Spatial domain) (Frequency domain)
(6)

4

where · denotes the scalar product of two vectors; δuv is defined as δuv = 1 if and only if u = v = 0,
and δuv = 0 otherwise. In particular, the convolution operation ⊗ is conducted with circular padding
Jain [1989] and a stride size of 1, which avoids changing the size of the output feature (i.e., ensuring
M ′ = M and N ′ = N).

3.2 Invariant frequency components of the convolutional filter

In this subsection, we aim to prove that frequency components of the convolutional filter F (uv)
W

at certain frequencies (u, v) are relatively stable during training. Additionally, these frequency
components are also equivariant to other attacks like weight scaling and weight permutations. In this
way, we can embed the fingerprints into these components to enhance their resistance to fine-tuning,
weight scaling, and weight permutations.

Proving specific frequency components of the filter are invariant towards fine-tuning. Specif-
ically, based on the forward propagation in the frequency domain formulated in Equation (6),
we prove that if the input feature X contains only the fundamental frequency components, i.e.,
∀(u, v) ̸= (0, 0),F (uv)

X = 0, then frequency components F (uv)
W at specific frequencies will not change

over the training process.

To prove the invariance of the frequency components towards fine-tuning, we decompose the entire
training process into massive steps of gradient descent optimization. Each step of gradient descent
optimization w.r.t. the loss function can be formulated as W′ = W − η ∂Loss

∂W
. Let F (uv)

W = Tuv(W)
denote the frequency component extracted from the filter W before the optimization, according to
Equation (4). Let F (uv)

W′ = Tuv(W − η ∂Loss
∂W

) denote the frequency component extracted from the
updated filter W′ after the step of gradient descent optimization.
Theorem 3.2. (The change of frequency components during training, proven in Appendix A.1)
The change of each frequency component F (uv)

W before and after a single-step gradient descent
optimization is reformulated as follows.

∆F (uv)
W = Tuv(W − η

∂Loss
∂W

)− Tuv(W) = F (uv)

W′ −F (uv)
W = −η

M−1∑
u′=0

N−1∑
v′=0

Auvu′v′
∂Loss

∂F (u′v′)
Y

· F (u′v′)
X ,

(7)

where Auvu′v′ =
sin(

K(u−u′)π
M

)

sin(
(u−u′)π

M
)

sin(
K(v−v′)π

N
)

sin(
(v−v′)π

N
)

· ei(
(K−1)(u−u′)

M
+

(K−1)(v−v′)
N)π ∈ C is a complex coeffi-

cient; F (u′v′)
X denotes the conjugate of F (u′v′)

X .

Corollary 3.3 shows that if the input feature X only contains the fundamental frequency component,
then the specific frequency components F (uv)

W keep unchanged over the training process. This is an
ideal case where the input feature only contains the fundamental frequency component, and u, v can
take non-integer values.
Corollary 3.3. (Invariant frequency components towards fine-tuning, proven in Appendix A.2) In
the training process, if the input feature X only contains the fundamental frequency component, i.e.,
∀(u, v) ̸= (0, 0),F (uv)

X = 0, then frequency components F (uv)
W at all the following frequencies keep

invariant.
∆F (uv)

W = 0, s.t. u =
iM

K
or v =

jN

K
, i, j ∈ {1, 2, . . . ,K − 1}. (8)

However, in real applications, the input feature usually contains low-frequency components, and
frequencies must be integers when conducting the DFT. Under these conditions, each element in
∆F (uv)

W is nearly zero at integer frequencies that are close to the frequencies specified above.
Proposition 3.4. If the input feature X only contains the low-frequency components, i.e., ∀(u, v) /∈
S low
r ,F (uv)

X = 0, s.t. S low
r = {(u, v)|u ∈ [0, r] ∪ [M − r,M), v ∈ [0, r] ∪ [N − r,N)}, then frequency

components F (uv)
W at all following frequencies keep relative stable during the training process.

∆F (uv)
W ≈ 0, s.t. u = ⌊ iM

K
⌉ or v = ⌊ jN

K
⌉, i, j ∈ {1, 2, . . . ,K − 1}, (9)

where ⌊x⌉ is used to round the real number x to the nearest integer; r is a positive integer (r ≤ 2).

Proving frequency components are equivariant to weight scaling. The scaling attack [Yan et al.,
2023] means scaling the weights of a convolutional layer by a constant a, and scaling the weights

5

Fingerprint module

Backbone of
the network

…

()

…

…0

Extracting the filters’ specific frequency
components as the fingerprint:

Stable

…

…

…

…
=

Convolution

Low-pass
Filtering

Figure 3: Architecture of the fingerprint module. The fingerprint module is connected in parallel
to the backbone of the neural network. We extract the specific frequency components3 from the
convolutional filters in the fingerprint module as the network’s fingerprint.

of the next convolutional layer by the inverse proportion 1/a. In this way, the model’s performance
will not be affected, but the fingerprint embedded in the weights usually will change. We prove
Theorem 3.5, which shows that the frequency components are equivariant to the scaling attack.
Theorem 3.5. (Equivariance towards weight scaling, proven in Appendix A.3) If we scale all weights
in the convolutional filter W by a constant a as W∗ = a ·W(a > 0), then the frequency components
of W∗ are equal to the scaled frequency components of W, as follows.

∀u, v, F (uv)
W∗ = a · F (uv)

W . (10)

Proving frequency components are equivariant to weight permutations. The permutation
attack [Yan et al., 2023] on the filters means permuting the filters and corresponding bias terms of a
convolutional layer, and then permuting the channels of every filter in the next convolutional layer
in the same order. Thus, the network’s outputs remain unaffected, while the fingerprint embedded
in the weights is altered. Theorem 3.6 proves the equivariance of the frequency components when
permuting convolutional filters.
Theorem 3.6. (Equivariance towards weight permutations, proven in Appendix A.4) Let us
consider a convolutional layer with D convolutional filters with D bis terms arranged as W =
[W1,W2, · · · ,WD] and b = [b1, b2, · · · , bD]. If we use a permutation π to rearrange the above
filters and bias terms as πW = [Wπ(1),Wπ(2), · · · ,Wπ(D)] and πb = [bπ(1), bπ(2), · · · , bπ(D)], where
[π(1), π(2), · · · , π(D)] is a random permutation of integers from 1 to D, then the frequency components
of πW are equal to the permuted frequency components of W, as follows.

∀π, u, v,
[
F (uv)

Wπ(1)
, · · · ,F (uv)

Wπ(D)

]
= π

[
F (uv)

W1
· · · F (uv)

WD

]
, (11)

where F (uv)
Wd

= Tuv(Wd) ∈ CC denotes the frequency components extracted from the d-th filter Wd

at frequency (u, v).

3.3 Using the invariant frequency components as the neural network’s fingerprint

In the last subsection, we prove that if the input feature only contains the low-frequency components,
the filter’s frequency components F (uv)

W at specific frequencies (u, v) keep stable during training.
Furthermore, these components exhibit equivariance to weight scaling and weight permutations.

