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Abstract: Motion planning tasks like catching, interception, and manipulation re-1

quire high frequency perception and control to account for the agility required to2

complete the task. Reinforcement learning (RL) can produce such solutions, but3

can often be difficult to train and generalize. However, by exploiting the intrinsic4

geometric properties of agile task workspaces, we can enhance the performance of5

an RL and generalize it to new tasks. In this work we leverage geometric symme-6

try to enhance the performance of a value estimation policy (Actor Critic, A2C).7

Our method involves applying a geometric transformation to the observation dur-8

ing execution to provide the policy an alternate perspective of the current state.9

We show the effect of the symmetry exploitation policy on a trained A2C model10

on a WidowX reach task. The results show that by using symmetry exploitation,11

a trained model improves its performance, and generalizes to new tasks.12

Keywords: Motion Planning, Reinforcement Learning13

1 INTRODUCTION14

Reinforcement learning (RL) is useful for motion planning tasks like robotic manipulation [1], jug-15

gling [2], and sports [3, 4], all of which require agility and high frequency control. However, the16

quality of the learned solution depends on the experience the model collects during training [5].17

For example, a model that learns to control a robot arm may have higher value estimate and better18

performance with reaching areas to its left hand side rather than its right, despite the invariance of19

the model and task to reflections, e.g, the symmetry of the environment. Some methods rely on20

probabilistic sampling [6] to generalize for the symmetry, and others address it directly through21

experience augmentation [7] or latent space planning [8]. However, our intuition is to exploit this22

uncertainty in estimation as action alternatives. Considering the example above, we could present23

the learned model with the target in the left hand side and its symmetric position in the right hand24

side. If the model proposes different actions for either perspective, we choose the action leading to25

the higher reward by comparing the values of the states.26

In this work, we propose a method to leverage the invariance of the work space, i.e. symmetry,27

to improve the performance of a value estimation method that requires no additional training. We28

demonstrate our method, the symmetry exploitation policy, on an actor critic model (A2C) trained29

on 3D WidowX robot manipulator environment [9], and find that using the policy improves perfor-30

mance and generalization to unseen tasks. This paper contributes the symmetry exploitation policy31

and evaluation for a simulated 3D robotic environment. with continuous actions and observations.32

We believe this method will help improve the performance of value estimation models that operate33

in symmetric environments, and help generalize them to unseen tasks.34
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Figure 1: The WidowxReach-v28 environment,
showing the WidowX robot arm with 6 joints,
and the green random goal.

Algorithm 1 Symmetry Exploitation Policy
1: Environment Initialization
2: o← initial observation
3: while not done do
4: om ← transformobs(o)
5: if V (o) ≥ V (om) then
6: a← π(o)
7: else
8: am ← π(om)
9: a← transformaction(a

m)
10: end if
11: o, done← step(a)
12: end while

2 Related Work35

Geometric transformations are used in machine learning for data augmentation [10]. Commonly36

used in image processing, data augmentation can help generalization through increasing sample size37

or randomizing data. Such transformations include translations, rotations, reflections, and scaling38

[11, 12, 13]. Our method, on the other hand, operates in the motion planning domain. In the case39

of motion planning with reinforcement learning (RL), several existing works [14, 15, 16] augment40

input images with random textures and lighting conditions to generalize to real world observations.41

Closest to our work, Kostrikov et. al [7] uses geometric translation or shifting of input pixels to42

produce multiple Q values on which to regularize Q value estimation. In contrast, rather than using43

augmented observations to normalize or generalize, our method follows the maximum value actions44

and states as a policy, and does so during execution rather than training.45

Towards a similar end, learning and planning in latent space, or state abstraction [17], also aims to46

bypass low level features of the environment by planning in a learned model of the task. In [18]47

an autoencoder learns to estimate latent space, where a sampling planner and dynamics estimator48

plan the policy. In a combined example, Srinivas et. al [8], use augmentation to learn high level49

features from pixel representations. These methods often have an encoder and decoder comparable50

to geometric transformations of our method. However, latent space planning relies on learning the51

latent space during training, whereas our method is applied during execution rather than training.52

Outside of learning, symmetry has been extensively exploited for motion planning. Early work by53

Frazzoli [19], which led to more recent endeavors [20, 21], plan using motion primitives represented54

by equivalence classes defined by symmetries. Other work like that of Larkin et. al [22] reduce55

collision calculation by leveraging the symmetry of the geometric bodies. While our work shares56

the notion of symmetry exploitation, it specifically applies to estimated policies and values.57

3 Method58

Environment: We demonstrate our method in the WidowXReach-v28 environment as implemented59

by [9]. The environment, shown in Fig. 1, contains the WidowX robot, a fixed-base 6 degree of60

freedom manipulator arm. The robot’s task is for its end-effector to reach a specific goal point in61

space, commonly referred to as a reach or fetch problem. Each episode is initialized with randomized62

goal location in the environment, and a fixed pose for the arm (with the base joint at angle 0). The63

reward is a negative value equal to the distance between the goal and the end-effector positions,64

until reaching a certain minimum threshold of 0.001 at which point the reward is +1. The state65

observation, o, is a 15-element vector containing the following: The first 9 indices are the relative x,y,66

and z coordinates between the end-effector and the base position, the relative coordinates between67

the end-effector and goal positions, and the absolute goal position. The last 6 indices are the 6 joint68

angles. The action is a vector of 6 values indicating changes of joint angles.69
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Figure 2: Success rate of 100 models using the (a) base, (b) rotation, and (c) reflection policies.