Fingerprint module. All the above findings and proofs enable us to use the specific frequency
components as the fingerprint of the neural network. In this way, the fingerprint will be highly robust
to fine-tuning, weight scaling, and weight permutations. Specifically, as Figure 3 shows, we construct
the following fingerprint module Φ(X) to contain the fingerprint, which consists of a low-pass filter
Λ(·) and a convolutional layer with D convolutional filters W = [W1,W2, · · · ,WD] and D bias terms
b = [b1, b2, · · · , bD].

Φ(X) = [Y1, Y2, · · · , YD] , s.t. Yd = Wd ⊗ Λ(X) + bd · 1M×N , (12)

where the low-pass filtering operation Λ(·) preserves frequency components in X at low frequencies
in S low

r = {(u, v)|u ∈ [0, r] ∪ [M − r,M), v ∈ [0, r] ∪ [N − r,N)} (r ≤ 2) and removes all other
frequency components, i.e., setting ∀(u, v) /∈ S low

r ,F (uv)
X = 0. 1M×N is an M ×N matrix, in which

elements are all ones.

Setting invariant frequency components as the fingerprint. In this way, when we extract frequency
components F (uv)

Wd
from each d-th convolutional filter Wd in the fingerprint module Φ(X) based on

6

()

Frequency components at specific
frequencies are robust to finetuning.

(a)

A Filter Before
fine-tuning

(b)

Extracting a
channel of

After
fine-tuning

Frequency spectrum:
Features of specific
frequencies:

− =

A specific
revised DFT

=

Before
fine-tuning

After
fine-tuning

Figure 4: (a) We show the matrix of frequency components3 extracted from a single channel of the
convolutional filter. (b) Specific feature components are robust to fine-tuning.

Equation (4), we can consider the frequency components at the following frequencies in the set S′, as
the fingerprint. [

F (uv)
W1

,F (uv)
W2

, · · · ,F (uv)
WD

]
s.t. (u, v) ∈ S′, (13)

where S′ = {(u, v)|u = ⌊iM/K⌉ or v = ⌊jN/K⌉; i, j ∈ {1, 2, . . . ,K − 1}}. According to Proposi-
tion 3.4, the fingerprint will keep stable during training.

Implementation details. We notice that in the fingerprint module, the low-pass filter Λ(·) may hurt
the flexibility of feature representations. Therefore, as Figure 3 shows, the fingerprint module is
connected in parallel to the backbone architecture of the neural network. In this way, this design does
not significantly change the network’s architecture or seriously hurt its performance. Unless stated
otherwise, we set the integer r = 1, the kernel size K = 3, and the filter number D = 256.

Verifying the invariance towards fine-tuning. We conducted experiments to verify the invariance
of the fingerprint frequency components towards fine-tuning. We computed the average l2-norm
of the change of the frequency components Ed[∥∆F (uv)

Wd
∥], where ∆F (uv)

Wd
denotes the change of

the frequency components extracted from the d-th convolutional filter after fine-tuning. Please see
Appendix B.2 for more details. The experimental results are shown in Figure 5, indicating that the
frequency components used as the fingerprint are robust to fine-tuning.

Visualization of the fingerprint. Figure 4(a) shows the feature maps when we apply the inverse
discrete Fourier transform (IDFT) to each specific unit in the fingerprint feature components. Fig-
ure 4(b) shows the specific frequencies in the set S′ used as the fingerprint. Notably, the revised
transformation of the convolutional filter in Equation (4) is irreversible, so the feature maps can
illustrate features of specific frequencies that are affected by the selected frequency components2

F (uv)
W in the filter W.

3.4 Detecting the fingerprint

In this subsection, we introduce how to detect the fingerprint. We are given a source fingerprinted
DNN with a fingerprint module containing D convolutional filters [W1,W2, · · · ,WD] and a suspi-
cious DNN with a fingerprint module also containing D convolutional filters [W′

1,W
′, · · · ,W′

D]. We
aim to detect whether the suspicious DNN is obtained from the source DNN by fine-tuning, weight
scaling, or weight permutations.

Considering the permutation attack, the detection towards the frequency components should consider
the matching between the frequency components of different convolutional filters of the two DNNs,
i.e., we can definitely find a permutation [π(1), π(2), · · · , π(D)] to assign each d-th convolutional filter
Wd in the source DNN with the π(d)-th filter W′

π(d) in the suspicious DNN. Specifically, we use the
following fingerprint score ρ ∈ [0, 1] between two DNNs to identify the matching quality.

ρ = max
π

E(u,v)∈S′Ed

[
I(cos(F (uv)

Wd
,F (uv)

W′
π(d)

) ≥ τ)

]
, (14)

where I(·) denotes an indicator function that returns 1 if cos(F (uv)
Wd

,F (uv)

W′
π(d)

) ≥ τ , and returns 0

otherwise. cos(F (uv)
Wd

,F (uv)

W′
π(d)

) denotes the cosine similarity4 of the frequency components. τ is a

threshold, and we set τ = 0.99 in this paper unless otherwise stated. Thus, we can use the fingerprint

4The cosine similarity between two complex vectors lies in the range [−1, 1], where larger values indicate
higher similarity. Please see Appendix C.1 for details.

7

ImageNette CIFAR-10 Caltech-101

Examples of robust frequency components

(a) (b)

0.08

0.06

0.04

0.02

0.00

0.3

0.0

0.2

0.1

ImageNette CIFAR-10 Caltech-101 -n
or

m
 o

f t
he

 c
ha

ng
e

-n
or

m
 o

f t
he

 c
ha

ng
e

Figure 5: Significance of the change of frequency components3 after fine-tuning. The red color
indicates a high l2-norm of the change of the frequency component at (u, v), given as Ed[∥∆F (uv)

Wd
∥],

which is averaged across all filters. (a) The results for AlexNet fine-tuned on the ImageNette, CIFAR-
10, and Caltech-101 datasets. (b) The results for ResNet-18 fine-tuned on the same datasets.

score ρ to determine whether the suspicious network originates from the source network by checking
ρ > t, where the setting of threshold t will be introduced in Section 4.

3.5 Learning towards the overwriting attack

Another challenge is the resistance of the fingerprint to the overwriting attack. Given the fingerprint
module’s architecture, if the attacker has obtained the authority to edit its parameters, then he can
overwrite the weights W in the fingerprint module with entirely new values to change the fingerprint.

Let us consider a DNN for the classification of n categories. To defend the overwriting attack,
the basic idea is to construct the (n + 1)-th category as a pseudo category besides the existing n
categories. If the network is under an overwriting attack, then the neural network is trained to classify
all samples into the pseudo category. Thus, the neural network’s vulnerability to overwriting attacks
can effectively prevent attacker from conducting such attacks to the neural network, i.e., the attacker
would not obtain a high-performance network without the fingerprint. Therefore, we train the network
by adding an additional loss Lattack, which pushes the attacked network to classify all samples into the
pseudo category, to the standard cross-entropy loss LCE for multi-category classification.

L(W,b, θ|x) = LCE(W,b, θ|x) + Lattack(W,b, θ|x)

=−
n∑

k=1

p(y = k|x)log q(y = k|x;W, b, θ)− λ · log q(y = n+ 1|x;W+ ϵ, b, θ),
(15)

where x denotes an input sample, and y denotes its corresponding label; θ denotes the DNN’s
parameters. q(y = k|x;W,b, θ) denotes the classification probability predicted by the DNN. p(y =
k|x) is the ground truth probability. The scalar weight λ balances the influence of LCE and Lattack.

In the above loss function, we add a random noise5 ϵ to the parameters W in the fingerprint module
to mimic the state of the neural network with an overwritten fingerprint. To enhance the module’s
sensitivity to such attacks, we do not completely overwrite the parameters but add random noise.

Ablation studies. We conducted an ablation experiment to evaluate the effectiveness of the newly
added loss term Lattack. We compared the classification accuracy of the network without the attack
and the classification accuracy under the attack to analyze the performance decline of the network
towards the overwriting attack. Please see Appendix B.1 for results and more details. The results
indicated that the loss term Lattack made the fingerprint more resistant to overwriting attacks.

4 Experiments

Verifying the robustness towards the combined attacks. We conducted experiments to compare
the proposed fingerprint with other competing methods for model source tracing under combined
attacks, where the permutation attack, the scaling attack, and the fine-tuning attack were applied
sequentially. Specifically, let us consider a source DNN, denoted by Msource, and a set of suspicious
DNNs, denoted as {M1,M2, · · · }. Some suspicious DNNs were unrelated to the source DNN
Msource, while others were obtained by sequentially applying the permutation attack, the scaling
attack, and the fine-tuning attack6 to Msource. Then, for each pair of a source DNN Msource and a

5The magnitude and other specific settings of the noise ϵ will be introduced in Appendix B.1.
6Specifically, filters of all convolutional layers were first permuted, then scaled, and the DNN was finally

fine-tuned on a new dataset. Please see Appendix C.2 for technical details.

8

Table 2: Classification accuracy (%) for determining whether a suspicious model originates from a
source model.

Methods Fine-tuning set CIFAR-10 Imagenette

Learning rate 1 10−1 10−2 10−3 10−4 1 10−1 10−2 10−3 10−4

RS ([Bansal et al., 2022]) 51.1 100.0 100.0 100.0 100.0 63.3 100.0 100.0 100.0 100.0

MW ([Kim et al., 2023]) 50.0 54.4 95.0 100.0 100.0 51.1 50.0 100.0 100.0 100.0

ICS ([Zeng et al., 2024]) 56.7 60.6 80.00 100.0 100.0 61.1 60.6 88.9 99.4 100.0

CKA ([Zhang et al., 2024]) 55.0 57.2 80.0 100.0 100.0 55.6 58.3 100.0 100.0 100.0

Ours 90.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

suspicious DNN Mi, if the fingerprint score ρ exceeded a threshold t (ρ > t), then we considered
these two DNNs to be of the same origin; otherwise not.

We compared our method with the following four competing fingerprinting methods or model source
tracing methods. The first two methods were Random Smoothing (RS) [Bansal et al., 2022] and
Marginal-based Watermarking (MW) [Kim et al., 2023], which used the classification results on the
trigger set as the watermark. The inference scores of the two methods were defined as the trigger set
accuracy of the suspicious DNN Mi, denoted by ρRS and ρMW, respectively. The third method was
Cosine Similarity of Invariant Terms (ICS) [Zeng et al., 2024], which constructed an invariant term
derived from the product of two-layer weights. The inference score ρICS was defined as the cosine
similarity of the invariant terms of Msource and Mi (please see Appendix C.3 for technical details).
The fourth method was Centered Kernel Alignment (CKA) [Zhang et al., 2024], which matched
intermediate features as fingerprints via CKA similarity. The inference score ρCKA was defined as
the CKA similarity of the intermediate features of Msource and Mi (please see Appendix C.4 for
technical details). Then, each method identified that a suspicious DNN Mi originated from a source
DNN Msource by checking whether the inference score exceeded a threshold t. The threshold t was
determined as the one that maximized the accuracy of model source tracing. For fair comparison,
all these competing methods were evaluated on the same set of source DNNs and suspicious DNNs
in the same way. The source DNNs with the ResNet-18 [He et al., 2016] architecture were trained
on CIFAR-100 [Krizhevsky et al., 2009] with different random seeds. The fingerprint module was
connected to the second convolutional layer of the second residual block.

Table 2 reports the accuracy of model source tracing achieved by our method under combined attacks.
Our method achieved the highest accuracy of model source tracing across all datasets and different
learning rates, especially when the learning rate was large. These results successfully verified the
robustness of our method against the combined attacks of permutation, scaling, and fine-tuning.

Verifying the robustness towards the individual attacks. We conducted a set of experiments
to separately verify the robustness of the fingerprint against the individual attacks, including the
fine-tuning attack, the permutation attack, and the scaling attack. We applied each specific attack to
a fingerprinted neural network and compared the fingerprint scores ρ in Equation (14) before and
after the attack (please see Appendix B.3 for results and more details). The results verified that the
proposed fingerprint was robust against the fine-tuning attack, the permutation attack, and the scaling
attack when these attacks were applied individually.

5 Acknowledgements

This work is partially supported by the National Science and Technology Major Project
(2021ZD0111602), the National Nature Science Foundation of China (92370115, 62276165), and
Shanghai Natural Science Foundation (24ZR1491700). It is also partially supported by Alibaba
Group.

6 Conclusion

In this paper, we discover and theoretically prove that specific frequency components of a convo-
lutional filter are invariant to model fine-tuning, and are equivariant to weight scaling and weight
permutations. Therefore, we propose to use these frequency components as the network’s fingerprint

9

to embed the ownership information so as to obtain a theoretically guaranteed robustness to the com-
bined attacks of permutation, scaling, and fine-tuning. Additionally, to defend against the overwriting
attack, we add an additional loss term during training to make sure that the network’s performance
drops significantly under the overwriting attack. Preliminary experiments have demonstrated the
effectiveness of the proposed method.

This paper proves an ideal case where the fingerprint is exactly invariant to fine-tuning. Note that in
real applications, the input feature contains low-frequency components, and the frequencies must
be integers, making the fingerprint approximately invariant, rather than exactly unchanged. A more
idealized setting can be achieved when the feature map size is large or the feature map size is
divisible by the kernel size. Nonetheless, our experiments conducted on real networks demonstrate
the robustness of the fingerprint even when the ideal conditions are not strictly satisfied.

References
Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your weakness into a

strength: Watermarking deep neural networks by backdooring. In 27th USENIX security symposium (USENIX
Security 18), pages 1615–1631, 2018.

William Aiken, Hyoungshick Kim, Simon Woo, and Jungwoo Ryoo. Neural network laundering: Removing
black-box backdoor watermarks from deep neural networks. Computers & Security, 106:102277, 2021.