Preliminary Training: We train 100 models with different starting weights by seeding each model70

with a different random number. The agents are trained for 30k episodes using the Advantage Actor71

Critic (A2C) [23], as in [9]. The network has two 64-node hidden dense layers. All models are72

trained on an NVIDIA Tesla V100 GPUs with Intel Xeon E-2146G @ 3.50 GHz.73

Symmetry Exploitation Policy: The symmetry exploitation policy is a modification to value es-74

timation policies during execution. It relies on inherent geometric invariance, e.g., symmetry, to75

augment the observation and provide the model with additional perspectives on the same state that76

might produce different actions. The policy decides which action to use based on the estimated77

value of the corresponding state. This process is described in Algorithm1. During execution,78

we take the current observation of the state, o ∈ O, and apply the chosen geometric transforma-79

tion, transformobs, to get a transformed observation, om (line 4). The learned estimated value,80

V : O → R, is then queried on both o and om (line 5). We compare the value estimate of both81

observations and choose the observation with higher value to feed into the learned policy, to get an82

action, a (lines 5 to 8). If the chosen observation was the transformed observation, om, we apply the83

inverse geometric transformation, transformaction, to the action, am (line 9).84

In the case of the WidowX reach task, the workspace has both (1) a rotational symmetry about85

the z axis, along the xy-plane, due to the first joint of the robot arm being a rotation joint and (2) a86

reflective symmetry about the xz-plane along the y axis. For the reflective symmetry, transformobs87

negates the y-axis values of each coordinate component of the observation (o index 1,4, and 7) and88

the value of the first joint angle (o index 9). transformaction negates the action for the first joint89

(a index 0). For the rotation symmetry, transformobs rotates the x,y,z values of each coordinate90

component of the observation (o indices 0-8), using angle θ. θ is equal to the current angle of the91

first joint (o index 0), which is set to 0 after the transform. Since the action is defined as relative92

angle changes, the action am requires no transformation for rotation symmetry.93

4 Experiments & Results94

We evaluate the symmetry exploitation policy compared to standard execution by preforming 10095

episodes per policy per model, and measure the cumulative episode rewards and number of episodes96

in which the end effector reaches within 50mm of the goal. To note, despite the reward structure97

awarding the reach reward at distance of 1mm, all trained models fail to reach that range during98

execution. The remainder of the text will refer to the symmetry exploitation policy as reflection or99

rotation based on the geometric transformation used, and the standard execution policy as base.100

Experiment 1: The first experiment shows the effect of the symmetry exploitation policy on the101

performance of the trained models. The results compare the performance of base policy to the rota-102

tion and reflection policies, with the success rates shown in Fig.2. The models achieve an average103

success rate of 61.50%, standard deviation ±37.64 with the base policy, 67.71% ±39.93 success104

with the rotation policy, and 66.64% ±40.02 success with the reflection policy. With the rotation105

policy, 73 of 100 models experience an increase in reward, and 89 achieve greater or equal success106

compared to the base policy. With the reflection policy, 91 models experience an increase in reward,107

3



Figure 3: Mean reward of 100 models on an unseen task where the starting pose has a random base
joint angle. The red dots represent 100 models that were trained on the new task.

and 84 achieve greater or equal success compared to base policy. From Fig. 2 we can see that pop-108

ulation of models with low success rates remains unchanged by the symmetry exploitation policies.109

This is expected as the symmetry exploitation policy relies on the learned model to estimate the110

value and action, and if a model performs poorly there is little room for improvement. However, we111

can also see that the distribution of the other models shifts towards higher success rates. The base112

policy has 30 models with success above 90%, whereas both symmetry exploitation policies have113

over 50 of such models. These results show that the symmetry exploitation policy can be used to114

improve the performance of a trained model.115

Experiment 2: The second experiment shows the effect of the symmetry exploitation policy in116

generalizing models to new tasks. We define a new task where the starting pose of the robot arm117

initializes with a random base joint angle. The results compare the performance of the base policy118

to the rotation and reflection policies. Additionally, as a comparison, we trained 100 new models on119

the task with the new parameters (referred to as Trained Random) and include their performance.120

As expected, the performance of the original models drops when given a new task, and the Trained121

Random models perform better since they were trained for this new task. However, when examining122

the mean episode rewards shown in Fig. 3, we can see that using the rotation policy shifts the123

distribution of the reward for the base models towards a similar distribution to that of the Trained124

Random models. By using symmetry exploitation, the models trained on the previous task are able125

to achieve rewards comparable to models trained on the new task. These results show that the126

symmetry exploitation policy helps a model to generalize to new tasks.127

5 CONCLUSION128

In this work we present a symmetry exploitation policy, which augments observations during exe-129

cution through geometric transformations. We showcase the method on the WidowX reach task, a130

building block for many robotic tasks that require agile execution. The results show that the sym-131

metry exploitation policy not only improves the performance of a trained model, but also allows it132

to generalize to new tasks and perform comparably to models trained on the new task. Since our133

method does not rely on special considerations during training as existing methods do, it can be134

applied post-hoc to any eligible learning method, conditioned on the symmetry of the environment.135

The task and its symmetries presented in this work are a proof of concept for the validity of the136

method. We have yet to study the effect of combining symmetries or using multiple alternative ob-137

servations. Other considerations include defining symmetries implicitly and applying it to methods138

that don’t estimate value. In future work, we plan on addressing these questions, in addition to139

applying this method to additional tasks, learning methods, and symmetries.140
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