Arpit Bansal, Ping-yeh Chiang, Michael J Curry, Rajiv Jain, Curtis Wigington, Varun Manjunatha, John P
Dickerson, and Tom Goldstein. Certified neural network watermarks with randomized smoothing. In
International Conference on Machine Learning, pages 1450–1465. PMLR, 2022.

Laurent Charette, Lingyang Chu, Yizhou Chen, Jian Pei, Lanjun Wang, and Yong Zhang. Cosine model
watermarking against ensemble distillation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 9512–9520, 2022.

Xinyun Chen, Wenxiao Wang, Yiming Ding, Chris Bender, Ruoxi Jia, Bo Li, and Dawn Song. Leveraging
unlabeled data for watermark removal of deep neural networks. In ICML workshop on Security and Privacy
of Machine Learning, pages 1–6, 2019.

Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethinking deep neural network ownership verification:
Embedding passports to defeat ambiguity attacks. Advances in neural information processing systems, 32,
2019.

Li Fei-Fei, Robert Fergus, and Pietro Perona. One-shot learning of object categories. IEEE transactions on
pattern analysis and machine intelligence, 28(4):594–611, 2006.

Martin Gubri, Dennis Ulmer, Hwaran Lee, Sangdoo Yun, and Seong Joon Oh. Trap: Targeted random adversarial
prompt honeypot for black-box identification. arXiv preprint arXiv:2402.12991, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

Anil K Jain. Fundamentals of digital image processing. Prentice-Hall, Inc., 1989.

Hengrui Jia, Christopher A Choquette-Choo, Varun Chandrasekaran, and Nicolas Papernot. Entangled water-
marks as a defense against model extraction. In 30th USENIX security symposium (USENIX Security 21),
pages 1937–1954, 2021.

Byungjoo Kim, Suyoung Lee, Seanie Lee, Sooel Son, and Sung Ju Hwang. Margin-based neural network
watermarking. In International Conference on Machine Learning, pages 16696–16711. PMLR, 2023.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A watermark
for large language models. In International Conference on Machine Learning, pages 17061–17084. PMLR,
2023.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural network
representations revisited. In International conference on machine learning, pages 3519–3529. PMLR, 2019.

Ken Kreutz-Delgado. The complex gradient operator and the cr-calculus. arXiv preprint arXiv:0906.4835, 2009.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

10

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. Advances in neural information processing systems, 25, 2012.

Hanwen Liu, Zhenyu Weng, and Yuesheng Zhu. Watermarking deep neural networks with greedy residuals. In
ICML, pages 6978–6988, 2021.

Mohammad Ali Nematollahi, Chalee Vorakulpipat, and Hamurabi Gamboa Rosales. Digital watermarking.
Springer, 2017.

Jiaxiang Ren, Yang Zhou, Jiayin Jin, Lingjuan Lyu, and Da Yan. Dimension-independent certified neural network
watermarks via mollifier smoothing. In International Conference on Machine Learning, pages 28976–29008.
PMLR, 2023.

Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li, and Florian Kerschbaum. On the robustness of
backdoor-based watermarking in deep neural networks. In Proceedings of the 2021 ACM workshop on
information hiding and multimedia security, pages 177–188, 2021.

Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and N Asokan. Dawn: Dynamic adversarial watermarking of
neural networks. In Proceedings of the 29th ACM International Conference on Multimedia, pages 4417–4425,
2021.

Ling Tang, Wen Shen, Zhanpeng Zhou, Yuefeng Chen, and Quanshi Zhang. Defects of convolutional decoder
networks in frequency representation. In International Conference on Machine Learning, pages 33758–33791.
PMLR, 2023.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks into deep
neural networks. In Proceedings of the 2017 ACM on international conference on multimedia retrieval, pages
269–277, 2017.

Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muhao Chen. Instructional
fingerprinting of large language models. arXiv preprint arXiv:2401.12255, 2024.

Yifan Yan, Xudong Pan, Mi Zhang, and Min Yang. Rethinking {White-Box} watermarks on deep learning
models under neural structural obfuscation. In 32nd USENIX Security Symposium (USENIX Security 23),
pages 2347–2364, 2023.

Zhiguang Yang and Hanzhou Wu. A fingerprint for large language models. arXiv preprint arXiv:2407.01235,
2024.

Boyi Zeng, Lizheng Wang, Yuncong Hu, Yi Xu, Chenghu Zhou, Xinbing Wang, Yu Yu, and Zhouhan Lin. Huref:
Human-readable fingerprint for large language models. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2023.

Boyi Zeng, Lizheng Wang, Yuncong Hu, Yi Xu, Chenghu Zhou, Xinbing Wang, Yu Yu, and Zhouhan Lin. Huref:
Human-readable fingerprint for large language models. Advances in Neural Information Processing Systems,
37:126332–126362, 2024.

Jie Zhang, Dongdong Chen, Jing Liao, Weiming Zhang, Gang Hua, and Nenghai Yu. Passport-aware normal-
ization for deep model protection. Advances in Neural Information Processing Systems, 33:22619–22628,
2020.

Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang, Yong Liu, Yu Qiao, and Jing Shao. Reef: Representation
encoding fingerprints for large language models. arXiv preprint arXiv:2410.14273, 2024.

11

A Proofs of our theoretical findings

We first introduce an important equation, which is widely used in the following proofs.

Lemma A.1. Given N complex numbers, einθ, n = 0, 1, . . . , N − 1, the sum of these N complex
numbers is given as follows.

∀θ ∈ R,
N−1∑
n=0

einθ =
sin(Nθ

2)

sin(θ2)
ei

(N−1)θ
2 (16)

Specifically, when Nθ = 2kπ, k ∈ Z, −N < k < N , we have

∀θ ∈ R,
N−1∑
n=0

einθ =
sin(Nθ

2)

sin(θ2)
ei

(N−1)θ
2 = Nδθ; s.t. Nθ = 2kπ, k ∈ Z,−N < k < N,

where δθ =

{
1, θ = 0

0, otherwise

(17)

We prove Lemma A.1 as follows.

Proof. First, let us use the letter S ∈ C to denote the term of
∑N−1

n=0 einθ.

S =

N−1∑
n=0

einθ

Therefore, eiθS is formulated as follows.

eiθS =

N∑
n=1

einθ ∈ C

Then, S can be computed as S = eiθS−S
eiθ−1

. Therefore, we have

S =
eiθS − S

eiθ − 1

=

∑N
n=1 e

inθ −
∑N−1

n=0 einθ

eiθ − 1

=
eiNθ − 1

eiθ − 1

=
ei

Nθ
2 − e−iNθ

2

ei
θ
2 − e−i θ

2

ei
(N−1)θ

2

=
(ei

Nθ
2 − e−iNθ

2)/2i

(ei
θ
2 − e−i θ

2)/2i
ei

(N−1)θ
2

=
sin(Nθ

2)

sin(θ2)
ei

(N−1)θ
2

Therefore, we prove that
∑N−1

n=0 einθ =
sin(Nθ

2)

sin(θ
2)

ei
(N−1)θ

2 .

Then, we prove the special case that when Nθ = 2kπ, k ∈ Z,−N < k < N ,
∑N−1

n=0 einθ = Nδθ ={
N, θ = 0

0, otherwise
, as follows.

12

When θ = 0, we have

lim
θ→0

N−1∑
n=0

einθ = lim
θ→0

sin(Nθ
2)

sin(θ2)
ei

(N−1)θ
2

= lim
θ→0

sin(Nθ
2)

sin(θ2)

= N

When θ ̸= 0, and Nθ = 2kπ, k ∈ Z,−N < k < N , we have

N−1∑
n=0

einθ =
sin(Nθ

2)

sin(θ2)
ei

(N−1)θ
2

=
sin(kπ)

sin(kπN)
ei

(N−1)kπ
N

= 0

In the following proofs, the following two equations are widely used, which are derived based on
Lemma A.1.

M−1∑
m=0

N−1∑
n=0

e−i(um
M + vn

N)2π =

M−1∑
m=0

eim(−u2π
M)

N−1∑
n=0

ein(−
v2π
N)

= (Mδ−u2π
M

)(Nδ− v2π
N

) //According to Equation (17)

=

{
MN, u = v = 0

0, otherwise

To simplify the representation, let δuv be the simplification of δ−u2π
M

δ− v2π
N

in the following proofs.
Therefore, we have

M−1∑
m=0

N−1∑
n=0

e−i(um
M + vn

N)2π = MNδuv =

{
MN, u = v = 0

0, otherwise
(18)

Similarly, we derive the second equation as follows.

M−1∑
m=0

N−1∑
n=0

ei(
(u−u′)m

M
+

(v−v′)n
N

)2π =

M−1∑
m=0

eim(
(u−u′)2π

M
)
N−1∑
n=0

ein(
(v−v′)2π

N
)

= MNδ (u−u′)2π
M

δ (v−v′)2π
N

//According to Equation (17)

= MNδu−u′δv−v′

=

{
MN, u′ = u; v′ = v

0, otherwise

(19)

A.1 Proof of Theorem 3.2

In this section, we prove Theorem 3.2 in the main paper, as follows.

13

Proof. According to the DFT and the inverse DFT, we can obtain the mathematical relationship
between G

(c)
uv and X

(c)
mn, and the mathematical relationship between Q

(c)
uv and W

(c)
ts , as follows.


G(c)

uv =

M−1∑
m=0

N−1∑
n=0

X(c)
mne

−i(um
M

+ vn
N

)2π

X(c)
mn =

1

MN

M−1∑
u=0

N−1∑
v=0

G(c)
uv e

i(um
M

+ vn
N

)2π


Q(c)

uv =

K−1∑
t=0

K−1∑
s=0

W
(c)
ts ei(

ut
M

+ vs
N

)2π

W
(c)
ts =

1

MN

M−1∑
u=0

N−1∑
v=0

Q(c)
uv e

−i(ut
M

+ vs
N

)2π

(20)

Based on Equation (20) and the derivation rule for complex numbers [Kreutz-Delgado, 2009], we can
obtain the mathematical relationship between ∂Loss

∂G
(c)
uv

and ∂Loss
∂X

(c)
mn

, and the mathematical relationship

between ∂Loss
∂Q

(c)
uv

and ∂Loss
∂W

(c)
ts

, as follows. Note that when we use gradient descent to optimize a real-

valued loss function Loss with complex variables, people usually treat the real and imaginary values,
a ∈ C and b ∈ C, of a complex variable (z = a + bi) as two separate real-valued variables, and
separately update these two real-valued variables. In this way, the exact optimization step of z
computed based on such a technology is equivalent to ∂Loss

∂z . Since X
(c)
mn and W

(l)[ker=d]
cts are real

numbers, ∂Loss

∂X
(c)
mn

= ∂Loss

∂X
(c)
mn

and ∂Loss

∂W
(c)
ts

= ∂Loss

∂W
(c)
ts

.


∂Loss

∂G
(c)
uv

=
1

MN

M−1∑
m=0

N−1∑
n=0

∂Loss

∂X
(c)
mn

e−i(um
M

+ vn
N

)2π

∂Loss

∂X
(c)
mn

=

M−1∑
u=0

N−1∑
v=0

∂Loss

∂G
(c)
uv

ei(
um
M

+ vn
N

)2π


∂Loss

∂Q
(c)

uv

=
1

MN

K−1∑
t=0

K−1∑
s=0

∂Loss

∂W
(c)
ts

ei(
ut
M

+ vs
N

)2π

∂Loss

∂W
(c)
ts

=

M−1∑
u=0

N−1∑
v=0

∂Loss

∂Q
(c)

uv

e−i(ut
M

+ vs
N

)2π

(21)

Let us conduct the convolution operation on the feature map X = [X(1), X(2), · · · , X(C)] ∈
RC×M×N , and obtain the output feature map Y ∈ RM×N as follows.

Ymn = b+

C∑
c=1

K−1∑
t=0

K−1∑
s=0

W
(c)
ts X

(c)
m+t,n+s (22)

Based on Equation (20) and Equation (21), and the derivation rule for complex numbers [Kreutz-
Delgado, 2009], the exact optimization step of Q(c)

uv in real implementations can be computed as

14

follows.

∂Loss

∂Q
(c)

uv

=
1

MN

K−1∑
t=0

K−1∑
s=0

∂Loss

∂W
(c)
ts

ei(
ut
M

+ vs
N

)2π //Equation (21)

=
1

MN

K−1∑
t=0

K−1∑
s=0

(
M−1∑
m=0

N−1∑
n=0

∂Loss
∂Y mn

·X(c)
m+t,n+s

)
ei(

ut
M

+ vs
N

)2π //Equation (22)

//Equation (20)

=
1

MN

K−1∑
t=0

K−1∑
s=0

(
M−1∑
m=0

N−1∑
n=0

∂Loss
∂Y mn

· 1

MN

M−1∑
u′=0

N−1∑
v′=0

G
(c)

u′v′e
−i(

u′(m+t)
M

+
v′(n+s)

N
)2π

)
ei(

ut
M

+ vs
N

)2π

=
1

MN

K−1∑
t=0

K−1∑
s=0

(
M−1∑
u′=0

N−1∑
v′=0

G
(c)

u′v′e
−i(u′t

M
+ v′s

N
)2π · 1

MN

M−1∑
m=0

N−1∑
n=0

∂Loss
∂Y mn

e−i(u′m
M

+ v′n
N

)2π

)
ei(

ut
M

+ vs
N

)2π

=
1

MN

K−1∑
t=0

K−1∑
s=0

(
M−1∑
u′=0

N−1∑
v′=0

G
(c)

u′v′
∂Loss

∂Hu′v′
e−i(u′t

M
+ v′s

N
)2π

)
ei(

ut
M

+ vs
N

)2π //Equation (21)

=
1

MN

K−1∑
t=0

K−1∑
s=0

M−1∑
u′=0

N−1∑
v′=0

G
(c)

u′v′
∂Loss
∂Hu′v′

ei(
(u−u′)t

M
+

(v−v′)s
N

)2π

=

M−1∑
u′=0

N−1∑
v′=0

G
(c)

u′v′
∂Loss
∂Hu′v′

· 1

MN

K−1∑
t=0

K−1∑
s=0

ei(
(u−u′)t

M
+

(v−v′)s
N

)2π

// Let Au′v′uv =

K−1∑
t=0

K−1∑
s=0

ei(
(u−u′)t

M
+

(v−v′)s
N

)2π

=
1

MN

M−1∑
u′=0

N−1∑
v′=0

G
(c)

u′v′
∂Loss
∂Hu′v′

where Au′v′uv can be rewritten as follows.

Au′v′uv =

K−1∑
t=0

K−1∑
s=0

ei(
(u−u′)t

M
+

(v−v′)s
N

)2π

=

K−1∑
t=0

ei
(u−u′)2π

M
t
K−1∑
s=0

ei
(v−v′)2π

N
s

=
sin(K(u−u′)π

M
)

sin((u−u′)π
M

)

sin(K(v−v′)π
N

)

sin((v−v′)π
N

)
· ei(

(K−1)(u−u′)
M

+
(K−1)(v−v′)

N
)π //According to Equation (16)

Based on the derived ∂Loss
∂Q

(c)
uv

∈ C , we can further compute gradients ∂Loss

∂(T
(l,uv)

)⊤
∈ CD×C as follows.

∂Loss

∂FW
(uv)

=
1

MN

M−1∑
u′=0

N−1∑
v′=0

Auvu′v′
∂Loss

∂F (u′v′)
Y

· F (u′v′)
X (23)

Let us use the gradient descent algorithm to update the convlutional weight W (c)
ts |n of the n-th epoch,

the updated frequency spectrum W
(c)
ts |n+1 can be computed as follows.

∀t, s, W
(c)
ts |n+1 = W

(c)
ts |n − η · ∂Loss

∂W
(c)

ts

where η is the learning rate. Then, the updated frequency spectrum T (l,uv)|n+1 computed based on
Equation (21) is given as follows.

15

∆Q(c)
uv = Q(c)

uv |n+1 −Q(c)
uv |n

=

K−1∑
t=0

K−1∑
s=0

W
(c)
ts |n+1e

i(ut
M + vs

N)2π −Q(c)
uv |n //Equation (20)

=

K−1∑
t=0

K−1∑
s=0

(W
(c)
ts |n − η · ∂Loss

∂W
(c)

ts

)ei(
ut
M + vs

N)2π −Q(c)
uv |n

= (

K−1∑
t=0

K−1∑
s=0

W
(c)
ts |nei(

ut
M + vs

N)2π −Q(c)
uv |n)− η

K−1∑
t=0

K−1∑
s=0

∂Loss

∂W
(c)

ts

ei(
ut
M + vs

N)2π

= −η

K−1∑
t=0

K−1∑
s=0

∂Loss

∂W
(c)

ts

ei(
ut
M + vs

N)2π //Equation (20)

= −ηMN
∂Loss

∂Q
(c)

uv

//Equation (21)

Therefore, we prove that any step on W
(c)
ts equals to MN step on Q

(c)
uv . In this way, the change of

frequency components F (uv)
W can be computed as follows.

∆F (uv)
W = −η

M−1∑
u′=0

N−1∑
v′=0

Auvu′v′
∂Loss

∂F (u′v′)
Y

· F (u′v′)
X (24)

A.2 Proof of Corollary 3.3

In this section, we prove Corollary 3.3 in Section 3 of the main paper, as follows.

Proof. According to Theorem 3.2, the change of the frequency components at frequencies (u, v) ∈ S
can be further derived as follows.

∆F (uv)
W = −η

M−1∑
u′=0

N−1∑
v′=0

Auvu′v′
∂Loss

∂F (u′v′)
Y

· F (u′v′)
X

= −ηAuv00
∂Loss

∂F (00)
Y

· F (00)
X //∀(u, v) ̸= (0, 0),F (uv)

X = 0

= −η
∂Loss

∂F (00)
Y

· F (00)
X ·

sin(Kuπ
M

)

sin(uπ
M

)

sin(Kvπ
N

)

sin(vπ
N
)

· ei(
(K−1)u

M
+

(K−1)v
N

)π

= −η
∂Loss

∂F (00)
Y

· F (00)
X · ei(

(K−1)iπ
K

+
(K−1)jπ

K
)π · sin(iπ)

sin(iπ/K)

sin(jπ)

sin(jπ/K)

//S = {(u, v) | u = iM/K or v = jN/K; i, j ∈ {1, 2, . . . ,K− 1}}
= 0 // sin(iπ) = 0

Therefore, we have proved the frequency components F (uv)
W at the frequencies in the set S keep

invariant.

A.3 Proof of Theorem 3.5

In this section, we prove Theorem 3.5 in Section 3 of the main paper, as follows.

16

Proof. The frequency components F (uv)
W∗ of the scaled filter W∗ = a ·W are computed as follows.

F (uv)
W∗ = [Q∗(1)

uv , Q∗(2)
uv , . . . , Q∗(C)

uv]⊤

= [

K−1∑
t=0

K−1∑
s=0

W
∗(1)
ts ei(

ut
M

+ vs
N

)2π,

K−1∑
t=0

K−1∑
s=0

W
∗(2)
ts ei(

ut
M

+ vs
N

)2π, · · · ,
K−1∑
t=0

K−1∑
s=0

W
∗(C)
ts ei(

ut
M

+ vs
N

)2π]

= [

K−1∑
t=0

K−1∑
s=0

a ·W (1)
ts ei(

ut
M

+ vs
N

)2π,

K−1∑
t=0

K−1∑
s=0

a ·W (2)
ts ei(

ut
M

+ vs
N

)2π, · · · ,
K−1∑
t=0

K−1∑
s=0

a ·W (C)
ts ei(

ut
M

+ vs
N

)2π]⊤

= a · [
K−1∑
t=0

K−1∑
s=0

W
(1)
ts ei(

ut
M

+ vs
N

)2π,

K−1∑
t=0

K−1∑
s=0

W
(2)
ts ei(

ut
M

+ vs
N

)2π, · · · ,
K−1∑
t=0

K−1∑
s=0

W
(C)
ts ei(

ut
M

+ vs
N

)2π]⊤

= a · [Q(1)
uv , Q

(2)
uv , . . . , Q

(C)
uv]⊤

= a · F (uv)
W

Thus, we have proved that the frequency components F (uv)
W∗ of the scaled filter are equal to the scaled

frequency components a · F (uv)
W of the original filter.

A.4 Proof of Theorem 3.6

In this section, we prove Theorem 3.6 in Section 3 of the main paper, as follows.

Proof. The frequency components [F (uv)
Wπ(1)

, · · · ,F (uv)
Wπ(D)

] of the permuted filters
[Wπ(1),Wπ(2), · · · ,Wπ(D)] are computed as follows.

[
F (uv)

Wπ(1)
, · · · ,F (uv)

Wπ(D)

]
=
[
Tuv(Wπ(1)), Tuv(Wπ(2)), · · · , Tuv(Wπ(D))

]
//Equation (4)

= π [Tuv(W1), Tuv(W2), · · · , Tuv(WD)]

= π
[
F (uv)

W1
, · · · ,F (uv)

WD

] (25)

The frequency components [F (uv)
Wπ(1)

, · · · ,F (uv)
Wπ(D)

] of the permuted filters
[Wπ(1),Wπ(2), · · · ,Wπ(D)] are equal to the permuated frequency components
π[F (uv)

W1
, · · · ,F (uv)

WD
].

B More experimental results

B.1 Ablation studies to evaluate the effectiveness of the newly added loss term

We conducted an ablation experiment to evaluate the effectiveness of the newly added loss term
Lattack, i.e., examining whether the performance of the neural network was significantly hurt under
the overwriting attack when the network was trained with the loss function L in Equation (15). We
compared the classification accuracy of the network without the attack and the classification accuracy
under the attack to analyze the performance decline of the network towards the overwriting attack.

We ran experiments of AlexNet [Krizhevsky et al., 2012] and ResNet-18 [He et al., 2016] on Caltech-
101, Caltech-256 [Fei-Fei et al., 2006] (license unknown), CIFAR-10 and CIFAR-100 [Krizhevsky
et al., 2009] (MIT License) for image classification tasks. For AlexNet, the fingerprint module
containing 256 convolutional filters was connected to the third convolutional layer. For ResNet-18,
the fingerprint module containing 256 convolutional filters was connected to the second convolutional
layer of the second residual block. The scalar weight λ was set to 5 × 10−4. The noise ϵ added to
the parameters in the fingerprint module was obtained by conducting the IDFT on a unit frequency
component at a random frequency, and the l2-norm of the noise ϵ was set to 0.5 times the l2-norm of

17

the weights. We trained the model using the SGD optimizer for 250 epochs, with a learning rate of
0.01 for the first 100 epochs and 0.001 for the remaining 150 epochs.

Table 3 shows the experimental results. We observe that if the network is trained with the loss
function L = LCE + Lattack in Equation (15), the classification accuracy significantly drops under
the overwriting attack. The results indicate that the newly introduced loss term effectively defends
the overwriting attack.

Table 3: Experimental results of the effectiveness of the newly added loss term Lattack. Baseline
denotes the test accuracy of a neural network normally trained without the fingerprint. With LCE +
Lattack denotes the test accuracy of a fingerprinted network trained with the loss function LCE +
Lattack, and With LCE denotes the test accuracy of a fingerprinted network trained without the added
loss term Lattack. The accuracy outside the bracket represents the accuracy of the network without
the overwriting attack, and the accuracy inside the bracket represents the accuracy of the network
under the overwriting attack.

Dataset Baseline (%) With LCE + Lattack (%) With LCE (%)

AlexNet ResNet-18 AlexNet ResNet-18 AlexNet ResNet-18

CIFAR-10 91.03 94.83 90.28 (43.55) 92.17 (72.26) 91.12 (91.12) 94.89 (94.89)
CIFAR-100 68.10 76.29 66.34 (36.93) 75.49 (41.18) 67.52 (67.52) 76.53 (76.53)
Caltech-101 66.46 70.10 62.15 (32.53) 67.14 (41.33) 67.84 (67.84) 69.87 (69.87)
Caltech-256 40.50 54.61 37.97 (15.37) 50.33 (18.13) 39.22 (39.22) 53.86 (53.86)

B.2 Verifying the invariance of the frequency components

We conducted the an experiment to verify the invariance of the proposed fingerprint towards fine-
tuning. Let us fine-tune a trained DNN with fingerprint module containing filters [W1,W2, · · · ,WD],
and obtain a fine-tuned DNN with filters [W′

1,W
′
2, · · · ,W′

D]. We computed the average the norm of
the change of the frequency components Ed[∥∆F (uv)

Wd
∥] to measure the invariance of the proposed

fingerprint, where ∆F (uv)
Wd

= F (uv)

W′
d
−F (uv)

Wd
denotes the change of the frequency components extracted

from the d-th convolutional filter.

We trained AlexNet and ResNet-18 on CIFAR-100, and then fine-tuned them on ImageNette (Apache
License 2.0), CIFAR-10 and Caltech-101 with the learning rate 0.01 for 50 epochs. All other
experimental settings remained the same as described in Section B.1. Figure 5 shows the results,
verifying that the fingerprint is invariant to fine-tuning.

B.3 Verifying the robustness towards fine-tuning attack, permutation attack, and scaling
attack (individually applied)

Verifying the robustness towards fine-tuning. We conducted experiments to verify the robustness
of the fingerprint against the fine-tuning attack. We applied the fine-tuning attack to a fingerprinted
neural network and compared the fingerprint scores ρ in Equation (14) before and after the attack.

We trained AlexNet and ResNet-18 on CIFAR-100, and then fine-tuned them on ImageNette, CIFAR-
10 and Caltech-101 with the learning rate 0.01 for 50 epochs. All other experimental settings remained
the same as described in Section B.1. Table 4 shows the results. The results verified that the proposed
fingerprint was robust against the fine-tuning attack.

Verifying the robustness towards scaling attack. We conducted experiments to verify the
robustness of the proposed fingerprint towards scaling attack. Given a fingerprinted DNN, we scaled
the parameters in the fingerprint module by a constant a(a > 0), and then detected the fingerprint
using the method introduced in Section 3.4. We used the fingerprint score DR to show the robustness
of the fingerprint towards weight scaling. We trained AlexNet on CIFAR-10, CIFAR-100, Caltech-101
and Caltech-256. All other experiment settings remained the same as described in Section 3.5. Table 5
shows the Experimental results. All the fingerprint scores are 1.00, showing that our method is highly
robust to the weight scaling attack.

Verifying the robustness towards permutation attack. We conducted experiments to verify the
robustness of the proposed fingerprint towards permutation attack. Given a fingerprinted DNN, we

18

Table 4: Experimental results of verifying the robustness towards fine-tuning. Baseline denotes the
accuracy of a neural network normally trained without the fingerprint. Ours denotes the accuracy of a
fingerprinted network. The score inside the bracket denotes the fingerprint score of the fine-tuned
DNN. Accuracy outside the bracket denotes test accuracy on the dataset.

Source Target Baseline Ours

AlexNet ResNet-18 AlexNet ResNet-18

CIFAR-100 ImageNette 78.92% 83.36% 80.48% (1.00) 86.23% (1.00)
CIFAR-10 88.90% 93.03% 89.65% (1.00) 94.12% (1.00)

Caltech-101 70.02% 76.80% 72.11% (1.00) 79.98% (1.00)

Table 5: Experimental results of verifying the robustness towards scaling attack. The score outside
the bracket denotes the fingerprint score without the weight scaling attack, and the score inside the
bracket denotes the fingerprint score under the weight scaling attack.

a CIFAR-10 CIFAR-100 Caltech-101 Caltech-256

10 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
100 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

permuted the filters in the fingerprint module with a random permutation π, and then detected the
fingerprint using the method introduced in Section 3.4. We used the fingerprint score DR to show the
robustness of the fingerprint towards weight scaling. We trained AlexNet on CIFAR-10, CIFAR-100,
Caltech-101 and Caltech-256. All other experiment settings remained the same as described in
Section 3.5. Table 5 shows the Experimental results. All the fingerprint scores are 100%, showing
that our method is highly robust to the weight permutation attack.

Table 6: Experimental results of verifying the robustness towards weight permutations. The score
outside the bracket denotes the fingerprint score without the weight permutation attack, and the score
inside the bracket denotes the fingerprint score under the weight permutation attack.

π CIFAR-10 CIFAR-100 Caltech-101 Caltech-256

π1 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
π2 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

B.4 Compute resources

All DNNs can be trained within 6 hours on a single NVIDIA GeForce RTX 3090 GPU (with 24G
GPU memory).

C Other details

C.1 Details of the cosine similarity between two complex vectors

The cosine similarity cos(z1, z2) between two complex vectors z1 and z2 is defined as Re(z1·z2)
∥z1∥∥z2∥

, where
z1 denotes the conjugate of z1, ∥z1∥ denotes the magnitude of z1, and Re(·) represents the real part
of a complex number. The cosine similarity, which ranges from [−1, 1], measures the directional
similarity between two complex vectors. When cos(z1, z2) = 1, z1 and z2 have the same direction,
while when cos(z1, z2) = −1, z1 and z2 have opposite directions.

C.2 Details of the combined attacks

We sequentially applying three types of attacks, including permutation, scaling, and fine-tuning on
the source model.

Permutation attack. In this step, for each ResNet block in the network, we randomly permute the
output channels of the first convolutional layer. To preserve the functional integrity of the model, the

19

input channels of the subsequent convolutional layer within the same block are permuted using the
same permutation order.

Scaling attack. Next, we apply a layer-wise scaling transformation. Specifically, the parameters
of the first convolutional layer in each ResNet block are multiplied by a randomly sampled scaling
factor from the range [1/10, 10]. To compensate for this modification and maintain the original output
behavior, the parameters of the following convolutional layer are multiplied by the reciprocal of the
same scaling factor.

Fine-tuning attack. Finally, we perform fine-tuning on the perturbed model using two datasets:
CIFAR-10 and Imagenette. Each model is fine-tuned for 50 epochs under the same training settings
to evaluate the effect of task adaptation on fingerprint invariance.

C.3 Details of inference score for ICS

To calculate the inference score ρICS for ICS, we randomly select 100 images from the CIFAR-100
dataset as probing inputs. Each image is sequentially passed through the first and second convolutional
layers within the second residual block of a ResNet-18 model. That is, the input first undergoes
convolution with the filters of the first convolutional layer, and the output is then passed to the second
convolutional layer. This fixed convolutional pipeline ensures that the final output is invariant to
channel permutations and reciprocal scalings between these two layers.

For each input image, we obtain the final feature map output from the second convolutional layer,
which is then element-wise multiplied with the original input image. The resulting product is flattened
into a one-dimensional vector. This process is repeated for all 100 CIFAR-100 samples, and the
resulting vectors are concatenated to form a single reference fingerprint vector for the model. To
compute the inference score ρICS between two models, we repeat the above process for both models
and calculate the cosine similarity between their respective fingerprint vectors.

C.4 Details of inference score for CKA

To calculate the inference score ρCKA for CKA, we randomly select m = 100 images from the
CIFAR-100 dataset. For each image, we extract the feature map from the second convolutional layer
in the second residual block of ResNet-18. These feature maps are flattened and stacked into two
matrices Z,Z′ ∈ R100×d, corresponding to the source and suspicious models.

We compute the RBF kernel matrices K and K ′ as:

Kij = exp

(
−|zi − zj|2

2σ2

)
, K ′ij = exp

(
−
|z′i − z′j |2

2σ2

)
, (26)

The CKA score is then computed as:

ρCKA = CKA(K,K ′) =
HISC(K,K ′)√

HISC(K,K) · HISC(K ′,K ′)
, (27)

where HISC(K,K) = 1
(m−1)2 tr(KHKH), H = I − 1

m11⊤.

D Societal impacts

Potential positive societal impacts. This work helps protect the ownership of deep learning models
by adding a fingerprint that stays stable even after fine-tuning. This means if a model is stolen or
changed, the owner can still prove it belongs to them. This can help stop model theft and make AI
development more fair and safe. It can also make it easier to track where a model comes from, which
is useful in real-world use, like in business or research.

Potential negative societal impacts. However, this technique could also cause some problems. For
example, it might be used to secretly track how a model is used, which could harm user privacy or
limit open research. It may also lead to arguments about who really owns a model, especially when
people work together or use open-source models. In some cases, this method might make it harder
for others to reuse or change a model freely.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims presented in the abstract and introduction accurately represent
the scope and contributions of our work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Indeed, the limitations of our work are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

21

Justification: We provide the assumptions in the main paper, and the proof for all theorems
in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: While the main contribution of this paper is theoretical, we include compre-
hensive experimental details in Appendix B to ensure reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The funding of this research does not allow us to release the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, the paper specifies all necessary training and test details, including data
splits, hyperparameters, optimizer type, and learning rate schedules. Further information is
provided in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The primary contribution of this paper is theoretical—we prove that specific
frequency components remain invariant during training and ues them as the robust finger-
print. Nevertheless, to support our claims empirically, we conducted extensive comparison
experiments across a large number of randomly initialized and trained networks, as shown
in Section 4, which demonstrate consistent trends across settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the compute resources needed in Appendix B.4, including the type
of GPU and the approximate amount of time for training DNNs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive and negative societal impacts in
Section D. It highlights the benefits of improved ownership protection and model traceability,
as well as the potential risks of misuse.

Guidelines:

24

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All models and datasets used in this paper are already publicly available.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper for all datasets. The name of the license is included
for each dataset in Appendix B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

25

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research involving human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

26

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Method
	Preliminaries: reformulating the convolution in the frequency domain
	Invariant frequency components of the convolutional filter
	Using the invariant frequency components as the neural network's fingerprint
	Detecting the fingerprint
	Learning towards the overwriting attack

	Experiments
	Acknowledgements
	Conclusion
	Proofs of our theoretical findings
	Proof of Theorem 3.2
	Proof of Corollary 3.3
	Proof of Theorem 3.5
	Proof of Theorem 3.6

	More experimental results
	Ablation studies to evaluate the effectiveness of the newly added loss term
	Verifying the invariance of the frequency components
	Verifying the robustness towards fine-tuning attack, permutation attack, and scaling attack (individually applied)
	Compute resources

	Other details
	Details of the cosine similarity between two complex vectors
	Details of the combined attacks
	Details of inference score for ICS
	Details of inference score for CKA

	Societal impacts

